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Abstract 
Streptomyces species produce a vast diversity of secondary metabolites of clinical and 

biotechnological importance, including antibacterial that are increasingly sought after 

to tackle the spread of resistance. Recent developments in metabolic engineering, 

synthetic and systems biology have opened new opportunities to exploit Streptomyces 

secondary metabolism, but achieving industrial levels of production without time-

consuming optimisation has remained challenging.  

In this thesis, we present the reconstruction and analysis of constraint-based 

genome-scale metabolic models to study and engineer primary and secondary 

metabolism of Streptomyces species. The aim of this work is to better understand so 

that it can aid in the increase of antibiotic production in Streptomyces spp. This would 

ultimately help in the discovery and production of new antibiotics to face the rise of 

antimicrobial resistance.  

This thesis starts with an introduction on Streptomyces (and other 

Actinobacteria) primary and secondary metabolism, and on synthetic and systems 

biology principles and methods relevant to Streptomyces strains engineering 

(Chapter I). The work presented here involved the update and validation of a high-

quality genome-scale metabolic model of Streptomyces coelicolor to study its primary 

and secondary metabolism (Chapter II). A metabolic model of Streptomyces lividans 

was reconstructed and compared to S. coelicolor model to identify the metabolic 

differences potentially responsible for the differences in antibiotics production 

between and the two closely related strains (Chapter III). The comparative 

reconstruction and comparison method used for S. lividans was automated to compare 

about 50 different Actinobacteria strains and study the metabolic differences between 

these organisms (Chapter IV). We automated the essential process used to constrain 

metabolic exchanges in the metabolic model that allows condition-specific predictions, 

by building an R tool (Chapter V). The models and tools developed and validated in this 

thesis were used to help design better S. coelicolor antibiotic producing strains, by 

applying it to the production of actinorhodin and the heterologous production of the 

GE2270A antibiotic (Chapter VI). Finally, the thesis concludes with a discussion on the 

future applications of the models and tools developed here, as well as future 

developments and applications of metabolic modelling for synthetic and systems 

biology of antibiotic production in Streptomyces species.  
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Chapter I 

1. Introduction 

A major challenge in engineering biological systems is to understand and control the 

information from genotypes to functional phenotypes of interest 1–3. The capability to 

understand and modify biological systems has accelerated these last two decades, due 

to the development of modern high-throughput measurements technologies such as 

genome sequencing 1,4. This pushed biology as a data-rich field, in a similar way, to the 

shift of astronomy toward a data-rich field 30 years ago with the development of 

technologies such as the Hubble space telescope 5. This explosion of complex and large 

datasets has driven the need for analytical tools, and modelling tools to represent 

complex biological systems and help interpret the data. The objective of modifying 

biological systems to have desired functions (e.g., bioproduction of industrially 

relevant compounds) has required interdisciplinary approaches 6,7. To achieve this 

objective, researchers and engineers use synthetic biology to engineer biological 

systems and systems biology to design organisms, then analyse and interpret the data 

from the engineered biological systems. These methods are now applied to discover 

and produce antibiotics and other secondary metabolites of clinical or industrial 

interest 8,9. This thesis presents the application of constraint-based genome-scale 

metabolic modelling with the integration of omics data, and the creation of new 

metabolic models and tools to study and improve the production of antibiotics in 

Streptomyces species and other Actinobacteria. 
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1.1 Actinobacteria and Streptomyces species metabolism 

The emergence of pathogen’s resistant to last-resort antibiotics, and the rapidly 

decreasing rate of antibiotics discovery, it is essential to develop new methods to 

discover and produce novel antibiotics 10,11. The most prolific producer of antibiotics 

are the soil bacteria of the genus Streptomyces from the Actinobacteria phylum, which 

are the source of around 70% of all antibiotics on the market 12. These organisms are 

still a promising source of novel antibiotics 12,13, as well as a bioproduction hosts 14–16. 

Actinobacteria are Gram positive bacteria with a high genomic GC content, the 

organisms from this phylum are able to survive and thrive in various environmental 

conditions such as in soil and aquatic environments (e.g., Streptomyces, Salinispora, 

and Micromonospora species), or in plant and animals (e.g., Corynebacterium, 

Mycobacterium, Nocardia, Frankia species) 17. The adaptation to different ecological 

niches makes the Actinobacteria a very diverse phylum phylogenetically 18, genetically 

19,20, and physiologically (e.g., metabolism, or morphology) 17,21,22. These adaptations to 

various ecological niches lead to the selection of a diverse range of secondary 

metabolites to survive (e.g., chelators) and compete against various microorganisms 

(e.g., antibiotics) 17,23.  

1.1.1 Primary and secondary metabolism 

Because of the industrial and clinical importance of secondary metabolites 

produced by Streptomyces species and in Actinobacteria, their primary and secondary 

metabolism has been widely studied 24–27. However, little is known about the full 

intricacies of metabolic regulation, response to environmental cues, secondary 

metabolites roles, or metabolic differences responsible for high or low production 
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levels 28–31. Primary metabolism corresponds to the anabolic and catabolic metabolism 

used for biomass production; these are reactions to use energy and synthetize the 

biochemical building blocks such as lipids, nucleic acids, proteins, carbohydrates, and 

storage molecules (e.g., glycogen, or polyphosphate) 24,32. While the secondary 

metabolism produces non-essential metabolites for the life of the organism 24,32. 

However, these molecules can give a survival advantage; for example, by giving a 

competitive advantage in the interaction with other organisms (e.g antibiotics) or by 

protecting from environmental and internal stress (e.g. osmoprotectants, and 

pigments) 24,31. The bioactivity of these molecules gives them a therapeutic interest; 

many pharmaceutical compounds are derived from secondary metabolites, of course 

antibiotics 33,34, but also anti-cancerous 35, antifungal 36, and other top-seller drugs 

such as lovastatin 37. There are still many secondary metabolites, of which may have a 

potential to be a new antibiotics. Just in Streptomyces species, the conservative 

estimates for the number of natural products produced are of about 150,000, of which 

only 3% have been characterized 12. Many secondary metabolites remain 

uncharacterized, due to multiple limitations such as compounds produced below the 

detection limit, or compound not produced in laboratory cultivation conditions or 

compound found in unculturable strains 38,39. However, the recent developments of 

bioinformatics tools such as antiSMASH 9,40 have enabled the prediction of diverse 

secondary metabolites encoded in microorganisms genome sequences.  

In general, the genes associated with the biosynthesis, transport, transcription, 

or resistance of secondary metabolites are found clustered in the genome (Figure 1.1); 

this corresponds to a biosynthetic gene cluster (BGC) 41,42. The BGCs are tightly 
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regulated, and the co-localisation of these genes makes regulation easier for the 

organism 24,41. While the genes associated with primary metabolism are more 

frequently spread around the genome and duplicated 25,43. Many primary metabolic 

reactions have multiple isoenzymes; these can be expressed differentially depending 

on life cycle or on environmental cues. For example, the depletion of phosphate 

triggers the entry into stationary growth phase for Streptomyces coelicolor, which is 

coordinated with a metabolic switch leading to multiple primary metabolic pathways 

expression to decrease 44–47. During this metabolic switch multiple isoenzymes are 

differentially expressed, such as the genes associated to the NADH dehydrogenase, the 

ndh genes expression decreased while the nuo genes expression increased 47,48. The 

Figure 1.1: Schematic representation of a typical secondary metabolite biosynthetic 
gene cluster with the corresponding metabolic functions 

a) A simplistic representation of a BGC producing a secondary metabolite. The regulator 

gene is in red, the biosynthetic genes are in green, the resistance gene is in blue, and 

the export genes are in purple. 

b) A simplistic representation of the metabolic pathway and mechanisms encoded by 

the BGC. The biosynthetic genes (in green) in the metabolic pathway encode enzymes 

converting primary metabolites-hexagon- (e.g., malonyl-CoA) into intermediates, 

progressively catalysing reactions toward the final product (in orange). The final 

compound is toxic for the organism, so the BGC encodes resistant proteins (in blue) to 

protect the cell from the compound toxicity. In general, the compounds are exported 

by efflux pumps (in purple) to avoid toxicity or to ensure the metabolite function in 

the extracellular milieu (e.g., chelation of metals, or antimicrobial activity).  
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duplication of the primary metabolic genes makes the metabolism more robust and 

help the organism maintain essential metabolic function despite metabolic 

perturbations (e.g., nutrient limitation) 25. 

The role and origins of secondary metabolisms are still unclear. But this 

metabolism certainly has a major biological importance, as strains dedicate a 

significant part of their genome to this metabolism. As it requires more energy to 

duplicate and maintain this DNA, this function would have been lost if it did not have a 

significant evolutionary advantage 24. For example, the calcium-dependent antibiotic 

(CDA) BGC alone represents 1.1% of the genome of Streptomyces coelicolor 24. There 

are many theories on the origin of secondary metabolisms; such as the final product 

selection theory, which suggests that secondary metabolites are selected for their 

biological function. This theory considers that selection is focused on the final 

metabolite because the BGCs are clustered, tightly regulated and coordinated, with a 

final compound well adapted to the organism 24,49. However, how could large 

secondary metabolic pathways evolve step by step? The pathway intermediates rarely 

bring a biological advantage; furthermore, secondary metabolites are produced from 

primary metabolites that could be used for growth or survival. So another theory 

suggested is that the production of these compounds was due to overflow 

metabolism, with the excess of the uncontrolled primary metabolic intermediates 

leading to the production of secondary metabolites 24,26. However, the secondary 

metabolites cannot be considered as just by-products of the overflow metabolism 

because their BGCs are tightly regulated and controlled. So a hypothesis brought these 

two theories together suggesting that when growth is limited by a nutrient (e.g., 

nitrogen or phosphate), the secondary metabolism was activated to maintain primary 
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metabolic pathways active until the limiting nutrient was available 24,26. Then, the 

overflow metabolism coming from primary metabolism could be diverted toward 

secondary metabolic pathways. The final compounds ended up selected because of 

their evolutionary advantage 24. These theories and their implications are well 

described in a review on primary and secondary metabolism of Streptomycetes by 

Hodgson 24.  

The evolution of secondary metabolism helps to understand the direct link of 

these pathways to the primary metabolism, from the metabolic precursors to their 

regulations. Central metabolism has a critical role in secondary metabolism control and 

precursors production. For example, many secondary metabolites, such as polyketide 

synthases metabolites (see Section 1.1.2), use acetyl-CoA and malonyl-CoA as building 

blocks, so the pathways producing and consuming these metabolites have a major 

impact on secondary metabolism24,50,51. Glycolysis is important to generate these 

precursors while the fatty-acid biosynthesis is a major consumer of these precursors 

52,53. In parallel, the Embden-Meyerhof-Parnas section of glycolysis and oxidative 

phosphorylation is important to generate reductive and oxidative power needed for 

some enzymes catalysis in the secondary metabolic pathways 50,54. The direct 

dependence of secondary metabolism on the primary metabolism makes primary 

metabolism an important target to study and engineer to understand and increase 

secondary metabolites production 50,51,54–57.  

1.1.2 Different types of Actinobacteria secondary metabolites 

Actinobacteria have diverse secondary metabolites, the main ones with major 

industrial or therapeutics interest are (I) the polyketides and lipids compounds 58, (II) 
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the terpenes 59, (III) the non-ribosomal peptides (and amino-acids compounds) 60, (IV) 

the ribosomally synthesized and post-translationally modified peptides (RiPP) 61. Their 

biosynthesis relies on particular enzymes, respectively, (I) polyketides synthases (PKSs) 

58, (II) terpene synthases (TS) 59, (III) non-ribosomal peptides synthases (NRPS) 60. 

PKSs produce compounds that include many antibiotics compounds (e.g., 

tetracycline and erythromycin), immunosuppressants (e.g., rapamycin), or anticancer 

(e.g., doxorubicin) 62,63. The PKSs use acyl-CoA building blocks to build complex 

molecules. PKSs are classified into three types, types I, II, and III. The type I are large 

multi-domain biosynthetic proteins organised in modules (Figure 1.2a), the type II are 

multi-enzyme complexes carrying a set of iteratively acting enzymes (Figure 1.2b), the 

type III PKSs are homo-dimeric enzymes that iteratively condense the building blocks 

to build the molecule (Figure 1.2c). All the PKSs use acyl-CoA precursors as building 

blocks (e.g., acetyl-CoA and malonyl-CoA), but the type I and II PKSs requires ACP to 

use the acyl-CoA precursors (Figure 1.2a and b) 58. The type I PKSs are widely produced 

in Actinobacteria strains, such as the erythromycin compound (Figure 1.2a) first 

isolated in Saccharopolyspora erythraea 33, this compound is used to treat skin and 

respiratory tract infections. Type II PKSs are also frequently identified in Streptomyces 

and Actinobacteria, such as actinorhodin (Figure 1.2b) which is produced by 

Streptomyces coelicolor (and other species) 64,65; this blue-pigmented compound has 

an antibiotic activity 66 but is mostly used to study antibiotics production as it is a 

coloured compound and it is easy to assay 50,67,68. Type III PKSs are also present in 

many Actinobacteria, such as tetrahydroxynaphthalene (THN) and flavolin (Figure 1.2c) 

in Streptomyces antibioticus 69.  
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Figure 1.2: Representation of the three different types of PK biosynthesis pathways  

A) Example of a type I PK biosynthetic pathway of erythromycin. The main building blocks 

of the type I PKS are acyl-CoA metabolites (here acetyl-CoA), this metabolite is loaded 

on an ACP and modified by the different enzymes in the modules of the PKS. This 

constitute the minimal PKS leading to 6-deoxyerythonolide B (DEBS), which can be 

modified by tailoring enzymes to lead to the final compound erythromycin A. Domains 

shown here are composed of acetyltransferases (AT), acyl carrier proteins (ACP), keto 

synthases (KS) and ketoreductases (KR). The example here is a modular type I PKS, but 

iterative versions exists using one module iteratively to produce the secondary 

metabolite, mostly found in fungi 37,58. 

 

B) Example of a type II PK biosynthetic pathway of actinorhodin. The main building blocks 

of the type II PKS are also acyl-CoA metabolites (here acetyl-CoA and malonyl-CoA), 

these metabolites are loaded on the minimal PKS and elongated to form a long chain 

fatty acid which is then modified by other enzymes (e.g., cyclization, modification, 

dimerization) to lead to the final compound 58,65. 

 

C) Example of a type III PK biosynthesis pathway of flaviolin. The main building blocks are 

also acyl-CoA metabolites (here malonyl-CoA), this process is ACP-independent and 

iteratively uses the enzyme to produce the precursor. The condensation of the malonyl-

CoA is catalysed by RppA. The precursor is transformed in tetrahydroxynaphthalene 

(THN) by dehydration and decarboxylation. The THN is then converted to flaviolin by a 

monooxygenase (MomA) 58,69.  
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 Terpenes compounds include many molecules used in aroma and flavours (e.g., 

limonene, and menthol) as well as food additives and complements (e.g., carotenoids, 

and retinol) 70. Terpenes are widespread across the Actinobacteria, for example, in 

S. coelicolor alone, there are four terpenes BGCs, corresponding to isorenieratene, 

albaflavenone, geosmin, and hopene 40. The terpenes biosynthesis is divided in two, 

the isoprene phase and the geranyl pyrophosphate phase and further 59. In the 

isoprene phase, the precursors isopentenyl pyrophosphate (IPP) and dimethylallyl 

pyrophosphate (DMAPP) are produced either from the mevalonate pathway (MEV) or 

from the non-mevalonate pathway using 2-C-methyl-D-erythritol 4-phosphate (MEP) 

(Figure 1.3a). Then, the IPP and DMAPP are converted into geranyl pyrophosphate 

(GPP) entering the second phase of terpenes biosynthesis, where GPP can be 

converted into a wide range of terpenes compounds, such as monoterpenes and 

monoterpenoids (e.g., menthol, and linalool), or sesquiterpenes (e.g., geosmin), and 

diterpene (e.g., retinol) 59. 

 NRPS compounds have diverse functions such as antibiotics (e.g., vancomycin, 

and calcium dependent antibiotics), to immunosuppressant (cyclosporine A), or 

biosurfactants (e.g., surfactin) 71. NRPS compounds are frequently found in 

Actinobacteria, for example, vancomycin is a large-spectrum antibiotic produced by 

Amycolatopsis orientalis (also known as Nocardia orientalis) 72,73. The NRPS 

biosynthetic machinery is similar to the type I PKSs, as it uses modular multi-domain 

enzymes (Figure 1.3b), each domain has a function to modify the precursors amino-

acids to condense in the NRPS final compound. Many NRPS BGCs contain tailoring 

enzymes that allow modification of the compound, such as the addition of sugar 

groups in vancomycin (Figure 1.3b) 73. 
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 The RiPP compounds are used for diverse applications, such as food additive 

and preservative (e.g., nicin), or antibiotics (e.g., thiostrepton, GE2270A). Many RiPP 

compounds are produced in Actinobacteria, such as GE2270A a thiopeptide produced 

in Planobispora rosea 74, with derivatives in clinical trials as antibiotics 75,76. In 

opposition to NRPS peptides, RiPP peptides are produced by the ribosome using the 

transcript from the BGC. The ribosome produces a precursor peptide containing a 

leader peptide acting as a signal system and a core peptide that will be modified to 

become the final compound (Figure 1.3c). The leader peptide is then cleaved and the 

core peptide is further modified by different enzymes encoded in the BGC (e.g., 

cyclodehydration) which creates the final compound (e.g., GE2270A, or 

thiostrepton) 75. 

 Secondary metabolites biosynthesis consumes metabolic precursors from the 

primary metabolism. Ones of the most important precursors are the acyl-CoA 

metabolites, particularly acetyl-CoA and malonyl-CoA, that are used for PKS and 

terpenes (via MVA pathway) biosynthesis 58,59,77. The amino-acids are also important 

precursors for the peptides secondary metabolites NRPS and RiPP 61,73. Most of the 

secondary metabolites pathways have enzymes using cofactors such as NADPH, NADH, 

FMNH, FADH, ATP, or S-adenosyl methionine (SAM) 16,78. This explains the importance 

of the primary metabolism regulation and metabolic precursor availability for 

secondary metabolites production 24.  

1.1.3 Streptomyces coelicolor: the model strain of antibiotic production 

Streptomyces coelicolor is a well-studied Streptomyces strain; it is the model 

organism for antibiotics production in the Streptomyces genus 79. It was the first 
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Figure 1.3: Schematic representation of terpenes, NRPS, and RiPP biosynthetic 
pathways 

A) Example of a terpenes biosynthetic pathway for linalool 59. The terpenes 

precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate 

(DMAPP) are produced from the mevalonate (MVA) pathway and/or from the non-

mevalonate pathways (MEP). The precursors are transformed into the common 

intermediates geranyl pyrophosphate (GPP) subsequently transformed in a wide 

range of terpenoids. 

B) Example of a non-ribosomal peptides synthase (NRPS) for vancomycin 73. The NRPS 

is divided in multiple modules using different proteogenic amino-acids like leucine 

and tyrosine, or using non-proteogenic amino-acids like the 4-

hydroxyphenylglycine (Hpg) and the 3,5-dihydroxyphenylglycine (DPG). The 

compound is then modified by tailoring enzymes. A = activation domain; C = 

condensation domain; E = epimerization ; PCP = peptide carrier protein domain. 

C) Example of ribosomally synthesized and post-translationally modified peptides 

(RiPP) for GE2270A 75. The RiPP precursor is produced by ribosomes using the BGC 

transcript. The precursor peptide is constituted by a leader peptide that will be 

cleaved and a core peptide that will be modified by diverse enzymes encoded in 

the BGC (e.g., dehydrogenation and cyclodehydratation). 
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Streptomyces with its genome fully sequenced 79. More than 20 BGCs were identified 

in its genome sequence, including type I, II & III PKSs, terpenoids, NRPS, and RiPP. The 

most studied secondary metabolites are Actinorhodin (ACT) — a type II polyketide 

synthase (PKS) product (Equation 1.1), Coelimycin P1 or Coelicolor PolyKetide (CPK) — 

a type I PKS product (Equation 1.2), Calcium-Dependent Antibiotic (CDA) — a non-

ribosomal peptide synthase (NRPS) product (Equation 1.3), and Undecylprodigiosin 

(RED) — a hybrid NRPS-PKS product (Equation 1.4). A major advantage of this organism 

is the production of multiple coloured antibiotics allowing fast visual assays of the 

antibiotic production by the organism 79. ACT is a pH-dependent blue-pigmented 

antibiotic 64, CPK is a yellow-pigmented antibiotic 80, undecylprodigiosin is a pH-

dependent tripyrrole red-pigmented antibiotic 81; all three are quantifiable by 

spectrophotometry. All these compounds are produced from metabolic precursors 

coming from the central metabolites such as acetyl-CoA and malonyl-CoA, cofactors 

such as NADH, NADPH, FADH2, or FMNH2 (Equation 1.1, Equation 1.2, Equation 1.3, 

Equation 1.4), and amino-acids such as glutamate, or alanine (Equation 1.3). 

The wide range of molecular tools and protocols 23,82 used and tested in the 

S. coelicolor strain, makes it an attractive organism for synthetic biology 15. The 

S. coelicolor molecular toolbox is expanding, with the recent addition of an engineered 

CRISPR/Cas system for genome-editing in Streptomyces species 83. Multiple 

Equation 1.1: Stoichiometric equation of Actinorhodin 
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S. coelicolor mutant strains have been developed 84–86, such as the M1146 strain where 

the BGCs for the highly active secondary metabolites ACT, RED, CPK, and CDA were 

deleted from the chromosome 84. This frees metabolic resources for heterologous 

pathways introduced in the strain 87. The M1146 strain is widely used as a host strain 

for heterologous expression of BGCs from uncultivable or genetically intractable 

Equation 1.3: Stoichiometric equation of Calcium-Dependent Antibiotic form 1b 

Equation 1.4: Stoichiometric equation of Undecylprodigiosin 

Equation1.2: Stoichiometric equation of Coelimycin P1 
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Actinobacteria. The S. coelicolor strain is a useful chassis strain for screening and as a 

production host for secondary metabolic pathways 84,87. There are other strains that 

are potential chassis strains, such as genome-minimized strains of Streptomyces albus 

88 and Streptomyces avermitilis 14, or Streptomyces clavuligerus 89.  

1.2 Introduction to Synthetic and Systems Biology 

Synthetic biology definitions are very diverse and are mostly linked to the many goals 

of the discipline, from biomanufacturing of high-value chemicals, to the engineering of 

living therapeutics, or the creation of minimal cells and protocells 1,7,90. Furthermore, 

the field draws methodologies from different disciplines, such as biochemistry, 

microbiology, chemistry, medicine, engineering, mathematics, computational biology, 

and systems biology 6,7,90. However, despite the ambiguities around the boundaries of 

what is and what is not synthetic biology, many groups of scientists attempted to 

reach a general definition of the field. This includes the definition by the new and 

emerging science and technologies (NEST) group (Synthetic Biology: Applying 

Engineering to Biology: Report of a NEST High Level Expert Group) 91: 

‘Synthetic biology is the engineering of biology: the synthesis of complex, biologically 

based (or inspired) systems, which display functions that do not exist in nature. This 

engineering perspective may be applied at all levels of the hierarchy of biological 

structures—from individual molecules to whole cells, tissues and organisms. In essence, 

synthetic biology will enable the design of ‘biological systems' in a rational and 

systematic way'  

While synthetic biology enables the rational engineering of biological systems, 

it needs systems biology to understand existing and engineered systems from a 
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quantitative point of view 92–94. Systems biology uses computational and mathematical 

methods to understand biological systems using experimental data (e.g., omics data) 

and biological knowledge (e.g., biochemistry, or molecular biology) 92,95,96. So, 

combining the two disciplines creates benefits to both, as synthetic biology gains from 

the analysis and tools of systems biology to design and engineer organisms with the 

desired function (e.g., bioproduction of antibiotics) 92,97,98, while systems biology gains 

knowledge from synthetic biology experiments that modify biological organisms and 

reveal new functions, as well as creating new biological systems to study 98,99. 

1.2.1 Synthetic biology engineering principles 

The ambitious objective of synthetic biology to engineer biological systems requires to 

standardise and systematise the organism’s modification in a similar manner as 

software or electrical engineering 7. Synthetic biology uses the iterative design-build-

test-learn (DBTL) cycle to engineer biological systems 100,101 (Figure 1.4). This cycle 

builds a framework to engineer biological systems in a more systematic and efficient 

way 102. The DBTL cycle described here focuses on synthetic biology for secondary 

metabolites production. 

In the design phase, to engineer a given function, such as bioproduction of an 

antibiotic, the synthetic biologist either selects a native producing strain or a chassis 

capable to produce the compound 103,104 (Figure 1.4). In the latter case, the metabolic 

pathway is either readapted from the native pathway by refactoring and redesigning 

the genetic construct for the pathway, or by designing and selecting new pathways and 

enzymes 105,106. The metabolic network of the producing organism is also redesigned to 

increase fluxes toward compound production 107,108.  



39 

 

The organism designs are implemented in the build phase; multiple 

experimental methods are used, particularly molecular biology and biochemistry 

methods such as gene synthesis, pathway assembly, and gene editing (Figure 1.4). For 

example, multiple pathways can be built at the same time using automated 

combinatorial assembly 8 with different combinations of genetic components and the 

best constructs will be identified in the test phase. The designed BGC pathways are 

built by gene synthesis, pathway assembly, and expressed in the organism of choice 8. 

The metabolic network is modified using diverse methods such as overexpression and 

gene deletion, applying gene editing methods such as CRISPR/Cas 109 and molecular 

biology to overexpress a target gene 110.  

 The test of the reengineered organisms is necessary to assess if the desired 

function is optimised or to identify potential issues and bottlenecks in the engineered 

organism (Figure 1.4). The organism phenotype characteristics can be assessed by 

measuring growth parameters, nutrients consumption, and compound export. Some 

very valuable information on the engineered organism state are measured by omics 

data (transcriptomics, proteomics, and metabolomics) 111. Multiple screening methods 

are used to study if the function is optimised or if a new function is acquired, for 

example, new antibiotics produced are tested for their bioactivity, or a bioassay used 

to identify the most expressed pathway using a fluorescent reporter (e.g., GFP) 

embedded in the construct 8,112.  

 The test results are used to redesign the organism to further optimise it or 

determine if it reached its maximal potential (Figure 1.4). This is the learn phase, 

which uses in-silico methods to analyse and interpret the data from the test phase, 

such as statistical analysis of the data (e.g., growth curve, or pathway enzymes 
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Figure 1.4: Design-Build-Test-Learn cycle in synthetic biology 

This DBTL cycle focuses on the synthetic biology of secondary metabolites production.  
The Design and Learn phases are dominated by in-silico methods, while the Build and Test 
phase are dominated by in-vivo methods. 
 

- Design: the design of engineered organism spawn from the selection of the chassis 
strain, to the metabolic pathway design and genetic construct design to the 
organism metabolic network engineering. 

- Build: the build phase executes the design phase plans by assembling multiple 
pathways, expressing the genetic constructs, and engineering the strains using 
gene editing and molecular biology methods to over-express or knock-out target 
genes identified in the design phase. 

- Test: here the organisms built in the previous phase are tested, such as their 
phenotype (e.g., growth, and nutrient exchanges), the omics data is acquired 
(transcriptome, proteome, metabolome), and the organism function is optimized 
(e.g., bioassays). 

- Learn: the data from the test phase is analysed and interpreted, from statistical 
analysis to omics data analysis and integrative analysis in metabolic models. The 
data is also used to predict and design a new round of modifications on the 
organism or assess if the function is optimised.  

The DBTL cycle is repeated until the function, here high production of a secondary 

metabolite, is optimised in the target organism 101,102. 
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expression) to understand the link between design and the resulting function 

measured in the test phase 101,113. The analysis and interpretation of the omics data 

help to identify the impact of a design on the organism, and identify undesirable 

effects (e.g., by-product measured by metabolomics) 95,101. The omics data is 

integrated into a genome-scale metabolic model to further interpret the data, and 

predict a new design strategy (e.g., deletion of a by-product producing pathway) 107,114.  

These steps are repeated as many times as necessary until the organism 

function is optimised (e.g., high production of a secondary metabolite). The 

automation of this cycle is critical to accelerate the cycle and rapidly engineer 

biological systems 2,101. However, the cycle can be often stalled by the pace of 

interpreting and integrating the test data into the design phase 1. Hence, there is a 

need to develop new automated methods in the learn phase to accelerate the DBTL 

cycle 1,99,101. 

1.2.2 Synthetic biology and metabolic engineering of secondary metabolism 

The recent and rapid expansion of synthetic biology is facilitating a new route 

to natural product discovery by rational engineering of secondary metabolites BGCs 

8,115, and to bioproduction optimization by rationally engineering production hosts 

116,117. Synthetic biology of secondary metabolism is bringing a more systematic 

approach to natural products discovery and production 8. For example, by moving 

away from traditional methods such as random mutagenesis to activate cryptic BGCs 

toward systematic methods based on computational genome-mining and gene-editing 

to identify new BGCs and then delete the regulator with tools like CRISPR/Cas9 to 

awaken the production 109,118. There are three main approaches in the synthetic 
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Figure 1.5: Different synthetic biology approaches to initiate and improve 
production of secondary metabolites  

a) The discovery of new biosynthetic gene clusters secondary metabolites. After 

identification of new BGCs using in-silico methods (e.g., genome mining). If the native 

producer is cultivable and genetically tractable, the cluster expression can be 

activated by deleting any potential repressor. Otherwise, the gene sequence of the 

biosynthetic genes can be synthesised and expressed in a chassis strain. Either by 

expressing the native BGC with potential repressors deleted or by refactoring the 

whole BGC and putting it under control of an artificial inducing system. The product 

can be then identified and screened. 

b) Combinatorial biosynthesis to discover new chemistries. The possible combinations 

of modular biosynthetic genes (e.g., type I PKS and NRPS) are predicted in-silico then 

the gene are synthesised and combined on a large scale in vectors. Then these are 

expressed in the chassis strain to be screened. 

c) Improving production in chassis strains and native producers. The production in a 

chassis strain or a native strain is simulated and studied in-silico, where gene knock-

outs and overexpression targets are predicted. The strain metabolic design is 

optimised and a set of key genes are knocked-out and/or overexpressed to increase 

production. 
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biology of secondary metabolism: (1) discovery of new BGCs secondary metabolites, 

(2) design of new secondary metabolites, and (3) production optimization 

(Figure 1.5) 8,119,120. 

The discovery of new BGCs secondary metabolites (1) using synthetic biology is 

driven by a combination of computational methods (i.e., in-silico identification of 

BGCs), molecular biology tools (e.g., golden-gate assembly), and decreasing cost of 

gene sequencing and synthesis (Figure 1.5a) 8,117. The increasing availability of genome 

sequences and meta-genomic data combined with the development of genome mining 

tools 121 enabled the discovery of thousands of unknown secondary metabolites BGCs 

13. A first method, already widely used in the natural product research consists of 

deleting the BGC regulator identified in-silico to trigger the secondary metabolite 

production in the native strain 122–124. The secondary metabolite is identified and 

characterized using analytical methods such as liquid chromatography mass-

spectrometry (LC-MS), where the producer and non-producer chromatogram and 

mass-spectrum are compared to identify the secondary metabolite produced. Then, if 

the compound has a different mass-spectrum and fragmentation patterns from 

existing secondary metabolites (dereplication), the compound can be purified and its 

structure defined by nuclear magnetic resonance (NMR) 122,125,126. This method was 

successfully applied in the activation of CPK in S. coelicolor which was awakened by 

targeted inactivation of the pathway repressor (ScbR2) within the BGC, leading to the 

identification of CPK and an antimicrobial metabolite (abCpk) 127. However, these 

methods to identify secondary metabolites is still low-throughput and are not adapted 

to allow the rapid characterization of the thousands of unknown BGCs 13. Furthermore, 

this method only works if the metabolite is produced at levels high enough for 
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purification / identification and if the native strain is culturable and genetically-

tractable 38,39. However, the recent developments in synthetic biology and 

computational biology opened the opportunity to accelerate this process, by 

identifying the BGCs in-silico then re-design and refactor the BGCs for optimal 

expression in the host strains. The BGCs are refactored by introducing different 

promoters and ribosome binding sites (RBS), replacing regulatory systems with 

inducible systems, and by codon optimization 128,129. The redesigned BGCs are 

expressed and produced in a chassis strain to allow characterization of the compound. 

Then, if the secondary metabolite is of interest (e.g., bioactivity against resistant 

microorganisms) the production can be improved by engineering a chassis strain 

adapted for high-titers production. This process of plug-and-play discovery and 

production of secondary metabolites is described in detail in a review by Medema, 

et al. 104. 

The engineering of BGCs to create new chemistry (2) is another application of 

synthetic biology, where the modularity of some biosynthetic genes (e.g., type I PKS 

and NRPS) is exploited to create new chemical structures 104,115 (Figure 1.5b). Once the 

biosynthetic gene sequences from the BGCs are synthesized, high-throughput DNA 

assembly methods help to test multiple designs in parallel; the constructs are then 

expressed and screened in a chassis strain. This method can be used to exploit the 

modularity of type I PKS and NRPS for combinatorial biosynthesis 60,115,130. The 

redesigned BGCs are then expressed in a chassis strain and screened to identify new 

molecules. The chassis strain has to be adapted to produce the type of compounds 

screened (e.g., type I PKS) to ensure its metabolism produces the right precursors (e.g., 

acyl-CoA) 104. The screening uses analytical methods (e.g., LC-MS, and NMR) to identify 
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and characterize the novel chemical structures, and bioassays to identify the 

bioactivity of the compounds (e.g., antibacterial spectrum). 

The optimization of secondary metabolites production (3) is necessary to reach 

the highest production titers possible for downstream tests of the metabolites (e.g., 

clinical tests of the compound) and to decrease the costs of bioproduction (Figure 1.5c). 

The production optimization of existing and engineered BGCs is done in the native strain 

51 or in a heterologous host 87. Multiple approaches are used to increase metabolic 

production, such as refactoring of the BGCs 8,128, metabolic engineering 131, and 

regulatory machinery refactoring 128. The BGC refactoring is frequently necessary to 

ensure optimal expression in a heterologous host as described above (1). Metabolic 

engineering methods to improve production in native and heterologous hosts help to 

engineer the strain primary metabolism to generate higher metabolic fluxes toward the 

precursors of the secondary metabolic pathways 50,51,132. As well as cutting metabolic 

fluxes toward unessential metabolisms wasting resources that could be directed toward 

production and growth 77,133,134. For example, metabolic engineering in Streptomyces 

argillaceus enabled a 229% increase of production of mithramycin (a polyketide 

antitumor); by cutting fluxes going toward triacylglycerides and glycogen storage, while 

increasing fluxes toward the precursors glucose-1-phosphate and malonyl-CoA 77.  

Heterologous production of a secondary metabolite requires a sufficient 

understanding and control over the host organism, to ensure straightforward expression 

and production of the secondary metabolite, hence the use of well-studied chassis 

strains such as S. coelicolor 84,87,103. When optimising production in a native strain, 

sufficient understanding of the strain metabolism is required to rationally modify its 

metabolism and redirect fluxes toward secondary metabolites production. These 
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approaches are now accelerated by the development of genome-scale metabolic 

modelling methods that helps to identify targets to redirect metabolic fluxes toward 

secondary metabolites 56,135,136. 

1.2.3 Metabolic modelling 

The recently emerging high-throughput DNA sequencing technologies have resulted in 

an explosion in the number of genome sequences available for organisms across the 

entire domain of life 74. In parallel, new computational methods were developed to 

rapidly reconstruct genome-scale metabolic models (GSMMs) from available genome 

sequences 137–140. Therefore, this allowed the reconstruction of many GSMMs, which 

have been applied for strain engineering through synthetic biology 98,141,142. Similarly, 

the rapid developments in high-throughput technologies to acquire ‘omics data have 

extended the scope of GSMMs to integrate and interpret these data to better 

understand cellular systems111,137,142,143. The increasing availability of ‘omics’ datasets 

and high-quality metabolic models helps in the rapid testing and debugging of 

engineered biological systems 94,144,145. Nevertheless, a major challenge nowadays is 

not to generate more data, but rather to interpret and analyse these data in the 

context of biological systems, in order to understand and predict major biological 

behaviours or phenotypes 1,146,147.  

1.2.3.1 Reconstruction and analysis of genome-scale metabolic models 

Biological organisms are complex systems formed of networks of biological 

parts (e.g., metabolites, proteins, or genes) with subsystems of different complexity 

levels interacting with each other 148. For example, metabolites are consumed and 

produced by metabolic reactions forming metabolic pathways which are part of the 
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whole metabolism, this metabolic network interacts with a network of proteins and 

genes 137. Systems biology is a holistic approach to study and understand natural and 

engineered biological systems, by modelling and analysing the networks of interacting 

biological parts 92,97,137,149. During the last 15 to 20 years various modelling approaches 

to study metabolic networks have been developed in the field of systems biology 

92,97,98. A particularly interesting approach is constraint-based metabolic modelling 138, 

which applies constraints (e.g. thermodynamic or stoichiometric) on an entire 

metabolic network to limit the possible metabolic fluxes distribution and predict the 

optimal metabolic fluxes of an entire organism in silico 137. This approach has been 

increasingly applied to understand and predict metabolism, particularly to engineer 

better secondary metabolites producers strain 56,114,135,150. A major advantage of 

constraint-based metabolic modelling compared to other modelling methods is the 

possibility to model an organism’s metabolism from its genome sequence without the 

need of precise knowledge of parameters such as enzymes kinetic or metabolite 

concentrations 140,151,152. Therefore, this method helps to predict phenotype 

characteristics (e.g., ability to grow using certain nutrients, genes essential for growth, 

etc.) from an organism genotype 146. As a large number of prokaryotic genomes are 

available, including of Streptomyces and Actinobacteria strains, these available 

genome sequences opens the possibility to reconstruct genome-scale metabolic 

networks for a large number of Actinobacteria strains to study their metabolism 

in silico 22,153.  

In short, four main steps are involved in the process of metabolic network 

reconstruction 137: an automated draft reconstruction from a genome-annotation, a 

curation of this draft reconstruction by using different data sources (literature, 
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textbooks, and specialized databases), the conversion of this curated model into a 

mathematical representation as a stoichiometric matrix to enable metabolic fluxes 

prediction by constraining the model; and, finally, the validation and improvement of 

the model using experimental data 137,139 (Figure 1.6). The detailed standard protocol to 

reconstruct a high-quality genome-scale metabolic model (GSMM) is described in a step-

by-step protocol by Thiele and Palsson 139. A genome sequence annotation or a 

similarity-based annotation is used to build a draft reconstruction, with an initial set of 

biochemical reactions corresponding to putative metabolic genes annotated, the models 

built automatically will contain misannotations and gaps. Which necessitates applying a 

semi-manual curation to fill gaps, the gaps are filled with known reactions semi-

manually (using databases) and other gaps are automatically filled with appropriate 

algorithms 154. Then, the model is manually curated, by adding and modifying metabolic 

pathways and genes associated by using the literature. Once the obvious misannotations 

are corrected and the gaps are filled, the next step is to translate the model into a 

mathematical model, in a format compatible with available software 155–157. The model 

goes through initial testing steps to ensure the quality of the model, such as mass and 

charge balance of the network 158. The model is further validated to verify the ability to 

predict physiological functions (e.g. biomass or ATP production) depending on the 

environmental constraints (e.g. media and nutrients uptakes). Finally, to improve the 

model, different omics datasets are used, such as fluxomics, metabolomics, proteomics 

or transcriptomics, these data are in general used in an iterative way to identify 

incorrect predictions by the model and correct it 94 (Figure 1.6).  
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1.2.3.2 Constraint-based metabolic modelling 

Once the GSMM is ready for analysis, the metabolic reactions are represented 

in a mathematical format as a stoichiometric matrix (S) of size m  n, with m (number 

of rows) representing the metabolites, n (number of columns) representing the 

different reactions in the model, and the entries of the matrix represents the 

stoichiometry of the metabolites involved in the metabolic reactions 137,139 . When a 

substrate is consumed by a reaction, it has a negative coefficient, while the products of 

a reaction have a positive coefficient. Stoichiometric matrices (S) for GSMMs are 

sparse matrices; most of the entries are zero because the vast majority of the 

metabolites (with a few exceptions, such as cofactors) are involved in a limited number 

of reactions (Figure 1.7). v represents the vector containing all the fluxes going through 

the network of biochemical reactions 137. At steady state, the flux through each 

reaction is given by S × v = 0, which corresponds to a system of linear equations. As the 

number of metabolites is larger than the number of reactions (m > n), there is more 

than only one solution to these linear equations. Although, by constraining the system 

and optimizing the solution for a particular objective function (e.g., growth), so the 

algorithm can find an optimal point in the space of possible solutions when solving the 

linear equations 137 (Figure 1.7). In general, the objective function for a microbial 

model is growth maximisation, going from the hypothesis that the main aim of a 

bacterium is to proliferate; other objective functions can be maximization of ATP 

production, minimization of nutrient consumption, or multiple sets of objectives such 

as optimizing biomass and antibiotic production at the same time. The main 

constraints applied in the model are mass balance and reactions upper and lower 

fluxes constraints. The mass balance ensures that the numbers and the mass of the 
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Figure 1.6: Summary of a genome-scale metabolic model reconstruction 

The information extracted from genome annotation of the target organism, from 

specialised metabolic databases (e.g., BiGG), and from literature are collated together to 

identify the metabolic reactions and metabolic pathways to build the genome-scale 

metabolic model. The genome-scale metabolic network is transformed in a stoichiometric 

matrix 137,139. 

The metabolic model objective function (e.g., biomass) is optimised under a given set of 

constraints representing the environmental conditions, the prediction are compared to 

experimental data to validate the model. Omics data integration is used to validate and 

improve the model 137,139. 
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atoms of the metabolites produced correspond to the numbers and mass of the atoms 

of the metabolites consumed; this respects the basic principle of mass conservation. 

The flux bounds contain thermodynamic constraints such as reversibility or 

irreversibility of a reaction taken into account in the model, avoiding biologically 

impossible fluxes in the model. Flux bounds are also used to fix minimum or maximum 

values of fluxes through a reaction, depending on experimental or environmental 

conditions (e.g. medium or flux measurements) 137,139.  

Flux balance analysis (FBA) is the main constraint-based metabolic modelling 

method used 139,152. FBA is a very useful approach to study large and complex 

metabolic networks, as it does not require a massive computational power even for 

very large networks, and this is particularly useful for systems that lacks information 

such as enzyme kinetic parameters. FBA assumes that metabolites production and 

consumption are balanced; this is the steady-state assumption 152. This assumption is 

derived from the fact that metabolism reaches a stable state faster than other cellular 

processes (e.g., gene expression), so at a given time point metabolism should be at a 

quasi-steady state. FBA is performed on a constrained stoichiometric matrix S and 

maximises or minimises an objective function. In general, the objective function 

chosen for a model is the biomass production, as this is the function representing the 

major cellular processes of the cell (e.g., DNA/RNA synthesis, protein synthesis, or 

membrane synthesis) 139,159,160. The biomass reaction represents the cell biomass as 

defined ratios of macromolecules produced from metabolites 140. The substrate-to-

biomass conversion is described quantitatively in the model using mmol for the 

metabolites consumed and gram of dry weight (gDW) for the cells’ biomass. The 

stoichiometry of the biomass produced in the reaction have a molecular weight of 
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1 g.mmol-1 to compare with the specific growth rates 140. As an example, the different 

metabolites consumed and produced to generate 1 gram of dry weight of 

Streptomyces coelicolor in the iAA1259 metabolic model are shown in the Table 1.1. 

 

 

Table 1.1: Metabolic reactants and products needed to produce 1 gram of dry weight 
of Streptomyces coelicolor in the iAA1259 metabolic model 

 

Also, one of the assumptions is that microorganisms naturally try to grow as 

much as possible, particularly microorganisms to outcompete other organisms 160,161. 

Thus, growth is frequently the objective function with the most accurate metabolic 

predictions overall, particularly under normal laboratory conditions, where a single 

strain is grown in flask or a bioreactor, where the organism will grow until it consumes 

all the nutrients 94,160. However, it is useful to also consider other possible objective 

functions, such as overproduction of a compound (e.g., antibiotics) which can create a 

new metabolic burden and compete with the biomass function 160,162 Under different 

environmental pressure organisms can evolve to adapt to slow growth rather than 

Fatty acids composition mmol/g DCW Triacylglycerol mmol/g DCW Vitamines & cofactors mmol/g DCW Amino-acids mmol/g DCW

Phospholipid Triacylglycerol - Myristiate(n14:0) 0.000364 Thiamine diphosphate 0.00481 Alanine 0.60978

Cardiolipin - Myristiate(n14:0) 0.000098 Triacylglycerol -  Pentadecanoate(n15:0) 0.000227 NAD 0.003066 Arginine 0.10195

Cardiolipin - Pentadecanoate(n15:0) 0.000061 Triacylglycerol - Palmitate(n16:0) 0.00416 NADH 0.003062 Asparagine 0.18343

Cardiolipin - Palmitate(n16:0) 0.001116 Triacylglycerol -  Palmitoleate(n16:1) 0.001068 NADP 0.002744 Aspartate 0.18599

Cardiolipin -  Palmitoleate(n16:1) 0.000287 Triacylglycerol - Anteisopentadecanoate(ai15:0) 0.003933 NADPH 0.00274 Cysteine 0.08069

Cardiolipin - Anteisopentadecanoate(ai15:0) 0.001055 Triacylglycerol -  Anteisoheptadecanoate(ai17:0) 0.003614 Heme A 0.002387 Glutamine 0.1418

Cardiolipin - Anteisoheptadecanoate(ai17:0) 0.00097 Triacylglycerol -  Isomyristate(i14:0) 0.000796 Heme O 0.002427 Glutamate 0.25085

Cardiolipin - Isomyristate(i14:0) 0.000213 Triacylglycerol -    Isopentadecanoate(i15:0) 0.002273 Pyridoxal 5'-phosphate 0.008287 Glycine 0.55317

Cardiolipin -    Isopentadecanoate(i15:0) 0.00061 Triacylglycerol - Isopalmitate(i16:0) 0.004614 Riboflavin 0.005397 Histidine 0.07991

Cardiolipin - Isopalmitate(i16:0) 0.001238 Triacylglycerol -  Isoheptadecanoate(i17:0) 0.001682 Protoheme 0.003306 Isoleucine 0.24831

Cardiolipin -  Isoheptadecanoate(i17:0) 0.000451 Siroheme 0.002236 Leucine 0.13981

Phosphatidic acid - Myristiate(n14:0) 0.000068 Menaquinol 9 0.0118 Lysine 0.0708

Phosphatidic acid - Pentadecanoate(n15:0) 0.000042 Polyamines Mycothiol 0.004185 Methionine 0.12059

Phosphatidic acid - Palmitate(n16:0) 0.000778 Spermidine 0.013699 5,6,7,8-Tetrahydrofolate 0.004581 Phenylalanine 0.13521

Phosphatidic acid - Palmitoleate(n16:1) 0.0002 Spermine 0.009842 FAD 0.002592 Proline 0.37332

Phosphatidic acid - Anteisopentadecanoate(ai15:0) 0.000735 Putrescine 0.022527 Inorganic triphosphate 0.000141 Serine 0.21339

Phosphatidic acid -  Anteisoheptadecanoate(ai17:0) 0.000676 Cadaverine 0.019494 Lipoate 0.010787 Threonine 0.26691

Phosphatidic acid -  Isomyristate(i14:0) 0.000149 Molybdopterin guanine dinucleotide 0.00235 Tryptophan 0.03275

Phosphatidic acid -    Isopentadecanoate(i15:0) 0.000425 Undecaprenyl diphosphate 0.002198 Tyrosine 0.06539

Phosphatidic acid - Isopalmitate(i16:0) 0.000863 Inorganic ions 5-Methyltetrahydrofolate 0.004431 Valine 0.22152

Phosphatidic acid -  Isoheptadecanoate(i17:0) 0.000314 Calcium(II) 0.004952 Adenosylcobalamin 0.001286

Phosphatidylethanolamine - Myristiate(n14:0) 0.000349 Chloride 0.004952 S-Adenosyl-L-methionine 0.005085

Phosphatidylethanolamine - Pentadecanoate(n15:0) 0.000218 Cobalt(II) 0.000024 Bis-molybdopterin GDP 0.001282 Cell wall composition
Phosphatidylethanolamine - Palmitate(n16:0) 0.003997 Copper(II) 0.000674 Biotin 0.008349 Peptidoglycan

Phosphatidylethanolamine - Palmitoleate(n16:1) 0.001026 Iron(II) 0.006388 Coenzyme A 0.00266 Murein tetrapeptide 0.02984

Phosphatidylethanolamine - Anteisopentadecanoate(ai15:0) 0.003778 Iron(III) 0.007428 2-demethylmenaquinol 9 0.0118 Murein tripeptide 0.030136

Phosphatidylethanolamine - Anteisoheptadecanoate(ai17:0) 0.003472 Potassium 0.18569 5,10-Methylenetetrahydrofolate 0.00446

Phosphatidylethanolamine - Isomyristate(i14:0) 0.000764 Magnesium(II) 0.008253 10-Formyltetrahydrofolate 0.004309 Carbohydrate

Phosphatidylethanolamine -    Isopentadecanoate(i15:0) 0.002184 Magnesium 0.000658 [2Fe-2S] iron-sulfur cluster 0.011698 UDP-N-acetyl-D-glucosamine 0.083227

Phosphatidylethanolamine - Isopalmitate(i16:0) 0.004433 Molybdate 0.000007 [4Fe-4S] iron-sulfur cluster 0.005849 UDPgalactose 0.166453

Phosphatidylethanolamine -  Isoheptadecanoate(i17:0) 0.001616 Ammonium 0.012379

Phosphatidylinositol - Myristiate(n14:0) 0.000027 Nickel(II) 0.000307 Teichoic acid

Phosphatidylinositol -  Pentadecanoate(n15:0) 0.000017 Sulfate 0.004126 Glycogen and trehalose glycerol teichoic acid (n=25) 0.003536

Phosphatidylinositol -    Palmitate(n16:0) 0.00031 Zinc(II) 0.000324 Trehalose 0.087643 glycerol teichoic acid (n=25) 0.003536

Phosphatidylinositol -  Palmitoleate(n16:1) 0.00008 Glycogen 0.154187 glycerol teichoic acid (n=25) 0.003536

Phosphatidylinositol - Anteisopentadecanoate(ai15:0) 0.000293

Phosphatidylinositol - Anteisoheptadecanoate(ai17:0) 0.000269 Other metabolites DNA composition RNA composition
Phosphatidylinositol -  Isomyristate(i14:0) 0.000059 H+ 76.585 dATP 0.016297 ATP 0.11045

Phosphatidylinositol -    Isopentadecanoate(i15:0) 0.000169 H2O 7.162 dCTP 0.042326 CTP 0.13226

Phosphatidylinositol - Isopalmitate(i16:0) 0.000344 ATP 75.7 dTTP 0.016297 GTP 0.17554

Phosphatidylinositol -  Isoheptadecanoate(i17:0) 0.000125 dGTP 0.042326 UTP 0.10035

Metabolic products mmol/g DCW

ADP 75.79

UDP 0.24968

Pi 75.79

PPi 0.635847

Product metabolites for the biomass reaction (to generate 1 gram of Dry Weight)

Reactants metabolites for the biomass reaction (to generate 1 gram of Dry Weight)

1 gram of dry weight of Biomass
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maximised growth, for example, pathogenic microorganisms can benefit from slow 

growth to escape the immune system and propagate without being detected 163. So, 

the maximisation of an objective function, such as biomass, is not always adapted to 

all organisms. To enable analysis of this type of biological systems, a method was 

derived from FBA to minimise the sum of total fluxes at fixed values of a target flux 

(e.g., biomass) replacing the objective function of FBA 164.  The objective function is a 

linear combination of flux vectors. The objective is optimised by FBA using linear 

programming to solve the equation S*v=0, with a set of upper and lower bounds on 

the vector v 152. The FBA output is a flux distribution (v) needed to maximise or 

minimise the objective function. Other methods were derived from FBA, such as 

parsimonious flux balance analysis (pFBA) that minimises the sum of total fluxes and 

maximises the objective. For pFBA, the assumption is that under maximal growth the 

individuals selected in a population are the ones capable to rapidly and efficiently grow 

on a substrate using a minimum amount of enzymes 165. FBA methods enable to do a 

lot of in-silico experiments quickly and test many different conditions or hypotheses 

(e.g., medium composition or gene essentiality) 108,152. Hence, genome-scale metabolic 

models and FBA are extensively used to predict phenotypes and metabolism to design 

organisms for metabolic engineering and synthetic biology, particularly for the 

production of secondary metabolites 48,56,131,150,166. For example, the production of 

rapamycin was increased by more than 140% in Streptomyces hygroscopicus by 

predicting influential gene knockouts using FBA 57. 

Obviously, the constraint-based metabolic modelling approach presents some 

limitations: metabolite concentrations cannot be predicted, it is only suitable for fluxes 

predicted at steady state (but the dynamic can be simulated by time points 
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Figure 1.7: Representation of constraint-based metabolic modelling 

The genome-scale metabolic network contains metabolites (M) as nodes and reactions 

represented by a flux vector (V). This network mathematical representation is a 

stoichiometric matrix (S) with metabolites and reactions. The flux vectors direction is a 

thermodynamic constraint on the reaction direction. The matrix rows represent the 

metabolites consumed (-1), produced (1), and untouched (0), and the columns represent 

the reactions. The fluxes vectors can be constrained, such as the uptake and secretion 

rates measured. The fluxes are set to zero if the flux measured (from fluxomics or 

metabolomics data) are measured as null or the genes or protein associated with the 

reaction are measured as null (from transcriptomics or proteomics data). The omics data 

can be used to set loose constraints such as direction of a reaction, for example, a reaction 

can be switched on to force production of a metabolite if it was measured in the 

metabolomics data. The constraints from the vectors create a constrained solution space, 

where the multiplication of S and V is null. The optimal solution to the objective (e.g., 

biomass) in this space is identified by flux balance analysis (FBA)  137,139,152.  
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experiments), and it does not account for regulatory effects in its standard 

implementation. However, during the last years efforts have been made to develop 

models that integrate prediction of regulatory effect and kinetic information enabling 

more quantitative predictions 151.  

1.2.4 Omics data and metabolic modelling 

The availability of omics data for many organisms under different conditions has 

increased with the rapid development of analytical methods such as LC-MS for 

metabolomics and proteomics data and whole transcriptome shotgun sequencing for 

transcriptomics data 95,143. Omics data gives a system-level snapshot of an organism’s 

cellular processes under a given condition. The application of genome-scale metabolic 

models for integrative analysis of omics data helps to have a snapshot of the organism 

metabolic state 140,167. The different types of omics data bring a different layer of 

information on an organism metabolic state and are integrated differently in genome-

scale metabolic models (Figure 1.8). The genomics data is used to build the genome-

scale metabolic network by identifying the metabolic genes encoded in the genome 

168. The transcriptomics data can be used to build a condition-specific metabolic model 

by constraining the reactions associated with unexpressed genes as null fluxes and 

ensure the reactions with genes expressed can carry fluxes 94,114. This is used to 

constrain and improve metabolic pathways fluxes predictions even under complex 

genetic regulation 94. The proteomics data can be used in a similar way to 

transcriptomics by constraining null fluxes for the reactions with no protein detectable 

and ensure the reactions can carry fluxes if associated to proteins detected in 

significant levels 146. Also proteomics is used to identify metabolic enzymes post-
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Figure 1.8: Representation of multi-omics data integration in the genome-scale 
metabolic models 

The genomics data is used to generate the metabolic network by identifying the encoded 

metabolic genes during the metabolic model reconstruction. 

The transcriptomics data can be used to identify the expression level of genes associated to 

reactions, if the genes are not expressed the reactions fluxes are constrained to 0. 

The proteomics data can be used to identify if the enzymes associated to a reaction are 

translated. The reactions with no associated enzyme identified in the proteomics data have 

their fluxes constrained to 0. 

The metabolomics data can be used to identify if a reaction or pathway is active as these 

produce some specific metabolites. The presence of new metabolites can be used to identify 

metabolic reactions absent from the model. 
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translationally regulated; for example, a metabolic gene identified as expressed may 

not be translated and the reaction associated can be constrained with a null flux 

boundary 146. Quantitative proteomics data is also used to identify if the abundance of 

some enzymes may correlate with the fluxes predictions and identify inaccurate 

predictions such as overestimation of fluxes 146. Finally, the omics method directly 

representing the metabolic state is metabolomics and other derivative methods such 

as fluxomics. Metabolomics can be used to identify if a pathway is active in an 

organism by measuring the pathway intermediates, if the pathway is inactive it can be 

constrained in the model 169. Untargeted metabolomics can help to identify metabolic 

pathways that are not included in the metabolic model. Fluxomics directly measures 

fluxes in an organism by using isotope labelled-metabolites consumed by the organism 

(e.g., C-labelled glucose, or labelled phosphate) to track the level of metabolites 

consumed and produced, then calculating the metabolic fluxes, that are integrated as 

constraints in the metabolic model 135,170. The integration of C-labelled metabolomics 

data in a genome-scale metabolic model was applied to study the carbon-flux 

distribution in S. coelicolor strains with (M145) and without (M1146) the main 

antibiotic gene clusters 171. This helped to identify key metabolic differences between 

the two strains, such as a higher glycolytic metabolism in the antibiotic producer, and a 

higher pentose-phosphate metabolism in the non-producer. Quantitative 

metabolomics data is used to measure extracellular metabolite levels, the metabolite 

exchange rates are then calculated and constrained in the model and predict the 

intracellular metabolic fluxes 94,172–174. This is particularly interesting for Actinobacteria 

metabolic modelling that excretes diverse secondary metabolites and waste products, 

for example, excreted antibiotics can be used to constrain the corresponding 
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metabolic pathway giving better insight on the production of these compounds. The 

integration of multi-omics data in genome-scale metabolic models is increasingly 

attractive as it gives a more holistic picture of the biological system and different omics 

data can highlight different mechanisms 111.  

1.3 Aims of the thesis 

With the rise of antimicrobial resistance and the decreasing number of antibiotics 

discovered 10, it is crucial to better understand and improve production of antibiotics 

to facilitate production of new compounds during the discovery process 16. At the 

same time, increasing the yield of antibiotics makes production more cost-effective 

11,16. In this thesis, I have created constrained-based genome-scale metabolic models 

of several Streptomyces species and Actinobacteria (which are the main source of 

commercial antibiotics 12,27), to better understand and improve secondary metabolite 

production in these organisms. This work was finally used to identify potential 

metabolic engineering targets to design better Streptomyces antibiotics producing 

strains. 

The Chapter II of this thesis presents the reconstruction of the genome-scale 

metabolic model for the model of Streptomyces antibiotic producing strain, 

S. coelicolor A3(2). The metabolic model iAA1259 48 is reconstructed on previous 

versions of S. coelicolor GSMMs 44,175,176. The metabolic model is validated and 

improved using experimental chemostat and multi-omics data. The metabolic model is 

benchmarked against the previously published models and shows better predictions of 

metabolic fluxes. Furthermore, the iAA1259 was also improved by introducing multiple 

databases in the model to facilitate automated integration and analysis of omics data. 



59 

 

This chapter was published in "Development and validation of an updated 

computational model of Streptomyces coelicolor primary and secondary metabolism" 

in BMC genomics in 2018. In Chapter III, comparative metabolic modelling was applied 

to explore and understand, from a systems point of view, the metabolic differences 

between the two phylogenetically and genetically very close strains S. coelicolor and 

S. lividans. For this purpose, a GSMM for S. lividans TK24 was generated from the 

reconstruction of S. coelicolor A3(2) (from Chapter II) 48. The metabolic model was used 

to identify metabolic functions lost and gained by S. lividans. The S. lividans metabolic 

model was validated with published experimental chemostat data. The metabolic 

models of the two strains and their antibiotic production profile was studied in a 

complex media (R2YE) 177, using published data. A comparative proteomics dataset 178 

of the two strains was integrated into the two models to identify metabolic 

differences, again using published data. The impact of antibiotics production was 

predicted in the two strains. Finally, from collating the metabolic modelling results, 

and integrative analysis of published omics and experimental data, potential targets to 

increase antibiotics production (gene knockouts, gene overexpression, or heterologous 

enzyme expression) were identified.  

Chapter IV covers the comparative reconstruction and analysis of 50 

biotechnologically relevant Actinobacteria strains. For this purpose, I built a 

comparative metabolic model reconstruction pipeline to reconstruct metabolic models 

of Actinobacteria based on the high-quality S. coelicolor metabolic model previously 

reconstructed and validated in Chapter II. This pipeline is entirely based on open-

source software parts and scripts in Python and R, making it easy and fast to use or 

modify. Metabolic models were reconstructed and compared for multiple 
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Actinobacteria strains, including S. lividans (from Chapter III), to help identify major 

metabolic differences between these strains. The metabolic distance between the 

strains was analysed, and the quality of the reconstructed models was verified. The 

core and accessory metabolism of the Actinobacteria were determined and studied, as 

well as their active core metabolism. Finally, the metabolic differences between the 

strains were further investigated by predicting and comparing their growth ability in 

different media conditions, in-silico. 

In Chapter V, I developed an automated R tool to integrate exometabolome fluxes 

in constraint-based metabolic models. The tool was tested with experimental growth 

and antibiotics data collected for S. coelicolor, then the tool was further tested with a 

published chemostat dataset 47. The tools output of this chemostat dataset was used 

to constrain the metabolic model of S. coelicolor (Chapter II). Finally, the tool was used 

to apply an ensemble modelling approach by sampling exchange fluxes within the 

confidence interval estimated, and these exchange fluxes were constrained in the 

metabolic model. This enabled to predict an ensemble of hundreds of plausible 

metabolic states, which were compared and validated with published experimental 

growth data 47. 

Chapter VI uses the metabolic model of S. coelicolor (Chapter II) and metabolomics 

data acquired by collaborators to design a better production host. The first part 

focuses on the production of actinorhodin in S. coelicolor under four different 

conditions, which was studied in the WT strain, the WT with ACT cosmid, M1146, and 

M1146 with ACT cosmid. Exometabolomic data were automatically integrated using 

the flux tool (Chapter V) in the S. coelicolor model (Chapter I). The metabolic models 

constrained under the four different conditions were validated with experimental 
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data. The metabolic impact of producing actinorhodin was compared in the four 

models. Potential targets to increase antibiotic production were then identified. The 

second part focuses on the heterologous production of a RiPP antibiotic (GE2270A) in 

the S. coelicolor M1146 chassis strain for the TOPCAPI project. The production of 

GE2270A was predicted and studied in silico in S. coelicolor. The metabolic model was 

used to identify single and double knockouts that were non-essential to either 

production or growth under a complex industrial media. Then, a set of potential genes 

knockouts was identified to force the production of GE2270A in S. coelicolor by 

coupling the production of GE2270A to growth through the production of 

FMNH2 cofactor.  

Finally, Chapter VII presents the concluding remarks of this thesis, as well as the 

future perspectives of genome-scale metabolic modelling to study and design 

Actinobacteria secondary metabolites producers. 
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2.1 Preface: 

“Development and validation of an updated computational model of Streptomyces 

coelicolor primary and secondary metabolism” was published in BMC Genomics in 

2018. The published manuscript has been formatted in a style consistent with the 

thesis format, instead of BMC Genomics format.  

Published manuscript is available here: https://doi.org/10.1186/s12864-018-4905-5 

2.2 Abstract 

Streptomyces species produce a vast diversity of secondary metabolites of clinical and 

biotechnological importance, in particular antibiotics. Recent developments in 

metabolic engineering, synthetic and systems biology have opened new opportunities 

to exploit Streptomyces secondary metabolism, but achieving industry-level production 

without time-consuming optimization has remained challenging. Genome-scale 

metabolic modelling has been shown to be a powerful tool to guide metabolic 

https://doi.org/10.1186/s12864-018-4905-5
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engineering strategies for accelerated strain optimization, and several generations of 

models of Streptomyces metabolism have been developed for this purpose. 

Here, we present the most recent update of a genome-scale stoichiometric 

constraint-based model of the metabolism of Streptomyces coelicolor, the major 

model organism for the production of antibiotics in the genus. We show that the 

updated model enables better metabolic flux and biomass predictions and facilitates 

the integrative analysis of multi-omics data such as transcriptomics, proteomics and 

metabolomics.  

 The updated model presented here provides an enhanced basis for the next 

generation of metabolic engineering attempts in Streptomyces. 

2.3 Introduction 

Streptomyces species are usually soil-dwelling bacteria, which have adapted to their 

competitive ecological niches by developing a notably diverse secondary metabolism 

(e.g., antimicrobials). Currently, more than two thirds of the antibiotics used have been 

derived from natural products discovered in Streptomyces and related species 1; 

however, the antibiotic discovery pipeline is drying up, while the antimicrobial 

resistance threat is growing. Streptomyces coelicolor A3(2) is a well-studied model 

organism for the production of antibiotics in this genus. The genome of this soil-

dwelling bacterium encodes more than twenty secondary metabolite biosynthetic 

gene clusters (BGCs) 2, and the species is known to produce multiple antibiotics such as 

Actinorhodin (Act), Undecylprodigiosin (Red), Calcium-Dependant Antibiotic (CDA) and 

a yellow Coelicolor Polyketide, Coelimycin P1 (CPK) 3. Recent developments in 

metabolic engineering, synthetic and systems biology have opened new opportunities 
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to exploit Streptomyces’ secondary metabolism diversity to discover novel antibiotics 

and natural product-derived drugs 4,5. However, expensive and time-consuming strain 

optimization is usually required to achieve industrially competitive production levels. A 

major issue faced in strain design is the ability to integrate test data (e.g. 

metabolomics) to improve the design 6, and many of the issues encountered are 

related to metabolic optimization, such as metabolic bottlenecks to increase 

production 7, heterologous biosynthetic pathway precursors production 8, or accurate 

predictions for metabolic engineering 9. 

Genome-scale metabolic models (GSMM) have been shown to be a powerful 

tool to guide metabolic engineering strategies for accelerated strain optimization 10–12, 

and several generations of models of Streptomyces metabolism have been developed 

for this purpose 13–17. The use of constraint-based modelling, in particular with flux 

balance analysis (FBA), enables the reconstruction and analysis of large metabolic 

networks from the genome sequence as well as predictions of growth associated 

phenotypes (metabolic fluxes, growth rates, metabolic gene essentiality) 18. 

Informative models for this purpose can be constructed even when enzyme kinetic 

data or metabolite concentrations are unknown in the target organism, making this 

approach particularly attractive for less well-studied organisms like Streptomyces 

strains. In 2005, the first generation GSMM of S. coelicolor, iIB711, was published 19, 

which was used to identify metabolic gene knock-outs to drive the enhanced 

production of antibiotics in the strain 20. In 2010, an updated model, iMA789, was 

published 21, which introduced more detailed antibiotics metabolic pathways and was 

used to interpret time-course gene expression data, which was then used to improve 

the model and update the genome annotation of the organism in the area of 
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secondary metabolism. The most recent model update, iMK1208, was published by 

Kim et al. (2014); this model significantly expanded the number of reactions and genes, 

as well as updating the biomass reaction. This model was then used in a 

transcriptomics-based optimization for actinorhodin overproduction in S. coelicolor 15.  

Furthermore, several genome-scale metabolic models for other biotechnologically 

relevant Streptomyces strains have been reconstructed since the first S. coelicolor 

model, iIB711. A model of the Streptomyces tenebrarius metabolic network, which was 

derived from the iIB711 model of Borodina, Krabben & Nielsen has been used to 

identify targets to optimize production of tobramycin 22. A model of Saccharopolyspora 

erythraea has been reconstructed based on the iMA789 model of Alam et al. to 

improve the production of erythromycin 23. One of the most recent model 

reconstructions derived from Kim et al.’s S. coelicolor iMK1208 model was used for 

model-guided engineering of ethylmalonyl-CoA pathways in Streptomyces 

hygroscopicus to increase production of ascomycin 14. A large collection of minimally 

curated metabolic models of different Streptomyces strains and other actinomycetes 

was used to evaluate potential host strains for overproducing different chemical 

classes of secondary metabolites using comparative multi-objective modelling 24. 

Based on recent advances in our understanding of Streptomyces metabolism and 

technical progress in the concepts of computational model building, we constructed 

and validated an updated GSMM of S. coelicolor, iAA1259, to provide a more precise 

metabolic flux and biomass predictions and to facilitate the integration of 

metabolomics, proteomics, and transcriptomics information with the model 

predictions.  
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2.4 Methods & Materials 

2.4.1 Metabolic model reconstruction 

The model reconstruction was initiated by updating the iMK1208 S. coelicolor model. 

The standard protocol for reconstruction of high-quality constraint-based GSMMs was 

followed when adding new genes, reactions, and metabolites 25. 

In summary, the initial stoichiometric matrix was generated by comparing and 

using the iMK1208 model 26, KEGG 27, ScoCyc 28, and two automated reconstructions 

using RAST annotations and SEED reconstructions 29,30. The resulting matrix was 

manually curated for specific pathways (e.g., secondary metabolites biosynthesis, 

oxidative phosphorylation), to add or correct missing reactions, metabolites, genes 

associated, or reversibility constraints; this was supported by extensive literature 

survey to identify new knowledge or gaps in the previous model. Comparative analysis 

of transcriptomics data with iMK1208 helped to identify gene mis-annotations to be 

corrected 21,31. The biomass reaction was updated, as multiple reactions impacting 

biomass have been added (e.g., demethylmenaquinone, cytochrome oxidases or NADH 

dehydrogenase reactions). This was followed by a recalculation of the ATP fluxes for 

growth-associated and non-growth-associated maintenance using chemostat data 32, 

following the Varma & Palsson protocol 33; the resulting values were very similar to 

those used in iMK1208 (with a GAM of 75.7 ATP in iMK1208 versus 75.79 ATP in 

iAA1259, and an NGAM of 2.65 in iMK1208 versus 2.64 in iAA1259). The detailed 

modifications on the biomass are available in the Electronic Supplementary 2.1 - 

Additional file 3. 
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Finally, multiple database identifiers were added either by automatic matching 

or by manual curation when necessary. The metabolites were annotated with multiple 

database identifiers; BiGG and KEGG identifications were already present in iMK1208, 

and other databases relevant to metabolomics data analysis were added: ChEBI, 

HMDB, CAS, IUPAC, ChemSpider, Metlin and PubChem identifications, wherever 

available. Chemical structure-related annotations (SMILES or InChi) were also 

introduced for all metabolites. Furthermore, when available, all reactions were 

annotated with EC code and CAS registry number, in addition to the BiGG annotation 

used in iMK1208. Additional gene annotations have been included to facilitate 

transcriptomics data integration with identifiers for Gene Ontology (GO), RefSeq, 

EMBL-ENA and Ensembl. For integrated proteomics analysis, annotations have been 

expanded to include identifiers for UniProt, Pfam and Panther, as well as data on 

protein length, mass, and amino acid sequence to support the direct mapping of mass-

spectrometry-based proteomics data in the future. The expansion of these annotations 

also aims at helping fast reconstruction of metabolic models for other Streptomyces 

strains using comparative reconstruction and modelling methods. The final model has 

been named iAA1259 and is compliant with current metabolic model standards 34,35. 

The final model is available in SBML format and Excel format in Electronic 

Supplementary 2.1 - Additional files 1 and 2. 

2.4.2 Constraint-based modelling 

The model was analysed by using Flux Balance Analysis (FBA) and parsimonious FBA 

(pFBA) to predict optimal in silico growth and metabolic flux using the COBRA toolbox 

in Matlab and Python 36,37 and further evaluated using OptFlux and Sybil 38,39. To apply 
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condition-specific constraints corresponding to the media composition, the uptake 

fluxes for exometabolites not available in the medium were set to zero, while all 

metabolic by-products were always allowed to leave the metabolic system. The 

measured nutrient uptake rates from the fermenter datasets are used to define 

constraints of the nutrient uptake for the model. The objective function maximized in 

the modelling was the growth rate (steady-state flux towards biomass). 

Despite the fact that FBA is not a dynamic modelling approach (its basic 

assumption being a steady-state flux distribution), using dynamic constraints on CO2, 

O2, glucose, phosphate, and glutamate uptake based on fermenter time-course data 31 

enabled simulation of the growth and metabolic dynamics across time. In order to 

simulate the production of the main antibiotics, the biomass composition was varied 

dynamically depending on the observed concentration of γ-Act and Red secondary 

metabolites in the cultures 21.  

2.4.3 Transcriptomics and proteomics data analysis 

Multiple omics data types have been used to validate the model; the proteomics data 

40 have been acquired from the same time-series experiment samples as the flux 

constraints data and the transcriptomics data 31. The transcriptomics and proteomics 

data were matched to corresponding metabolic genes associated with reactions by 

matching the StrepDB gene annotations. The matching procedure was similar to the 

one used for iMA789 21. Gene expression levels and predicted fluxes were compared 

using Pearson and Spearman correlations. The data used are available in the 

Supplementary 2.1 - Additional file 4. 
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2.5 Results & Discussion 

2.5.1 Genome-scale reconstruction and characteristics updated 

The construction of the updated GSMM of S. coelicolor A3(2), iAA1259, was based on 

all three previously published iterative reconstructions of S. coelicolor metabolic 

models 19,21,26, by updating and adding data in the model based on new genetic (e.g., 

gene–protein–reaction relationships) or biochemical knowledge. A summary of the 

main updates and new features added is available in the Supplementary Tables 1, 2, 3 

and 4. 

Multiple pathways were added or updated. 1) Polysaccharide degradation 

pathways (e.g., for xylan, cellulose) were introduced to enable simulated growth in 

complex media containing these carbon sources. 2) The biosynthetic pathway for the 

secondary metabolite CPK 41–43 was added to the model. This cryptic BGC is awakened 

under phosphate-limited condition, in nitrogen and carbon rich media 41,44, such as in 

the minimal media used for systems biology studies of S. coelicolor 45. 3) The 

biosynthetic pathways for the signalling molecules gamma-butyrolactones (SCB1, 2 

and 3) were added 46,47; secondary metabolite production in Streptomyces (e.g., CPK) 

can be activated through these small diffusible molecules, and they are an interesting 

target for synthetic biology engineering 48,49. 4) The futalosine pathway, an alternative 

menaquinone biosynthesis pathway, which was highlighted as incomplete in the 

previous model 26, has now been updated following recently published studies 50,51. 

5) The oxidative phosphorylation associated reactions have been manually curated. 

6) Following the above modifications, the biomass reaction has also been updated to 

reflect more detailed knowledge on biomass composition such as the presence of 2-
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demethylmenaquinol in S. coelicolor (MetaCyc) 28, and organic polyphosphate storage 

52, as well as an update in the stoichiometry of menaquinol based on Mycobacterium 

tuberculosis data 53 (see details in Electronic Supplementary 2.1 - Additional file 3). 

In order to facilitate metabolomics data analysis, all metabolites in the model have 

now been annotated with standard identifiers for a variety of relevant databases 

(PubChem and ChEBI) 54,55, and chemical and structural information about each 

metabolite has been added (InChi and SMILES strings) to ensure unambiguous 

metabolite identification 56,57. The model capacity to facilitate metabolomics data 

analysis has been tested by mapping metabolites annotated with mzMatch 58 from an 

untargeted metabolomics dataset of S. coelicolor 59; the metabolites were mapped 

automatically onto the iAA1259 metabolic network (see details in Supplementary 

Figure  2.1). In addition, to facilitate transcriptomics data analysis and comparative 

modelling, gene annotation has been expanded to include identifiers for multiple 

standard databases (Gene Ontology, Ensembl, and RefSeq) 60–62. Finally, to integrate 

proteomics data analysis, standard database identifiers (UniProt, Pfam, and Panther) 

63–65 and key reference data, such as protein sequence, length, and mass, have been 

added. The final model, iAA1259, is fully compliant with the current standards for high-

quality GSMMs 25,34,35, iAA1259 is available as a SBML file in Electronic Supplementary 

2.1 Additional File 1 and as an excel file in Additional File 2.  

2.5.2 Validations of the metabolic model predictions 

As the first step in model validation, chemostat data collected by Melzoch et al. for 

S. coelicolor in a glucose-limited minimal defined media 32 were used to compare 

biomass predictions by the four generations of model: iIB711, iMA789, iMK1208, and 
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iAA1259. Specific growth rates for each model were predicted in silico, using the 

known glucose and O2 uptake rates as constraints on the model, along with the 

production rates of CO2 and γ-actinorhodin, the extracellular lactone form of 

actinorhodin 66. Biomass production was maximized to estimate the optimal predicted 

growth rate. Then, the growth rate predicted in silico was compared to the dilution 

rate that corresponds to the observed growth rate at steady state (Figure 2.1). Since 

the first published model iIB711, there have been some significant improvements in 

biomass predictions; iAA1259 shows a slight improvement in predictions compared to 

the previous model update, iMK1208 (8.2% average error for iMK1208 predictions 

versus 7.0% with iAA1259). This first validation confirms that the predictive 

performances of the updated model iAA1259 are at least as good as the previous 

models generations. However, the next validation step requires more complex and 

quantitative datasets. The data used as constraints and the predicted growth rates 

data for the different models are available in Supplementary Table 7.  

A more substantial improvement in prediction quality is observed when 

comparing the dynamic growth predictions of the metabolic models iAA1259, 

iMK1208, and iMA789, to published experimental growth data (Figure 2.2) 31. The 

dynamic growth was predicted by applying dynamic constraints from fermenter data 

(see Methods for details). The comparison of the predicted and experimental dynamic 

cell growth shows a significant improvement in quantitative and qualitative biomass 

prediction using the updated model iAA1259 (moving from an average absolute error 

of 37.6% with iMK1208 predictions to 5.3% with iAA1259; Figure 2.2, and 

Supplementary Figure 2.2). This improvement in biomass predictions is most likely due 

to the update of the biomass reaction and in the oxidative phosphorylation-related 
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reactions updates (i.e., cytochrome oxidases and/or menaquinone pathway), as these 

are the main adjustments affecting biomass-related reactions directly. 

The next validation step involved individual metabolic flux predictions across the 

model. For this purpose, the models were constrained with time series fermenter data 

for glucose and O2 uptake rates and the production rates of γ-actinorhodin and CO2 for 

32 time points from Nieselt et al. using the method introduced by Alam et al. 21. The 

metabolic flux predictions were compared to time series of gene-and protein 

expression reported by Lahtvee and colleagues (2017), as proxies for the relative 

metabolic flux across the time course 67. For the majority of genes, the gene expression 

Figure 2.1: Initial model growth predictions validation.  

Comparison of the specific growth rate predicted in-silico with different models to the 

measured growth rates in chemostat data 32 with a glucose-limited minimal defined media. 

The published data on the rate of glucose uptake, oxygen consumption, CO2 production and γ-

actinorhodin production for seven different conditions were used as metabolic constraints in 

the different models. Growth prediction by iAA1259 shows a slight improvement compared to 

its immediate predecessor, iMK1208 26. 
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changes over time are strongly correlated to the predicted metabolic fluxes through 

the associated reactions (Figure 2.3), and the correlation is substantially improved in 

the updated model presented here (median Spearman correlation coefficient 0.56, 

compared to 0.18 in the most recent predecessor, iMK1208). When focusing only on 

the correlation for genes that change at least 25% in expression across the time course 

(Figure 2.3d), i.e. those genes that should show correlation, the quality of the 

correlation is even more pronounced (the Pearson correlation coefficient increases by 

39% from 0.56 to 0.78), and it becomes clear that only a very small number of genes 

Figure 2.2: Comparison of dynamic cell growth predictions.  

The quantitative in silico growth predictions are compared to measured biomass and 

predictions with previously published models across time points. The models were 

constrained using phosphate, glucose, and glutamate consumption, as well as production of 

the antibiotics actinorhodin and undecylprodigiosin measured in a fermenter experiment 31. 

The updated model’s predictions are closer to experimental observations than those of 

previous models, showing a significant improvement in growth prediction with the iAA1259 

model. 
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show anti-correlated behaviour, i.e. a strong disagreement between gene expression 

and predicted fluxes.  A similar trend is observed when applied to the fluxes predicted 

with iMA789 and iMK1208 models, both showing an increase of overall Pearson 

Figure 2.3: Correlation analysis between gene expression and predicted fluxes for 

the different models.  

The histograms show correlations between gene expression and flux predicted for the 

metabolic genes present in the different published GSMMs of S. coelicolor. This approach 

has been used first by Alam et al., 2010, for the model iMA789. 

a) Histogram of correlations for the model iMA789 by Alam et al. 21. 

b) Histogram of correlations for the model iMK1208 by Kim et al. 26. 

c) Histogram of correlations for the new model, iAA1259. The histogram shows a strong 

correlation between gene expression and predicted fluxes for metabolic genes present 

in the model iAA1259. Overall correlation is substantially higher than for the previous 

models, with a median Spearman correlation of 0.56 compared to 0.13 for iMA789 and 

0.18 for iMK1208. 

d)  Histogram of correlations for the model iAA1259, but only taking into account genes 

with expression variation of more than 25% between the minimal and maximal 

transcript level. 
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correlation from 0.13 to 0.38, and from 0.18 to 0.56, respectively (Supplementary 

Figure 2.1). The trend of a progressive increase in predictive power is still observed 

from iMA789 to iMK1208 (47% increase in correlation), and from iMK1208 to iAA1259 

(42% increase in correlation).  

In the updated model, there are two major genetic features showing anti-

correlation (Figure 2.4, row A), the genes associated to Calcium Dependant Antibiotics 

(CDA) biosynthesis, and the nuo operon genes associated to an NADH dehydrogenase 

(complex I). The CDA genes (Figure 2.4, row E) are anti-correlated because their gene 

expression unexpectedly increases during the transition phase (Figure 2.4, row C), 

whereas the model does not produce CDA. The metabolite production was not 

switched on in the model, as there is no calcium in the media conditions used by 

Nieselt et al., 2010. It has been shown previously that CDA could not be detected at 

significant levels if there was no calcium in the media 68. Furthermore, production of 

the associated proteins is not confirmed by the proteomics data 40 (Figure 2.4, row B). 

Thus, in this case, the model prediction (no flux increase during the transition phase, 

Figure 2.4 row D) appears to be correct, and gene expression in this exceptional case 

might not be correlating with metabolic flux. The Figure 4 is available in high-definition 

in the Additional File 5 as an Electronic Supplementary 2.1.  

Regarding the second major anti-correlation, which is seen for the genes encoding the 

fourteen subunits of NADH dehydrogenase I (NDH-I), the nuo complex, the 

disagreement between gene expression and predicted flux is due to a regulatory 

phenomenon, which in general is difficult to capture in a constraint-based model: two 

isoenzyme complexes are present in S. coelicolor, the relative expression of which is 

controlled by a regulatory loop dependent on NADH/NAD+ ratio 69. Of these, the nuo 
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genes are preferentially expressed during fumarate respiration (stationary phase 70). 

So, while fluxes through the reaction catalysed by the NADH-dehydrogenase are 

reduced after the transition phase, nuo gene expression increases and results in an 

anti-correlation of nuo gene expression with the flux prediction (which does not 

distinguish between the isoenzyme complexes). The second NADH dehydrogenase, 

NDH-II, encoded by three copies of the ndh gene, is preferentially expressed during 

exponential phase and switched off after the transition phase; hence, the ndh genes 

Figure 2.4: Validation by integrated transcriptomics and proteomics analysis.  

Gene expression and proteomics data were mapped to metabolic enzyme-coding genes and 

the associated metabolic fluxes predicted over time. Overall, the predicted flux trends are 

strongly correlated (green colour in the top bar) to the observed gene expression trend across 

the metabolic switch event (around between 35 and 36 hours). Two highly anti-correlated gene 

clusters are highlighted (red colour in the top bar). 

Correlation: Pearson (P) and Spearman (S) correlation coefficient between the experimental 

gene expression level and the predicted fluxes through the corresponding reaction for each 

individual metabolic gene (green: good correlation; yellow: no correlation; red: anti-

correlation. 

Proteome: Protein abundance observed in experimental time course data: red: high: green: 

low abundance, black: missing data (only a small subset of enzymes was quantified). 

Proteomics data from Thomas, et al. 40.  

Gene expression: Gene expression levels observed in the same experimental time course (red: 

high, blue: low expression). A much larger number of time course were studied than in the 

proteomics analysis. Gene expression data from Nieselt et al. 31. 

Predicted flux: Flux predicted during a simulated time course (green: high; red: low predicted 

flux). 

Genome features: Selected genomic regions discussed in the text are annotated. The data is 

ordered based on the position of analysed genes in the reference genome (from left to right, 

from 161,237 bp to 8,468,158 bp). Genome sequence from Bentley et al. 2. 
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show high correlation with the predicted flux. While regulatory phenomena like this 

are not considered in this type of model, the misprediction highlights an interesting 

phenomenon for future study, i.e. the impact of the relative role of the two sources of 

reducing co-factors on secondary metabolism in S. coelicolor. 

2.6 Conclusions  

Here, we have presented an updated computational model of S. coelicolor primary and 

secondary metabolism, iAA1259; this model shows improved predictive abilities 

compared to previous model generations for metabolic changes at different scales, 

from overall biomass dynamics to fluxes through individual reactions.  

Another important improvement is that the model has been also updated to enable 

integrative multi-omics data analysis, to be used for designing and debugging of 

engineered Streptomyces strains using a synthetic biology approach 6, and is now fully 

compliant with current modelling standards 34,35.  

The model presented here will be a good basis for the next round of computer-

aided design of metabolically enhanced Streptomyces strains. The principled 

construction of the model using standard identifiers will facilitate the transfer of 

information to related strains beyond S. coelicolor (e.g., recently emerging popular 

biotechnological hosts, such as Streptomyces albus and Streptomyces venezuelae 71,72). 

It will also serve as a solid starting point for the next generation of updated metabolic 

models, which will address the challenge of including kinetic and regulatory 

constraints, in a similar way as the recently published genome-scale metabolic models 

for the well-studied microorganisms Escherichia coli 73 and Saccharomyces 

cerevisiae 74. 



89 

 

2.7 References 

(1)  Hopwood, D. A. Streptomyces in Nature and Medicine : The Antibiotic Makers; 
Oxford University Press, 2007. 

(2)  Bentley, S. D.; Chater, K. F.; Cerdeno-Tarraga, A.-M.; Challis, G. L.; Thomson, N. 
R.; James, K. D.; Harris, D. E.; Quail, M. A.; Kieser, H.; Harper, D.; et al. Complete 
Genome Sequence of the Model Actinomycete Streptomyces Coelicolor A3(2). 
Nature 2002, 417 (6885), 141–147. 

(3)  van Keulen, G.; Dyson, P. J. Production of Specialized Metabolites by 
Streptomyces Coelicolor A3 (2). Adv Appl Microbiol 2014, 89, 217–266. 

(4)  Smanski, M. J.; Zhou, H.; Claesen, J.; Shen, B.; Fischbach, M. A.; Voigt, C. A. 
Synthetic Biology to Access and Expand Nature’s Chemical Diversity. Nat. Rev. 
Microbiol. 2016, 14 (3), 135–149. 

(5)  Medema, M. H.; Breitling, R.; Bovenberg, R.; Takano, E. Exploiting Plug-and-Play 
Synthetic Biology for Drug Discovery and Production in Microorganisms. Nat. 
Rev. Microbiol. 2011, 9 (2), 131–137. 

(6)  Carbonell, P.; Currin, A.; Jervis, A. J.; Rattray, N. J. W.; Swainston, N.; Yan, C.; 
Takano, E.; Breitling, R. Bioinformatics for the Synthetic Biology of Natural 
Products: Integrating across the Design–Build–Test Cycle. Nat. Prod. Rep. 2016, 
33 (8), 925–932. 

(7)  Lu, W.; Ye, L.; Lv, X.; Xie, W.; Gu, J.; Chen, Z.; Zhu, Y.; Li, A.; Yu, H. Identification 
and Elimination of Metabolic Bottlenecks in the Quinone Modification Pathway 
for Enhanced Coenzyme Q10 Production in Rhodobacter Sphaeroides. Metab. 
Eng. 2015, 29, 208–216. 

(8)  Gomez-Escribano, J. P.; Bibb, M. J. Heterologous Expression of Natural Product 
Biosynthetic Gene Clusters in Streptomyces Coelicolor: From Genome Mining to 
Manipulation of Biosynthetic Pathways. J. Ind. Microbiol. Biotechnol. 2014, 41 
(2), 425–431. 

(9)  Fong, S. S. Computational Approaches to Metabolic Engineering Utilizing 
Systems Biology and Synthetic Biology. Comput. Struct. Biotechnol. J. 2014, 11 
(18), 28–34. 

(10)  Simeonidis, E.; Price, N. D. Genome-Scale Modeling for Metabolic Engineering. J. 
Ind. Microbiol. Biotechnol. 2015, 42 (3), 327–338. 

(11)  Kim, B.; Kim, W. J.; Kim, D. I.; Lee, S. Y. Applications of Genome-Scale Metabolic 
Network Model in Metabolic Engineering. J. Ind. Microbiol. Biotechnol. 2015, 42 
(3), 339–348. 

(12)  Xu, C.; Liu, L.; Zhang, Z.; Jin, D.; Qiu, J.; Chen, M. Genome-Scale Metabolic Model 
in Guiding Metabolic Engineering of Microbial Improvement. Appl. Microbiol. 
Biotechnol. 2013, 97 (2), 519–539. 

(13)  Huang, D.; Li, S.; Xia, M.; Wen, J.; Jia, X. Genome-Scale Metabolic Network 
Guided Engineering of Streptomyces Tsukubaensis for FK506 Production 
Improvement. Microb. Cell Fact. 2013, 12 (1), 52. 

(14)  Wang, J.; Wang, C.; Song, K.; Wen, J. Metabolic Network Model Guided 
Engineering Ethylmalonyl-CoA Pathway to Improve Ascomycin Production in 
Streptomyces Hygroscopicus Var. Ascomyceticus. Microb. Cell Fact. 2017, 16 (1), 
169. 

(15)  Kim, M.; Yi, J. S.; Lakshmanan, M.; Lee, D.-Y.; Kim, B.-G. Transcriptomics-Based 
Strain Optimization Tool for Designing Secondary Metabolite Overproducing 



90 

 

Strains of Streptomyces Coelicolor. Biotechnol. Bioeng. 2016, 113 (3), 651–660. 

(16)  Toro, L.; Pinilla, L.; Avignone‑rossa, C.; Ríos‑estepa, R.; Avignone-Rossa, C.; Ríos-
Estepa, R. An Enhanced Genome-Scale Metabolic Reconstruction of 
Streptomyces Clavuligerus Identifies Novel Strain Improvement Strategies. 
Bioprocess Biosyst. Eng. No. 5. 

(17)  Fondi, M.; Pinatel, E.; Talà, A.; Damiano, F.; Consolandi, C.; Mattorre, B.; Fico, D.; 
Testini, M.; De Benedetto, G. E.; Siculella, L.; et al. Time-Resolved 
Transcriptomics and Constraint-Based Modeling Identify System-Level Metabolic 
Features and Overexpression Targets to Increase Spiramycin Production in 
Streptomyces Ambofaciens. Front. Microbiol. 2017, 8, 835. 

(18)  Schellenberger, J.; Que, R.; Fleming, R. M. T.; Thiele, I.; Orth, J. D.; Feist, A. M.; 
Zielinski, D. C.; Bordbar, A.; Lewis, N. E.; Rahmanian, S.; et al. Quantitative 
Prediction of Cellular Metabolism with Constraint-Based Models: The COBRA 
Toolbox v2.0. Nat. Protoc. 2011, 6 (9), 1290–1307. 

(19)  Borodina, I.; Krabben, P.; Nielsen, J. Genome-Scale Analysis of Streptomyces 
Coelicolor A3(2) Metabolism. Genome Res. 2005, 15 (6), 820–829. 

(20)  Borodina, I.; Siebring, J.; Zhang, J.; Smith, C. P.; van Keulen, G.; Dijkhuizen, L.; 
Nielsen, J. Antibiotic Overproduction in Streptomyces Coelicolor A3 (2) Mediated 
by Phosphofructokinase Deletion. J. Biol. Chem. 2008, 283 (37), 25186–25199. 

(21)  Alam, M. T.; Merlo, M. E.; Hodgson, D. A.; Wellington, E. M. H.; Takano, E.; 
Breitling, R. Metabolic Modeling and Analysis of the Metabolic Switch in 
Streptomyces Coelicolor. BMC Genomics 2010, 11 (1), 1. 

(22)  Borodina, I.; Schöller, C.; Eliasson, A.; Nielsen, J. Metabolic Network Analysis of 
Streptomyces Tenebrarius, a Streptomyces Species with an Active Entner-
Doudoroff Pathway. Appl. Environ. Microbiol. 2005, 71 (5), 2294–2302. 

(23)  Licona-Cassani, C.; Marcellin, E.; Quek, L.-E.; Jacob, S.; Nielsen, L. K. 
Reconstruction of the Saccharopolyspora Erythraea Genome-Scale Model and 
Its Use for Enhancing Erythromycin Production. Antonie Van Leeuwenhoek 2012, 
102 (3), 493–502. 

(24)  Zakrzewski, P.; Medema, M. H.; Gevorgyan, A.; Kierzek, A. M.; Breitling, R.; 
Takano, E. MultiMetEval: Comparative and Multi-Objective Analysis of Genome-
Scale Metabolic Models. PLoS One 2012, 7 (12), e51511. 

(25)  Thiele, I.; Palsson, B. Ø. A Protocol for Generating a High-Quality Genome-Scale 
Metabolic Reconstruction. Nat. Protoc. 2010, 5 (1), 93–121. 

(26)  Kim, M.; Yi, J. S.; Kim, J.; Kim, J. N.; Kim, M. W.; Kim, B. G. Reconstruction of a 
High-Quality Metabolic Model Enables the Identification of Gene 
Overexpression Targets for Enhanced Antibiotic Production in Streptomyces 
Coelicolor A3(2). Biotechnol. J. 2014, 9 (9), 1185–1194. 

(27)  Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. 
Nucleic Acids Res. 2000, 28 (1), 27–30. 

(28)  Caspi, R.; Billington, R.; Ferrer, L.; Foerster, H.; Fulcher, C. A.; Keseler, I. M.; 
Kothari, A.; Krummenacker, M.; Latendresse, M.; Mueller, L. A.; et al. The 
MetaCyc Database of Metabolic Pathways and Enzymes and the BioCyc 
Collection of Pathway/Genome Databases. Nucleic Acids Res. 2016, 44 (D1), 
D471–D480. 

(29)  Henry, C. S.; DeJongh, M.; Best, A. A.; Frybarger, P. M.; Linsay, B.; Stevens, R. L. 
High-Throughput Generation, Optimization and Analysis of Genome-Scale 



91 

 

Metabolic Models. Nat. Biotechnol. 2010, 28 (9), 977–982. 
(30)  Overbeek, R.; Olson, R.; Pusch, G. D.; Olsen, G. J.; Davis, J. J.; Disz, T.; Edwards, R. 

A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation 
of Microbial Genomes Using Subsystems Technology (RAST). Nucleic Acids Res. 
2014, 42 (D1), D206–D214. 

(31)  Nieselt, K.; Battke, F.; Herbig, A.; Bruheim, P.; Wentzel, A.; Jakobsen, Ø. M.; 
Sletta, H.; Alam, M. T.; Merlo, M. E.; Moore, J. The Dynamic Architecture of the 
Metabolic Switch in Streptomyces Coelicolor. BMC Genomics 2010, 11 (1), 10. 

(32)  Melzoch, K.; De Mattos, M. J. T.; Neijssel, O. M. Production of Actinorhodin by 
Streptomyces Coelicolor A3(2) Grown in Chemostat Culture. Biotechnol. Bioeng. 
1997, 54 (6), 577–582. 

(33)  Varma, A.; Palsson, B. Ø. Parametric Sensitivity of Stoichiometric Flux Balance 
Models Applied to Wild-Type Escherichia Coli Metabolism. Biotechnol. Bioeng. 
1995, 45 (1), 69–79. 

(34)  Le Novere, N.; Finney, A.; Hucka, M.; Bhalla, U. S.; Campagne, F.; Collado-Vides, 
J.; Crampin, E. J.; Halstead, M.; Klipp, E.; Mendes, P.; et al. Minimum Information 
Requested in the Annotation of Biochemical Models (MIRIAM). Nat. Biotechnol. 
2005, 23 (12), 1509–1515. 

(35)  King, Z. A.; Lu, J.; Drager, A.; Miller, P.; Federowicz, S.; Lerman, J. A.; Ebrahim, A.; 
Palsson, B. Ø.; Lewis, N. E.; J., H. BiGG Models: A Platform for Integrating, 
Standardizing and Sharing Genome-Scale Models. Nucleic Acids Res. 2016, 44 
(D1), D515–D522. 

(36)  Ebrahim, A.; Lerman, J. A.; Palsson, B. Ø.; Hyduke, D. R. COBRApy: COnstraints-
Based Reconstruction and Analysis for Python. BMC Syst. Biol. 2013, 7 (1), 74. 

(37)  Becker, S. A.; Feist, A. M.; Mo, M. L.; Hannum, G.; Palsson, B. Ø.; Herrgard, M. J. 
Quantitative Prediction of Cellular Metabolism with Constraint-Based Models: 
The COBRA Toolbox. Nat. Protoc. 2007, 2 (3), 727–738. 

(38)  Rocha, I.; Maia, P.; Evangelista, P.; Vilaça, P.; Soares, S.; Pinto, J. P.; Nielsen, J.; 
Patil, K. R.; Ferreira, E. C.; Rocha, M. OptFlux: An Open-Source Software Platform 
for in Silico Metabolic Engineering. BMC Syst. Biol. 2010, 4 (1), 45. 

(39)  Gelius-Dietrich, G.; Desouki, A.; Fritzemeier, C.; Lercher, M. J. Sybil – Efficient 
Constraint-Based Modelling in R. BMC Syst. Biol. 2013, 7 (1), 125. 

(40)  Thomas, L.; Hodgson, D. A.; Wentzel, A.; Nieselt, K.; Ellingsen, T. E.; Moore, J.; 
Morrissey, E. R.; Legaie, R.; Wohlleben, W.; Rodriguez-Garcia, A.; et al. 
Metabolic Switches and Adaptations Deduced from the Proteomes of 
Streptomyces Coelicolor Wild Type and PhoP Mutant Grown in Batch Culture. 
Mol. Cell. Proteomics 2012, 11 (2), M111.013797-M111.013797. 

(41)  Pawlik, K.; Kotowska, M.; Chater, K. F.; Kuczek, K.; Takano, E. A Cryptic Type I 
Polyketide Synthase (Cpk) Gene Cluster in Streptomyces Coelicolor A3(2). Arch. 
Microbiol. 2007, 187 (2), 87–99. 

(42)  Kotowska, M.; Ciekot, J.; Pawlik, K. Type II Thioesterase ScoT Is Required for 
Coelimycin Production by the Modular Polyketide Synthase Cpk of Streptomyces 
Coelicolor A3(2). Acta Biochim. Pol. 2014, 61 (1), 141–147. 

(43)  Awodi, U. R.; Ronan, J. L.; Masschelein, J.; de los Santos, E. L. C.; Challis, G. L. 
Thioester Reduction and Aldehyde Transamination Are Universal Steps in 
Actinobacterial Polyketide Alkaloid Biosynthesis. Chem. Sci. 2017, 8 (1), 411–
415. 



92 

 

(44)  Gottelt, M.; Kol, S.; Gomez-Escribano, J. P.; Bibb, M.; Takano, E. Deletion of a 
Regulatory Gene within the Cpk Gene Cluster Reveals Novel Antibacterial 
Activity in Streptomyces Coelicolor A3 (2). Microbiology 2010, 156 (8), 2343–
2353. 

(45)  Wentzel, A.; Bruheim, P.; Øverby, A.; Jakobsen, Ø. M.; Sletta, H.; Omara, W. A. 
M.; Hodgson, D. A.; Ellingsen, T. E. Optimized Submerged Batch Fermentation 
Strategy for Systems Scale Studies of Metabolic Switching in Streptomyces 
Coelicolor A3(2). BMC Syst. Biol. 2012, 6 (1), 59. 

(46)  Kato, J.; Funa, N.; Watanabe, H.; Ohnishi, Y.; Horinouchi, S. Biosynthesis of 
Gamma-Butyrolactone Autoregulators That Switch on Secondary Metabolism 
and Morphological Development in Streptomyces. Proc. Natl. Acad. Sci. U. S. A. 
2007, 104 (7), 2378–2383. 

(47)  Takano, E. γ-Butyrolactones: Streptomyces Signalling Molecules Regulating 
Antibiotic Production and Differentiation. Curr. Opin. Microbiol. 2006, 9 (3), 
287–294. 

(48)  Biarnes-Carrera, M.; Breitling, R.; Takano, E. Butyrolactone Signalling Circuits for 
Synthetic Biology. Curr. Opin. Chem. Biol. 2015, 28, 91–98. 

(49)  Biarnes-Carrera, M.; Lee, C.-K.; Nihira, T.; Breitling, R.; Takano, E. Orthogonal 
Regulatory Circuits for Escherichia Coli Based on the γ-Butyrolactone System of 
Streptomyces Coelicolor. ACS Synth. Biol. 2018, acssynbio.7b00425. 

(50)  Ogasawara, Y.; Kondo, K.; Ikeda, A.; Harada, R.; Dairi, T. Identification of 
Tirandamycins as Specific Inhibitors of the Futalosine Pathway. J. Antibiot. 
(Tokyo). 2017, 70 (6), 798–800. 

(51)  Zhi, X.-Y.; Yao, J.-C.; Tang, S.-K.; Huang, Y.; Li, H.-W.; Li, W.-J. The Futalosine 
Pathway Played an Important Role in Menaquinone Biosynthesis during Early 
Prokaryote Evolution. Genome Biol. Evol. 2014, 6 (1), 149–160. 

(52)  Esnault, C.; Dulermo, T.; Smirnov, A.; Askora, A.; David, M.; Deniset-Besseau, A.; 
Holland, I.-B.; Virolle, M.-J. Strong Antibiotic Production Is Correlated with 
Highly Active Oxidative Metabolism in Streptomyces Coelicolor M145. Sci. Rep. 
2017, 7 (1), 200. 

(53)  Kavvas, E. S.; Seif, Y.; Yurkovich, J. T.; Norsigian, C.; Poudel, S.; Greenwald, W. 
W.; Ghatak, S.; Palsson, B. O.; Monk, J. M. Updated and Standardized Genome-
Scale Reconstruction of Mycobacterium Tuberculosis H37Rv, IEK1011, Simulates 
Flux States Indicative of Physiological Conditions. BMC Syst. Biol. 2018, 12 (1), 
25. 

(54)  Kim, S.; Thiessen, P. A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, 
J.; He, S.; Shoemaker, B. A.; et al. PubChem Substance and Compound 
Databases. Nucleic Acids Res. 2016, 44 (D1), D1202–D1213. 

(55)  Degtyarenko, K.; de Matos, P.; Ennis, M.; Hastings, J.; Zbinden, M.; McNaught, 
A.; Alcantara, R.; Darsow, M.; Guedj, M.; Ashburner, M. ChEBI: A Database and 
Ontology for Chemical Entities of Biological Interest. Nucleic Acids Res. 2007, 36 
(Database), D344–D350. 

(56)  Heller, S.; McNaught, A.; Stein, S.; Tchekhovskoi, D.; Pletnev, I. InChI - the 
Worldwide Chemical Structure Identifier Standard. J. Cheminform. 2013, 5 (1), 7. 

(57)  Weininger, D. SMILES, a Chemical Language and Information System. 1. 
Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 
1988, 281413 (2715), 31–36. 



93 

 

(58)  Scheltema, R. A.; Jankevics, A.; Jansen, R. C.; Swertz, M. A.; Breitling, R. 
PeakML/MzMatch: A File Format, Java Library, R Library, and Tool-Chain for 
Mass Spectrometry Data Analysis. Anal. Chem. 2011, 83 (7), 2786–2793. 

(59)  Jankevics, A.; Merlo, M. E.; de Vries, M.; Vonk, R. J.; Takano, E.; Breitling, R. 
Metabolomic Analysis of a Synthetic Metabolic Switch in Streptomyces 
Coelicolor A3 (2). Proteomics 2011, 11 (24), 4622–4631. 

(60)  Ashburner, M.; Ball, C. A.; Blake, J. A.; Botstein, D.; Butler, H.; Cherry, J. M.; 
Davis, A. P.; Dolinski, K.; Dwight, S. S.; Eppig, J. T.; et al. Gene Ontology: Tool for 
the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25 
(1), 25–29. 

(61)  Kersey, P. J.; Allen, J. E.; Allot, A.; Barba, M.; Boddu, S.; Bolt, B. J.; Carvalho-Silva, 
D.; Christensen, M.; Davis, P.; Grabmueller, C.; et al. Ensembl Genomes 2018: An 
Integrated Omics Infrastructure for Non-Vertebrate Species. Nucleic Acids Res. 
2018, 46 (D1), D802–D808. 

(62)  Pruitt, K. D.; Tatusova, T.; Maglott, D. R. NCBI Reference Sequences (RefSeq): A 
Curated Non-Redundant Sequence Database of Genomes, Transcripts and 
Proteins. Nucleic Acids Res. 2007, 35 (Database issue), D61-5. 

(63)  The UniProt Consortium. UniProt: A Hub for Protein Information. Nucleic Acids 
Res. 2015, 43 (D1), D204–D212. 

(64)  Bateman, A.; Coin, L.; Durbin, R.; Finn, R. D.; Hollich, V.; Griffiths‐Jones, S.; 
Khanna, A.; Marshall, M.; Moxon, S.; Sonnhammer, E. L. L.; et al. The Pfam 
Protein Families Database. Nucleic Acids Res. 2004, 32 (90001), 138D – 141. 

(65)  Mi, H.; Muruganujan, A.; Thomas, P. D. PANTHER in 2013: Modeling the 
Evolution of Gene Function, and Other Gene Attributes, in the Context of 
Phylogenetic Trees. Nucleic Acids Res. 2012, 41 (D1), D377–D386. 

(66)  Bystrykh, L. V; Fernández-Moreno, M. A.; Herrema, J. K.; Malpartida, F.; 
Hopwood, D. A.; Dijkhuizen, L. Production of Actinorhodin-Related" Blue 
Pigments" by Streptomyces Coelicolor A3 (2). J. Bacteriol. 1996, 178 (8), 2238–
2244. 

(67)  Lahtvee, P.-J.; Sánchez, B. J.; Smialowska, A.; Kasvandik, S.; Elsemman, I. E.; 
Gatto, F.; Nielsen, J. Absolute Quantification of Protein and MRNA Abundances 
Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast. Cell Syst. 
2017, 4 (5), 495-504.e5. 

(68)  Diez, V.; Loznik, M.; Taylor, S.; Winn, M.; Rattray, N. J. W.; Podmore, H.; 
Micklefield, J.; Goodacre, R.; Medema, M. H.; Müller, U.; et al. Functional 
Exchangeability of Oxidase and Dehydrogenase Reactions in the Biosynthesis of 
Hydroxyphenylglycine, a Nonribosomal Peptide Building Block. ACS Synth. Biol. 
2015, 4 (7), 796–807. 

(69)  Gyan, S.; Shiohira, Y.; Sato, I.; Takeuchi, M.; Sato, T. Regulatory Loop between 
Redox Sensing of the NADH/NAD(+) Ratio by Rex (YdiH) and Oxidation of NADH 
by NADH Dehydrogenase Ndh in Bacillus Subtilis. J. Bacteriol. 2006, 188 (20), 
7062–7071. 

(70)  Brekasis, D.; Paget, M. S. B. A Novel Sensor of NADH/NAD+ Redox Poise in 
Streptomyces Coelicolor A3(2). EMBO J. 2003, 22 (18), 4856–4865. 

(71)  Zaburannyi, N.; Rabyk, M.; Ostash, B.; Fedorenko, V.; Luzhetskyy, A. Insights into 
Naturally Minimised Streptomyces Albus J1074 Genome. BMC Genomics 2014, 
15 (1), 97. 



94 

 

(72)  Phelan, R. M.; Sachs, D.; Petkiewicz, S. J.; Barajas, J. F.; Blake-Hedges, J. M.; 
Thompson, M. G.; Reider Apel, A.; Rasor, B. J.; Katz, L.; Keasling, J. D. 
Development of Next Generation Synthetic Biology Tools for Use in 
Streptomyces Venezuelae. ACS Synth. Biol. 2017, 6 (1), 159–166. 

(73)  Monk, J. M.; Lloyd, C. J.; Brunk, E.; Mih, N.; Sastry, A.; King, Z.; Takeuchi, R.; 
Nomura, W.; Zhang, Z.; Mori, H.; et al. IML1515, a Knowledgebase That 
Computes Escherichia Coli Traits. Nat. Biotechnol. 2017, 35 (10), 904–908. 

(74)  Sánchez, B. J.; Zhang, C.; Nilsson, A.; Lahtvee, P.-J.; Kerkhoven, E. J.; Nielsen, J. 
Improving the Phenotype Predictions of a Yeast Genome-Scale Metabolic Model 
by Incorporating Enzymatic Constraints. Mol. Syst. Biol. 2017, 13 (8), 935. 

 

2.8 Supplementary Files 

2.8.1 Summary of the main updates and new features present in the iAA1259 model 

compared to previous generations 

Metabolic models iAA1259 

Number of genes included 
1259 
(18 genes replaced + 51 new genes) 

Reactions 
1912 
(68 reactions modified + 53 new reactions) 

Metabolites 
1470 
(34 metabolites added) 

Additional gene databases 
identifiers included 

Uniprot, Gene Ontology, RefSeq, BioCyc, Pfam, PANTHER 
(Already in the previous model: StrepDB) 

Additional metabolites 
databases identifiers 

Chebi, HMDB, IUPAC, CAS, SMILES, InChi, ChemSpider, 
BioCyc, Metlin, PubChem 
(Already in the previous model: BiGG, KEGG) 

Additional data included 
Metabolites monoisotopic mass and structures (SMILES), 
Protein sequences 

Metabolic pathways added 

Coelimycin Biosynthesis 
Butyrolactones Biosynthesis 
Xylan Degradation 
Cellulose Degradation 

Metabolic pathways 
updated 

Futalosine Pathway 
Chitin Degradation 
Oxidative Phosphorylation 
   NADH dehydrogenases 
   Cytochromes oxidases 
   Menaquinone utilization 
Biomass 
   GAM/NGAM 
   Composition (menaquinones, 
   demethylmenaquinones, polyphosphate) 
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Supplementary Table 2.1: Summary table of the updates and new features added to 

the iAA1259 model compared to the previous generations. This table shows the main 

updates done on the iAA1259 model compared to previous models, in particular the 

updates on metabolic pathways. 

 

Reaction ID Reaction Name Reaction Equation 

Genes 

Associat

ed 

CPKS1 CpkA initiation 

ACPcpk[c] + 3 malcoa[c] + 3 h[c] <=> 

3 coa[c] + hex24dACPcpk[c] + 3 

co2[c] + 2 h2o[c] 

SCO6275 

CPKS2 
CpkB polyketide 

elongation 1 

hex24dACPcpk[c] + 2 malcoa[c] + 2 

h[c] -> 2 coa[c] + h246dectACPcpk[c] 

+ 2 co2[c] + h2o[c] 

SCO6274 

CPKS3 

CpkC polyketide 

elongation 2 and 

thioester reductase 

h246dectACPcpk[c] + malcoa[c] + 

nadh[c] -> h2o[c] + hdd2610t[c] + 2 

h[c] + co2[c] + nad[c] +coa[c]+ 

ACPcpk[c] 

SCO6273 

CPKS4a 
CpkG transaminase 

(with L-Ala) 

hdd2610t[c] + ala-L[c] <=> 

1add26810t5o[c] + pyr[c] 
SCO6279 

CPKS4b 
CpkG transaminase 

(with L-Glu) 

hdd2610t[c] + glu-L[c] <=> 

1add26810t5o[c] + akg[c] 
SCO6279 

CPKS5 

Flavin dependent 

epoxidases/dehydrogen

ases 

add26810t5o[c] + fadh2[c] + 2 o2[c] -

> cpkepox[c] + fad[c] 3 h2o[c] 

(SCO6276 

or 

SCO6281 

or 

SCO6272) 

CPKSt 

Putative 

transmembrane efflux 

protein CpkF 

cpkepox[c] -> cpkepox[e] SCO6278 

CPKS6 
Extracellular 

spontaneous reaction 

cpkepox[e] + accyst[e] -> ycpk[e] + 

h2o[e] + 2 h[e] 
s0001 

ACCS 

N-acetylcysteine 

synthase (putative acyl-

transferase) 

accoa[c] + cys-L[c]  -> accys[c] + 

coa[c] + h[c]  
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ACCt 
N-acetylcysteine 

transport 
accys[c] <=> accys[e]   

ACPScpk 
acyl-carrier protein 

synthase (cpk) 

coa[c] + apoACPcpk[c] -> h[c] +  

ACPcpk[c] + pap[c] 
SCO4744 

ACPSpdscpk 

acyl-carrier-protein 

phosphodiesterase 

(cpk) 

ACPcpk[c] + h2o[c] -> apoACPcpk[c] 

+ pan4p[c] + h[c] 
SCO0046 

XYLAN_DEGe 
Xylan degradation 

(extracellular) 
xylan[e] + 527 h2o[e] -> 528 xyl_D[e] 

(SCO5931 

or 

SCO2292 

or 

SCO1883 

or 

SCO0674 

or 

SCO0105) 

EX_xylan(e) Xylan exchange xylan[e]  <=>   

CELLUL_DEGe 
Cellulose degradation 

(extracellular) 
cellul[e] + 499 h2o[e] -> 250 celb[e] SCO6548  

EX_cellul(e) Cellulose exchange cellul[e]  <=>   

CHTNDG 
Chitin 

degradation 

chitin[e] + h2o[e] -> 

acgam[e] + h[e] 

(SCO7263 or SCO0482 or 

SCO1429 or SCO1444 or 

SCO5376 or SCO5954 or 

SCO6345 or SCO5003 or 

SCO5673 or SCO2833  or 

SCO6012 or SCO2503 or 

SCO7225) 

CHDHR 
Chorismate 

dehydratase 
chor[c] -> 3cvobz[c] + h2o[c] SCO4506 

ADXFUTSNT 
Aminodeoxyfutalosin

e synthase 

3cvobz[c] + amet[c] + h2o[c] -> 

6adxfut[c] + met-L[c] + hco3[c] 
SCO4494 

ADXFUTDA 
Aminodeoxyfutalosin

e deaminase 
6adxfut[c] + h2o[c] -> fut[c] + nh4[c] SCO5662 

ADXFUTNS 
Aminodeoxyfutalosin

e nucleosidase 

6adxfut[c] + h2o[c] -> dhxfut[c] + ade[c] 

+ h[c] 
  

FUTH Futalosine hydrolase fut[c] + h2o[c] -> dhxfut[c] + hxan[c] SCO4327 

DXFUTOR Dehypoxanthine 

futalosine:S-
dhxfut[c] + amet[c] -> cdhxfut[c] + met- SCO4550 
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adenosyl-L-

methionine 

oxidoreductase 

L[c] + dad-5[c] + h[c] 

DH6NPHS 
1,4-dihydroxy-6-

naphthoate synthase 
cdhxfut[c] -> dh6na[c] + glyald[c] SCO4326 

DHNAI 

1,4-

dihydroxynaphthoat

e isomerization 

(hypothetical 

reaction) 

dh6na[c]  -> dhna[c]   

DHNANT4 

1,4-dihydroxy-2-

naphthoate 

nonaprenyltransfera

se 

dhna[c] + h[c] + nndp[c]  -> 2dmmql9[c] 

+ co2[c] + ppi[c]  

(SCO4491 

and/or 

SCO4556) 

SCB1_1 

Acyl-transferase 

(using beta keto-acyl 

ACP precursor) 

dhap[c] + 3oiC9ACP[c] -> apoACP[c] + 

2o3pp8m3onn[c] 
SCO6266 

SCB1_2 

Aldol condensation 

SCB1 precursor 

(infered as 

spontaneous) 

2o3pp8m3onn[c] -> h2o[c] +  

mh5odhf3mdp[c] 
s0001 

SCB1_3 

Butenolide 

phosphatase 

reductase (SCB1 

precursor)  

mh5odhf3mdp[c] + nadph[c] + h[c] -> 

mh5othfmdp[c] + nadp[c] 
SCO6267 

SCB1_4 
SCB1 precursor 

phosphatase 

 mh5othfmdp[c] + h2o[c] -> afactor[c] + 

pi[c] 
  

SCB1_5 
Beta-keto-acid-

CoA/ACP reductase 

afactor[c] + nadph{c] + h[c] -> scb1[c] + 

nadp[c] 
SCO6264 

SCB1t 
SCB1 transport 

(diffusible molecule) 
scb1[c] <=> scb1[e] s0001 

SCB2_1a 

Acyl-transferase 

(using beta keto-acyl 

CoA precursor) 

dhap[c] + 3odcoa[c] -> coa[c] + 

2o3pop3odn[c] 
SCO6266 

SCB2_1b 

Acyl-transferase 

(using beta keto-acyl 

ACP precursor) 

dhap[c] + 3oddecACP[c] -> apoACP[c] + 

2o3pop3odn[c] 
SCO6266 



98 

 

SCB2_2 

Aldol condensation 

SCB2 precursor 

(infered as 

spontaneous) 

2o3pop3odn[c]-> h2o[c] +  

4o5odhmdhp[c] 
s0001 

SCB2_3 

Butenolide 

phosphatase 

reductase (SCB2 

precursor)  

4o5odhmdhp[c] + nadph[c] + h[c] -> 

4o5othf3mdp[c] + nadp[c] 
SCO6267 

SCB2_4 
SCB2 precursor 

phosphatase 

4o5othf3mdp[c] + h2o[c] -> 

4hm3odhf2o[c] + pi[c] 
  

SCB2_5 
Beta-keto-acid-

CoA/ACP reductase 

4hm3odhf2o[c] + nadph{c] + h[c] -> 

scb2[c] + nadp[c] 
SCO6264 

SCB2t 
SCB2 transport 

(diffusible molecule) 
scb2[c] <=> scb2[e] s0001 

SCB3_1 

Acyl-transferase 

(using beta keto-acyl 

ACP precursor) 

dhap[c] + 3oiC10ACP[c]  -> apoACP[c] + 

2o3pp8m3onn[c] 
SCO6266 

SCB3_2 

Aldol condensation 

SCB3 precursor 

(infered as 

spontaneous) 

2o3pp8m3onn[c] -> h2o[c] +  

46mo5o25dhf3mdhp[c] 
s0001 

SCB3_3 

Butenolide 

phosphatase 

reductase (SCB3 

precursor)  

46mo5o25dhf3mdhp[c] + nadph[c] + 

h[c] -> 465mo5othf3mdhp[c] + nadp[c] 
SCO6267 

SCB3_4 
SCB3 precursor 

phosphatase 

465mo5othf3mdhp[c] + h2o[c] -> 

4hm36modhf2o[c] + pi[c] 
  

SCB3_5 
Beta-keto-acid-

CoA/ACP reductase 

4hm36modhf2o[c]+ nadph{c] + h[c] -> 

scb3[c] + nadp[c] 
SCO6264 

SCB3t 
SCB3 transport 

(diffusible molecule) 
scb3[c] <=> scb3[e] s0001 

CYOO 

cytochrome o 

oxidase 

(menaquinol-9: 2 

protons) 

4 h[c] + mql9[c] + 0.5 o2[c] -> 

h2o[c] +mqn9[c] + 2h[e] 

(SCO7234 and 

SCO7235 and SCO7236 

and SCO1934 and 

SCO7120) 
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NADH8 

NADH 

dehydrogenase 

(demethylmenaquin

one-9 & 3 protons) 

2dmmq9[c] + 4 h[c] + 

nadh[c] -> 2dmmql9[c] + 3 

h[e] + nad[c] 

((SCO4562 or 

SCO4599) and 

(SCO4563 or SCO4600) 

and SCO4564 and 

(SCO3392 or SCO4565) 

and SCO4566 and 

(SCO4567 or SCO6560) 

and SCO4568 and 

(SCO4569 or SCO4602) 

and (SCO4570 or 

SCO4603) and 

(SCO4571 or SCO4604) 

and (SCO4572 or 

SCO4605) and 

(SCO4573 or SCO4606 

or SCO6954) and 

(SCO4574 or SCO4607) 

and (SCO4575 or 

SCO4608 or SCO6956)) 

NADH9 

NADH 

dehydrogenase 

(demethylmenaquin

one-9 & 0 protons) 

2dmmq9[c] + h[c] + nadh[c] -

> 2dmmql9[c] + nad[c] 

(SCO3092 or SCO7101 

or SCO7319 or 

SCO6496 or SCO0158 

or SCO4119) 

NADPHQR4 
NADPH Quinone Reductase 

(2-Demethylmenaquinone-8) 

2dmmq9[c] + h[c] + nadph[c] -> 

2dmmql9[c] + nadp[c] 
SCO3823 

AMMQT9r 

S-adenosylmethione:2-

demthylmenaquinone 

methyltransferase 

(menaquinone 9) 

2dmmq9[c] + amet[c] <=> ahcys[c] 

+ h[c] + mqn9[c] 

(SCO4556 

or 

SCO5940) 

FRD3 
fumarate reductase (2-

demthylmenaquinone-9) 

2dmmql9[c] + fum[c] -> 2dmmq9c] 

+ succ[c] 

(SCO0923 

and 

SCO0922 

and 

SCO0924) 

G3PD7 

glycerol-3-phosphate 

dehydrogenase (2-

demthylmenaquinone-9) 

2dmmq8[c] + glyc3p[c] -> 

2dmmql8[c] + dhap[c] 

(SCO0670 

or 

SCO1661 

or 

SCO4774 

or 

(SCO7005 

and 

SCO7006)) 
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GLYCTO4 Glycolate oxidase 
2dmmq8[c] + glyclt[c] -> 

2dmmql8[c] + glx[c] 
SCO2925 

Supplementary Table 2.2: Table of the new reactions added to the iAA1259 model. 

 

Metabolite name Metabolite description 

Neutral 

metabolite 

formula 

Metabolite 

Compartmen

t 

2o3pop3odn[c] 

2-oxo-3-

(phosphonooxy)propyl 3-

oxodecanoate 

C13H23O8P Cytosol 

2o3popp8m3odn[c] 

2-oxo-3-

(phosphonooxy)propyl 8-

methyl-3-oxodecanoate 

C14H25O8P Cytosol 

2o3pp8m3onn[c] 

2-oxo-3-

(phosphonooxy)propyl 8-

methyl-3-oxononanoate 

C13H23O8P Cytosol 

3cvobz[c] 
3-[(1-

Carboxyvinyl)oxy]benzoate 
C10H6O5 Cytosol 

465mo5othf3mdhp[c] 

(3S,4S)-4-(6-methyloctanoyl)-

5-oxotetrahydrofuran-3-

yl)methyl dihydrogen 

phosphate 

C14H25O7P Cytosol 

46mo5o25dhf3mdhp[c

] 

(4-(6-methyloctanoyl)-5-oxo-

2,5-dihydrofuran-3-yl)methyl 

dihydrogen phosphate 

C14H23O7P Cytosol 

4hm36modhf2o[c] 

(3S,4R)-4-(hydroxymethyl)-3-

(6-

methyloctanoyl)dihydrofuran-

2(3H)-one 

C14H24O4 Cytosol 

4hm3odhf2o[c] 

(3S,4R)-4-(hydroxymethyl)-3-

octanoyldihydrofuran-2(3H)-

one 

C13H22O4 Cytosol 

4o5odhmdhp[c] 

(4-octanoyl-5-oxo-2,5-

dihydrofuran-3-yl)methyl 

dihydrogen phosphate 

C13H21O7P Cytosol 

4o5othf3mdp[c] ((3S,4S)-4-octanoyl-5- C13H23O7P Cytosol 
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oxotetrahydrofuran-3-

yl)methyl dihydrogen 

phosphate 

6adxfut[c] 6-Amino-6-deoxyfutalosine C19H19N5O6 Cytosol 

accys[c] N-Acetyl-L-Cysteine C5H9NO3S Cytosol 

accys[e] N-Acetyl-L-Cysteine C5H9NO3S Extra-organism 

ACPcpk[c] 
Acyl carrier protein (specific 

to actinorhodin coelimycin) 
C11H22N2O7PRS Cytosol 

add26810t5o[c] 
1-Aminododeca-2,6,8,10-

tetraen-5-ol 
C12H19NO Cytosol 

afactor[c] 

A-factor: (4R)-4-

(hydroxymethyl)-3-(6-

methylheptanoyl)oxolan-2-

one 

C13H22O4 Cytosol 

apoACPcpk[c] 
apoprotein [acyl carrier 

protein] (cpk) 
RHO Cytosol 

cdhxfut[c] 
Cyclic dehypoxanthine 

futalosine 
C14H14O7 Cytosol 

cellul[e] 

Cellulose, chain length 500 

glc_D assumed, DOI: 

10.1002/anie.200460587 

C3000H5002O250

1 
Extra-organism 

chitin[e] Chitin monomer C8H13NO5 Extra-organism 

cpkepox[c] 

6-(3'-(prop-1-en-1-yl)-[2,2'-

bioxiran]-3-yl)-2,3-

dihydropyridine 

C12H15NO2 Cytosol 

cpkepox[e] 

6-(3'-(prop-1-en-1-yl)-[2,2'-

bioxiran]-3-yl)-2,3-

dihydropyridine 

C12H15NO2 Extra-organism 

h246dectACPcpk[c] 

3-Hydroxy-2,4,6-

Decatetraenoyl-[acyl-carrier 

protein] 

C21H34N2O9PRS Cytosol 

hdd2610t[c] 
5-Hydroxydodeca-2,6,8,10-

tetraenal 
C12H16O2 Cytosol 

hex24dACPcpk[c] 2,4-Hexadienoyl-ACP (n- C17H30N2O8PRS Cytosol 
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C6:2ACP) 

mh5odhfmdp[c] 

(4-(6-methylheptanoyl)-5-

oxo-2,5-dihydrofuran-3-

yl)methyl dihydrogen 

phosphate 

C13H21O7P Cytosol 

mh5othfmdp[c] 

((3S,4S)-4-(6-

methylheptanoyl)-5-

oxotetrahydrofuran-3-

yl)methyl dihydrogen 

phosphate 

C13H23O7P Cytosol 

scb1[c] 

SCB1: (3S,4R)-3-((R)-1-

hydroxy-6-methylheptyl)-4-

(hydroxymethyl)dihydrofuran

-2(3H)-one 

C13H24O4 Cytosol 

scb1[e] 

SCB1: (3S,4R)-3-((R)-1-

hydroxy-6-methylheptyl)-4-

(hydroxymethyl)dihydrofuran

-2(3H)-one  

C13H24O4 Extra-organism 

scb2[c] 

SCB2: (3S,4R)-4-

(hydroxymethyl)-3-((R)-1-

hydroxyoctyl)dihydrofuran-

2(3H)-one 

C13H24O4 Cytosol 

scb2[e] 

SCB2: (3S,4R)-4-

(hydroxymethyl)-3-((R)-1-

hydroxyoctyl)dihydrofuran-

2(3H)-one 

C13H24O5 Extra-organism 

scb3[c] 

SCB3: (3S,4R)-3-((1R)-1-

hydroxy-6-methyloctyl)-4-

(hydroxymethyl)dihydrofuran

-2(3H)-one 

C14H26O4 Cytosol 

scb3[e] 

SCB3:(3S,4R)-3-((1R)-1-

hydroxy-6-methyloctyl)-4-

(hydroxymethyl)dihydrofuran

-2(3H)-one 

C14H26O4 Extra-organism 

xylan[e] 

Oat spelt xylan, MW 79200 

(DOI: 

10.1002/masy.200551405) = 

528 xyl_D 

C2640H4226O211

3 
Extra-organism 
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Supplementary Table 2.3: Table of the new metabolites added to the iAA1259 model 

 

 

Gene Type of 

Addition 

Characterizatio

n Year 

Reference 

SCO0105 new content 

added 

2016 Enkhbaatar, Bolormaa, et al. "Molecular 

characterization of xylobiose-and 

xylopentaose-producing β-1, 4-endoxylanase 

SCO5931 from Streptomyces coelicolor A3 

(2)." Applied biochemistry and biotechnology 

180.2 (2016): 349-360. 

SCO0284 update of 

GPR 

 
KEGG (alpha-galactosidase) 

SCO0382 update of 

GPR 

 
KEGG (UDPglucose dehydrogenase) 

SCO0462 update of 

GPR 

 
KEGG (2-dehydropantoate 2-reductase) 

SCO0482 new content 

added 

 
BioCyc (chitinase) 

SCO0554 update of 

GPR 

 
KEGG (endoglucanase) 

SCO0674 new content 

added 

2016 Enkhbaatar, Bolormaa, et al. "Molecular 

characterization of xylobiose-and 

xylopentaose-producing β-1, 4-endoxylanase 

SCO5931 from Streptomyces coelicolor A3 

(2)." Applied biochemistry and biotechnology 

180.2 (2016): 349-360. 

SCO0765  update of 

GPR 

 
KEGG (endoglucanase) 

SCO0984 update of 

GPR 

 
KEGG ( 3-hydroxyacyl-CoA dehydrogenase) 

SCO1268 update of 

GPR 

 
KEGG (Dihydrolipoamide acetyltransferase 

component of pyruvate dehydrogenase 

complex)- PDH 

SCO1429 new content 
 

KEGG (chitinase) 
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added 

SCO1444 new content 

added 

2013 KEGG (chitinase) + Nazari, Behnam, et al. 

"Chitin-induced gene expression in secondary 

metabolic pathways of Streptomyces 

coelicolor A3 (2) grown in soil." Applied and 

environmental microbiology 79.2 (2013): 707-

713 

SCO1883 new content 

added 

2016 Enkhbaatar, Bolormaa, et al. "Molecular 

characterization of xylobiose-and 

xylopentaose-producing β-1, 4-endoxylanase 

SCO5931 from Streptomyces coelicolor A3 

(2)." Applied biochemistry and biotechnology 

180.2 (2016): 349-360. 

SCO2154 update of 

GPR 

2017 Sawers, R. G., D. Falke, and M. Fischer. 

"Chapter One-Oxygen and Nitrate Respiration 

in Streptomyces coelicolor A3 (2)." Advances 

in microbial physiology 68 (2016): 1-40. 

SCO2292 new content 

added 

2016 Enkhbaatar, Bolormaa, et al. "Molecular 

characterization of xylobiose-and 

xylopentaose-producing β-1, 4-endoxylanase 

SCO5931 from Streptomyces coelicolor A3 

(2)." Applied biochemistry and biotechnology 

180.2 (2016): 349-360. 

SCO2503 new content 

added 

2013 Nazari, Behnam, et al. "Chitin-induced gene 

expression in secondary metabolic pathways 

of Streptomyces coelicolor A3 (2) grown in 

soil." Applied and environmental microbiology 

79.2 (2013): 707-717 

SCO2833 new content 

added 

2013 Nazari, Behnam, et al. "Chitin-induced gene 

expression in secondary metabolic pathways 

of Streptomyces coelicolor A3 (2) grown in 

soil." Applied and environmental microbiology 

79.2 (2013): 707-715 

SCO3823 new content 

added 

 
Blast against SCO 

tr|A0A024H6J2|A0A024H6J2_9MICC NAD(P)H 

quinone oxidoreductase, PIG3 

family protein OS=Pseudarthrobacter 

siccitolerans GN=qor PE=4 SV=1 

SCO3835 update of 2017 Millan-Oropeza, Aaron, et al. "Quantitative 

proteomic analysis confirmed oxidative 
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GPR metabolism predominates in Streptomyces 

coelicolor versus glycolytic metabolism in 

Streptomyces lividans." Journal of Proteome 

Research (2017). 

SCO4326 new content 

added 

2013 Mahanta, Nilkamal, et al. "Menaquinone 

biosynthesis: formation of aminofutalosine 

requires a unique radical SAM enzyme." 

Journal of the American Chemical Society 

135.41 (2013). 

SCO4327 new content 

added 

2013 Mahanta, Nilkamal, et al. "Menaquinone 

biosynthesis: formation of aminofutalosine 

requires a unique radical SAM enzyme." 

Journal of the American Chemical Society 

135.41 (2013). 

SCO4491 update of 

GPR 

2013 Cooper, Lisa E., et al. "In vitro reconstitution 

of the radical SAM enzyme MqnC involved in 

the biosynthesis of futalosine-derived 

menaquinone." Biochemistry 52.27 (2013) 

SCO4494 new content 

added 

2013 Mahanta, Nilkamal, et al. "Menaquinone 

biosynthesis: formation of aminofutalosine 

requires a unique radical SAM enzyme." 

Journal of the American Chemical Society 

135.41 (2013). 

SCO4506 new content 

added 

2013 Mahanta, Nilkamal, et al. "Menaquinone 

biosynthesis: formation of aminofutalosine 

requires a unique radical SAM enzyme." 

Journal of the American Chemical Society 

135.41 (2013). 

SCO4550 new content 

added 

2013 Mahanta, Nilkamal, et al. "Menaquinone 

biosynthesis: formation of aminofutalosine 

requires a unique radical SAM enzyme." 

Journal of the American Chemical Society 

135.41 (2013). 

SCO4556 update of 

GPR 

2013 Cooper, Lisa E., et al. "In vitro reconstitution 

of the radical SAM enzyme MqnC involved in 

the biosynthesis of futalosine-derived 

menaquinone." Biochemistry 52.27 (2013) 

SCO4655 update of 

GPR 

2017 Millan-Oropeza, Aaron, et al. "Quantitative 

proteomic analysis confirmed oxidative 

metabolism predominates in Streptomyces 
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coelicolor versus glycolytic metabolism in 

Streptomyces lividans." Journal of Proteome 

Research (2017). 

SCO5003 new content 

added 

2013 Nazari, Behnam, et al. "Chitin-induced gene 

expression in secondary metabolic pathways 

of Streptomyces coelicolor A3 (2) grown in 

soil." Applied and environmental microbiology 

79.2 (2013): 707-713 

SCO5376 new content 

added 

2013 KEGG (chitinase) + Nazari, Behnam, et al. 

"Chitin-induced gene expression in secondary 

metabolic pathways of Streptomyces 

coelicolor A3 (2) grown in soil." Applied and 

environmental microbiology 79.2 (2013): 707-

713 

SCO5498 update of 

GPR 

 
KEGG (Glutamyl-tRNA synthetase) 

SCO5499 update of 

GPR 

 
KEGG (Glutamyl-tRNA synthetase) 

SCO5662 new content 

added 

2013 Mahanta, Nilkamal, et al. "Menaquinone 

biosynthesis: formation of aminofutalosine 

requires a unique radical SAM enzyme." 

Journal of the American Chemical Society 

135.41 (2013). 

SCO5673 new content 

added 

2013 Nazari, Behnam, et al. "Chitin-induced gene 

expression in secondary metabolic pathways 

of Streptomyces coelicolor A3 (2) grown in 

soil." Applied and environmental microbiology 

79.2 (2013): 707-714 

SCO5931 new content 

added 

2016 Enkhbaatar, Bolormaa, et al. "Molecular 

characterization of xylobiose-and 

xylopentaose-producing β-1, 4-endoxylanase 

SCO5931 from Streptomyces coelicolor A3 

(2)." Applied biochemistry and biotechnology 

180.2 (2016): 349-360. 

SCO5954 new content 

added 

 
KEGG (chitinase) 

SCO6012 new content 

added 

2013 Nazari, Behnam, et al. "Chitin-induced gene 

expression in secondary metabolic pathways 

of Streptomyces coelicolor A3 (2) grown in 
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soil." Applied and environmental microbiology 

79.2 (2013): 707-716 

SCO6272 new content 

added 

2012 Gomez-Escribano JP, Song L, Fox DJ, Yeo V, 

Bibb MJ, Challis GL. Structure and biosynthesis 

of the unusual polyketide alkaloid coelimycin 

P1, a metabolic product of the cpk gene 

cluster of Streptomyces coelicolor M145. 

Chemical Science. 2012;3(9):2716-20. 

SCO6273 new content 

added 

2017 Awodi UR, Ronan JL, Masschelein J, de los 

Santos EL, Challis GL. Thioester reduction and 

aldehyde transamination are universal steps 

in actinobacterial polyketide alkaloid 

biosynthesis. Chemical Science. 

2017;8(1):411-5. 

Pawlik K, Kotowska M, Chater KF, Kuczek K, 

Takano E. A cryptic type I polyketide synthase 

(cpk) gene cluster in Streptomyces coelicolor 

A3 (2). Archives of microbiology. 2007 Feb 

1;187(2):87-99. 

SCO6274 new content 

added 

2007 Pawlik K, Kotowska M, Chater KF, Kuczek K, 

Takano E. A cryptic type I polyketide synthase 

(cpk) gene cluster in Streptomyces coelicolor 

A3 (2). Archives of microbiology. 2007 Feb 

1;187(2):87-99. 

SCO6275 new content 

added 

2007 Pawlik K, Kotowska M, Chater KF, Kuczek K, 

Takano E. A cryptic type I polyketide synthase 

(cpk) gene cluster in Streptomyces coelicolor 

A3 (2). Archives of microbiology. 2007 Feb 

1;187(2):87-99. 

SCO6276 new content 

added 

2012 Gomez-Escribano JP, Song L, Fox DJ, Yeo V, 

Bibb MJ, Challis GL. Structure and biosynthesis 

of the unusual polyketide alkaloid coelimycin 

P1, a metabolic product of the cpk gene 

cluster of Streptomyces coelicolor M145. 

Chemical Science. 2012;3(9):2716-20. 

SCO6278 new content 

added 

2012 Gomez-Escribano JP, Song L, Fox DJ, Yeo V, 

Bibb MJ, Challis GL. Structure and biosynthesis 

of the unusual polyketide alkaloid coelimycin 

P1, a metabolic product of the cpk gene 

cluster of Streptomyces coelicolor M145. 
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Chemical Science. 2012;3(9):2716-20. 

SCO6279 new content 

added 

2017 Awodi UR, Ronan JL, Masschelein J, de los 

Santos EL, Challis GL. Thioester reduction and 

aldehyde transamination are universal steps 

in actinobacterial polyketide alkaloid 

biosynthesis. Chemical Science. 

2017;8(1):411-5. 

Pawlik K, Kotowska M, Chater KF, Kuczek K, 

Takano E. A cryptic type I polyketide synthase 

(cpk) gene cluster in Streptomyces coelicolor 

A3 (2). Archives of microbiology. 2007 Feb 

1;187(2):87-99. 

SCO6279 new content 

added 

2017 Awodi UR, Ronan JL, Masschelein J, de los 

Santos EL, Challis GL. Thioester reduction and 

aldehyde transamination are universal steps 

in actinobacterial polyketide alkaloid 

biosynthesis. Chemical Science. 

2017;8(1):411-5. 

Pawlik K, Kotowska M, Chater KF, Kuczek K, 

Takano E. A cryptic type I polyketide synthase 

(cpk) gene cluster in Streptomyces coelicolor 

A3 (2). Archives of microbiology. 2007 Feb 

1;187(2):87-99. 

SCO6281 new content 

added 

2012 Gomez-Escribano JP, Song L, Fox DJ, Yeo V, 

Bibb MJ, Challis GL. Structure and biosynthesis 

of the unusual polyketide alkaloid coelimycin 

P1, a metabolic product of the cpk gene 

cluster of Streptomyces coelicolor M145. 

Chemical Science. 2012;3(9):2716-20. 

SCO6345 new content 

added 

 
BioCyc (chitinase) 

SCO6548  new content 

added 

2016 Lim, Ju-Hyeon, et al. "Molecular 

characterization of Streptomyces coelicolor A 

(3) SCO6548 as a cellulose 1, 4-β-

cellobiosidase." FEMS microbiology letters 

363.3 (2016) 

SCO6712 misannotatio

n 

2013 Sherif, Mohammed, et al. "Biochemical 

studies of the multicopper oxidase (small 

laccase) from Streptomyces coelicolor using 

bioactive phytochemicals and site‐directed 

mutagenesis." Microbial biotechnology 6.5 
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(2013): 588-597 

SCO6956 new content 

added 

2017 Sawers, R. G., D. Falke, and M. Fischer. 

"Chapter One-Oxygen and Nitrate Respiration 

in Streptomyces coelicolor A3 (2)." Advances 

in microbial physiology 68 (2016): 1-40. 

SCO7225 new content 

added 

2013 Nazari, Behnam, et al. "Chitin-induced gene 

expression in secondary metabolic pathways 

of Streptomyces coelicolor A3 (2) grown in 

soil." Applied and environmental microbiology 

79.2 (2013): 707-718 

SCO7263 new content 

added 

2013 BioCyc (chitinase) + Nazari, Behnam, et al. 

"Chitin-induced gene expression in secondary 

metabolic pathways of Streptomyces 

coelicolor A3 (2) grown in soil." Applied and 

environmental microbiology 79.2 (2013): 707-

713 

SCO7266 update of 

GPR 

 
KEGG (3-oxoacyl-[acyl-carrier-protein] 

reductase)- PDH 

SCO7637 update of 

GPR 

 
KEGG (endoglucanase) 

Supplementary Table 2.4: Table of the new genes added to the iAA1259 model 
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2.8.2 Correlation analysis between gene expression and predicted fluxes for 

iMA789 and iMK1208 (gene expression showing a variation superior to 25%) 

 

Supplementary Figure 2.1: Correlation analysis of gene expression to predicted 

fluxes of iMA789, and iMK1208 (for transcripts showing a change in level of 

expression superior to 25%). 

a) Histogram of correlations for the iMA789 model, only taking in account genes with 

expression variation of more than 25% between the minimal and maximal transcript level.  

b) Histogram of correlations for the iMK1208 model, only taking in account genes with 

expression variation of more than 25% between the minimal and maximal transcript level. 

For both cases there is an increase of correlation compared to the whole expression 

dataset correlation, iMA789 goes from an overall Pearson correlation of 0.13 to 0.38, and 

iMK1208 from 0.18 to 0.55. This emphasis the improvements in predictions showed by 

iAA1259, with an increase in correlation from 0.56 to 0.78 when filtering for changing 

transcripts (Fig. 3c and 3d). 

a) 

b) 
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2.8.3 Automated mapping of an untargeted metabolomics dataset onto the 

metabolic network iAA1259, using standardized metabolite identifiers 

 

Supplementary Figure 2.2: Mapping of observed metabolites in an untargeted 

metabolomics dataset onto the metabolic network.  

To illustrate the easy integration of experimental data with the computational model, once 

standard metabolite identifiers are used, an LC-MS metabolomics dataset obtained from the 

literature (Jankevics et al., 2011) was automatically processed and annotated using MzMatch, 

then mapped onto the updated metabolic network iAA1259. The red dots correspond to the 

metabolites putatively annotated in the dataset (level 2 of confidence for metabolite 

identification 8) , and the green dots represent the metabolites annotated with high 

confidence using chemical standards (level 1 of confidence for metabolite identification 8). 

Figure generated with the software Cytoscape (Shannon et al., 2003). Once metabolites have 

been mapped, flux estimates inferred from the metabolomics experiment can, e.g., be used 

as additional flux constraints. A similar analysis based on traditional models using arbitrary 

metabolite identifiers would require manual curation for each metabolite and would rapidly 

become prohibitively time-consuming. 
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2.8.3.1 Supplementary Method for the metabolomics data analysis and mapping 

The untargeted metabolomics dataset used for illustration of the metabolite mapping 

enabled by the standard identifiers used in the updated model is derived from a 

previous S. coelicolor study using LC-MS (HILIC and C18 columns), with a large number 

of technical and biological replicates 1. The data was processed and analysed using 

MzMatch 2, using a similar protocol as described in the initial study 1; however, only 

metabolites putatively annotated in at least 80 samples were retained for the 

visualization. The annotated metabolites were automatically mapped to their 

corresponding annotation in the model, which was used as an input for highlighting 

the detected metabolites on the metabolic network visualisation in Cytoscape 3.  

2.8.4 Constraints and in-silico growth rates predictions used for the Figure 1 

Sample 
N° 

Glucose uptake 
(mmol/gDW.h) 

O2  
(mmol/g.
h) 

CO2 
(mmol/g.h) 

Actinorhodin  
(μ g/g.h) 

1 0.5 1.8 1.9 2 

2 0.6 2 2 2 

3 0.8 2.4 2.5 415 

4 0.9 2.5 2.7 152 

5 1.1 3.1 3.1 60 

6 1.85 6.6 6.7 7 

7 2.1 7.2 7 5 

Sample 
N° 

Measured 
Growth Rate 
(gDW/h) 

Predicted 
Growth 
Rate 
iIB711 
(gDW/h) 

Predicted 
Growth 
Rate 
iMA789 
(gDW/h) 

Predicted 
Growth Rate 
iMK1208 
(gDW/h) 

Predicted 
Growth Rate 
iAA1259 
(gDW/h) 

1 0.035 0.0185 0.0272 0.0278 0.0284 

2 0.045 0.0253 0.0396 0.0405 0.0412 

3 0.06 0.0382 0.0539 0.0577 0.0588 

4 0.072 0.0414 0.0657 0.0681 0.0694 

5 0.092 0.0615 0.0862 0.0885 0.0901 

6 0.115 0.1770 0.1088 0.1113 0.1134 

7 0.128 0.1965 0.1385 0.1417 0.1443 
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Supplementary Table 2.5: Constraints used and predicted growth rates of the 

different models. This table contains the data used to constrain the genome-scale metabolic 

models  (top table), these data were acquired by Melzoch et al. 4.  The table also contains the 

experimental specific growth rates, and the growth rates predicted by the different metabolic 

models of S. coelicolor (bottom part): iIB711 5, iMA789 6, iMK1209 7, and iAA1259. 

 

2.8.5 Metabolic models qualitative biomass predictions comparison 

 

 

Supplementary Figure 2.3: Comparison of the normalized growth prediction of the 

metabolic models to the experimental data 

When the dynamic growth data is normalized, the iAA1259 model shows a qualitative 

improvement in the prediction of the biomass. The iAA1259 model predictions (purple curve) 

are closer to the experimental data (red curve) than the previous models iMA789 (pink) and 

iMK1208 (green). The iAA1259 seems to enable better prediction of the growth curve from 

exponential to stationary phase. 
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3.1 Preface 

The work carried here was an in silico study, so all the experimental data used and 

discussed were from published or publicly available data. This work is presented as a 

chapter of this thesis and do not aim to be published. 

3.2 Abstract 

Streptomyces species are a rich source of secondary metabolites of medical and 

industrial interest, including antimicrobials that are increasingly sought after to tackle 

the spread of resistance. To facilitate the discovery of new antibiotics and increase the 

production of established ones, we need to better characterize and understand the 

metabolic, genetic, and environmental causes influencing antibiotics biosynthesis to 

both rationally trigger or increase production.  

In this chapter, two very similar (99.7% amino-acid identity) Streptomyces 

strains, Streptomyces coelicolor A3(2) and Streptomyces lividans were analysed. These 
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two strains encode the same antibiotics biosynthesis pathways but trigger them 

differently and produce the antibiotics at different levels. The two strains were studied 

computationally in a detailed comparative metabolic analysis to characterize major 

metabolic differences; as well as trying to understand why S. coelicolor is a better 

antibiotic producer than S. lividans. Both strains possess biosynthetic genes clusters for 

four known antibiotics: actinorhodin, undecylprodigiosin, coelimycin P1, and calcium-

dependant antibiotic. The differences in secondary metabolites production between 

these two strains are directly linked to their primary metabolism, and particularly the 

central carbon metabolism. 

Despite being very similar at the genomic level, a few very specific metabolic 

differences have been shown to impact production such as presence or absence of 

enzymes involved in central metabolism. However, this comparison also suggests that 

some of the major regulatory phenomena observed are in response to metabolic 

differences in central metabolism. 

3.3 Introduction 

New antibiotics are increasingly needed as the threat of resistant bacteria has risen at 

an alarming rate 1. The Actinobacteria, including the Streptomyces spp., have been a 

rich source of antibiotics for decades, providing about two thirds of the current 

antibiotics arsenal 2. Although there are still many undiscovered secondary metabolites 

with potential antibiotic activity in this genus 3, their identification requires leveraging 

new strategies, such as a combination of genomics and computational methods3,4. 

Furthermore, once identified and expressed, the production titres of these compounds 

in their natural hosts are frequently too low to characterise the compounds, or in 
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other cases does not reach economically viable production levels. This can be 

overcome by strain engineering using computational modelling and synthetic biology, 

to optimize the production of the compounds either in the native strain or in a new 

host.  

There have been significant advancements in the understanding of the complex 

physiology of Streptomyces species such as Streptomyces coelicolor and Streptomyces 

lividans 5. However, a more detailed characterisation of the metabolic features 

associated with high production levels of secondary metabolites is still necessary to 

understand the genetic or external causes underlying production. This would open the 

possibility to rationally engineer better strains and conditions to produce and discover 

secondary metabolites of clinical or industrial interest using synthetic biology 6–8.  

The Streptomyces lividans TK24 and Streptomyces coelicolor A3(2) genomes are 

highly similar (>99.7% Amino Acid identity), also both have the same biosynthetic gene 

clusters (Figure 3.1). Both strains contain some major biosynthetic gene clusters 

(BGCs), such as: Actinorhodin (ACT) — a type II polyketide synthase (PKS) product, 

Coelimycin P1 (CPK) — a type I PKS product, Calcium-Dependant Antibiotic (CDA) — a 

non-ribosomal peptide synthase (NRPS) product, and Undecylprodigiosin (RED) — a 

hybrid NRPS-PKS product. Actinorhodin is a pH dependent blue-pigmented antibiotic 9, 

and undecylprodigiosin is a tripyrrole red-pigmented antibiotics 10, as these 

compounds are easily measured by spectrophotometry, their production have been 

extensively analysed under different conditions in both Streptomyces strains.   These 

two strains produce antibiotics very differently. S. coelicolor is known for producing 

higher levels of actinorhodin and undecylprodigiosin under standards laboratory 

conditions compared to S. lividans, which shows very low or no production under 
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similar conditions 11,12. These differences in the awakening and levels of production of 

antibiotics make the comparative studies of these two strains attractive to understand 

the cause of these differences to design better Streptomyces antibiotic producing 

strains. Another reason to study these two strains is that S. coelicolor is a model strain 

for antibiotic production in the Streptomyces genus, and it produces diverse types of 

secondary metabolites. So having four different BGCs in the genome allows to study 

the metabolic impact and characteristics of four different types of antibiotics in the 

model strain.  

The S. coelicolor strains have been subject to multiple experiments to attempt 

to understand and increase its antibiotics production. For example, the overexpression 

of an acetyl-CoA carboxylase (acc) increased ACT yield as it increased acetyl-CoA 

consuming fluxes toward malonyl-CoA (ACT main precursor) 13. Also, the reduction of 

fluxes through the pentose-phosphate pathway (PPP) was tested by deleting the first 

enzyme of the PPP (a glucose-6-phosphate dehydrogenase (zwf)) led to a decreased 

yield of ACT 13.  The deletion of a citrate synthases (citA) and an aconitase (acoA) –

enzymes of the TCA cycle (making S. coelicolor a glutamate auxotroph in minimal 

media) led to defective antibiotic biosynthesis 14,15. The deletion of a 

phosphofructokinase isoenzyme (pfkA2) resulted in reduced glycolysis fluxes and 

increased fluxes toward the PPP; which pushed fluxes toward the phosphoketolase 

pathway increasing acetyl-CoA production, increasing production of ACT and RED 16. 

The deletion of the two malic enzymes responsible for the conversion of L-malate into 

pyruvate (generating NADH and NADPH) led to a lower production of ACT and an 

accumulation of TAG 17. The malic enzymes are involved in the anaplerotic 

metabolism, part of the PEP-pyruvate-oxaloacetate node involved in the switch of 
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carbon fluxes between catabolic and anabolic metabolism 18. The deletion of the malic 

enzymes could trigger an accumulation of TCA cycle intermediates disturbing the 

carbon flux balance 18. In contrast, increased fluxes through this enzyme could divert 

fluxes consuming TCA cycle intermediates to generate pyruvate and afterward acetyl-

CoA.  

In S. lividans, the deletion of two glucose-6-phosphate dehydrogenase 

isoenzymes (zwf1 & zwf2) caused lower carbon fluxes through the PPP making 

glycolysis more efficient, and increased antibiotics production 19. In the same study, 

the deletion of the 6-phosphogluconolactonase (devB) (second enzyme in the PPP) 

abolished the ACT and RED production, probably due to a reduced generation of 

NADPH (used for antibiotic biosynthesis) through the PPP 19. A previous study pointed 

out that these results were in contradiction with the one observed in S. coelicolor 16. 

However, the PPP and glycolysis is higher in S. lividans probably to generate sufficient 

amount of NADPH, glycerol-3-phosphate, and acetyl-CoA for a stronger TAG 

biosynthesis 20. Whereas S. coelicolor has a lower glycolytic metabolism which might 

lead to reduced fluxes through the PPP. Another experimental study using metabolic 

flux analysis under phosphate limited conditions confirmed that lower fluxes through 

the PPP increased antibiotic production 21. Otherwise, polyphosphate kinase (ppk) 

deletion in S. lividans led to higher ADP, lower polyphosphate, and TAG content than in 

the WT, which activated actinorhodin production 11,22,23.  

Computational modelling methods such as genome-scale metabolic modelling 

(GSMMs) opened new opportunities to study microorganism metabolic phenotypes 

and physiology 24,25. These developments are informing design strategies for synthetic 

biology applications 26,27. One of the most popular modelling frameworks is the 
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constraint-based reconstruction and analysis (COBRA) toolbox, which includes 

methods such as flux balance analysis (FBA) 28,29. This method enables the prediction of 

metabolic states with a limited amount of data by using stoichiometric, environmental, 

thermodynamic, or flux constraints 28,29. FBA is a method that uses linear programming 

Figure 3.1: Circular representation of the comparison of the S. coelicolor and 

S. lividans genome and proteome  

The comparison of the predicted proteome (mapped on the genome) of S. coelicolor (second 

outer ring) with the S. lividans (inner central ring) shows a very high protein sequence identity 

(second inner ring), with an overall protein identity >99.7%. Both strains contain the 

biosynthetic gene clusters (BGCs) for Coelimycin P1 (CPK), Undecylprodigiosin (RED), 

Actinorhodin (ACT), and Calcium-Dependant Antibiotic (CDA). As seen in the figure, the four 

antibiotic BGCs are found in the same locations on both chromosomes, as are all the genes 

constituting the BGCs (AA identity between 86.8 and 99.7%). The genes colours in the  BGCs 

correspond to the protein sequence identity scale, genes in black are absent from S. lividans. . 

The few differences are mainly located in the genomic islands missing from S. lividans genome 

(white areas in the central ring), which were previously described 34,38. Understanding the 

impact of the metabolic genes lost by S. lividans could help to identify the genes responsible 

for the difference in antibiotics production between the two strains, which we will identify 

using comparative metabolic modelling. 
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to predict quantitative growth phenotypes using a stoichiometric model, assuming 

that the metabolic network of a cell is at steady-state at a given time point 30. FBA is 

efficient to predict relationships between the input (consumed nutrients) and the 

output (growth and/or metabolic by-product) 31. Another similar method used is 

parsimonious FBA (pFBA), which is adding the assumption that the cell minimizes the 

enzymatic cost when other optimal routes exist; this method selects the optimal flux 

distributions while minimizing absolute fluxes 32. A more detailed description of 

constraint-based modelling and genome-scale metabolic model can be found in the 

Chapter I.  

Here, we applied metabolic modelling to explore and understand from a systems 

point of view, the metabolic, genetic, and environmental causes impacting production 

of antibiotics in S. coelicolor and S. lividans. For this purpose, a GSMM for S. lividans 

TK24 was generated from a previous reconstruction of S. coelicolor A3(2) 33. As the two 

strains are so similar and S. lividans has mainly undergone loss of genetic material 

compared to S. coelicolor 34, S. coelicolor could be used as the suitable reference for 

the model construction. Multiple approaches were applied to explore the metabolic 

characteristics of the two strains. For the first time, the metabolic model was used to 

translate the differences between the two genomes into metabolic differences, and to 

identify metabolic functions lost and gained by S. lividans. The S. lividans GSMM was 

validated by comparing the growth predictions to observations from chemostat data 

to constrain nutrient uptakes. Then, the two strains’ metabolic models were 

constrained with experimental data35 to predict and compare their metabolic states, 

when S. coelicolor produced ACT and not S. lividans in a complex media (R2YE)11. A 

comparative proteomics dataset of the two strains was integrated in the two models 
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to identify metabolic differences that were not described in the original study of the 

sole proteomics data 20. The models were then used to predict the impact of producing 

the four antibiotics – ACT, CDA, CPK, and RED – in the two strains. Finally, from 

collating the metabolic modelling results, and integrative published omics and 

experimental data analysis, we identified potential targets to increase antibiotics 

production (gene knock-outs, gene overexpression, or heterologous enzyme 

expression). Some important differences between the two strains were highlighted in 

the central and primary metabolism, such as the loss of the glyoxylate bypass 

metabolism and the presence of a pyruvate formate lyase in S. lividans, which are 

predicted to have a major impact on the central metabolism and production of 

secondary metabolites 36,37. The metabolic modelling also helped to identify or confirm 

some key metabolic differences between the two strains, such as a lower glycolytic 

metabolism, a higher amino-acid catabolism, a higher gluconeogenesis, a higher 

oxidative phosphorylation in S. coelicolor. Also, the differences predicted by the 

models for antibiotics production are probably linked to the differences in metabolic 

regulation (particularly of central metabolism) rather than the metabolic network itself 

(e.g., a missing pathway limiting fluxes toward the antibiotics). Finally, some targets of 

interest include modifications of central metabolism that could force fluxes toward 

secondary metabolite precursors, such as the overexpression of acetyl-CoA 

carboxylase or the heterologous expression of a pyruvate formate lyase (with electron 

transporters).  
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3.4 Methods & Material 

3.4.1 Comparative reconstruction of Streptomyces lividans genome-scale metabolic 

model 

The genome-scale stoichiometric metabolic model of S. lividans TK24 (iSLT1240) was 

reconstructed using the metabolic model of the model Streptomyces strain 

S. coelicolor A3(2), iAA1259 33, as template. The genome of S. lividans TK24 39 was 

compared to the genome sequence of S. coelicolor A3(2) 40, using both the genomic 

sequence and the predicted protein sequences. The two predicted proteomes were 

compared using BlastX and PATRIC, to identify the genes missing from the S. lividans 

TK24 strain and identify the genes only present in S. lividans. This list of lost or gained 

genes was used to delete or add genes in the iAA1259 model to build the iSLT1240 

model. The genes with a protein sequence percent identity <85% (401 genes out of 

7021 genes matched between SCO and SLIV) were independently analysed with 

OrthoDB to find orthologues or homologues hit in the SLIV genome 41. The genes with 

a protein sequence identity <90% and with no OrthoDB hit were deleted from the 

template model; if no other genes were associated to the reaction, the reaction was 

deleted; but if other genes were still associated the reaction was left in the model. The 

genes only present in SLIV were individually analysed to identify potential orthologues 

in S. coelicolor and identify the genes possible metabolic function. If the gene showed 

a metabolic function absent in S. coelicolor, then a new reaction associated (and new 

metabolites) was added. Before any modification on the template Gene-Protein-

Reaction (GPR) associations, the genes to be deleted or added were compared to 

genome annotations in StrepDB (http://strepdb.streptomyces.org.uk), BioCyc 42, KEGG 

http://strepdb.streptomyces.org.uk/
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43, and UniProt 44. A model of S. lividans TK24 automatically reconstructed with SEED 45 

helped identify reactions and metabolites to add to the iSLT1240 model. 

The biomass of the S. lividans TK24 model was modified compared to the iAA1259 

biomass. As ATP/ADP ratios have been shown to be different and were quantitatively 

measured 11, the data was used to update to a lower ATP to ADP ratio in the iSLT1240 

model. The amount of TAG was updated in the biomass based on the difference in 

triacylglycerol content observed experimentally, with a higher content in the S. lividans 

biomass. The modifications done on the iSLT1240 model compared to the iAA1259 

model biomass are detailed in Electronic Supplementary 3.1 - Additional File 1.  

The loss of some genes/reactions led to a S. lividans model unable to grow on some 

carbon sources, such as xylitol, rhamnose, and sorbitol. This has been tested by 

switching off carbon source uptake for selected compounds, such as glucose, and 

checking if predicted growth (with FBA) is achievable using this single carbon source. 

This was tested with both iAA1259 and iSLT1240. 

Detailed modifications on the template model iAA1259 (gene, reactions, and 

metabolites deletion or additions), and the comparison of S. lividans TK24 genome to 

S. coelicolor A3(2) genome are available in the Electronic Supplementary 3.1 - 

Additional File 1. 

The model is available in SBML format (Electronic Supplementary 3.1 - Additional 

File 2) to be fully compatible with the COBRA Toolbox 46 and COBRApy 47. COBRApy 

was used to analyse, validate, and improve the model. The in silico simulations were 

performed using constraint-based modelling algorithms, such as parsimonious flux 

balance analysis (pFBA).  
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3.3.2 Model predictions validations and metabolic comparison 

First, the predictions of iSLT1240 were validated using chemostat data from a 

S. lividans TK24 experiment in a glucose-limited media used for a previous metabolic 

model 35. The data was used to constrain glucose and ammonium consumption and 

predict S. lividans TK24 biomass across time. The iSLT1240 metabolic model growth 

predictions were in good agreement with the observed growth in the chemostat.  

The metabolic models iAA1259 and iSLT1240 of the two strains were 

constrained with uptake and export data for phosphate, glucose, and gamma-

actinorhodin from a published experiment with phosphate-limited solid R2YE medium 

11. The first set of constraints were built based on the R2YE medium nutrients content 

48; as this is a complex media with multiple sources of nutrients, the maximal 

concentrations available were estimated and used as maximum possible uptake 

constraints (Electronic Supplementary 3.1 - Additional File 3). The uptake and export 

concentrations over time were used to calculate the exchange rates into 

mmol.gDW−1.h−1 to constrain uptakes and exports in the model (Electronic 

Supplementary 3.1 - Additional File 3). Biomass was set as the objective function and 

optimised using pFBA in COBRApy 47, the growth rate predicted were used to calculate 

the biomass generated over time and compared to the experimental data. The growth 

predicted by iAA1259 and iSLT1240 were in good agreement with the experimental 

growth curve (Figure 3.3), so the next step was to compare the metabolic fluxes across 

time between both strains. The fluxes predicted by pFBA for all the reactions at each 

time points were matched for the two strains using the unique BiGG reactions IDs 49. 

Then, fluxes for each reaction were compared by calculating the fold difference of 

fluxes between both strains. Afterwards, to focus on large metabolic differences 
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between the two strains, we filtered the reactions with a flux fold difference > 1.5 

times in one of the strains and the reactions only active in one strain (Electronic 

Supplementary 3.1 - Additional File 4). Then, the key differences identified were 

included on a metabolic map representing primary metabolic differences (Figure 3.7). 

3.3.3 Proteomics data constraint and analysis 

The two models iAA1259 and iSLT1240 were constrained with data from a comparative 

proteomics study of S. lividans TK24 and S. coelicolor M145 20; then, proteomics data 

was integrated and analysed with the models. The first set of constraints corresponded 

to the R2YE medium nutrients contents, as described above. The second set 

corresponded to the different metabolites fluxes measured in the media across the 

three time points 36, 48, and 72H. The exchange fluxes were calculated from the 

concentrations measured for glucose, proline, NO3/NO2, phosphate, ammonium 

(details available in Electronic Supplementary 3.1 - Additional File 5). The third set of 

constraints came from the proteomics data, by switching off genes (in the models) if 

their corresponding proteins had a median quantification of zero across the three time 

points. The genes were switched off by knocking-out (KO) the genes using the gene KO 

function in COBRAPy 47. However, some genes were essential for growth, so these 

genes were not switched off and were analysed individually; see Electronic 

Supplementary 3.1 - Additional File 6 for the list of genes and their analysis. There were 

28 genes knocked-out in iSLT1240 and 11 genes knocked-out in iAA1259. The fluxes 

were predicted by pFBA with COBRApy 47 at 36, 48, and 72H; then, for both strains, the 

predicted fluxes were matched based on the reactions IDs. The proteomics data was 

matched to the predicted fluxes based on the SCO gene IDs 40 associated with the 
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reactions. Then, the proteomics data was compared to the predicted fluxes by 

comparing the fold changes and the Pearson correlation between proteomics and 

predicted fluxes were calculated in R, see Electronic Supplementary 3.1 - Additional 

File 7 for the predicted flux data matched to the proteomics. 

3.3.4 Analysis of the antibiotic production capabilities 

First, we evaluated the antibiotic production capabilities of the metabolic networks by 

estimating the optimal production of ACT, CDA, CPK, and RED in the iAA1259 and 

iSLT1240 models under minimal growth conditions. The minimal media was composed 

of glucose (sole carbon source), phosphate, NH3 (sole nitrogen source), trace elements 

and minerals (e.g., Ca2+, Cl-, K+, Fe2+, H20), and O2. The uptake of these nutrients were 

constrained at −1000 mmol.gDW−1.h−1. Then, the individual antibiotic productions 

were set as objective one by one for the model and optimized using pFBA in COBRApy 

47; the optimum value was used as the maximum possible antibiotic flux. The antibiotic 

fluxes were constrained one by one between 0 and the maximum possible antibiotic 

flux (using a continuous range), at each antibiotic flux value in the range the biomass 

was optimized by pFBA in COBRApy 47. The constrained antibiotic fluxes were plotted 

as X and the optimized biomass as Y, this showed a curve of the trade-off between the 

antibiotics production and maximum biomass possible (see Figure 8 and 

Supplementary Figure 3.5). This trade-off curve represents the competition of 

resources between antibiotic production and growth. As the pyruvate formate lyase 

(PFL) was identified as the single reaction with the most impact on production in the 

iSLT1240 model, the analysis has been applied to iAA1259, iSLT1240, iAA1259 with the 

addition of the PFL reaction, and iSLT1240 with the PFL reaction deleted.  
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Under minimal media conditions, the model was constrained to a minimum 

growth rate of 0.1 gDW.h−1, which is similar to growth rates in transition phase. Then, 

the predicted exchange fluxes were box plotted to compare the metabolites 

imported/exported from the media. The predicted fluxes for the different strains were 

plotted against each other to compare the fluxes between the WT strains (iAA1259 & 

iSLT1240) and the PFL mutants (iAA1259+PFL, iSLT1240-PFL). This aimed at having an 

overview of the presence or absence of the PFL impacted the overall metabolism, as 

PFL modifies the central metabolism of the two strains. 

 The next step was to apply the trade-off analysis as described above but with 

constraints closer to industrial conditions than a minimal media. So, the constraints 

used came from the R2YE medium nutrients constraints and to the exchange fluxes of 

glucose, ammonium, and gamma-actinorhodin 11. For the R2YE medium and exchange 

constraints see Electronic Supplementary 3.1 - Additional File 3. The constraints were 

applied to iAA1259, iSLT1240, iSLT1240 without the PFL reaction, and iAA1259 with the 

PFL reaction. The trade-off curves were plotted for all four scenarios (see Figure 11, 

and Supplementary Figure 3.10). 

3.5 Results & Discussion 

3.5.1 Comparative reconstruction of a S. lividans TK24 metabolic model 

S. coelicolor A3(2) and S. lividans TK24 are two phylogenetically closely related strains. 

Their predicted protein complements are very similar (>99.7% AA identity). 

Consequently, the genome-scale metabolic model of S. lividans TK24 could be 

reconstructed using our published S. coelicolor model iAA1259 as template 33. In order 

to reconstruct the S. lividans model the two genomes and the predicted proteomes 
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were compared, as described in Methods, to identify metabolic genes that were 

absent or only present in S. lividans. The reconstructed metabolic model of S. lividans – 

iSLT1240 – has fewer genes than iAA1259 but a similar number of reactions and 

metabolites (Table 3.1). The details of the reconstructed S. lividans model are included 

in the Electronic Supplementary 3.1 - Additional File 1. 

 

3.5.2 Metabolic functions lost and gained by S. lividans TK24 

The metabolic genes deleted or added from the reference model iAA1259 to generate 

the iSLT1240 model resulted in the predicted loss or gain of metabolic functions in 

S. lividans TK24 compared to S. coelicolor (Table 3.2). The S. lividans model lacks some 

important metabolic reactions involved in primary metabolism, including important 

reaction within gluconeogenesis and glyoxylate metabolism. Also, the presence of 

some genes that are absent in the S. coelicolor genome resulted in the putative gain of 

new interesting metabolic reactions, such as the PFL activity involved in anaerobic 

glycolysis. In many other cases, metabolic genes missing in the S. lividans genome do 

not involve a loss of metabolic reactions in the iSLT1240 model, as isoenzymes are also 

associated with the same reactions. However, this does not mean that these deletions 

would not have any physiological effect, as multiple genes 

Model 

Characteristics 

S. coelicolor A3(2) 

iAA1259 

S. lividans TK24 

iSLT1240 

Added Deleted 

Genes 1259 1240 10 29 

Reactions 1912 1912 6 6 

Metabolites 1471 1470 3 4 

Table 3.1: Number of genes, reactions, and metabolites, in the reference model 
iAA1259 and the reconstructed metabolic model iSLT1240 for S. lividans TK24 



131 

 

Table 3.2: List of genes deleted or added to the S. coelicolor iAA1259 model that are 
abolishing or adding a metabolic function in the reconstructed S. lividans TK24 
metabolic model  
The upper part of this table (in red) shows the genes and associated reactions deleted from 

the iAA1259 template model to generate the S. lividans TK24 model iSLT1240. The lower part 

of this table (in blue) shows the genes and associated reactions added to the iSLT1240 model. 

These are only the genes deleting or adding a metabolic function in the model, other genes 

deleted or added but not modifying the model metabolic functions are in Electronic 

Supplementary 3.1 - Additional File 1. These genes directly impact the metabolic network and 

potentially S. lividans metabolism. 
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associated with the same reaction can be differentially expressed under different 

conditions. This could result in a loss of function under specific condition, but 

experimental data would be required to test this. 

A previous comparative genomic study between the two strains identified the 

absence of large S. coelicolor genomic islands in S. lividans 38; as expected, multiple 

metabolic genes deleted from the model were localized in these islands 

(Supplementary Table 3.1).  

The gene SCO0046 (acpD/azoR) is a putative acyl-carrier-protein (ACP) 

phosphodiesterase involved in the ACP prosthetic group turnover, by hydrolysis of a 

holo-ACP to an apo-ACP. The knock-out of this gene in Escherichia coli has shown to 

stop the ACP turnover but it was non-essential to growth 50. In the S. coelicolor model 

this enzyme is involved in the production of the secondary metabolites CDA, RED, ACT, 

and CPK, together with the holo-ACP generation for important biological functions 

such as fatty-acids biosynthesis; however, it is not predicted as essential for growth by 

the model as other reactions are able to produce holo-ACP. S. lividans has also lost a 

malonyl-ACP decarboxylase (encoded by SCO0548) responsible for the decarboxylation 

of malonyl-ACP in acetyl-ACP, which is then used for straight-chain fatty acids (SCFAs) 

biosynthesis 51. However, the acetyl-ACP is still produced, as an acetyl-CoA ACP 

transacyclase produces it by using an acetyl-CoA and a holo-ACP. Furthermore, it has 

been shown that multiple enzymes primarily involved in other reactions (e.g., 

acetoacetyl-ACP synthases) also have a malonyl-ACP decarboxylase activity 51–53. Still, 

the loss of this enzyme is likely to change the balance between SCFAs and branched-

chain fatty acids (BCFAs). It might also impact polyketides (PKS) biosynthesis as 

malonyl-ACP is a precursor of aromatic PKSs such as ACT and CPK 54. This change could 
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promote acetyl-CoA consumption to produce acetyl-ACP instead of using malonyl-ACP, 

which might impact the available pool of acetyl-CoA (and consequently malonyl-CoA), 

another key precursor to produce secondary metabolites such as ACT, CDA, yCPK, or 

RED. It is likely that the absence of both SCO0046 and SCO0548 increases BCFAs 

biosynthesis and decreases secondary metabolites production in S. lividans. The ACP 

prosthetic group turnover is abolished, and the main precursor of SCFAs, acetyl-ACP, is 

generated from acetyl-CoA instead of malonyl-ACP. However, this needs to be 

investigated experimentally in S. coelicolor (e.g., by gene knock-out of SCO0046 and 

SCO0548).  

The S. lividans genome does not contain aceA (SCO0982) and aceB (SCO0983) 

genes, encoding for an isocitrate lyase and a malate synthase, respectively, both part 

of the glyoxylate bypass metabolism. The glyoxylate bypass metabolism loss in 

S. lividans was previously described in a comparative genomic study of S. coelicolor and 

S. lividans 34. This pathway bypasses the decarboxylation steps in the tricarboxylic acid 

(TCA) cycle to generate succinate from acetyl-CoA. The pathway is important for the 

utilisation of alternative carbon sources such as C2 fatty acids or acetate during 

gluconeogenesis. As alternative pathways were previously identified in Streptomyces 

spp. the glyoxylate bypass absence in S. lividans does not necessarily block the 

utilisation of acetate and other C2 fatty acids 55. However, the absence of this 

mechanism should reduce the cellular redox potential in S. lividans compared to 

S. coelicolor because it must systematically use the full TCA cycle, generating more 

reduced electron transporters (i.e., NADH). 

Bypassing the last part of the TCA cycle conserves some carbons for 

gluconeogenesis, which will reduce electron flux into respiration as it does not 
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generate reduced electron carriers (i.e., NAD(P)H and FADH2) 36,56. A recent study 

showed that S. coelicolor had a stronger oxidative phosphorylation and a higher 

gluconeogenesis than S. lividans 11,20. The loss of the glyoxylate bypass in S. lividans 

might cause this difference in redox balance between the two strains. In S. coelicolor, 

when the oxidative stress is high in the respiration chain, the strain could redirect the 

fluxes toward the glyoxylate bypass to generate less reduced electron transporters. A 

bioinformatics study of bacterial genomes indicated that only microorganisms with an 

aerobic metabolism possess a glyoxylate bypass pathway 36. The glyoxylate 

metabolism has been identified as an important pathway to tolerate oxidative stress 

36,57, so its absence in S. lividans could increase its oxidative stress. This will be 

explored in more detail in the later sections of this chapter. 

The gene metE (SCO0985), missing from S. lividans, encodes a cobalamin-

independent methionine synthase catalysing the transfer of a methyl from a 5-

methyltetrahydrofolate-glutamate to a homocysteine. This is the last step of the de 

novo L-methionine biosynthesis. The metE-encoded methionine synthase enables 

methionine production in the absence of exogenous cobalamin 58, and if this pathway 

is disrupted it would make S. lividans a methionine auxotroph 59. Despite this gene 

missing, the de novo synthesis of methionine is not completely abolished, as a metH 

methionine synthase (encoded by SCO1657) and the endogenous cobalamin 

biosynthesis pathway – cobalamin is necessary for the metH methionine synthase 

activity 60 – are conserved in the S. lividans genome. Among other genes lost, SCO3439 

and SCO3440 are encoding for two putative multi-copper oxidases with a ferroxidase 

activity. These enzymes are involved in the turnover of Fe(III) to Fe(II) to support iron 

uptake, as well as oxidising Cu(I) to Cu(II) contributing to copper resistance 61,62. The 
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loss of these oxidases could result in a disturbance in copper and iron homeostasis. 

Otherwise, the gene SCO3486, absent from S. lividans, corresponds to an aldehyde 

dehydrogenase with a lactaldehyde and glycolaldehyde dehydrogenase activity. The 

lactaldehyde dehydrogenase is involved in the oxidative pathway of methyl-pentose 

such as rhamnose, which is degraded to an L-lactaldehyde and a dihydroxyacetone 

phosphate (DHAP) 63. The lactaldehyde can be oxidized to lactate (using NAD+ as a 

cofactor), then converted into pyruvate by a lactate dehydrogenase to enter central 

metabolism 64. The other enzymatic activity of glycolaldehyde dehydrogenase oxidizes 

glycolaldehyde in glycolate, which can enter the glyoxylate metabolism 65. Due to the 

absence of this lactaldehyde dehydrogenase, S. lividans should be unable to use 

rhamnose as a carbon source, which is predicted by the metabolic model: S. lividans 

cannot grow if it uses rhamnose as a sole carbon source, whereas S. coelicolor grows 

on rhamnose (Figure 3.2). Another enzyme missing from S. lividans is the alditol 

oxydase encoded by SCO6147, it uses xylitol or sorbitol as substrate 66. This enzyme 

oxidises xylitol in xylulose which can be phosphorylated to enter the pentose 

phosphate pathway. The same enzyme can also oxidise sorbitol in fructose that can 

then enter central metabolism through fructolysis. This loss is possibly impacting the 

ability of S. lividans to use xylitol and sorbitol as carbon sources. The model predicts 

that S. lividans cannot grow if xylitol and/or sorbitol are the sole carbon sources 

(Figure 3.2). This is a very strong prediction that could easily be tested experimentally. 

Among the genes unique to S. lividans, the strain seems to have acquired a few 

metabolic genes contributing to the difference in metabolic capabilities. For example, 

S. lividans gained a putative formate lyase (PFL), with a pyruvate formate and 2-

oxobutanoate lyase activity 67. During anaerobic glycolysis, a pyruvate formate lyase 
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converts a pyruvate and a CoA in a formate and an acetyl-CoA to replenish the TCA 

cycle. This enzyme is a central enzyme for the anaerobic glucose metabolism in 

facultative aerobes such as E. coli 37. The 2-oxobutanoate lyase activity is transforming 

2-oxobutanoate (or α-ketobutyrate) and a CoA into a formate and a propionyl-CoA, 

which can be converted in methylmalonyl-CoA, then converted in a succinyl-CoA to 

enter the TCA cycle. The 2-ketobutyrate is associated with amino-acids metabolisms, 

such as degradation of threonine and aspartate, isoleucine biosynthesis, as well as 

cysteine and methionine metabolism 68. A bioinformatics analysis determined that PFL 

and the PFL activating enzymes were only present in S. lividans genome. The gene and 

protein sequences of the PFL and its activating enzyme (from E. coli and 

Mycobacterium tuberculosis) did align to two genes in S. lividans but not in S. coelicolor 

Figure 3.2: Growth predictions for S. coelicolor and S. lividans with different carbon 
sources 

As the absence of genes in S. lividans suggested that the strain could not grow in some specific 

carbon sources. The growth was predicted using different unique carbon sources with the 

iAA1259 (S. coelicolor) and iSLT24 (S. lividans) genome-scale metabolic models. While 

S. coelicolor was predicted to be able to grow on glucose, xylitol, rhamnose, or sorbitol as sole 

carbon sources, this was only possible on glucose for S. lividans. The plus represents predicted 

growth and the minus represents the absence of predicted growth. 
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(using 3 different approaches: NCBI Blast, OrthoDB, and Ensembl), this data is available 

and described in Supplementary Document 1 (see 3.8.1). 

S. lividans seems to have acquired a 2-methylcitrate synthase that transforms 

an oxaloacetate and a propionyl-CoA in a 2-methylcitrate and a CoA 69. As well as a 2-

methylcitrate dehydrogenase transforming the 2-methylcitrate in a 2-methylaconitate. 

This pathway is involved in anaerobic propionate degradation and has been identified 

in multiple prokaryote organisms before 69,70. It is likely that other citrate synthases 

(found in S. coelicolor and S. lividans) also present a low 2-methylcitrate synthase 

activity 69, which would suggest that , to a lesser extent, the function could also be 

present in S. coelicolor.  

Finally, S. lividans seems to have a glucose-1-phosphate guanylyltransferase; 

this enzyme catalyses the biosynthesis of GDP-glucose from glucose-1-phosphate and 

GTP (releasing an inositol-diphosphate). Another route exists to produce GDP-glucose 

and glucose-6-phosphate from trehalose-6-phosphate and GDP by a GDP-glucose-

glucose-phosphate glucosyltransferase 24. 

Another interesting feature is the possible duplication of the phosphate 

transport operon (SCO6814-16) in S. coelicolor (Supplementary Table 3.1). As well as 

the presence of 4 nitrate reductases operons in S. coelicolor while S. lividans only have 

3 operons (SCO4947-50 is absent), see Supplementary Table 3.1. Theses operons 

duplications in S. coelicolor correlate with a higher oxidative metabolism in this strain 

compared to S. lividans 11; as S. coelicolor may consume more phosphate for oxidative 

phosphorylation and have a more active nitrate oxidative respiration. 

The first step of comparative reconstruction of the S. lividans metabolic model, 

iSLT1240, from the S. coelicolor model iAA1259, already highlighted some interesting 
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metabolic differences. For example, S. lividans seems to have lost the ability to use 

sorbitol, xylitol, and rhamnose as carbon sources, which was validated by the model 

predictions (Figure 3.2). Also, S. lividans might be more adapted to anaerobic 

conditions while S. coelicolor might be more adapted to aerobic conditions. For 

example, the absence of the glyoxylate bypass metabolism (SCO0982 and SCO0983) in 

S. lividans makes the strain less resistant to high oxidative stress (i.e., aerobic 

respiration). Furthermore, S. lividans acquired a pyruvate formate lyase, which is 

regulated by an activating enzyme sensitive to O2 levels and only active under 

anaerobic condition 67. Multiple studies showed that secondary metabolism  is directly 

impacted by oxidative metabolism in Streptomyces c,19,20,71, so these differences are 

likely to change antibiotic production. Additional interesting features were highlighted 

in S. lividans fatty acid metabolism, with the loss of an ACP phosphodiesterase 

(SCO0046) and a malonyl-ACP decarboxylase (SCO0548), which might reduce the 

availability of ACP and acetyl-CoA for secondary metabolites such as ACT and RED. The 

metabolic variations potentially responsible for the lower production of antibiotics in 

S. lividans will be explored in the next sections by combining metabolic modelling with 

omics data integration and analysis. 

3.5.3 Initial validation of the Streptomyces lividans metabolic model 

Before using predictions of the S. lividans GSMM (iSLT1240), it was necessary to verify 

the validity of the predictions. We compared the predicted bacterial growth to 

experimental data, as previously done for the validation of the S. coelicolor model 

iAA1259 33. The model was constrained using ammonium and glucose uptake rates 

measured in a chemostat experiment using S. lividans TK24 35 (Figure 3.3). The biomass 
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predicted with the iSLT1240 model is in good agreement with the observed biomass 

(Figure 3.3). Glucose is the main source of carbon in this experiment, but it is also a 

limiting nutrient, the depletion of which seems to trigger slower growth and entry in 

transition phase (purple curve in Figure 3.3). Once this validation was done, for each 

new prediction using a given dataset under a specific condition, the biomass was 

predicted and compared to the experimental observations to verify the validity of 

these predictions.  

 

Figure 3.3: Validation of the growth predictions of the iSLT1240 metabolic model 

The S. lividans metabolic model - iSLT1240 - was constrained based on the minimal medium 

data and using glucose (purple curve) and ammonium (green curve) uptake fluxes from a 

chemostat experiment at each time points  35. The iSLT1240 metabolic model predictions are 

valid, as the predicted growth (blue curve) is close to the experimental values (red points). The 

organism enters stationary phase at 29h due to glucose depletion at 28h. The model correctly 

predicts the growth switch around 29h, matching the experimental observations. 
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3.5.4 Comparative analysis of S. coelicolor and S. lividans metabolism 

The metabolic differences between the two strains were predicted by comparing the 

predicted flux distribution across the different metabolic pathways using constraint-

based metabolic modelling. The model was constrained using experimental data from 

a study carried out in R2YE solid media under Pi-limited conditions for both 

S. coelicolor M145 and S. lividans TK24 11. At first, the possible exchanges were 

constrained based on the R2YE media composition 11,48. Then, the metabolite uptake 

(e.g., glucose and phosphate) and the export flux (e.g., actinorhodin) were also 

constrained (Figure 3.4). Finally, the biomass was constrained using the levels of 

triacylglycerol (TAG) and ATP to ADP ratios as these were measured in S. lividans 

compared to S. coelicolor11 (details of the constraints in Electronic Supplementary – 

Additional File 3). The exchange fluxe constraints were applied at different time points 

across the growth curve of the organisms, with the two first points in exponential 

phases and the remaining ones in transition and stationary phase. The predicted 

growth across time was verified by the experimental growth under these conditions 

for both the S. coelicolor model iAA1259 (Figure 3.4a) and the S. lividans model 

iSLT1240 (Figure 3.4b).  

The metabolic prediction comparison for both strains shows that about 1175 

reactions have zero fluxes in both strains; this represents 61% of the metabolic 

network reactions. A lot of reactions are switched-off in the network as those were 

probably not used under this specific condition, but it could be used under a different 

condition (e.g., different media). In the 39% of non-zero fluxe reactions in either 

strains (745 reactions), some reactions were excluded from the detailed analysis: 49 
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a) 

b) 

Figure 3.4: Validation of the S. coelicolor and the S. lividans metabolic model’s 

growth predictions with constraints from the dataset used 

a) Biomass predictions and dynamic constraints used for S. coelicolor 

The S. coelicolor iAA1259 metabolic model was constrained across multiple time points with 

the glucose and phosphate (orange and green lines) uptake, and the actinorhodin export 

(purple line), in the same minimal media conditions used for the experiment 11. The biomass 

predictions (red dashed line) are in good agreement with the experimental biomass data (red 

dots).  

b)  Biomass predictions and dynamic constraints used for S.lividans 

The S. lividans iSLT1240 metabolic model had the same method applied, unless actinorhodin 

constraint as it was not producing it. The biomass predicted (blue dashed line) here as well is in 

good agreement with the experimental data (blue dots).   
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active exchange reactions, 40 active transporters, 40 reactions with almost zero fluxes 

(<0.00051 fmol/gDW/h), and the reaction corresponding to ATP maintenance.  

Finally, 612 intracellular reactions were compared and analysed in detail (Electronic 

Supplementary – Additional File 4). Twenty-four reactions had fluxes only active in 

S. coelicolor with 19 involved in actinorhodin biosynthesis (only this strain produced 

ACT), and 30 reactions with fluxes at least 1.5 times higher in S. coelicolor. Seven 

reactions were active only in S. lividans, and 204 reactions carried fluxes at least 1.5 

times higher in S. lividans (including 182 reactions involved in 9 different straight and 

branched chain fatty acid biosynthesis pathways). From these 204 reactions, 22 

reactions were left with 9 reactions involved in lipids precursors biosynthesis and 6 

reactions involved in isoleucine and valine degradation for branched-chain fatty acid 

biosynthesis. The predicted fluxes only present or higher in S. coelicolor (Figure 3.5) 

and those specific or higher for S. lividans (Figure 3.6) were analysed in more detail to 

identify and understand the main metabolic differences between the two strains.  

A large part of the fatty acids biosynthesis pathways was higher in S. lividans, with 

182 reactions involved in the direct production of fatty acids, 9 reactions involved in 

precursors generation, and 6 reactions involved in the degradation of isoleucine and 

valine to produce branched-chain fatty acids. This prediction was probably due to the 

higher production of triacylglycerol in S. lividans that was included as a constraint in 

the iSLT1240 biomass reaction. The iSLT1240 model also predicted a higher glycolytic 

metabolism in S. lividans, with 7 reactions involved in glycolysis higher than in 

S. coelicolor (Figure 3.6). This was experimentally observed under the same conditions, 

indicated by the higher accumulation of triacylglycerol and higher glucose uptake in 
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Figure 3.5: Predicted fluxes with a higher value in S. coelicolor 

The metabolic fluxes predicted as higher or only active in S. coelicolor are represented as a 

heatmap (relative high flux in green, low flux in red, and null flux in black). 24 reactions are 

predicted as only active in S. coelicolor (i.e., only SCO), and 30 reactions with a predicted flux 

at least 1.5 times higher in S. coelicolor than in S. lividans. The reactions are ordered by 

pathways or functions associated. The heatmap of S. coelicolor to S. lividans flux ratio (i.e., 

SCO:SLIV ratio) shows higher ratio in dark orange and lower ratio in light orange. The full 

dataset is available in Electronic Supplementary – Additional File 4. 
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Figure 3.6: Predicted fluxes with a higher value in S. lividans 

The metabolic fluxes predicted as only active or higher in S. lividans are represented as a 

heatmap (relative high flux in green, low flux in red, and null flux in black). 7 reactions are only 

active in S. lividans (i.e., only SLIV), 204 reactions have predicted fluxes at least 1.5 times 

higher in S. lividans, The heatmap of the S. coelicolor to S. lividans flux ratio (i.e., SCO:SLIV 

ratio) shows higher ratio in dark orange and lower ratio in light orange. These results are 

analysed in detail in the manuscript, and the full dataset is available in Electronic 

Supplementary – Additional File 4. 
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S. lividans 11,20. The higher glycolysis prediction was apparently caused by the higher 

glucose uptake constrain in the iSLT1240 model. 

Predictions suggest that S. coelicolor has a stronger amino-acid catabolism, with 

11 reactions involved in amino-acid degradation. This includes multiple reactions in 

entry points of the central metabolism, such as the acetyl-CoA C-acetyltransferase (EC 

2.3.1.9) that catalyses an intermediate metabolite of the valine, leucine, and isoleucine 

degradation, the 2-methyl-3-acetoacetyl-CoA into a propanoyl-CoA and an acetyl-CoA 

(Figure 3.5) 72. This was observed in proteomics data where S. coelicolor had a higher 

relative level of proteins associated with amino-acid catabolism compared to 

S. lividans 20, while another study showed that S. coelicolor is more efficient at 

degrading glutamate than glucose 73. 

The model metabolic predictions show higher average fluxes through the TCA cycle 

in S. coelicolor, with 8 reactions at least two times higher. However, in stationary phase 

(60 to 98h) the TCA cycle fluxes are predicted as higher in S. lividans than in 

S. coelicolor, this corresponds to the start of actinorhodin production in S. coelicolor 

(data in Electronic Supplementary – Additional File 4). Acetyl-CoA is the main building 

block for the ACT pathway and an entry point of glycolysis toward the TCA cycle as well 

as TAG biosynthesis, so in S. coelicolor the fluxes using this precursor are split between 

ACT production, the TCA cycle, and TAG biosynthesis. Whereas S. lividans does not 

produce ACT, so acetyl-CoA fluxes go toward the TCA cycle more than in S. coelicolor. 

For S. coelicolor, the metabolic modelling predicted higher fluxes in pathways used 

instead of glycolysis to generate TCA cycle precursors, such as the amino-acids 

catabolism and the anaplerotic metabolism (PEPCK and ME1) (Figure 3.5). The 

anaplerotic reactions node involves phosphoenolpyruvate, pyruvate, and oxaloacetate 
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as substrate and plays a role of connection between the glycolysis, the 

gluconeogenesis, and the TCA cycle. S. coelicolor also has a higher gluconeogenesis 20, 

which consumes precursors coming from the anaplerotic pathway that could explain 

the increased fluxes for the anaplerotic reactions. The phosphoenolpyruvate 

carboxykinase (PEPCK in Figure 3.5) carries higher predicted fluxes in S. coelicolor; 

however, gluconeogenesis does not seem fully active in the iAA1259 model predictions 

as some of the key enzymes (i.e., glucose 6-phosphatase) do not carry fluxes 

(Electronic Supplementary – Additional File 4). An interesting prediction is the triose-

phosphate isomerase (TPI) reaction with fluxes predicted in the direction of the 

dihydroxyacetone phosphate (DHAP) conversion to glyceraldehyde-3-phosphate (G3P) 

in S. lividans and in the opposite direction in S. coelicolor (Figure 3.6). However, this 

difference is observed only during the exponential phase (from 0 to 42h), once in 

transition and stationary phase S. coelicolor fluxes are only in the forward direction. 

The TPI is a major point of regulation for central metabolism as it is a convergence 

point for the glycolysis, the gluconeogenesis, and the pentose phosphate pathway 74. 

This enzyme regulation is also coordinated by oxidative energy 75, but the metabolic 

model does not take into account enzymatic regulations so the flux direction 

difference has to be caused by a metabolic difference. Here, during the exponential 

phase, the TPI fluxes go toward glycolysis in S. lividans and toward gluconeogenesis in 

S. coelicolor, which agrees with experimental observations 11,20. Nevertheless, the 

model is unlikely to predict fluxes toward (full) gluconeogenesis, as producing glucose 

does not lead to optimal biomass (the objective of the model). So, it seems like the 

reactions involved in the other carbon metabolism (Figure 3.5), such as the 

phosphoenolpyruvate carboxykinase discussed earlier, generates intermediates for the 
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central metabolism (e.g., TCA cycle), electron transporters (e.g., NADH), and ADP for 

the oxidative respiration. It seems as if the higher need of ATP by S. coelicolor is 

constrained by the ATP needed in the biomass reaction, which forces the production of 

more ADP (to generate more ATP) and reduced electron transporters (e.g., NADH). 

This would explain the higher fluxes toward gluconeogenesis and other carbon 

metabolism (Figure 3.5) as many of these reactions generate ADP and reduced 

electron transporters needed by the respiration chain to produce more ATP. The 

higher need of ADP for oxidative phosphorylation also enforces higher fluxes in the 

nucleotide salvage pathway, which is used in the turnover of cofactors such as GDP, 

AMP, UDP (Figure 3.5). As expected, the S. coelicolor model predicts higher fluxes for 

oxidative metabolism in S. coelicolor (with 5 reactions being significantly higher, Figure 

3.5). The differences in biomass constraints (e.g., ATP) impacted the whole metabolism 

of the two strains, as the differences in ATP and nutrients uptake modifies the balance 

of fluxes generating the reduced and oxidized cofactors necessary to reach an optimal 

growth. Thus, the modelling predicts that the effect of the difference in oxidative 

phosphorylation (input as ATP ratios) between the two strains impacts the whole 

metabolism. The balance of oxidised and reduced electron transporters forces fluxes in 

different metabolic pathways in the two strains, which could be linked to the 

regulation of these pathways. 

Overall these predictions are in very good agreement with experimental 

observations: S. coelicolor has a lower glycolysis, higher gluconeogenesis, higher 

amino-acid catabolism, lower triacylglycerol anabolism, and a higher oxidative 

metabolism than S. lividans 11,20 (Figure 3.7). The impact of the differences in the 

oxidative balance (constrained) between the two strains supports that the redox 
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balance underlies the metabolic differences. This could be caused by the loss of the 

glyoxylate bypass metabolism that plays an important role in the resistance to 

oxidative stress.   

3.5.5 Integrative analysis of comparative proteomics data 

To better understand the metabolic differences between the two strains, and to 

validate the metabolic predictions, a comparative proteomics dataset 20 was integrated 

Figure 3.7: Summary metabolic map of the main metabolic differences predicted 
between S. coelicolor and S. lividans 

This metabolic map summarizes the major predicted metabolic differences in S. coelicolor 

compared to S.  lividans under the conditions studied. The fluxes higher in S. coelicolor are in 

green and the ones lower in S.  coelicolor are in red. The reactions crossed in red correspond to 

the glyoxylate pathway which is absent in S. lividans. The dotted lines are the reactions 

carrying fluxes only in S. coelicolor. S. lividans is predicted to have a higher glycolytic 

metabolism, whereas S. coelicolor seems to have a higher gluconeogenesis. The amino-acid 

catabolism is overall higher in S. coelicolor, while the anabolism of branched and straight-chain 

fatty acids biosynthesis from amino-acid and malonyl/acetyl-CoA is higher in S.  lividans. The 

oxidative phosphorylation seems to be overall higher in S. coelicolor, which is probably due to 

the higher ATP/ADP ratio constraint. These agree with experimental observations  11,20. 
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and analysed with the two metabolic models. The first step was to constrain the 

metabolic models for both strains with available flux exchanges with the media used 

for: glucose, proline, ammonia (NH4), nitrate (NO3), nitrite (NO2), and phosphate. Then, 

the biomass was predicted for both strains and compared with experimental data. In 

both cases, the biomass predictions were in agreement with the experimental data 

(Supplementary Figure 3.3). 

The metabolic models iAA1259 and iSLT1240 were also constrained using the 

proteomics data at different time points: 36, 48, and 72H. The proteins with a null 

concentration were switched OFF in the models (as described in Methods). There were 

611 annotated proteins with proteomics data for the iSLT1240 model and 615 for the 

iAA1259 model (fewer than 50% of the metabolic genes annotated). In the iSLT1240 

model 53 genes were switched OFF, and in iAA1259 model 26 genes were switched 

OFF. The S. lividans model predicted that 10 genes out of the 53 were essential for 

growth and 2 genes reduced biomass. While, in S. coelicolor 3 genes out of 26 were 

essential and 2 genes reduced biomass.  

In multiple cases the proteomics did not influence the model, when switching 

off proteins not produced – but with isoenzymes – in the model, will not switch off the 

reaction (Supplementary Figure 3.2a). Some of the proteins switched off in the model 

correspond to zero flux reactions, which will not impact the metabolic network 

(Supplementary Figure 3.2b). In the end, the few proteomic constraints that forced flux 

redirection resulted in a reduced predicted growth rate (Supplementary Figure 3.2c), 

which did not “break” the model in contrast to the effect of switching off the essential 

reactions (Supplementary Figure 3.2d). The essentiality of the proteins with a null 

concentration could have multiple explanations; isoenzymes encoded in the genome 
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but not annotated in model, or compensatory metabolic pathways absent from the 

models. Also, as the media is complex, not all the metabolites present are known, so 

there might be metabolites present in the media but not included in the constraints 

(for details on the constraints see Method). From the proteome constraints, excluding 

essential genes only 2 genes in S. coelicolor (SCO2151 and SCO4564, respectively 

encoding a cytochrome aa3 oxidase and an NADH dehydrogenase) and 3 genes in 

S. lividans (SCO2151 encoding a cytochrome aa3 oxidase, SCO2828 and SCO2831 both 

encoding an arginine ABC transporter) had a significant impact on the model (see 

Electronic Supplementary – Additional File 6). After applying the proteomics, the media 

constraints, and the metabolites uptake or export constraints (see Electronic 

Supplementary – Additional File 5) the flux predictions did not correlate with the 

proteomics data (r=-0.05, Supplementary Figures 3.3 and 3.4). The samples used for 

the proteomics data and the constraints grew in O2 limited conditions (1% dO2), and 

the data points were at stationary phase 20 (see Electronic Supplementary – Additional 

File 7). As the two Streptomyces strains grew in a complex media under O2 and 

phosphate limited conditions, it is likely to have triggered stress responses directly 

influencing  their metabolism (e.g., nitrogen respiration) 5,76. The prediction accuracies 

were inaccurate as regulations changed the metabolism, and the models are probably 

lacking alternative metabolic pathways used under these conditions (e.g., nitrogen 

respiration). Instead, the model was used as a framework to analyse the proteomics 

data in the metabolic context and to identify key metabolic differences between the 

two strains.  

The proteomics data constraints and integrated analysis helped to interpret the 

change in proteome related to the metabolic change. In the S. coelicolor proteomics 
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data constraints, 3 proteins were predicted as essential in the iAA1259 model: a myo-

inositol phosphatase (SCO5860) involved in glycerophospholipids precursor 

biosynthesis, and 2 proteins associated to adenosylcobalamide biosynthesis (SCO1852 

and SCO2173). In S. lividans, 10 proteins were identified as essential in the iSLT1240 

model, including SCO1852 involved in cobalamin biosynthesis. Among the predicted 

essential genes switched off in S. lividans we can find: a cardiolipin synthase (SCO1389) 

essential for membrane biosynthesis, an alanine racemase (SCO4745) involved in cell 

wall biosynthesis (e.g., murein). As well as proteins involved in essential cofactors and 

vitamins biosynthesis, such as a pyridoxal 5-phosphate synthase (SCO1522), a kinase 

for menaquinones biosynthesis (SCO3148), a chorismate synthase (SCO3851) from the 

hydrofolates metabolism, a synthase (SCO4204) for the mycothiol biosynthesis, a 

threalose synthase (SCO4290), and an aerobic protoporphyrinogen oxidase (SCO6041) 

essential for protoheme biosynthesis (see Electronic Supplementary – Additional File 

6). The proteomics measurements under hypoxic conditions and at stationary growth 

show many proteins involved in aerobic processes or in biomass production (e.g., cell 

wall biosynthesis) as not translated in S. coelicolor or S. lividans.  

In both strains, a cytochrome aa3 oxidase (SCO2151) when switched OFF, 

decreased the predicted biomass. This cytochrome is  favourably expressed under high 

oxygen concentration, so it may be switched off because of the experimental hypoxic 

conditions 77. The S. coelicolor predicted biomass decreased due to the deletion of an 

NADH dehydrogenase (SCO4564), which is involved in oxidative metabolism. In 

S. lividans a different set of redundant NADH dehydrogenases genes (SCO4605 and 

SCO7319) were switched OFF but did not impact growth. In S. lividans other enzymes 

involved in oxidative metabolism were not produced such as a thioredoxin reductase 
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(SCO7298) and a pyruvate oxidase (SCO7412). Hypoxic conditions upregulate and 

downregulate key genes from the respiratory chain in S. coelicolor 78, but there are 

different and more genes downregulated in S. lividans.  This is in accordance with the 

proteomics data interpretation by Millan-Oropez et al., concluding that oxidative 

metabolism was higher in S .coelicolor 20.  

Other proteins switched OFF were involved in Coelimycin P1 biosynthesis and 

export (SCO6273-75, and SCO6278), indicating that Coelimycin P1 is not produced 

under these conditions in both strains (see Electronic Supplementary – Additional 

File 6). Also, S. lividans did not produce biosynthetic enzymes associated with the CDA 

(SCO3230-31, SCO3236, and SCO3249) but S. coelicolor did; this indicates that the 

production of CDA would be abolished in S.lividans but not in S. coelicolor under these 

conditions. See Electronic Supplementary – Additional File 6 to find the different genes 

switched OFF in the two strains metabolic models based on the proteomics data.  

In the end, the models did not predict accurately the differences due to the 

limited O2 conditions, the low growth (in stationary phase), and in a complex media. 

Despite inaccurate flux predictions, using the model as a framework to analyse 

proteomics data helped to identify a few metabolic differences between the two 

strains under these conditions. The genome-scale metabolic models did not represent 

regulatory mechanism so it could not predict metabolic changes during stress 

conditions (i.e., hypoxic growth). This highlights the need of new Streptomyces models 

that integrate kinetic and enzymatic constraints as done in E. coli 79 and yeast 80. As 

well, applying new methods to predict metabolic fluxes from proteins level would be 

useful 81. 
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3.5.6 Metabolic differences and impact on secondary metabolism 

The productions of the four antibiotics -ACT, CDA, CPK, and RED- were compared in-

silico between S. coelicolor and S. lividans, to identify the impact of the strains’ 

metabolic differences on secondary metabolite production. The antibiotic production 

was predicted in-silico with an increasing complexity of constraints, because of the 

limited experimental data available for antibiotics yield in the two strains. The 

simulations were started with a minimum growth media (containing glucose, NH4, Pi, 

O2, and trace elements). Then, to identify the trade-off between the production of 

secondary metabolites and growth, the fluxes were fixed for the antibiotics ACT, CDA, 

CPK, and RED at different ranges of values from null to the maximum possible in-silico 

production with optimal growth (see details in Methods). This helps to see the impact 

of antibiotic production on the growth, and see if the two functions compete for 

resources. The results were counter-intuitive, as the production of antibiotic to growth 

rate was worse in S. coelicolor than in S. lividans (Supplementary Figure 3.5), differing 

from the usual experimental observations in S. lividans with lower production rates of 

ACT and RED. The slightly higher growth rates in S. lividans could come from its lower 

ATP/ADP ratio compared to S. coelicolor 11, as the model needs fewer nutrients to 

generate ATP for the growth. However, it did not explain the higher optimal fluxes of 

antibiotics supported at lower growth rates (<1 gDW.h−1), especially that low growth 

rates are closer to real growth conditions associated to the antibiotic production at 

transition and stationary phase. To identify the causes for these differences, the same 

method was applied by adding back the reactions deleted, and deleting the reactions 

added in the iSLT1240 model. The addition or deletion of the PFL was the single 

reaction with the biggest impact on the S. lividans model. For every single antibiotic 
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produced the deletion of PFL led to a drop of antibiotic production, and in the low 

growth rates (<1 gDW.h−1) production reached the same levels or lower than S. 

coelicolor (Figure 3.8). In the opposite scenario, when PFL was added to the iAA1259 

model the growth rate to antibiotic production increased by 10 to 60% depending on 

Figure 3.8: Optimal antibiotics production versus optimal growth in S. coelicolor and 
in S. lividans, with or without pyruvate formate lyase under minimal conditions 

The optimal growth rates to antibiotics production were predicted with ACT (blue), CDA 

(green), CPK (orange), and RED (red). This was compared with S. coelicolor (SCO WT - solid 

lines), S. coelicolor + PFL (SCO + PFL - dotdash lines), S. lividans (SLIV WT - dashed lines), and 

S.lividans - PFL (SLIV - PFL - dotted lines) metabolic models. In every cases growth is in direct 

competition with the antibiotics production, when antibiotics production increases the 

optimal growth reduces. The presence of PFL seems to enable higher optimal growth (e.g., 

SCO vs SCO + PFL and SLIV vs SLIV - PFL) when antibiotics production is high. But PFL does not 

account for all of the growth difference between the two strains, at least in high growth 

optimum (low antibiotics production).  
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the growth rate. In low growth rates (<1 gDW.h−1) to antibiotics production fluxes 

reached equal or higher level than S. lividans (Figure 3.8).   

 

The PFL is an enzyme present in multiple facultative and obligate aerobes 37,82,83, 

which is important for the use of pyruvate under anaerobic conditions. PFL converts 

pyruvate (+ CoA) into acetyl-CoA and formate. PFL is activated by a pyruvate formate-

lyase activating enzyme. PFL has the same function (but under anaerobic conditions) as 

the Pyruvate Dehydrogenase (PDH) in the metabolism, which converts pyruvate into 

acetyl-CoA generating NADH and CO2. The presence of PFL introduces a second path in 

the model to generate acetyl-CoA with a lower burden on the oxidative balance (as it 

does not generate NADH). The higher production of acetyl-CoA by PFL explains the 

higher predicted fluxes toward ACT, CDA, CPK, and RED as acetyl-CoA is either directly 

used or converted in malonyl-CoA to produce these antibiotics (Figure 3.9). The model 

estimates higher predicted fluxes consuming acetyl-CoA and malonyl-CoA for 

antibiotics production. In fact, the effect of the deletion/addition of PFL is more 

dramatic on ACT and CPK fluxes (Figure 3.8), as these use malonyl-CoA and acetyl-CoA 

as building blocks (respectively type II and type I PKS), whereas RED and CDA consume 

a diverse mix of precursors (e.g., AA). The models were optimized to produce the 

individual antibiotics while maintaining a low growth rate (< 0.1 gDW.h−1) close to the 

ones experimentally observed at transition phase. Then, to study the impact of PFL on 

the overall metabolism, the predicted exchanges were compared between the strains 

with or without PFL, as major intracellular metabolic changes impact the exchange 

fluxes between the media and the intracellular milieu (Supplementary Figures 3.6, 3.7, 

3.8, and 3.9). For example, the introduction of the PFL in the S. coelicolor model 
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resulted in an increased export of formate and a decreased export of CO2, this is due to 

the model favouring PFL that produces formate instead of PDH that produces CO2; the 

opposite phenomenon was observed in S. lividans when PFL was deleted.  

Under the same conditions, the overall predicted fluxes were compared for the 

different strains with or without PFL and for all four antibiotics produced (Figure 3.10). 

In the S. coelicolor model with PFL added, multiple fluxes significantly increase or 

Figure 3.9: Introduction of the Pyruvate Formate Lyase in the central metabolism 

The presence of the PFL has a major impact on the metabolism because it is placed in a key 

point in the metabolic network, the PFL carry fluxes from pyruvate produced by glycolysis 

toward acetyl-CoA that will be used for both the TCA cycle and the production of the four 

main antibiotics. Another enzyme the pyruvate dehydrogenase (PDH) has the same function 

but is used under aerobic condition by opposition to PFL used in anaerobic condition. The 

impact of PFL on production of antibiotics can be explained by its connection to the acetyl-

CoA, which by increasing fluxes toward it will increase the fluxes available to go toward 

antibiotics production. Furthermore, the PFL is not affected by oxidative balance as it does not 

need NAD like PDH. 
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decrease showing a significant impact of PFL on multiple predicted fluxes (Figure 3.10a 

and 3.10b). The overall predicted fluxes in S. coelicolor with PFL compared to S. lividans 

WT, show similar fluxes distribution with the exception of a few dozen fluxes, as well 

as lower averages for the Euclidian distances between the fluxes (Figure 3.10c). The 

opposite case S. lividans without PFL compared to S. coelicolor shows a similar 

distribution of predicted fluxes with the exception of twenty fluxes; the Euclidian 

distances are also lower in this case (Figure 3.10d). The addition of only PFL 

considerably impacts the predicted differences in fluxes and optimal antibiotic 

production. However, the exchange reactions are not constrained with experimental 

data, so the conditions are not close enough to reality to conclude the impact of PFL.  

The models were constrained using exchange fluxes in the R2YE media to simulate 

the experimental conditions from Esnault et al., 11. These conditions predicted 

significantly different results than with the reduced constraints in minimal media. 

Under minimum constraints, for every antibiotic the trade-off between production 

levels and biomass shows a direct competition for resources, with a linear decrease of 

biomass when antibiotic productions increase (Figure 3.8). However, the trade-off is 

more complex with experimental uptake and complex media constraints, showing 

different type of trade-off depending on the strain or the antibiotic. For CDA the trade-

off is linear and very similar for both strains, whereas for ACT, RED, and CPK the 

growth rate decreases at different rates around similar values for both strains 

(Figure 3.11).  For ACT, CPK, and RED production does not seem to directly impact 

growth until a “breaking point”, where the growth rate abruptly decreases (Figure 3.11 

a, b, & c). S. coelicolor seems to withstand slightly higher fluxes of ACT, RED, and CPK 

than S. lividans, as the growth rate fall later (Figure 3.11 a, b, & c). In all the cases the 
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a) 

b) 

c) 

d) 

Figure 3.10: Overall flux comparison of S. coelicolor and S. lividans with or without 
the pyruvate formate lyase 
The fluxes were compared between the two strains and in presence or absence of PFL. The 

fluxes values show that by adding PFL to S. coelicolor the predicted flux values get very close to 

the ones in S. lividans (SCO + PFL vs SLIV WT) and same for the opposite case (SLIV – PFL vs SCO 

WT). The flux values between SCO WT vs SCO + PFL are as distant as for SCO WT vs SLIV WT. 

The four antibiotics were tested ACT (blue), RED (red), CDA (green), and CPK (orange), the 

fluxes were predicted at a fixed growth rate (0.1 gDW.h−1) for all the strains and antibiotics. 

The average Euclidian distance between fluxes shows the increase of difference between the 

fluxes in the different cases. 
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d) 

b) 

c) 

a) 

Figure 3.11: Optimal antibiotics production versus optimal growth in S. coelicolor 
and in S. lividans, with or without pyruvate formate lyase in a complex media  

The optimal growth rates to antibiotics production were predicted with ACT (blue), CDA 

(green), CPK (orange), and RED (red) for S. coelicolor and black for S. lividans. This was 

compared with S. coelicolor (SCO WT - solid lines), S. coelicolor + PFL (SCO + PFL - dotdash 

lines), S. lividans (SLIV WT - dashed lines), and S. lividans - PFL (SLIV - PFL - dotted lines) 

metabolic models. The models were constrained for a growth in in Pi-limited R2YE media 

using experimental uptakes 11. Here, the presence of PFL does not seem to significantly impact 

either antibiotic production or growth (slightly with ACT). Only CDA shows a direct 

competition between growth and CDA production, with very similar values for both. For ACT, 

RED, and CPK the biomass does not seem to be in competition with production until a 

“breaking” point where biomass production dramatically decreases. This shows the optimum 

point under these conditions where the strains can sustain optimal growth and antibiotic 

production (for ACT, RED, & CPK). This graph is a version with a truncated x-axis to focus on 

the differences; the non-truncated version is shown in Supplementary Figure 3.9. 
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presence or absence of PFL does not seem to have as much impact on the antibiotics 

production as in minimal media (Figure 3.11). In the case of ACT, CPK, and RED (to a 

lesser extent), the trade-off trend is slightly different between S. coelicolor and 

S. lividans as a producer, in S. coelicolor the growth rate decreases at different paces 

creating two “breaking points” (Figure 3.11a, 3.11b, and 3.11c). This trade-off with two 

inflection points could come from the use of different resources limiting the antibiotics 

production while maintaining the growth rate. For example, CDA uses amino-acids, 

acetyl-CoA, malonyl-CoA, and prephenate (amino-acids biosynthesis intermediate) as 

precursors 84, these metabolites are interconnected with the central metabolism 

limiting the opportunities for the metabolic network to optimize growth while 

producing CDA. Whereas, ACT, RED, and CPK have a major building block in common 

acetyl-CoA (or other related metabolites like malonyl-CoA), which is a central 

metabolite connected to multiple pathways (Figure 3.9), that offers more solutions to 

optimize biomass while keeping optimal production until it reaches a breakpoint. The 

difference in trade-off between biomass and antibiotic production and biomass seem 

to come from the difference in carbon sources available. In the minimal media, the 

model has fewer opportunities to compensate the strong use of acetyl-CoA and 

cofactors for antibiotic production and biomass.  

A detailed robustness analysis was carried out to understand the impact of 

environmental conditions (i.e., different media) on antibiotic production. Different 

tests were carried out: estimation of the sensitivity of the network optimal state to 

production of ACT and nutrients uptake, as well as estimating the shadow prices of the 

nutrients uptakes. The shadow price represents the amount by which the objective 

function (i.e., biomass) would increase if adding a given nutrient 85. In S. coelicolor in 
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minimal media, the optimal growth to ACT production decreases linearly at the same 

time as phosphate and NH4 available, while O2 and glucose already reached the 

maximum constraint possible (Figure 3.12a). The shadow prices for the nutrients O2, 

glucose, NH4, and Pi do not show significant values compared to the biomass values  

(Figure 3.12b). So, the biomass trend is likely associated to the direct competition for 

internal resources between ACT and biomass as a single nutrient does not limit directly 

the growth here. See Electronic Supplementary – Additional File 8 for the robustness 

analysis of biomass against nutrient exchange fluxes in S. coelicolor WT or with PFL, 

and S. lividans WT or without PFL, with production of ACT, CDA, CPK, or RED. In the 

complex media, the glucose and Pi reached the maximum uptake constrained 

constantly, whereas other nutrients like amino acids reached it later (Figure 3.13a). 

The amino acids reach a maximum uptake one after another until the last one, 

isoleucine, where the biomass starts dropping (Figure 3.13a). The shadow prices of the 

different nutrients gives some insight into the way the constraints explain the 

robustness analysis of the biomass against the ACT production as these showed the 

nutrients responsible for limiting growth and ACT production. During the plateau 

phase where biomass to antibiotic is maintained to the optimal value, the only 

significant shadow price is for Pi (Figure 3.13b). So, the Pi uptake constraints are 

responsible for blocking biomass production to this level. The shadow values for 

glucose, histidine, proline, and O2 once the biomass drops, while Pi shadow value is 

null (Figure 3.13b). This means that the biomass drop is triggered by a lack of new 

carbon sources available to maintain biomass and production of ACT, and at this stage 

more phosphate would not increase biomass to antibiotics at this point. The NH4 

shadow values are null confirming that the amino acids are used for their carbon, not 
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Phase ACT Biomass Pi Glucose O2 NH4

I 0 29.8994 0 -2.56E-03 -0.007927 0

II 10 25.8496 0 0 -0.007927 0

III 30 17.7170 0 0 -8.54E-03 0

IV 50 8.7921 0 0 -0.0116 0

V 66.8 0.0496 0 -0.0033 -0.0132 0

a) 

b) 

Figure 3.12: The effects of varying Actinorhodin production on the ability of the 

S. coelicolor WT metabolic network to support growth in minimal media.  

The uptake rates of the different nutrients were unconstrained (using default 1000 

mmol/gDW/h), only the ACT production was constrained.  

a) The biomass production (gDW/h) as a function of ACT production, phosphate, NH4, glucose, 

and O2 uptake. The glucose (red dashed line) and O2 (grey line) uptake reaches the maximum 

allowed on the whole curve, while the Pi and NH4 uptake decrease linearly with the biomass 

decrease associated to the production of ACT.  

b) Table of the shadow prices for the main nutrients of the media at different phase on the 

biomass to ACT production. The shadow cost of Pi and NH4 are null as these two nutrients do 

not result in growth decrease. Glucose shadow price is negligible, and the O2 shadow price is 

low compared to the biomass.  
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Phase ACT Biomass Pi Glucose O2 HIS PRO ILE NH4

I 0 0.0142 -1.339 4.44E-16 0 0 0 0 0

II 1 0.0142 -1.339 -1.04E-14 0 -1.55E-15 0 4.44E-16 0

III 3 0.0142 -1.339 -2.47E-16 5.27E-16 1.73E-16 1.48E-16 0 0

IV 3.95 0.0061 0.000 -0.0628 -0.0389 -0.0400 -0.0165 0 0

V 3.959 0.0003 0.000 -0.0628 -0.0389 -0.0400 -0.0165 0 0

Figure 3.13: The effects of varying Actinorhodin production on the ability of the 

S. coelicolor WT metabolic network to support growth in complex media.  

The model was constrained with the complex media R2YE nutrient uptakes, with ACT 

production constrained at different levels and the biomass optimized.  

a) The biomass production (gDW/h) as a function of ACT production. The dashed coloured 

lines corresponds to the amino-acids reaching their maximum uptake at different points of 

ACT production, isoleucine is the last one before the biomass drops.  

b) Table of the shadow prices for some key nutrients consumed by the model. The NH4 

shadow price is null, so nitrogen is not limiting here. The phosphate shadow price is high 

during the plateau phase (at 0.014 gDW/h of biomass); this means that the phosphate is 

limiting higher growth there. Glucose, O2, histidine, and proline have null or near null 

shadow prices, so the carbon or oxygen sources are not limiting the growth in the plateau 

phase. However, when the biomass drops the shadow price for the phosphate becomes null, 

while the shadow prices for the glucose, histidine, proline, and O2 increased. So if more 

glucose, or histidine, or proline, or O2 constraints allowed higher uptakes the biomass could 

reach higher values. Isoleucine has null shadow prices, so despite being the last amino-acids 

uptake before the biomass drop, more of it would not increase biomass. 

 

a) 

b) 
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for the nitrogen. However, this pattern of growth to antibiotics is not observed in CDA, 

where the competition is direct between biomass and CDA production. In this case, the 

phosphate and glucose are limiting, despite the amino acids in the media the growth 

decrease linearly while CDA production increases. The asparagine, threonine, 

tryptophan, and tyrosine consumption increase linearly with CDA production, as these 

are CDA precursors (see CDA heat maps in Electronic Supplementary – Additional File 

8). See Electronic Supplementary – Additional File 8 for the other robustness analysis of 

biomass against nutrient exchange fluxes in S. coelicolor WT or with PFL, and S. lividans 

WT or without PFL, producing ACT, CDA, CPK, or RED. 

 Production may be optimized without major growth loss (until a critical point) 

for compounds such as ACT, CPK, and RED using a limited number of major building 

blocks such as acetyl-CoA. The differences in antibiotics production between 

S. coelicolor and S. lividans may not come from a difference in their metabolic network, 

but are likely caused by regulatory phenomena in the central metabolism and the 

biosynthetic pathways. This analysis helped to identify the potential impact of PFL 

expression on antibiotics production in S. coelicolor and in S. lividans. So far, it appears 

that PFL has never been studied in Streptomyces species and this enzyme has the 

potential to redirect fluxes toward acetyl-CoA for antibiotics production. Interestingly 

the presence or absence of PFL seems to mainly impact production under minimal 

media conditions, an effect that is still not fully understood. It is possible that PFL 

makes glucose use by glycolysis more efficient, which is the main carbon source in 

minimal media. In contrast, the effect of the PFL could be less dramatic in the presence 

of diverse carbon sources as other alternate pathways can generate precursors for 

biomass and antibiotics production. 
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Figure 3.14: Summary metabolic map of metabolic differences and targets of 
interests to further study and increase antibiotics production in S. coelicolor and 
S. lividans 

The main differences between S. coelicolor and S. lividans metabolism were summarized 

based on metabolic predictions, proteomics data analysis, and literature. A few metabolic 

or genetic targets are highlighted, which could help to understand the primary metabolic 

mechanisms impacting antibiotics differences, and potentially help increase antibiotics 

production. 
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The expression of PFL in S. coelicolor could increase the production of antibiotics 

by increasing fluxes toward acetyl-CoA while saving up carbons, compared to the PDH 

that generates CO2 as a waste product. However, the PFL is only expressed under 

anaerobic conditions, and repressed by the presence of O2 under the control of an 

activating enzyme 86,87. A PFL from E. coli (pflB) was expressed with its activator (pflA) 

in a Saccharomyces cerevisiae strain lacking a PDH, this required the expression of 

electron donors used by the activating enzyme as cofactor (flavodoxin and ferredoxin) 

to get an active PFL in aerobic conditions 88. Thus, the in-vivo expression of PFL under 

aerobic condition could work also in Streptomyces and potentially increase antibiotics 

production. 

3.6 Conclusion 

The aim of this study was to identify major metabolic differences associated 

with the difference in antibiotic production between two very closely related 

Streptomyces strains, S. coelicolor and S. lividans. The metabolic models of both strains 

were used to predict the major metabolic differences, apply an integrative proteomics 

data analysis, and explore the production capabilities of four different antibiotics (ACT, 

RED, CPK, and CDA). The models predicted some major metabolic differences and 

helped as frameworks to analyse from a formal metabolic perspective experimental 

studies done on the two Streptomyces strains. Finally, this study helped to have an 

overview of the metabolism of both strains and its impact on antibiotics production, as 

well as highlighting potential targets to increase antibiotics production. A 

comprehensive metabolic map was built by including predictions, proteomics data 
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analysis, metabolites exchanges, and potential targets to increase antibiotics 

production (Figure 3.14). 

 A new genome-scale metabolic model for S. lividans TK24, iSLT1240, was 

reconstructed from a S. coelicolor model, iAA1259, that we previously reconstructed 33. 

Initially, the comparison of the metabolic genes between the two models revealed 

some interesting features in the S. lividans model. This included the absence of the 

glyoxylate pathway that plays a key role in central metabolism, and the addition of a 

pyruvate formate lyase involved in anaerobic central carbon metabolism. Then, the 

S. lividans model was validated using multiple experimental datasets. The two models 

were constrained, and the metabolic predictions were analysed and compared to 

experimental data 11. Under these conditions, the S. coelicolor model predicted a 

higher amino-acid catabolism, a partially higher gluconeogenesis, and higher oxidative 

phosphorylation. In contrast, the S. lividans model predicted a higher glycolysis and a 

higher fatty acid biosynthesis (due to higher TAG storage). These predictions were also 

broadly validated by proteomics data acquired under similar conditions 20. Some of the 

metabolic differences predicted seem to come from the differences in oxidative 

balance between the two strains; the oxidative phosphorylation was partially 

constrained using the experimental data as the S. coelicolor model has a higher 

ATP/ADP ratio than S. lividans. Overall, S. lividans has a more glycolytic metabolism, a 

lower oxidative phosphorylation, and a higher triacylglycerol and polyphosphate 

storage (Figure 3.14). In contrast, S. coelicolor has a strong amino acid catabolism 

replenishing the TCA cycle, a higher oxidative phosphorylation, and acetyl-CoA 

consumption derived toward ACT rather than the TCA cycle (Figure 3.14). The high 

oxidative phosphorylation is critical to the redox balance, which modifies the cofactor 
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and electron transporter balance (i.e., ATP, NADH, NADPH, FADH2, FMNH, etc), 

impacting the entire metabolism including the production of secondary metabolites. 

The differences in oxidative balance multiple reactions fluxes involved in the primary 

metabolism, as these reactions consume or regenerate reduced cofactors directly 

involved in oxidative phosphorylation. Afterwards, the proteomics data was used to 

constrain the model, although the proteomics data did not show significant correlation 

with the individual flux predictions because of the experimental conditions 

(measurements done in hypoxic conditions at stationary growth phase). The 

proteomics information was finally used for an integrative analysis in the models. The 

proteomics integration showed that some proteins switched off differently between 

the two strains; these proteins were associated to the oxidative respiration adaptation 

to hypoxic conditions, and to the metabolic switch occurring at stationary phase with 

enzymes involved in membrane lipids biosynthesis, cofactors and vitamins metabolism 

(e.g., adenosylcobalamine, cobalamine). Following that, the antibiotics production 

capabilities were studied by predicting biomass and antibiotics production in different 

scenarios. Unexpectedly, under minimal conditions S. lividans was predicted as a 

better producer of all four antibiotics. However, this was largely caused by one enzyme 

only acquired by S. lividans, the pyruvate formate lyase, which is only used in the 

central metabolism under anaerobic condition. However, when growing in a complex 

media with multiple carbon sources and constrained with experimental fluxes, 

S. coelicolor was a slightly better producer than S. lividans. The absence of major 

differences under these conditions suggests that major changes in antibiotic 

production are not caused by the differences of topology between the two strains’ 

metabolic network (i.e., the absence / presence of enzyme-coding genes). Concretely, 



169 

 

the fluxes are not directed toward antibiotic production in S. coelicolor compared to 

S. lividans because of the fundamental structure of the metabolic network. However, 

under minimal conditions that are frequently used in the lab, this would be different, 

as the network is less “robust” under these condition, and only a few main pathways 

seem to influence the production of antibiotics. The two strains have very similar 

metabolic networks but in different states, as indicated by the differences in nutrient 

uptake and antibiotic production. 

To further understand the impact of the metabolic differences between 

S. coelicolor and S. lividans, it could help to express some key genes in S. lividans or 

delete them in S. coelicolor. For instance, the gene SCO0046 involved in fatty-acid 

biosynthesis and regenerate holo-ACP used to for antibiotics biosynthesis. The gene 

SCO0548 encodes a malonyl-ACP decarboxylase absent from S. lividans genome, which 

may force the use of acetyl-CoA instead of malonyl-ACP to generate fatty acids 

precursors. Finally the most interesting ones are SCO0982 and SCO983 missing from 

S. lividans genome, leading to a loss of the glyoxylate bypass metabolism. This is likely 

to have a major impact on the oxidative balance of the strain, and modify the 

accumulation of TCA cycle intermediates that is known to change the carbon control of 

primary metabolism and impact antibiotic production 17,89. The reintroduction of these 

primary metabolic enzymes lost in S. lividans could help trigger antibiotic production 

and help understand their role for secondary metabolism. Understanding the primary 

metabolism and particularly the central metabolism would help to rationally engineer 

overproduction of antibiotics in S. coelicolor. 

Finally, the prediction results were combined with available data to have an 

overview of the two strains metabolism and identify potential targets to increase 
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antibiotics production. Many genes deleted or overexpressed to increase antibiotics 

production were in central metabolism. For example, the reduction of fluxes in 

glycolysis and the pentose phosphate pathway by gene knockout increased 

actinorhodin production. Or the overexpression of some enzymes such as the acetyl-

CoA carboxylase or the malic enzymes increased fluxes toward antibiotics production. 

These were summarized in a comprehensive metabolic map of the two strains’ major 

metabolic differences and potential targets to increase antibiotic production 

(Figure 3.14). Discovering new enzymes to introduce in the antibiotic producers could 

increase production by creating new pathways toward antibiotic precursors. An 

example would be the pyruvate formate lyase, which could modify central metabolism 

by redirecting fluxes to produce more acetyl-CoA. Other metabolic differences, such as 

the glyoxylate pathway absent from S. lividans, should be studied to understand their 

effect on antibiotic production, for example, by expressing it in S. lividans to observe if 

antibiotic production is recovered or by knocking it out in S. coelicolor. Finally, the 

modelling method used here did not take into account any regulatory phenomena, but 

with appropriate experimental constraints it helped to assess the metabolic state of 

the strains and provided a metabolic framework to analyse omics data. In the future, 

the development of genome-scale metabolic models that include enzyme and 

regulatory constraints – as have already been presented for E. coli 79,90 and 

S. cerevisiae 80 – would help to understand and engineer Streptomyces metabolism 

with greater confidence. For example, the high oxidative phosphorylation in 

S. coelicolor results in higher levels of ATP, ATP has an inhibitory effect on glucose 

import and degradation through glycolysis, which could explain the lower glycolytic 

metabolism in S. coelicolor. In S. lividans, glucose has a repressing effect on the 
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production of ACT, which was relieved when glycerol was used as the sole carbon 

source 91. As glucose is easier to degrade the strain probably prefers to use a glycolytic 

metabolism, which does not increase oxidative phosphorylation, consequently ACT 

production was not triggered.  As these regulatory phenomena have a major impact on 

the primary and secondary metabolism, it makes it more complex to predict the effect 

of mutations without taking into account these regulations. For example, the deletion 

of the malic enzymes in S. coelicolor led to lower actinorhodin production, which was 

due to a lower expression of the transcriptional activator ActII-ORF4 that controls the 

ACT gene cluster 17. If a BGC is under control of its native promoters or repressors, 

modifying the primary metabolism will probably impact the expression of the BGC 

rather than the production of the compound itself. Another example, if one wants to 

decrease storage of biomolecules (e.g., TAG or glycogen) to increase precursors 

availability for secondary metabolites biosynthesis, one would need to take in account 

the interplay between central carbon metabolism and morphological development 13. 

So, increasing degradation when antibiotic production starts could avoid interfering 

with morphological differentiation such as sporulation 92,93.  

In the end, the carbon central metabolism has a major influence on antibiotic 

production, so it is critical to understand it, and learn to control it to push fluxes 

toward specific secondary metabolites. In particular, with polyketides biosynthesis that 

largely uses acetyl-CoA and malonyl-CoA as building blocks. However, the control of 

the central metabolism is a major challenge, as it is highly interconnected to the rest of 

metabolism with many regulation points; these characteristics confer to biological 

systems their adaptability to diverse environment and conditions 94,95. The rewiring of 

central metabolism has been a major focus in synthetic biology and metabolic 
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engineering, as this is the metabolic platform distributing resources for carbon-based 

molecules of organisms 96,97. For Streptomyces, the complexity of the metabolic 

connection between primary and secondary metabolism comes from the evolutionary 

constraints associated with the stress of surviving in a competitive and changing 

environment such as soils. So, to enable rational engineering of this species it is 

important to understand the interplay between nutritive stress, metabolic regulation 

of central metabolism, and secondary metabolism. A promising path is the study of the 

influence of overflow in central metabolism (linked to oxidative phosphorylation) on 

secondary metabolites production. Thus, one of the main theories for the evolutionary 

origin of secondary metabolism considers that overflow metabolism led to the 

evolution of secondary pathways to keep the metabolism “ticking-over”, then these 

compounds were selected because their functions gave an advantage (e.g., 

competitive advantage of antibiotics, or nutritive advantage with chelators) 98. This 

would explain many of the metabolic regulations and functions found in the soil-

dwelling bacteria. For instance, when nitrogen or phosphate sources are limiting, to 

keep generating cofactors for respiration, the organism could use the rich and diverse 

carbon sources available in the soil, which could lead to an overflow in carbon 

metabolism; this would be kept running by diverting fluxes toward secondary 

pathways. Consequently, it would make sense that the secondary metabolic pathways 

are under direct or indirect regulation by central carbon metabolism, as it would 

switch fluxes toward these compounds when needed. Then, the pathways with 

compounds giving an evolutionary advantage were selected. For example, antibiotics 

giving a competitive advantage, chelators capturing trace elements, or compounds 

with electron transport abilities needed for the oxidative phosphorylation. Under 
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starvation the organism could not generate enough primary electron transporters 

(e.g., menaquinones), so it would need alternative electron transporter, selecting 

secondary metabolites with that function (e.g., antibiotics and electron transporters). 

This could explain the correlation between oxidative phosphorylation and ACT 

production between the two strains11, as ACT in addition to being an antibiotic 71 can 

catalyse oxidative reactions 99 and is a redox active compound impacting oxidative 

regulation in S. coelicolor 100. As previously pointed out, CDA and RED are likely to also 

have functions related to energy dissipation 11. In conclusion, understanding these 

complex metabolic interplays and the origins of secondary metabolism would help to 

move away from brute force methods (e.g., random mutagenesis) to a rational 

engineering of natural products overproduction, and discovery.  
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3.8 Supplementary Files 

 

 

 

 

SCOIDs Name Feature

SCO0046 FMN-dependent NADH-azoreductase (EC 1.7.1.6)
Chromosome 

extremities

SCO0982 Isocitrate lyase (EC 4.1.3.1)

SCO0983 Malate synthase (EC 2.3.3.9)

SCO0985
5-methyltetrahydropteroyltriglutamate--homocysteine 

methyltransferase (EC 2.1.1.14)

SCO4950 Respiratory nitrate reductase γ chain (EC 1.7.99.4)

SCO4949 Respiratory nitrate reductase D chain (EC 1.7.99.4)

SCO4948 Respiratory nitrate reductase β chain (EC 1.7.99.4)

SCO4947 Respiratory nitrate reductase α chain (EC 1.7.99.4)

SCO6834 Thioredoxin reductase (EC 1.8.1.9)

SCO6819 3-phosphoshikimate 1-carboxyvinyltransferase (EC 2.5.1.19)

SCO6818
2,3-bisphosphoglycerate-independent phosphoglycerate 

mutase (EC 5.4.2.12)

SCO6816
Phosphate ABC transporter, periplasmic phosphate-binding 

protein PstS (TC 3.A.1.7.1)

SCO6815
Phosphate transport system permease protein PstA (TC 

3.A.1.7.1)

SCO6814 ABC transporter, ATP-binding protein

Same 

genomic 

island

Largest 

genomic 

island

Common 

protein 

complex

Supplementary Table 3.1: Metabolic genes lost by S. lividans that are located in the 

lost genomic islands that are present in S. coelicolor 

These genes were deleted from the S. lividans model and correspond to genes that are 

located in the lost genomic islands identified in S. lividans by previous comparative genomic 

studies (Jayapal et al., 2007).  Multiple genes are involved in important primary and central 

metabolic functions.  

Interestingly, the phosphate transport operon (SCO6814-16) is duplicated in S. coelicolor. 

Also, there are 4 nitrate reductases operons in S. coelicolor while S. lividans only have 3 

operons (SCO4947-50 is absent). Theses operons duplications in S. coelicolor suggests a 

higher oxidative metabolism in this strain compared to S. lividans, as S. coelicolor may 

consume more phosphate for oxidative phosphorylation and have a more active nitrate 

oxidative respiration. 
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Supplementary Figure 3.1: Predicted biomass validation and set of constraints used for the 
metabolic models of S. coelicolor and S. lividans  
Top box: The model predictions with the iAA1259 model for S. coelicolor (red line) are in 

agreement with the observed biomass (red dots), however the last 4 points seems to be off 

which could be due to some metabolic shift happening in late stationary that is not predicted by 

the model. The model predictions with the iSLT1240 model for S. lividans (blue line) are in good 

agreement with the experimental data (blue dots). The times of proteomics sampling are 

indicated by dashed lines at 36, 48, and 72H. 

Bottom left box: S. lividans uptakes and export fluxes used to constrain the iSLT1240 model  

Bottom right box: S. coelicolor uptakes and export fluxes used to constrain the iAA1259 model 

These constraints includes glucose (red), phosphate (orange), proline (blue), NO2 (brown), NH3 

(purple), and NO3 (green). The fluxes of consumption of glucose is higher in S. lividans (glycolytic 

metabolism), while the consumption of proline is higher in S. coelicolor (high amino-acid 

catabolism). Also it is interesting to note that the NO3 fluxes are constant in S. lividans while 

they are lower in S. coelicolor and is exported in late stationary. Finally, the phophate depletion 

happens at the same moment in both strains.  
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Supplementary Figure 3.2: Heatmap of predicted fluxes compared to proteomics data 

The fluxes for S. coelicolor and S. lividans were predicted over the three time points (36, 48, 

and 72h) and compared to the proteomics data corresponding to the enzyme catalysing the 

reaction. In the flux heatmap the green colour corresponds to relative high predicted flux and 

red correspond to relative low predicted flux between the two strains, black correspond to 

zero flux. In the proteomics heatmap red corresponds to the high protein concentration and 

dark blue corresponds to the low protein concentration over the two strains for one protein. 

The fold of changes of proteins and of fluxes between S. coelicolor and S. lividans were 

compared (high value in red and low value in dark blue). As it can be seen the fold of changes 

of predicted fluxes does not systematically match the fold of change of proteomics between 

the two strains. This suggests that the models are not able to accurately predict the metabolic 

difference between the two strains under these conditions. However, here the data available 

is in hypoxic conditions, at stationary phase, in a complex media, which is very complex to 

model due to the multiple regulations phenomenon occurring under these conditions as well 

as some uncertainty in the constraints. 
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3.8.1 Supplementary Document 1: Pyruvate formate lyase genomic analysis in 

S. lividans 

There is some evidences that the Pyruvate Formate Lyase (and its activating enzyme) are 

present in S. lividans (1326 and TK24) but not in S. coelicolor, this is only based on a 

bioinformatics analysis. 

Pyruvate Formate Lyase: 

SSPG_07391 in S. lividans TK24 / SLI_0149 in S. lividans 1326  

http://bacteria.ensembl.org/Streptomyces_lividans_1326/Gene/Summary?db=core;g=SLI_014

9;r=chromosome:143590-144108;t=EOY44868 

No hit in S. coelicolor genome with OrthoDB and Blast (using E. coli and Mycobacterium 

tuberculosis PFL amino-acid sequence). No enzymes were identified with high similarity to 

known PFL as in SLIV.  

Supplementary Figure 3.3: Pearson correlation between the predicted fluxes 
and the proteomics data 

The Pearson correlation distribution of the predicted fluxes across time (36, 48, and 72h) 

to proteomics data shows that the overall correlation is poor. Here the mean correlation 

is r = -0.05. This confirms that the predictions under these conditions are not correlating 

with the experimental data, which suggests that the correlations are not sufficiently 

accurate. The colour code is a colour gradient from low correlations in red to high 

correlations in green.  

http://bacteria.ensembl.org/Streptomyces_lividans_1326/Gene/Summary?db=core;g=SLI_0149;r=chromosome:143590-144108;t=EOY44868
http://bacteria.ensembl.org/Streptomyces_lividans_1326/Gene/Summary?db=core;g=SLI_0149;r=chromosome:143590-144108;t=EOY44868
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NCBI Blast Result:  

BLASTP 2.8.0+ Reference: Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, 

and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids 

Res. 25:3389-3402. Reference for compositional score matrix adjustment: Stephen F. Altschul, John C. Wootton, E. Michael Gertz, 

Richa Agarwala, Aleksandr Morgulis, Alejandro A. Schaffer, and Yi-Kuo Yu (2005) "Protein database searches using compositionally 

adjusted substitution matrices", FEBS J. 272:5101-5109. RID: UH921S9C015 Database: All non-redundant GenBank CDS 

translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS projects 170,547,179 sequences; 

62,282,543,095 total letters Query= tr|A0A0E0U6Q8|A0A0E0U6Q8_ECOLX Pyruvate formate-lyase OS=Escherichia coli UMNK88 

OX=696406 GN=UMNK88_4789 PE=4 SV=1 Length=765 No significant similarity found. 

Database: All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS 

projects Posted date: Sep 21, 2018 10:53 PM Number of letters in database: 2,749,877 Number of sequences in database: 8,449 

Lambda K H 0.320 0.136 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 

1 Number of Sequences: 8449 Number of Hits to DB: 11 Number of extensions: 0 Number of successful extensions: 0 Number of 

sequences better than 100: 0 Number of HSP's better than 100 without gapping: 0 Number of HSP's gapped: 0 Number of HSP's 

successfully gapped: 0 Length of query: 765 Length of database: 2749877 Length adjustment: 96 Effective length of query: 669 

Effective length of database: 1938773 Effective search space: 1297039137 Effective search space used: 1297039137 T: 21 A: 40 X1: 

16 (7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 37 (18.9 bits) S2: 50 (23.9 bits) ka-blk-alpha gapped: 1.9 ka-blk-alpha ungapped: 

0.7916 ka-blk-alpha_v gapped: 42.6028 ka-blk-alpha_v ungapped: 4.96466 ka-blk-sigma gapped: 43.6362 

Pyruvate Formate Lyase activating enzyme: 

SSPG_07392 in S. lividans TK24 / SLI_0147 in S. lividans 1326 

http://bacteria.ensembl.org/Streptomyces_lividans_1326/Gene/Summary?db=core;g=SLI_014

7;r=chromosome:142832-143344;t=EOY44866 

Once again no hit in S. coelicolor genome with OrthoDB and Blast (using E. coli and 

Mycobacterium tuberculosis PFL activating enzyme amino-acid sequence) 

NCBI Blast Result:  

BLASTP 2.8.0+ Reference: Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, 

and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids 

Res. 25:3389-3402. Reference for compositional score matrix adjustment: Stephen F. Altschul, John C. Wootton, E. Michael Gertz, 

Richa Agarwala, Aleksandr Morgulis, Alejandro A. Schaffer, and Yi-Kuo Yu (2005) "Protein database searches using compositionally 

adjusted substitution matrices", FEBS J. 272:5101-5109. RID: UH8B1HNA015 Database: All non-redundant GenBank CDS 

translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS projects 170,547,179 sequences; 

62,282,543,095 total letters Query= sp|P0A9N4|PFLA_ECOLI Pyruvate formate-lyase 1-activating enzyme OS=Escherichia coli 

(strain K12) OX=83333 GN=pflA PE=1 SV=2 Length=246 No significant similarity found. 

Database: All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS 

projects Posted date: Sep 21, 2018 10:53 PM Number of letters in database: 2,749,877 Number of sequences in database: 8,449 

Lambda K H 0.322 0.140 0.440 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 

1 Number of Sequences: 8449 Number of Hits to DB: 19 Number of extensions: 0 Number of successful extensions: 0 Number of 

sequences better than 100: 0 Number of HSP's better than 100 without gapping: 0 Number of HSP's gapped: 0 Number of HSP's 

successfully gapped: 0 Length of query: 246 Length of database: 2749877 Length adjustment: 86 Effective length of query: 160 

Effective length of database: 2023263 Effective search space: 323722080 Effective search space used: 323722080 T: 21 A: 40 X1: 

16 (7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 33 (17.3 bits) S2: 45 (21.9 bits) ka-blk-alpha gapped: 1.9 ka-blk-alpha ungapped: 

0.7916 ka-blk-alpha_v gapped: 42.6028 ka-blk-alpha_v ungapped: 4.96466 ka-blk-sigma gapped: 43.6362 

  

http://bacteria.ensembl.org/Streptomyces_lividans_1326/Gene/Summary?db=core;g=SLI_0147;r=chromosome:142832-143344;t=EOY44866
http://bacteria.ensembl.org/Streptomyces_lividans_1326/Gene/Summary?db=core;g=SLI_0147;r=chromosome:142832-143344;t=EOY44866
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Supplementary Figure 3.4: Optimal antibiotics production versus optimal growth in 
S. coelicolor and in S. lividans 

The optimal growth rates to antibiotics production were predicted with ACT (blue), CDA 

(green), CPK (orange), and RED (red). This was compared with S. coelicolor (SCO WT - solid 

lines) and S. lividans (SLIV WT - dashed lines) metabolic models. In every cases growth is in 

direct competition with the antibiotics production, when antibiotics production increases the 

optimal growth reduces.  

However, it was odd to see that production was predicted as significantly higher in S. lividans, 

which has been further investigated as described in the main manuscript. 
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Supplementary Figure 3.5: Predicted exchange reactions in both models with 
optimized Actinorhodin production 

Here the Actinorhodin production was optimized while growth rate was fixed at 0.1 gDW/h. 

The exchange reactions between the model and the media are represented here. The models 

for S. coelicolor and for S. lividans had respectively PFL added or deleted. This impacted the 

antibiotic production and the overall metabolism, which changed the metabolic exchanges. The 

exchange fluxes higher under WT conditions are in green while the ones lower are in red. 
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Supplementary Figure 3.6: Predicted exchange reactions in both models with 
optimized Calcium-Dependent Antibiotic (CDA) production 

Here the CDA production was optimized while growth rate was fixed at 0.1 gDW/h. The 

exchange reactions between the model and the media are represented here. The models for 

S. coelicolor and for S. lividans had respectively PFL added or deleted. This impacted the 

antibiotic production and the overall metabolism, which changed the metabolic exchanges. 

The exchange fluxes higher under WT conditions are in green while the ones lower are in red. 



188 
 

 

Supplementary Figure 3.7: Predicted exchange reactions in both models with 
optimized Coelimycin P1 (CPK) production 

Here the CPK production was optimized while growth rate was fixed at 0.1 gDW/h. The 

exchange reactions between the model and the media are represented here. The models for 

S. coelicolor and for S. lividans had respectively PFL added or deleted. This impacted the 

antibiotic production and the overall metabolism, which changed the metabolic exchanges. The 

exchange fluxes higher under WT conditions are in green while the ones lower are in red. 
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Supplementary Figure 3.8: Predicted exchange reactions in both models with 
optimized Undecylprodigiosin (RED) production 

Here the RED production was optimized while growth rate was fixed at 0.1 gDW/h. The 

exchange reactions between the model and the media are represented here. The models for 

S. coelicolor and for S. lividans had respectively PFL added or deleted. This impacted the 

antibiotic production and the overall metabolism, which changed the metabolic exchanges. The 

exchange fluxes higher under WT conditions are in green while the ones lower are in red. 
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Supplementary Figure 3.9: Optimal antibiotics production versus optimal growth in 
S. coelicolor and in S. lividans, with or without pyruvate formate lyase in a complex 
media  

The optimal growth rates to antibiotics production were predicted with ACT (blue), CDA 

(green), CPK (orange), and RED (red) for S. coelicolor and black for S. lividans. This was 

compared with S. coelicolor (SCO WT - solid lines), S. coelicolor + PFL (SCO + PFL - dotdash 

lines), S. lividans (SLIV WT - dashed lines), and S.lividans - PFL (SLIV - PFL - dotted lines) 

metabolic models. The models were constrained for a growth in in Pi-limited R2YE media using 

experimental uptakes (Esnault et al., 2017). Here, the presence of PFL does not seem to 

significantly impact neither antibiotic production nor growth (slightly with ACT). Only CDA 

shows a direct competition between growth and CDA production, with very similar values for 

both. For ACT, RED, and CPK the biomass does not seem to be in competition with production 

until a “breaking” point where it dramatically decreases. This shows the optimum point under 

these conditions where the strains can sustain optimal growth and antibiotic production (for 

ACT, RED, & CPK). This graph is the full version of the one with a truncated x-axis to focus on 

the differences (Figure 3.11). 
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4.1 Preface 

The work carried out here was an in silico study, so all the experimental data used and 

discussed were from published or publicly available data. This is a manuscript in 

preparation for submission. 

4.2 Abstract 

Actinobacteria are found in many different ecological niches from soil to marine 

ecosystems. This makes Actinobacteria a very diverse phylum phylogenetically and 

metabolically, with many species of high biotechnological or clinical importance (e.g., 

Streptomyces, Corynebacterium, or Mycobacterium). A major resource of these 

organisms is their diverse secondary metabolism; particularly in the genus 

Streptomyces where most of the antibiotics on market were discovered. To learn more 

about the metabolism of Actinobacteria and Streptomyces species, a comparative 

metabolic model reconstruction pipeline was built to reconstruct metabolic models of 

mailto:rainer.breitling@manchester.ac.uk
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these microbes. The metabolic models of more than 50 different Actinobacteria of 

biotechnological interest, with a particular emphasis on Streptomyces species, were 

used to compare their predicted metabolic capabilities. The metabolic distances 

between these strains were analysed and compared to their phylogenetic distances. 

The quality of the metabolic models was estimated using key quality control criteria. 

Finally, the metabolic diversity of all strains was studied in terms of their predicted 

ability to grow in different media conditions, and differences in their core and 

accessory metabolism were identified.  

4.3 Introduction  

Actinobacteria is a phylum of Gram-positive bacteria; these microbes are found in 

different ecological niches, including soil-dwelling bacteria(e.g., Streptomyces, 

Salinispora species), marine bacteria (e.g., Micromonospora, Micrococcus species), and 

the microbiota of a diverse range of animals (e.g., Corynebacterium, Mycobacterium, 

Nocardia, Frankia species) 1. These organisms are important in biotechnological, 

industrial, and clinical contexts 2–4. For example, the Streptomyces species are 

responsible for the discovery of 2/3 of the antimicrobials on the market 5,6, the 

Corynebacterium species play a major role in the industrial production of amino-acids 

and enzymes 3,7, and Mycobacterium species are responsible for major human diseases 

such as tuberculosis 8. The adaptation to different ecological niches makes the 

Actinobacteria a very diverse phylum phylogenetically 9, genetically 10,11, 

physiologically 1,12, metabolically 13 and morphologically 1. Their adaptations to 

different environments lead to a diverse metabolism with the ability to grow using 

many different nutrients (e.g., polysaccharides or nucleosides) and produce diverse 
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secondary metabolites (e.g., polyketide antibiotics or non-ribosomal peptide 

siderophores). This makes the Actinobacteria an attractive phylum for the discovery 

and production of secondary metabolites with industrial interest. In this phylum, a 

large number of secondary metabolite biosynthetic gene clusters remain undiscovered 

14. The production of secondary metabolites is directly linked to primary metabolism; 

primary metabolism influences regulation of secondary metabolism, and provides the 

necessary precursors. Primary metabolism has been studied and engineered to 

increase or trigger secondary metabolites production in Actinobacteria 15–17. Many of 

the Actinobacteria are used as chassis strains for production of valuable metabolites; 

such as Streptomyces coelicolor for antibiotics production 18, or Corynebacterium 

glutamicum for amino acid and enzyme production 3. The host metabolism can 

become a limiting factor in target compound production, so choosing a chassis strain 

with a compatible metabolism for the target compound is critical. This approach 

buildup on previous studies that used metabolic modelling to help identify potential 

Actinomycetes chassis for secondary metabolites production 13,19. A metabolic 

comparison between the Actinobacteria strains used for bioproduction could help in 

the decision process to select the most suitable chassis strains for particular categories 

of compounds. 

However, there is a lack of experimental comparative studies of the global 

metabolism of these strains or of less studied parts of metabolism; for example, purine 

and pyrimidine catabolism, or alternate carbon source metabolism. In this context, the 

application of computational modelling methods to the Actinobacteria metabolism 

opens opportunities to study their global metabolic capacities and identify important 

metabolic differences between strains or identify potential targets to increase 
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secondary metabolites production. One of the main computational methods used by 

researchers to study the metabolism of microorganisms is constraint-based genome-

scale metabolic modelling (GSMM), which enables to quickly reconstruct organism-

specific metabolic networks from their genome sequence 20. Many Actinobacteria of 

biotechnological interest have their full genome sequenced, so many researchers 

reconstructed multiple high-quality metabolic models to study the metabolism or 

identify gene targets to increase metabolic production. The models reconstructed 

includes models for Streptomyces coelicolor 21–24, Streptomyces hygroscopicus 25,26, 

Streptomyces clavuligerus 27,28, Streptomyces ambofaciens 29, Streptomyces 

leeuwenhoeki 30, Mycobacterium tuberculosis 31–33, and Corynebacterium glutamicum 

34,35. Many of these metabolic models present major problems of standardisation (e.g., 

non-standard models annotations, or absence of databases annotation, models not 

shared in a standard format) to allow systematic comparison. Furthermore, for many 

strains of biotechnological interest we do not have a metabolic model; for example, 

Streptomyces albus is widely used by the research community as a host for 

heterologous secondary metabolites production, but no metabolic model is available. 

So, to study the biotechnologically interesting Actinobacteria metabolism, it is 

necessary to reconstruct more metabolic models. However, building high-quality 

metabolic models requires manual curation, improvements and validation based on 

experimental data, so reconstructing a large number of strains for comparative studies 

is more challenging. Many automated model reconstruction tools have been published 

36–40, but these often generate low quality models, and manual steps are still necessary 

to identify key biochemical processes not represented in databases. Comparative 

model reconstruction has become an alternative to generate better quality models 
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from high-quality metabolic models. This has proved useful to identify metabolic 

differences of interest between organisms 41,42. However, these tools are not always 

simple to use, as they require installing many dependencies that can be obsolete if the 

tool was published a few years ago.  

Here, a comparative metabolic model reconstruction pipeline was built to 

reconstruct metabolic models of Actinobacteria on the basis of the S. coelicolor 

metabolic model iAA1259 21 previously reconstructed and validated (Chapter I). The 

advantage of this pipeline is that it is entirely based on COBRApy 43 and basic 

maintained Python and R dependencies, making it easy and fast to use. Metabolic 

models were reconstructed and compared for more than 50 different Actinobacteria 

with a biotechnological or research interest, to help identify major metabolic 

differences between these strains. The metabolic distance between the strains was 

analysed, and the quality of the reconstructed models was verified. The core and 

accessory metabolism of the Actinobacteria were determined and studied, as well as 

their active core metabolism. Finally, the metabolic differences between the strains 

were further investigated by predicting and comparing their growth ability in different 

media conditions. 

4.4 Methods & Material 

4.4.1 Reconstruction of the phylogenetic tree 

The phylogenetic tree was reconstructed using the whole proteome of the strains in 

the “Phylogenetic Tree” tool in Pathosystems Resource Integration Center (PATRIC) 44 

based on BLAST and FastTree 45,46. The genomes of Escherichia coli DH5α, 

Pseudomonas fluorescens SRM1, Micromonospora echinospora ATCC15837, 
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Mycobacterium tuberculosis, and Corynebacterium glutamicum R were used to root 

the tree. The tree visualisation and branch distribution were modified in iTOL 47.  

4.4.2 Streptomyces strains metabolic model reconstruction 

The strains were reconstructed from the reference metabolic model iAA1259 21 using a 

tailored pipeline for comparative metabolic model reconstruction in R and Python. In 

this pipeline (Figure 4.1), the first step is the protein comparison of the reference 

strain S. coelicolor to the predicted proteins from the genome of the strain to 

reconstruct. The protein comparison is carried out in the PATRIC tool using the 

“Proteome Comparison” tool, running bidirectional BLASTP to compare genomes 

based on the protein sequence 44. The output file in .csv is then processed in an R 

script to filter the genes matching. The genes kept are encoding proteins with >40% 

protein sequence identity between the two strains, and if the sequence identity is 

>25% and <40% but it has a sequence coverage >95% the sequence is kept 48,49. The 

genes filtered are matched to the reference model (StrepDB IDs for S. coelicolor), 

which is then used to match the reactions from the template model iAA1259 in R. The 

genes missing are used to delete the reactions respecting the gene-product-

relationship. When a gene missing was essential for a reaction, the reaction was 

deleted from the template model, if the gene is not essential only the gene was 

deleted from the model. The modifications on the model were done using the 

COBRAPy package in Python 43. This constitutes a draft v0, the genes and reactions 

deleted were investigated to identify the genes and reactions that are essential for the 

model to predict growth. If an essential reaction was deleted it was reintroduced in the 

model v1 with a gene annotation “ESSENTIAL_GENE”. For the strain in reconstruction, 
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the genes identified in Uniprot as encoding potential metabolic proteins were used to 

identify metabolic reactions to add to the model v1 50. The reactions were queried 

from the BiGG database based on the Uniprot and BioCyc IDs associated with the 

proteins 50–52. The reactions queried from the universal BiGG model 51 were added in 

the draft model using COBRAPy 43. If the model does not grow, it requires gapfilling 53. 

If the model grows, then it goes on to further testing and manual curation. The model 

Figure 4.1: Comparative reconstruction pipeline developed for the Actinobacteria 
genome-scale metabolic models 

The reconstruction pipeline starts with a file from the PATRIC platform for the comparison of 

the predicted proteome of the target organism with the reference model (i.e. iAA1259). This 

file is used to do a “gene match” generating a genes list where the homologous protein 

sequences corresponding to a given gene are selected based on a threshold of proteins 

sequence identity and coverage. The target organism genes list is used to query the reactions 

from the reference model corresponding to these genes. The reactions with no genes match 

(respecting the gene-reaction-product relationship) are deleted from the reference model, 

hence generating a draft model V0. This model V0 is used to add new reactions matching 

enzymatic genes identified in the target organism from UniProt and BioCyc database. At the 

same time the model is tested to verify if reactions essential for the model were deleted. If 

this model V1 grows it can go on further testing or manual curation. If the model does not 

grow, it is gapfilled by reintroducing any essential reaction delete, which was detected in the 

previous step. 
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capability to grow is tested in a minimal medium using FBA. The whole pipeline built in 

R and Python is available in the Jupyter notebook (Electronic Supplementary 4.1). 

4.4.3 Distance and comparison methods for the metabolic models 

The Euler diagram was built using the “VennDiagram” library in R 54. A three-set Euler 

diagram was preferred to a Venn diagram, as the S. coelicolor area has no discrete 

elements it is totally included in the Streptomycetaceae area. To avoid overestimating 

the core-metabolism size, the reactions data used did not include the exchanges, 

biomass, and ATPM reactions; as these are functional reactions for the model and kept 

automatically.  

 The matrix of metabolic model reaction comparisons was built by creating a list 

of all the reaction IDs (pan-metabolism) and matching the model reactions to the list. 

The strain-matched lists of reactions were ranked from left column (with the iAA1259 

model) to right column based on the sum of reactions added to and deleted from the 

reference model. The metabolic models comparison using the bubble plots was 

performed using the “Plotly” library in R 55. The metabolic models size (total reactions 

number) is represented by the bubble size, the colours of the bubbles correspond to 

the ratio of reactions number change (reference reactions number minus reactions 

deleted plus reactions added) to the model size (total reactions in the model). The 

pairwise distances were calculated by subtraction of the number of reactions different 

(between two strains) to the number of reactions in common divided by the total 

number of reactions in the strains. The distance tree was built using the “dendextend” 

library in R 56. First, the matrix of pairwise reactions matching between the models is 

converted to 1 when a reaction is present and 0 when absent. Then, from this, a 
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dissimilarity matrix was built with the Euclidian distance between the models. The 

models are then clustered using agglomerative hierarchical clustering (Ward’s 

method), which is plotted as a dendrogram. 

4.4.4 Metabolic models quality control 

The published metabolic models for S. hygroscopicus 26, S. clavuligerus 27, 

C. glutamicum 35, and M. tuberculosis 31 were compared to the models reconstructed 

here for the corresponding strains and the iAA1259 model. The C. glutamicum, 

M. tuberculosis, and S. hygroscopicus metabolic models reactions were compared 

based on their IDs compliant with the BiGG standards 51. The S. clavuligerus model was 

built not using BiGG IDs but many reactions were associated to one or multiple Enzyme 

Commission numbers (EC numbers), so the EC numbers were used to query the BiGG 

IDs from the BiGG database. However, this method also means that reactions without 

EC numbers associated were not taken into account. In the comparison, exchange 

reactions (starting by EX_ or DM_) were ignored, as well as the reactions for biomass, 

ATP maintenance, and the reactions for ACT, RED, CDA, and CPK (only produced by 

S. coelicolor), to reduce the matrix size and avoid overestimations/underestimations of 

similarities between these strains.  

 The number of blocked reactions were identified using the COBRApy 43 function 

“find_blocked_reactions” using flux variability analysis to identify reactions unable to 

carry flux. The exchange reactions were unconstrained to allow fluxes to in and avoid 

these reactions becoming bottlenecks. The essential reactions gapfilled come from the 

outputs of the reconstruction pipeline, the number of essential reactions are then 

calculated for each strain.  
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4.4.5 Comparative analysis of the metabolic models 

The metabolic models pathways categories are based on the subsystem annotations of 

the individual reactions from the iAA1259 metabolic model 21 and the BiGG database 

metabolic models 51.  

 The growth capability of the different strains was tested by switching-off all the 

carbon sources import from the media, then switching on the exchange reactions one 

by one and optimising the growth with FBA in COBRApy 43. The growth outputs values 

of the different metabolic models using different carbon sources were clustered using 

hierarchical clustering in R, then plotted as a heatmap. The cases where no model 

grew were ignored from the analysis. 

 The metabolic models core active fluxes were predicted by constraining all the 

models with the universal media that contain all the essential metabolites for the 

strains chosen. This is a similar universal media to the one used by Alam et al, to 

reconstruct and compare Actinomycetes 13. The universal media composition and 

corresponding exchange reactions are available in the Supplementary Table 4.1. The 

metabolic fluxes are then predicted for all the metabolic models using the universal 

minimal media constraints with parsimonious FBA (pFBA) in COBRApy 43. A pan-

metabolic network was built by adding all the reactions present in all the models to the 

S. coelicolor network. These metabolic fluxes are compared across all the models to 

identify the fluxes universally active or only active in one group or another. The 

reactions involved in the core active metabolism and the active metabolism in 45 to 50 

strains were mapped on the pan-metabolic network using Cytoscape 57. 
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4.5 Results & Discussion 

Multiple Actinobacteria strains of biotechnological importance were selected to 

reconstruct their genome-scale metabolic model using the reconstruction pipeline 

created for this study (described in Methods). A total of 49 Actinobacteria metabolic 

models were reconstructed (Table 4.1); with a majority coming from the family 

Streptomycetaceae (31 strains, including 29 Streptomyces strains), and 18 other 

Actinobacteria strains. In the model comparisons the S. coelicolor (from Chapter I) and 

the Streptomyces lividans (from Chapter II) metabolic models were included. All of the 

Actinobacteria metabolic models described here were reconstructed on the basis of 

the S. coelicolor metabolic model iAA1259 21 (as described in Methods).  

The phylogenetic tree of the different strains (inferred on the basis of the genome 

sequences) has two major strains clusters, the Streptomycetaceae and the other 

Actinobacteria (Figure 4.2). As expected the strains closest to S. coelicolor are 

Streptomyces species, with Kitasatospora griseola (also called Streptomyces 

griseolosporeus) between the Streptomyces group and the other Actinobacteria. The 

other Actinobacteria are very diverse, so these are not all phylogenetically close to 

each other. However, there are two clear clusters associated with the Mycobacterium 

and Corynebacterium strains. This phylogenetic tree helps to visualise the genetic 

distance between the strains and will be useful to compare with the metabolic 

distance based on the metabolic models.  
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Streptomycetaceae Other Actinobacteria 
Kitasatospora griseola 
(Streptomyces 
griseolosporeus) 

Streptomyces 
coelicolor (reference) 

Corynebacterium casei 

Streptomyces 
alboflavus 

Streptomyces formicae Corynebacterium glutamicum 

Streptomyces 
bingchenggensis 

Streptomyces fradiae Corynebacterium phocae 

Streptomyces 
griseoflavus 

Streptomyces 
griseoruber 

Frankia alni 

Streptomyces 
hygroscopicus 

Streptomyces griseus Micromonospora 
echinaurantiaca 

Streptomyces ipomoeae Streptomyces 
lavendulae 

Micromonospora 
rhizosphaerae 

Streptomyces lydicus Streptomyces 
leeuwenhoekii 

Mycobacterium agri 

Streptomyces peucetius Streptomyces lividans Mycobacterium celatum 
Streptomyces scabies Streptomyces 

rapamycinicus 
Mycobacterium fragae 

Streptomyces 
afghaniensis 

Streptomyces rimosus Mycobacterium smegmatis 

Streptomyces 
albidoflavus 

Streptomyces rimosus 
ATCC 10970 

Mycobacterium tuberculosis 

Streptomyces albus Streptomyces roseus Nocardia brasiliensis 
Streptomyces 
ambofaciens 

Streptomyces 
venezuelae 

Planobispora rosea 

Streptomyces 
antibioticus 

Streptomyces 
violaceoruber 

Pseudonocardia autotrophica 

Streptomyces 
avermitilis 

Streptomyces 
xiamenensis 

Rhodococcus sp. 

Streptomyces 
clavuligerus 

Streptomycetaceae 
bacterium  MP113-05 

Saccharopolyspora 
antimicrobica   
Saccharopolyspora flava   
Thermobispora bispora 

Table 4.1: Reconstructed Actinobacteria strains 
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4.5.1 Metabolic and phylogenetic distances 

As the GSMMs are reconstructed from a reference model (i.e., iAA1259) the 

strains with the most deleted and added reactions should be the most distant strains 

phylogenetically from S. coelicolor (i.e., Corynebacterium). Here, the 5 strains with the 

most reactions deleted and added are the three Corynebacterium strains and two of 

the Mycobacterium strains (Figure 4.3), which are part of the most phylogenetically 

distant strains from S. coelicolor (Figure 4.2). The opposite is also true; the closest 

strains to S. coelicolor are all Streptomycetaceae strains (Figure 4.3). There is an overall 

trend where the other Actinobacteria have more reactions deleted than the 

Streptomycetaceae family (Figure 4.3). The strain model with the least modification 

compared to the reference model iAA1259 is the Streptomyces lividans model; this 

strain is genetically very close to S. coelicolor and was manually curated and 

reconstructed on the basis of the iAA1259 model (see Chapter II). The overall trend 

shows that Streptomycetaceae models necessitate less modification of the reference 

model than other Actinobacteria (Figure 4.3). An interactive version of Figure 4.3 is 

available in Electronic Supplementary File 4.2 - Interactive Plot 1 to explore this plot in 

detail. Otherwise, there are some interesting individual cases, the three 

Corynebacterium strains are the smallest models with the most reactions deleted 

(Figure 4.3), while the Mycobacterium smegmatis and the Mycobacterium tuberculosis 

strains have the models with the most reactions added (Figure 4.3). The 

Saccharopolyspora strains are metabolically very close to the Streptomycetaceae 

group, despite being distant phylogenetically, while the S. clavuligerus strain is very 

close to the other Actinobacteria (Electronic Supplementary File 4.2 - Plot 2).  
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To further investigate the metabolic distances between the strains, the pairwise 

distance between all the metabolic models was calculated (Figure 4.4). It confirmed 

that the most distant strains are the M. smegmatis, M. tuberculosis, and the three 

Corynebacterium strains (Figure 4.4). Groups of similar strains seemed to form clusters 

of similar models, such as the Corynebacterium group. This was further investigated by 

generating a distance tree (Figure 4.5) using clustering algorithms based on the 

Figure 4.2: Phylogenetic Tree of the Actinobacteria strains studied here 

The phylogenetic tree of the 51 Actinobacteria selected for a genome-scale metabolic model 

reconstruction was based on the full-genome sequence of the strains. Two main clusters are 

formed one for the Streptomycetaceae (in red) and one for the other Actinobacteria (light 

blue). In the other Actinobacteria there are two main clusters one of Corynebacterium strains 

(in grey) and one of Mycobacterium (in dark blue). The Escherichia coli BL21 strain was used to 

anchor the tree. 
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reactions in the models (see Methods). Some unexpected clustering happened, such as 

the Streptomycetaceae bacterium MP113-05 that clusters with other Actinobacteria 

like Micromonospora strains instead of other Streptomycetaceae strains (Figure 4.5). 

Also, all the Corynebacterium strains clustered in the same branches, but not the 

Mycobacterium strains that are divided into two clusters (Figure 4.5). This suggests 

that M. smegmatis and M. tuberculosis are metabolically more different from the 

Mycobacterium agri, Mycobacterium celatum, and Mycobacterium fragae than from 

Figure 4.3: Plot of reactions added versus reactions deleted in the individual 
metabolic models  

The metabolic models with the most reactions added and deleted are the metabolic models the 

furthest from the metabolic model of reference (SCO) at the origin of the coordinate plane. The 

Streptomycetacea group of strain is the closest group to S. coelicolor model (green dashed 

circle), while the furthest strains are other Actinobacteria (blue dashed circle). The circle size 

represents the total number of reactions in the model, and the colour correspond to the ratio 

of reactions change (reference reactions number minus reactions deleted plus reactions added) 

to the model size (total reactions in the model).   
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the Corynebacterium strains (Figure 4.5). This is in opposition to the phylogenetic 

distance analysis, where the Mycobacterium strains are all clustered together 

(Figure 4.2). However, these strains are the ones that had the most reactions added 

and/or deleted compared to the reference strain, so if these strains are too distant 

Figure 4.4: Heatmap of pairwise distance matrix of the metabolic models 
reconstructed based on the metabolic reactions 

The distance between each pair of the strains specific metabolic models is represented by a 

heatmap, with red representing the smallest distance values and blue the highest distance. 

The pairwise distance is calculated by subtraction of the number of reactions different 

(between two strains) from the number of reactions in common divided by the total number 

of reactions in the strains. The strains are ranked from the closest strain to S. coelicolor to the 

furthest. The group of Streptomycetacea is the group with the smallest distance between the 

models (red block).  
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phylogenetically from the S. coelicolor model, the comparative reconstruction pipeline 

might not allow to build good quality models.  

4.5.2 Quality control of the metabolic models 

The tree based on the metabolic models has – with a few exceptions (S. bacterium 

MP113-05, M. smegmatis, and M. tuberculosis) – an overall high similarity with the 

phylogenetic tree (Figure 4.2 and Figure 4.5). There are two major clusters, one for 

Streptomyces strains and one for the other Actinobacteria, with the strains most 

distant from S. coelicolor being Corynebacterium and Mycobacterium. However, in the 

details, there are some significant differences that might help to identify the limits of 

the reconstruction pipeline (Mycobacterium separated clusters) and identify some 

interesting metabolic differences (S. clavuligerus, or S. bacterium MP113-05). To define 

the limits of the pipeline capabilities and estimate the quality of the metabolic models 

reconstructed, the metabolic models were compared to published manually curated 

metabolic models. Many models were reconstructed for Actinobacteria strains, such as 

S. hygroscopicus 25,26, S. clavuligerus 27,28, S. ambofaciens 29, S. leeuwenhoeki 30, 

M. tuberculosis 31–33, or C. glutamicum 34,35. However, most of these models did not 

comply with BiGG 51 and/or MIRIAM standards 58, or the models were not shared by 

the authors, making them impossible or too complex to compare with the models 

reconstructed here. For example, many models had reactions and metabolites IDs 

based on in-house annotations which meant it would require the creation of a 

conversion table for each of the published models (this was only done for the 

S. clavuligerus model). Therefore, the comparison was mostly limited to models 

compliant with the BiGG standards, this included metabolic models for 
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S. hygroscopicus 26, C. glutamicum 35, and M. tuberculosis 31, as well as a converted 

model for S. clavuligerus 27 (see Supplementary Data 4.8.1). The comparison showed 

that the automatically reconstructed model for S. hygroscopicus had an overall 83% 

similarity with the manually curated and published model. The overall similarity was of 

24% between the reconstructed and the published C. glutamicum models, 22% for 

M. tuberculosis, and 17% (45% adjusted similarity) for the S. clavuligerus models. The 

comparison of metabolic models from different sources present major challenges 

because of the ambiguities in models annotations 58, and in the databases used such as 

the Enzyme Commission (EC) numbers that are also ambiguous 59.  The details of the 

Figure 4.5: Tree based on the distance between the metabolic models 

This tree represents the metabolic distance between the Actinobacteria strains studied here, 

which is comparable to the full-genome based phylogenetic tree (Figure 4.1). There are two 

major clusters, one corresponding to Streptomyces (red part) and one corresponding to the 

other Actinobacteria (blue part of the tree). However, the other Actinobacteria part of the 

tree shows two separate clusters one containing two of the Mycobacterium strains and all the 

Corynebacterium strains (light blue branches) and the rest of the strains (dark blue branches). 

The S. coelicolor strain metabolic model used as a reference is in the dashed box. The tree is 

build based on the pairwise distance between the different metabolic models.  
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analyses to reduce these ambiguities in the comparison are discussed in detail in the 

Supplementary Data 4.8.1. In summary, after filtering of ambiguities the reconstructed 

model for S. hygroscopicus model covered 94% of the published metabolic model, 74% 

for S. clavuligerus, 75% for C. glutamicum, and 47% for M. tuberculosis. However, the 

reconstructed model for C. glutamicum was almost two times bigger than the 

published models, because the numbers of reactions were overestimated in this 

organism due to the reintroduction of essential reactions described in the section 

below. Otherwise, the models for M. tuberculosis and C. glutamicum correspond to 

phylogenetically more distant strains from the reference strain, so the pipeline may 

not reconstruct with sufficient precision these models. This indicates that the quality is 

lower for more distant models such as M. tuberculosis and C. glutamicum. While for 

closer strains like S. hygroscopicus seems to reach a high level of similarity with high-

quality manually curated models 26.  

 A good indicator of quality for genome-scale metabolic models is a low number 

of blocked reactions 60. If metabolic reactions cannot carry any flux, this means the 

reactions are associated with dead-end metabolites, creating an unbalanced pathway 

due to a blocked compound 61. This is important to take into account during 

simulations as it can create false-negative for gene deletion or media testing, as the 

metabolic pathway cannot carry flux. This is corrected in manual curation steps by 

filling these reactions, if there are supporting information or if these are essential for 

growth 60. So, the number of blocked reactions is a relevant quality control for 

automated metabolic models reconstruction. Here, the blocked reactions in the 

metabolic models were identified using flux variable analysis 60–62. The numbers of 

reactions blocked in the metabolic models were overall higher in the most distant 
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strains from S. coelicolor (Figure 4.6a). The strains with the lowest ratio of blocked 

reactions are the manually curated metabolic model of S. lividans. While the two 

models with the highest number of blocked reactions are M. smegmatis and 

M. tuberculosis, which are the two models that have an unexpected clustering 

(Figure 4.5). Also, the Streptomycetaceae model that seems to have the lowest quality 

is the S. clavuligerus model (Figure 4.6a and Electronic Supplementary 4.2- Interactive 

Plot 3). This is overall in accordance with the expectations that the more distant the 

strain is the lower the quality of the model will be, when using the automated 

comparative reconstruction pipeline.  

Another useful indicator of quality in this reconstruction pipeline is the number 

of essential reactions “gapfilled”, so reactions reintroduced in the model to ensure the 

model predicts growth. As in the reconstruction process reactions essential for growth 

that were deleted from the reference model are re-introduced in the model to ensure 

the model predicts growth. Lower quality models are more likely to have more 

essential reactions “gapfilled” (i.e., reactions reintroduced in the model). In the 

reconstruction pipeline, some reactions can be reintroduced in the reconstructed 

metabolic model if these are essential to predict growth. However, the organism might 

have an alternative pathway leading to the same essential biomass precursor, or this 

precursor might not be essential. Hence, biomass composition is critical to the 

metabolic model accuracy 20,60, and the pipeline does not modify the biomass as it 

requires experimental data to define it. As a consequence, the lower the quality of the 

model is, the more essential reactions are gapfilled. As previously observed, the most 

distant strains are the ones with the lowest quality and the most essential reactions 

gapfilled (Figure 4.6b). The strains with almost no essential reaction gapfilled are the 
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two closest strains phylogenetically to S. coelicolor; the manually curated model 

S. lividans (0 gapfilled) and the automatically reconstructed model for S. violaceoruber 

(1 gapfilled). In contrast, the strains with the most essential reactions gapfilled were 

the three most distant strains phylogenetically from S. coelicolor, the 3 

Corynebacterium strains (Figure 4.6b and Electronic Supplementary 4.2- Interactive 

Plot 4). An important criterion to consider here is also the size of the genome that is 

also influencing the model size (Supplementary Figure 4.1). The trend shows that the 

smaller the genome, the smaller the model is, then the more likely essential reactions 

are deleted and gapfilled. This was previously observed with another automated 

reconstruction for Actinomycetes models 13. Corynebacterium strains have the smallest 

genomes with the smallest models. However, the M. smegmatis and M. tuberculosis 

also have smaller genomes but bigger models than expected. These models seem to be 

the ones of lowest quality due to their distance to the reference metabolic model. This 

is likely due to the biomass reactions of the models that are based on S. coelicolor 

biomass, representing biomass accurately in metabolic models is critical for prediction 

accuracy and is known to be challenging 63. The more distant models are very likely to 

represent a different physiology (e.g., different membrane lipids content) to the 

reference strain, so these are more likely to have a different biomass reaction. Hence, 

to reconstruct models for strains more distant phylogenetically from the reference 

model it would require a more thorough readjustment of the biomass. 

In the application and down-stream comparative analysis, it is important to 

take into account that the most distant models from the reference model (e.g., 

Mycobacterium and Corynebacterium) are probably not an accurate representation of 

these organisms’ metabolism. 
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a) 

b) 

Figure 4.6: Quality checks on the metabolic models  

a) Ratio of blocked reactions to the distance to the reference model. The blue line is the 

fitted linear equation to the data, it represents the general trend of the dataset. The 

Streptomycetacea are the closest strains (red dashed circled area) to the reference 

organism and the strains with the least number of blocked reactions. The outlier in the 

Streptomycetacea is the S. clavuligerus model.  

b) Number of essential reactions gapfilled to the distance to the reference model. The 

red line is the fitted linear equation to the data, it represents the general trend of the 

dataset. The Streptomycetacea are the closest strains (red dashed circled area) to the 

reference organism and the strains with the least number of essential reactions 

gapfilled. The 3 Corynebacterium strains model are the ones with the most gapfilled 

essential reactions. 

To enable identification of the individual models, these plots are available as interactive plots 

in Electronic Supplementary 2- Interactive Plot 3 & Interactive Plot 4. 
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4.5.3 Metabolic similarities and differences between the Actinobacteria strains 

The metabolic networks of the Actinobacteria strains selected have some 

reactions that are universally conserved between all strains, forming the core 

metabolism, while the reactions only present in some strains constitute the accessory 

metabolism. The combination of the core and accessory metabolism creates the entire 

set of metabolic reactions of all the metabolic networks called the pan-metabolism. 

The core metabolism of these Actinobacteria represents about 63% of the pan-

metabolism with 1870 reactions conserved against 2968 pan-metabolism reactions 

(Figure 4.7). The S. coelicolor strain does not possess any unique reactions compared 

to other Streptomycetaceae strains, but the Streptomycetaceae strains have 136 

unique reactions compared to other Actinobacteria. The Actinobacteria have 245 

unique reactions (Figure 4.7). There are 31 Streptomycetaceae and 18 other 

Actinobacteria; however, the number of unique reactions is about 45% higher in other 

Actinobacteria. This suggests that there might be a higher diversity of reactions across 

the other Actinobacteria than in the Streptomycetaceae group. This is probably due to 

the more homogenous group of Streptomycetaceae (with 29 Streptomyces spp.) 

whereas the other Actinobacteria include a mix of different genera such as 

Mycobacteria, Corynebacterium, and Micromonospora.  

The core and accessory metabolism are visualised in a matrix representing the 

reactions added and deleted from the reference metabolic model (iAA1259) 

(Figure 4.8). There are some reactions conserved in many strains but not all, with 422 

reactions (14% of the pan-metabolism) conserved in more than 45 strains, with many 

mostly absent from Corynebacterium strains (Figure 4.8).  
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The comparison of the metabolic models aims to identify major metabolic 

differences between the Actinobacteria strains studied. The main metabolic processes 

found in the metabolic models core and accessory metabolism are the cell envelope 

and fatty-acids biosynthesis, and the amino-acid metabolism (Figure 4.9). Despite a 

high conservation of these pathways as many are universally conserved, there is still a 

high diversity as new reactions are acquired by different strains. 

This is not the case for highly conserved metabolic pathways but with a lower presence 

in accessory metabolisms, such as the cofactor and prosthetic group biosynthesis, 

central metabolism, and tRNA charging (Figure 4.9). Cofactor metabolism and tRNA 

Figure 4.7: Euler diagram of the metabolic reactions overlapping S. coelicolor, 
Streptomyces species, and the other Actinobacteria.  

The Euler diagram delimitates the number of reactions (1870) shared between all the strains 

(in blue inside the dashed black line), this represents the core metabolism of the 

Actinobacteria reconstructed. Streptomyces coelicolor does not present any unique reaction, 

but the Streptomyces species have 136 unique reactions, and the other Actinobacteria have 

245 unique reactions. That forms a pan-metabolism of 2968 reaction for the 51 strains 

compared.  
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Figure 4.8: Comparison of the metabolic models based on the reactions conserved, 
added, or deleted from the reference model 

The metabolic models’ reactions were aligned with the models ordered from left closest to 

the reference strain S. coelicolor model to the most distant models on the right based on the 

number of reactions added + reactions deleted; the first column correspond to the 

S. coelicolor model. The green bands correspond to the reaction present in the model, the 

green bands below the black dashed line are reactions added in the model compared to the 

reference model. The black bands correspond to reactions absent from the model but 

present in other models, while the red bands correspond to reactions deleted from the 

reference model. The last heatmap column corresponds to the frequency at which a reaction 

is present in the models, with red for the highly frequent reactions and blue for the less 

frequent reactions. The reactions present in all the Actinobacteria models constitute the 

pan-metabolism for these strains, while the reactions not present in all the models 

constitute the accessory metabolism. The reactions conserved across all the strains forms 

the core metabolism of the Actinobacteria strains studied here. However, some of the 

reactions included in this visualisation and conserved are exchange reactions (including 

biomass and ATP maintenance) that are functional reactions for the model (to constrain the 

models) but do not represent metabolic functions (within dashed box). 
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charging were shown to be highly conserved across prokaryote species and to be 

essential for growth 64. Otherwise, the alternate carbon metabolisms and secondary 

metabolisms are the metabolic pathways with the highest diversity as these are mostly 

present in accessory metabolism (Figure 4.9). It was shown that secondary metabolism 

in Actinobacteria is highly diverse 14, but here the secondary metabolism size seems 

quite small. This is due to the metabolic databases used for the automated metabolic 

modelling reconstruction that do not contain many secondary metabolic pathways so 

these cannot be introduced automatically 65. The increase in alternate carbon 

metabolism in the accessory metabolism is likely due to the different adaptation of the 

strain to different nutrients (e.g., degradation of polysaccharides), as Actinobacteria 

have diverse ecological niches 15,66. 

  The metabolic adaptations of Actinobacteria to different ecological niches from 

soil to human microbiota lead to the ability to growth on different substrates. The 

metabolic models are able to grow on different sole carbon sources depending on the 

strains (Figure 4.10). There are two major groups once again corresponding to 

Streptomycetaceae and other Actinobacteria. The Streptomycetaceae have a clear 

capacity to grow with more diverse carbon-sources, from amino-acids to 

polysaccharides. Whereas other Actinobacteria are able to use fewer carbon sources 

(Figure 4.10). For example, the C. casei metabolic model can grow on only 5 substrates 

whereas S. coelicolor can grow on 134 reactions. This shows a major metabolic and 

phenotypic difference between Streptomyces species and other Actinobacteria with a 

capacity to grow with diverse carbon-sources. The importance of carbon sources has 

been repeatedly shown in the regulation of secondary metabolism in Streptomyces 

16,67–69. This capacity to grow on the different substrate is likely to originate from the 
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Streptomyces complex ecological niches (e.g., soil) with the need to compete for 

nutrients 15. However, there are some differences within the Streptomycetaceae 

group, with two groups, one with Streptomyces strains able to grow using more 

purines and pyrimidine compounds and another with strains unable to do so 

(Figure 4.10). Most of the Streptomycetaceae can grow using amino-acids, 

monosaccharides, and polysaccharides. At the same time, the predictions on media 

growth might give an insight into the quality of the models. The models unable to 

predict growth on more than 5 carbon sources are the models of the strains most 

distant phylogenetically from S. coelicolor. A possible cause is absent or incomplete 

alternative metabolic pathways in the models necessary to degrade carbon sources. 

This is complicated to test as most of the Actinobacteria do not have systematic 

Figure 4.9: Metabolic pathways distribution for the reactions involved in the core 
metabolism and in the accessory metabolism 

The share of reactions (in percent) per subsystems categories (i.e., metabolic pathways) are 

represented by different colours. The metabolic pathways come from the reference model 

(iAA1259) and the BiGG database models associated with these reactions.  The shares of 

reactions are determined for the universally conserved reactions metabolic models (i.e., core 

metabolism) and for the non-core reactions (i.e., accessory metabolism).  

This figure ignores the reactions with unassigned pathways; the figure with the unassigned 

pathways version is available in Supplementary Figure 2. 
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growth data on unique carbon sources. However, in the case of the more studied 

strains, C. glutamicum 35 and M. tuberculosis 32, these are frequently tested with 

multiple carbon sources and were shown to need multiple carbon sources. For 

example, M. tuberculosis requires glucose or glycerol supplementation to degrade any 

other carbon sources 32. If other Actinobacteria require multiple carbon sources to 

grow, this could also explain the inability to predict growth on unique carbon sources 

for other Actinobacteria models compared to Streptomyces (Figure 4.10) – in this case, 

the observed differences would not indicate a lack of model quality, but a real 

physiological difference. 

Between the two subgroups of Streptomycetaceae, one is more capable to 

grow on purines and pyrimidines (Figure 4.10). The metabolic models of these two 

groups have only 1 enzyme absent from all the strains unable to grow on these 

substrates; this is a phosphopentosemutase (PPM) involved in the purine and 

pyrimidine salvage pathway. The PPM is a phosphotransferase converting D-ribose 1-

phosphate to D-ribose 5-phosphate, and 2-deoxy-D-ribose 1-phosphate to 2-deoxy-D-

ribose 5-phosphate 70. The PPM connects the nucleotide salvage pathway to the 

central carbon metabolism independently from the pentose phosphate pathway 71. 

This enables the use of the ribose moiety in the nucleoside into the central 

metabolism. Mutant strains of Escherichia coli were not able to grow on purine and 

pyrimidines as substrates when the PPM enzymes were knocked out 72,73. The gene 

associated with the PPM enzymes in S. coelicolor (SCO7443) is the same gene encoding 

for the phosphoglucomutase. A study deleting the SCO7443 gene showed that it 

resulted in a decrease of actinorhodin production while an increase was expected as it 

was supposed to cut fluxes toward glycogen 17. The study did not take into account the 
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Figure 4.10: Growth capabilities of the different strains’ metabolic models 

The metabolic models were optimised using as sole carbon source the compounds listed on the 
right side of the heatmap, if a model grow it has a coloured cell, if it does not grow it is a white 
cell. The rows correspond to the metabolites used as a carbon source, while the columns 
represent the strains ability to grow on this source. If the strain is not predicted as growing the 
colour is white, then the colour goes from lowest growth rate in yellow to highest growth rate 
in red. The strains and metabolites are clustered by rows and columns using hierarchical 
clustering. The Streptomycetacea group clustered in two sub-groups highlighted with a red 
dashed box. 
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impact PPM activity of this enzyme that would impact the nucleosides catabolism. 

Hence, this enzyme is an interesting target to study in the Streptomyces species. The 

dynamics in the metabolism are not represented in the comparison of the metabolic 

models based on reactions, so the metabolic models were used to compare predicted 

metabolic fluxes (Figure 4.11). The models were optimised on a universal medium (see 

Methods). Based on the metabolic fluxes the strains clustered once again in 

Streptomycetaceae and other Actinobacteria (Supplementary Figure 4.3). There is also 

a clear core minimum active metabolism, where reactions carry fluxes in all the models 

under these minimal conditions. This core active metabolism was visualised within the 

pan-metabolic network of Actinobacteria under minimal conditions (Figure 4.11). This 

core minimum metabolism represents 46% of all the active reactions and 14% of the 

pan-metabolism. The main metabolic pathways represented in the core active 

metabolic reactions are cell envelope and lipid biosynthesis, cofactor and prosthetic 

group biosynthesis, and amino-acids metabolism (Supplementary Table 4.2).   

The core active metabolism is a representation of the minimal metabolism of 

the Actinobacteria, containing the key enzymes for metabolic processes necessary for 

growth under minimal conditions. The core active metabolism represents only a small 

portion of the pan-metabolism, the rest of the metabolism probably has an 

importance in the adaptation to other environmental conditions. This is confirmed in 

the strains capability to grow on different substrates (Figure 4.10) and the diversity of 

metabolic pathways found in the accessory metabolism (Figure 4.9 and Supplementary 

Table 4.2). The metabolic pathways mostly utilised in Streptomycetaceae but not in 

the other Actinobacteria are mostly involved in transport, and catabolism of amino-

acid and nucleotides, as well as oxidative metabolism (Supplementary Figure 4.4). The 
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other Actinobacteria are more actively using some of the cofactor and prosthetic 

group pathways involved with purines and pyrimidines metabolism, glycolysis and 

trehalose metabolism, as well as other amino-acids pathways (Supplementary Figure 

4.5). This is linked to the differences in nutrients usage capacities of the 

Streptomycetaceae compared to the other Actinobacteria (Figure 4.10). Interestingly, 

the Streptomycetaceae are using the nucleotide salvage pathway passing by the 

phosphoglucomutase to go into glycolysis, while the other Actinobacteria used glucose 

directly.  

Figure 4.11: Core metabolic model fluxes in the pan-metabolic network 

The pan-metabolic network is represented here, with the reactions as the edges and 

metabolites as nodes. The core metabolic fluxes (reactions carrying a flux in all the metabolic 

models in red here). The reactions carrying fluxes in at least 45 models (85% of the strains) are 

in orange. The reactions and metabolites involved in the accessory metabolism under these 

minimal conditions are in grey in the network. A representation of this network using an edge-

weighted layout is available in the Supplementary Figure 6. 
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4.6 Conclusion 

The development of an easy to use comparative metabolic model reconstruction 

pipeline helped to compare the metabolism of more than 50 Actinobacteria strains 

used in industrial and academic research but that were not previously studied using 

metabolic modelling. The quality of these models was checked using key quality 

controls for metabolic models (e.g., blocked reactions, or “gapfilled” reactions). The 

metabolic distance between the strains models were analysed in details, showing an 

overall similar metabolism between Streptomyces strains (and more widely 

Streptomycetaceae), but not with other Actinobacteria. These observations were 

reinforced by comparing their growth capabilities that showed the capability of 

Streptomycetaceae to grow in theory on more diverse nutrients (i.e., polysaccharides) 

than other Actinobacteria. Also, this highlighted two different groups in the 

Streptomycetaceae with only one of the two groups able to grow on purines and 

pyrimidine. Finally, the core and accessory metabolism of the Actinobacteria were 

determined, with a large core metabolic network (46% of the pan-metabolism) and a 

small active core metabolic network (14% of the pan-metabolism).  

These automatically reconstructed metabolic models can now be used as a 

base to easily reconstruct high-quality metabolic model; by manually curating the 

strain-specific modifications (e.g. introduce secondary metabolites pathways or modify 

biomass) and validating them with available data. These models can be used in the 

future to compare the production capabilities of different secondary metabolites in 

different Actinobacteria, to identify the best chassis strain for a given compound. 



224 
 

4.7 References 

(1)  Barka, E. A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.-P.; 
Clément, C.; Ouhdouch, Y.; van Wezel, G. P. Taxonomy, Physiology, and Natural 
Products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80 (1), 1 LP – 43. 

(2)  Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.-K. Pharmaceutically 
Active Secondary Metabolites of Marine Actinobacteria. Microbiol. Res. 2014, 
169 (4), 262–278. 

(3)  Tatsumi, N.; Inui, M. Corynebacterium Glutamicum: Biology and Biotechnology; 
Springer Science & Business Media, 2012; Vol. 23. 

(4)  Watve, M.; Tickoo, R.; Jog, M.; Bhole, B. How Many Antibiotics Are Produced by 
the Genus Streptomyces ? Arch. Microbiol. 2001, 176 (5), 386–390. 

(5)  Hopwood, D. A. Streptomyces in Nature and Medicine : The Antibiotic Makers; 
Oxford University Press, 2007. 

(6)  Watve, M. G.; Tickoo, R.; Jog, M. M.; Bhole, B. D. How Many Antibiotics Are 
Produced by the Genus Streptomyces? Arch. Microbiol. 2001, 176 (5), 386–390. 

(7)  Ikeda, M.; Nakagawa, S. The Corynebacterium Glutamicum Genome: Features 
and Impacts on Biotechnological Processes. Appl. Microbiol. Biotechnol. 2003, 
62 (2–3), 99–109. 

(8)  Gagneux, S.; Small, P. M. Global Phylogeography of Mycobacterium Tuberculosis 
and Implications for Tuberculosis Product Development. Lancet Infect. Dis. 2007, 
7 (5), 328–337. 

(9)  Verma, M.; Lal, D.; Kaur, J.; Saxena, A.; Kaur, J.; Anand, S.; Lal, R. Phylogenetic 
Analyses of Phylum Actinobacteria Based on Whole Genome Sequences. Res. 
Microbiol. 2013, 164 (7), 718–728. 

(10)  Doroghazi, J. R.; Metcalf, W. W. Comparative Genomics of Actinomycetes with a 
Focus on Natural Product Biosynthetic Genes. BMC Genomics 2013, 14 (1), 611. 

(11)  Kim, J.-N.; Kim, Y.; Jeong, Y.; Roe, J.-H.; Kim, B.-G.; Cho, B.-K. Comparative 
Genomics Reveals the Core and Accessory Genomes of <i>Streptomyces<\i> 
Species. J. Microbiol. Biotechnol. 2015, 25 (10), 1599–1605. 

(12)  Genilloud, O. Physiology of Actinobacteria. In Biology and Biotechnology of 
Actinobacteria; Springer International Publishing: Cham, 2017; pp 151–180. 

(13)  Alam, M. T.; Medema, M. H.; Takano, E.; Breitling, R. Comparative Genome‐scale 
Metabolic Modeling of Actinomycetes: The Topology of Essential Core 
Metabolism. FEBS Lett. 2011, 585 (14), 2389–2394. 

(14)  Cimermancic, P.; Medema, M. H.; Claesen, J.; Kurita, K.; Brown, L. C. W.; 
Mavrommatis, K.; Pati, A.; Godfrey, P. A.; Koehrsen, M.; Clardy, J. Insights into 
Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene 
Clusters. Cell 2014, 158 (2), 412–421. 

(15)  Hodgson, D. A. Primary Metabolism and Its Control in Streptomycetes: A Most 
Unusual Group of Bacteria. Adv. Microb. Physiol. 2000, 42, 47–238. 

(16)  Butler, M. J.; Bruheim, P.; Jovetic, S.; Marinelli, F.; Postma, P. W.; Bibb, M. J. 
Engineering of Primary Carbon Metabolism for Improved Antibiotic Production 
in Streptomyces Lividans. Appl. Environ. Microbiol. 2002, 68 (10), 4731 LP – 
4739. 

(17)  Ryu, Y.-G.; Butler, M. J.; Chater, K. F.; Lee, K. J. Engineering of Primary 
Carbohydrate Metabolism for Increased Production of Actinorhodin in 
Streptomyces Coelicolor. Appl. Environ. Microbiol. 2006, 72 (11), 7132–7139. 



225 
 

(18)  Gomez-Escribano, J. P.; Bibb, M. J. Heterologous Expression of Natural Product 
Biosynthetic Gene Clusters in Streptomyces Coelicolor: From Genome Mining to 
Manipulation of Biosynthetic Pathways. J. Ind. Microbiol. Biotechnol. 2014, 41 
(2), 425–431. 

(19)  Zakrzewski, P.; Medema, M. H.; Gevorgyan, A.; Kierzek, A. M.; Breitling, R.; 
Takano, E. MultiMetEval: Comparative and Multi-Objective Analysis of Genome-
Scale Metabolic Models. PLoS One 2012, 7 (12), e51511. 

(20)  Schellenberger, J.; Que, R.; Fleming, R. M. T.; Thiele, I.; Orth, J. D.; Feist, A. M.; 
Zielinski, D. C.; Bordbar, A.; Lewis, N. E.; Rahmanian, S.; et al. Quantitative 
Prediction of Cellular Metabolism with Constraint-Based Models: The COBRA 
Toolbox v2.0. Nat. Protoc. 2011, 6 (9), 1290–1307. 

(21)  Amara, A.; Takano, E.; Breitling, R. Development and Validation of an Updated 
Computational Model of Streptomyces Coelicolor Primary and Secondary 
Metabolism. BMC Genomics 2018, 19 (1), 519. 

(22)  Borodina, I.; Krabben, P.; Nielsen, J. Genome-Scale Analysis of Streptomyces 
Coelicolor A3(2) Metabolism. Genome Res. 2005, 15 (6), 820–829. 

(23)  Alam, M. T.; Merlo, M. E.; Hodgson, D. A.; Wellington, E. M. H.; Takano, E.; 
Breitling, R. Metabolic Modeling and Analysis of the Metabolic Switch in 
Streptomyces Coelicolor. BMC Genomics 2010, 11 (1), 1. 

(24)  Kim, M.; Yi, J. S.; Kim, J.; Kim, J. N.; Kim, M. W.; Kim, B. G. Reconstruction of a 
High-Quality Metabolic Model Enables the Identification of Gene 
Overexpression Targets for Enhanced Antibiotic Production in Streptomyces 
Coelicolor A3(2). Biotechnol. J. 2014, 9 (9), 1185–1194. 

(25)  Dang, L.; Liu, J.; Wang, C.; Liu, H.; Wen, J. Enhancement of Rapamycin 
Production by Metabolic Engineering in Streptomyces Hygroscopicus Based on 
Genome-Scale Metabolic Model. J. Ind. Microbiol. Biotechnol. 2017, 44 (2), 259–
270. 

(26)  Wang, J.; Wang, C.; Song, K.; Wen, J. Metabolic Network Model Guided 
Engineering Ethylmalonyl-CoA Pathway to Improve Ascomycin Production in 
Streptomyces Hygroscopicus Var. Ascomyceticus. Microb. Cell Fact. 2017, 16 (1), 
169. 

(27)  Toro, L.; Pinilla, L.; Avignone‑rossa, C.; Ríos‑estepa, R.; Avignone-Rossa, C.; Ríos-
Estepa, R. An Enhanced Genome-Scale Metabolic Reconstruction of 
Streptomyces Clavuligerus Identifies Novel Strain Improvement Strategies. 
Bioprocess Biosyst. Eng. No. 5. 

(28)  Medema, M. H.; Alam, M. T.; Heijne, W. H. M.; van den Berg, M. A.; Müller, U.; 
Trefzer, A.; Bovenberg, R. A. L.; Breitling, R.; Takano, E. Genome-Wide Gene 
Expression Changes in an Industrial Clavulanic Acid Overproduction Strain of 
Streptomyces Clavuligerus. Microb. Biotechnol. 2011, 4 (2), 300–305. 

(29)  Fondi, M.; Pinatel, E.; Talà, A.; Damiano, F.; Consolandi, C.; Mattorre, B.; Fico, D.; 
Testini, M.; De Benedetto, G. E.; Siculella, L.; et al. Time-Resolved 
Transcriptomics and Constraint-Based Modeling Identify System-Level Metabolic 
Features and Overexpression Targets to Increase Spiramycin Production in 
Streptomyces Ambofaciens. Front. Microbiol. 2017, 8, 835. 

(30)  Razmilic, V.; Castro, J. F.; Andrews, B.; Asenjo, J. A. Analysis of Metabolic 
Networks of Streptomyces Leeuwenhoekii C34 by Means of a Genome Scale 
Model: Prediction of Modifications That Enhance the Production of Specialized 



226 
 

Metabolites. Biotechnol. Bioeng. 2018, 115 (7), 1815–1828. 
(31)  Kavvas, E. S.; Seif, Y.; Yurkovich, J. T.; Norsigian, C.; Poudel, S.; Greenwald, W. 

W.; Ghatak, S.; Palsson, B. O.; Monk, J. M. Updated and Standardized Genome-
Scale Reconstruction of Mycobacterium Tuberculosis H37Rv, IEK1011, Simulates 
Flux States Indicative of Physiological Conditions. BMC Syst. Biol. 2018, 12 (1), 
25. 

(32)  Jamshidi, N.; Palsson, B. Ø. Investigating the Metabolic Capabilities of 
Mycobacterium Tuberculosis H37Rv Using the in Silico Strain INJ 661 and 
Proposing Alternative Drug Targets. BMC Syst. Biol. 2007, 1 (1), 26. 

(33)  Garay, C. D.; Dreyfuss, J. M.; Galagan, J. E. Metabolic Modeling Predicts 
Metabolite Changes in Mycobacterium Tuberculosis. BMC Syst. Biol. 2015, 9 (1), 
57. 

(34)  Kjeldsen, K. R.; Nielsen, J. In Silico Genome-Scale Reconstruction and Validation 
of the Corynebacterium Glutamicum Metabolic Network. Biotechnol. Bioeng. 
2009, 102 (2), 583–597. 

(35)  Zhang, Y.; Cai, J.; Shang, X.; Wang, B.; Liu, S.; Chai, X.; Tan, T.; Zhang, Y.; Wen, T. 
A New Genome-Scale Metabolic Model of Corynebacterium Glutamicum and Its 
Application. Biotechnol. Biofuels 2017, 10 (1), 169. 

(36)  Henry, C. S.; DeJongh, M.; Best, A. A.; Frybarger, P. M.; Linsay, B.; Stevens, R. L. 
High-Throughput Generation, Optimization and Analysis of Genome-Scale 
Metabolic Models. Nat. Biotechnol. 2010, 28 (9), 977–982. 

(37)  Devoid, S.; Overbeek, R.; DeJongh, M.; Vonstein, V.; Best, A. A.; Henry, C. 
Automated Genome Annotation and Metabolic Model Reconstruction in the 
SEED and Model SEED; Humana Press, Totowa, NJ, 2013; pp 17–45. 

(38)  Agren, R.; Liu, L.; Shoaie, S.; Vongsangnak, W.; Nookaew, I.; Nielsen, J. The 
RAVEN Toolbox and Its Use for Generating a Genome-Scale Metabolic Model for 
Penicillium Chrysogenum. PLoS Comput. Biol. 2013, 9 (3), e1002980. 

(39)  Faria, J. P.; Rocha, M.; Rocha, I.; Henry, C. S. Methods for Automated Genome-
Scale Metabolic Model Reconstruction. Biochem. Soc. Trans. 2018, 46 (4), 931–
936. 

(40)  Karlsen, E.; Schulz, C.; Almaas, E. Automated Generation of Genome-Scale 
Metabolic Draft Reconstructions Based on KEGG. BMC Bioinformatics 2018, 19 
(1), 467. 

(41)  Pitkänen, E.; Jouhten, P.; Hou, J.; Syed, M. F.; Blomberg, P.; Kludas, J.; Oja, M.; 
Holm, L.; Penttilä, M.; Rousu, J.; et al. Comparative Genome-Scale 
Reconstruction of Gapless Metabolic Networks for Present and Ancestral 
Species. PLoS Comput. Biol. 2014, 10 (2), e1003465. 

(42)  Lee, D.-S.; Burd, H.; Liu, J.; Almaas, E.; Wiest, O.; Barabási, A.-L.; Oltvai, Z. N.; 
Kapatral, V. Comparative Genome-Scale Metabolic Reconstruction and Flux 
Balance Analysis of Multiple Staphylococcus Aureus Genomes Identify Novel 
Antimicrobial Drug Targets. J. Bacteriol. 2009, 191 (12), 4015–4024. 

(43)  Ebrahim, A.; Lerman, J. A.; Palsson, B. Ø.; Hyduke, D. R. COBRApy: COnstraints-
Based Reconstruction and Analysis for Python. BMC Syst. Biol. 2013, 7 (1), 74. 

(44)  Wattam, A. R.; Abraham, D.; Dalay, O.; Disz, T. L.; Driscoll, T.; Gabbard, J. L.; 
Gillespie, J. J.; Gough, R.; Hix, D.; Kenyon, R.; et al. PATRIC, the Bacterial 
Bioinformatics Database and Analysis Resource. Nucleic Acids Res. 2014, 42 (D1), 
D581–D591. 



227 
 

(45)  Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J. Basic Local 
Alignment Search Tool. J. Mol. Biol. 1990, 215 (3), 403–410. 

(46)  Price, M. N.; Dehal, P. S.; Arkin, A. P. FastTree 2 – Approximately Maximum-
Likelihood Trees for Large Alignments. PLoS One 2010, 5 (3), e9490. 

(47)  Letunic, I.; Bork, P. Interactive Tree of Life (ITOL) v3: An Online Tool for the 
Display and Annotation of Phylogenetic and Other Trees. Nucleic Acids Res. 
2016, 44 (W1), W242–W245. 

(48)  Rost, B. Twilight Zone of Protein Sequence Alignments. Protein Eng. 1999, 12 (2), 
85–94. 

(49)  Pearson, W. R. An Introduction to Sequence Similarity (&quot;Homology&quot;) 
Searching. Curr. Protoc. Bioinforma. 2013, Chapter 3, Unit3.1. 

(50)  The UniProt Consortium. UniProt: A Hub for Protein Information. Nucleic Acids 
Res. 2015, 43 (D1), D204–D212. 

(51)  King, Z. A.; Lu, J.; Drager, A.; Miller, P.; Federowicz, S.; Lerman, J. A.; Ebrahim, A.; 
Palsson, B. Ø.; Lewis, N. E.; J., H. BiGG Models: A Platform for Integrating, 
Standardizing and Sharing Genome-Scale Models. Nucleic Acids Res. 2016, 44 
(D1), D515–D522. 

(52)  Caspi, R.; Billington, R.; Ferrer, L.; Foerster, H.; Fulcher, C. A.; Keseler, I. M.; 
Kothari, A.; Krummenacker, M.; Latendresse, M.; Mueller, L. A.; et al. The 
MetaCyc Database of Metabolic Pathways and Enzymes and the BioCyc 
Collection of Pathway/Genome Databases. Nucleic Acids Res. 2016, 44 (D1), 
D471–D480. 

(53)  Aurich, M. K.; Fleming, R. M. T.; Thiele, I. MetaboTools: A Comprehensive 
Toolbox for Analysis of Genome-Scale Metabolic Models. Front. Physiol. 2016, 7, 
327. 

(54)  Chen, H.; Boutros, P. C. VennDiagram: A Package for the Generation of Highly-
Customizable Venn and Euler Diagrams in R. BMC Bioinformatics 2011, 12 (1), 
35. 

(55)  Sievert, C.; Parmer, C.; Hocking, T.; Chamberlain, S.; Ram, K. Plotly: Create 
Interactive Web Graphics via’plotly. Js’. 2016. R Package Version 3.6. 0. 2018. 

(56)  Galili, T. Dendextend: An R Package for Visualizing, Adjusting and Comparing 
Trees of Hierarchical Clustering. Bioinformatics 2015, 31 (22), 3718–3720. 

(57)  Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.; Ramage, D.; Amin, 
N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for 
Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13 
(11), 2498–2504. 

(58)  Le Novere, N.; Finney, A.; Hucka, M.; Bhalla, U. S.; Campagne, F.; Collado-Vides, 
J.; Crampin, E. J.; Halstead, M.; Klipp, E.; Mendes, P.; et al. Minimum Information 
Requested in the Annotation of Biochemical Models (MIRIAM). Nat. Biotechnol. 
2005, 23 (12), 1509–1515. 

(59)  Green, M. L.; Karp, P. D. Genome Annotation Errors in Pathway Databases Due 
to Semantic Ambiguity in Partial EC Numbers. Nucleic Acids Res. 2005, 33 (13), 
4035–4039. 

(60)  Thiele, I.; Palsson, B. Ø. A Protocol for Generating a High-Quality Genome-Scale 
Metabolic Reconstruction. Nat. Protoc. 2010, 5 (1), 93–121. 

(61)  Satish Kumar, V.; Dasika, M. S.; Maranas, C. D. Optimization Based Automated 
Curation of Metabolic Reconstructions. BMC Bioinformatics 2007, 8 (1), 212. 



228 
 

(62)  Latendresse, M. Efficiently Gap-Filling Reaction Networks. BMC Bioinformatics 
2014, 15 (1), 225. 

(63)  Dikicioglu, D.; Kırdar, B.; Oliver, S. G. Biomass Composition: The “Elephant in the 
Room” of Metabolic Modelling. Metabolomics 2015, 11 (6), 1690–1701. 

(64)  Xavier, J. C.; Patil, K. R.; Rocha, I. Metabolic Models and Gene Essentiality Data 
Reveal Essential and Conserved Metabolism in Prokaryotes. PLOS Comput. Biol. 
2018, 14 (11), e1006556. 

(65)  Mohite, O. S.; Weber, T.; Kim, H. U.; Lee, S. Y. Genome-Scale Metabolic 
Reconstruction of Actinomycetes for Antibiotics Production. Biotechnol. J. 2019, 
14 (1), 1800377. 

(66)  Zhu, H.; Sandiford, S. K.; van Wezel, G. P. Triggers and Cues That Activate 
Antibiotic Production by Actinomycetes. J. Ind. Microbiol. Biotechnol. 2014, 41 
(2), 371–386. 

(67)  Nazari, B.; Kobayashi, M.; Saito, A.; Hassaninasab, A.; Miyashita, K.; Fujii, T. 
Chitin-Induced Gene Expression in Secondary Metabolic Pathways of 
Streptomyces Coelicolor A3(2) Grown in Soil. Appl. Environ. Microbiol. 2013, 79 
(2), 707–713. 

(68)  Kim, E. S.; Hong, H. J.; Choi, C. Y.; Cohen, S. N. Modulation of Actinorhodin 
Biosynthesis in Streptomyces Lividans by Glucose Repression of AfsR2 Gene 
Transcription. J. Bacteriol. 2001, 183 (7), 2198–2203. 

(69)  Gao, C.; Hindra; Mulder, D.; Yin, C.; Elliot, M. A. Crp Is a Global Regulator of 
Antibiotic Production in Streptomyces. MBio 2012, 3 (6), e00407-12. 

(70)  Barsky, D. L.; Hoffee, P. A. Purification and Characterization of 
Phosphopentomutase from Rat Liver. Biochim. Biophys. Acta - Protein Struct. 
Mol. Enzymol. 1983, 743 (1), 162–171. 

(71)  Sgarrella, F.; Poddie, F. P. A.; Meloni, M. A.; Sciola, L.; Pippia, P.; Tozzi, M. G. 
Channelling of Deoxyribose Moiety of Exogenous DNA into Carbohydrate 
Metabolism: Role of Deoxyriboaldolase. Comp. Biochem. Physiol. Part B 
Biochem. Mol. Biol. 1997, 117 (2), 253–257. 

(72)  Karlström, O. Mutants of Escherichia Coli Defective in Ribonucleoside and 
Deoxyribonucleoside Catabolism. J. Bacteriol. 1968, 95 (3), 1069–1077. 

(73)  Munch-Petersen, A. Deoxyribonucleoside Catabolism and Thymine 
Incorporation in Mutants of Escherichia Coli Lacking Deoxyriboaldolase. Eur. J. 
Biochem. 1970, 15 (1), 191–202. 

 
  



229 
 

4.8 Supplementary Data 

 

 

  

Supplementary Figure 4.1: Metabolic model size to the genome size  

The metabolic model size is compared to the genome size of the strains. With an overall trend 

showing that the model size increases with the genome size. The trend (red line) is based on a 

linear regression fitted to the data.  
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Metabolites Reaction_IDs

Asparagine EX_asn_DASH_L_LPAREN_e_RPAREN_

Arginine EX_arg_DASH_L_LPAREN_e_RPAREN_

Biotin EX_btn_LPAREN_e_RPAREN_

Calcium EX_ca2_LPAREN_e_RPAREN_

Cellobiose EX_celb_LPAREN_e_RPAREN_

Chloride EX_cl_LPAREN_e_RPAREN_

Citrate EX_cit_LPAREN_e_RPAREN_

CO2 EX_co2_LPAREN_e_RPAREN_

Cobalt EX_cobalt2_LPAREN_e_RPAREN_

Copper2 EX_cu2_LPAREN_e_RPAREN_

D-Fructose EX_fru_LPAREN_e_RPAREN_

D-Galactose EX_gal_LPAREN_e_RPAREN_

D-Glucose EX_glu_DASH_L_LPAREN_e_RPAREN_

D-Mannose EX_man_LPAREN_e_RPAREN_

D-Ribose EX_rib_DASH_D_LPAREN_e_RPAREN_

Fe(III)dicitrate EX_fe3_LPAREN_e_RPAREN_

Fe2+ EX_fe2_LPAREN_e_RPAREN_

Glycerol EX_glyc_LPAREN_e_RPAREN_

H+ EX_h_LPAREN_e_RPAREN_

H2O EX_h2o_LPAREN_e_RPAREN_

Lactose EX_lac_DASH_D_LPAREN_e_RPAREN_

L-Cysteine EX_cys_DASH_L_LPAREN_e_RPAREN_

L-Glutamate EX_glu_DASH_L_LPAREN_e_RPAREN_

L-Glutamine EX_gln_DASH_L_LPAREN_e_RPAREN_

L-Methionine EX_met_DASH_L_LPAREN_e_RPAREN_

Magnesium EX_mg2_LPAREN_e_RPAREN_

Maltose EX_malt_LPAREN_e_RPAREN_

Manganese EX_mn2_LPAREN_e_RPAREN_

Molybdate EX_mobd_LPAREN_e_RPAREN_

NH4 EX_nh4_LPAREN_e_RPAREN_

Orthophosphate EX_pi_LPAREN_e_RPAREN_

Oxygen EX_o2_LPAREN_e_RPAREN_

Pantothenate EX_pnto_DASH_R_LPAREN_e_RPAREN_

Propionic acid EX_ppa_LPAREN_e_RPAREN_

Potassium EX_k_LPAREN_e_RPAREN_

Sulfate EX_so4_LPAREN_e_RPAREN_

Thiamin EX_thm_LPAREN_e_RPAREN_

Urea EX_urea_LPAREN_e_RPAREN_

Zinc EX_zn2_LPAREN_e_RPAREN_

Supplementary Table 4.1: Metabolites constituting the universal minimal media 

This is the composition of the universal minimal media used to test the strains. The 
nutrients in this list are either essential for all the strains growth or essential for at 
least one of the strains. These are based on experimental data available in literature 
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Supplementary Figure 4.2: Metabolic pathways associated to core and accessory 
metabolism 

The share of reactions (in percent) per subsystems categories (i.e., metabolic 

pathways) are represented by different colours. The metabolic pathways come from 

the reference model (iAA1259) and the BiGG database models associated with these 

reactions.  The shares of reactions are determined for the universally conserved 

reactions metabolic models (i.e., core metabolism) and for the non-core reactions (i.e., 

accessory metabolism).  

This figure includes unassigned pathways, which are reactions added from the 

databases but that do not have any subsystem annotations in the databases. 
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Supplementary Figure 4.3: Heatmap of the metabolic fluxes predicted in the different 
strains metabolic models 

The metabolic fluxes predicted in by pFBA in the different metabolic models using the 

universal minimal media are visualised as a heatmap. The strains are in columns and the 

reactions are in rows, with the colours gradient from red to green corresponding to the 

predicted fluxes from low to high flux. The group of strains and reactions were clustered using 

hierarchical clustering, with the Streptomycetaceae clustering together and other 

Actinobacteria together (unless Thermobispora bispora). 

Predicted fluxes 

Flux in mmol/gDW/h 
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Supplementary Figure 4.4: Reactions mostly active in Streptomycetaceae and not in 
other Actinobacteria 

In the heatmap white cells are absent reactions, black are null fluxes reactions, in green are 

reactions carrying fluxes, red is opposite flux direction (negative values). Here only the 

reactions mostly used (>70%) by Streptomycetaceae group compared to other 

Actinobacteria are showed here. 
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Supplementary Figure 4.5: Reactions mostly active in other Actinobacteria and not in 
Streptomycetaceae  

In the heatmap white cells are absent reactions, black are null fluxes reactions, in green are 

the reactions carrying fluxes. Here only the reactions mostly used (>70%) by other 

Actinobacteria compared to the Streptomycetaceae group are showed here. 
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Subsystem Number of reactions

Alternate Carbon Metabolism 1

Citric Acid Cycle 1

Oxidative Phosphorylation 1

Inositol Phosphate Metabolism 2

Unassigned 2

Pentose Phosphate Pathway 3

Transport and Membrane 5

Nucleotide Salvage Pathway 7

Quinol and Quinone Biosynthesis 7

Glycolysis and Gluconeogenesis 8

Inorganic Ion Transport and Metabolism 8

Purine and Pyrimidine Biosynthesis 17

Amino-Acids 70

Cofactor and Prosthetic Group Biosynthesis 87

Cell Envelope and Lipids Biosynthesis 236

Supplementary Table 4.2: Reactions active in all the Actinobacteria strains 

The pathways with the number of reactions universally active in the 

Actinobacteria strains are shown in this table. The different metabolic pathways 

are based on the BiGG model database subsystems and the iAA1259 subsystems. 

The main pathways universally used are involved in producing the precursors for 

the biomass, such as lipids, cofactors, and amino-acids. 
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Supplementary Figure 4.6: Core metabolic model fluxes in the pan-metabolic network using 
edge-weighted layout  

The pan-metabolic network is represented here, with the reactions as the edges and metabolites 

as nodes. The core metabolic fluxes (reactions with carrying a flux in all the metabolic models n 

red here). The reactions carrying fluxes in at least 45 models (85% of the strains) are in orange. 

The reactions and metabolites involved in the accessory metabolism under these minimal 

conditions are in grey in the network. 

 



237 
 

4.8.1 Comparison of reconstructed metabolic models with published metabolic 

models 

Many models had reactions and metabolites IDs based on in-house annotations which 

meant it would require the creation of a conversion table for each of the published 

models (this was only done for the S. clavuligerus model). Therefore, the comparison 

was mostly limited to models compliant with the BiGG standards, this included 

metabolic models for S. hygroscopicus 26, C. glutamicum 35, and M. tuberculosis 31, as 

well as a converted model for S. clavuligerus 27 (Supplementary Figure 4.7).  

The comparison showed that the automatically reconstructed model for 

S. hygroscopicus had an 83% similarity with the manually curated and published 

model. The similarity was of 24% between the reconstructed and the published 

C. glutamicum models, 22% for M. tuberculosis, and 17% (45% adjusted similarity) for 

the S. clavuligerus models. As the comparison method is based on the BiGG IDs of the 

reactions, the comparison was also done ignoring all transport reactions, secondary 

metabolite pathways, and spontaneous reactions (with no gene associated), as these 

are either ambiguous, annotated differently, or absent depending on the organism 

model. The results were 94% similarity between the manually curated and published 

model of S. hygroscopicus, 37% for C. glutamicum models, 39% for M. tuberculosis, and 

21% (57% adjusted similarity) for the S. clavuligerus models. The significant increase in 

the similarity between the published and reconstructed models shows the impact of 

ambiguous annotations in the models comparison. A major problem in the comparison 

is the ambiguity in the reaction and metabolite annotations used in the different 

GSMMs and in the databases; which is a well-known issue in the community 59. This is 

one of the reasons why the Actinobacteria models in this study were all reconstructed 

using the same standards rather than re-using published metabolic models; this 

reconstruction ensured that the models were comparable. The published 

S. clavuligerus model is the most different from the automatically reconstructed 

model, which would be surprising regarding the closeness of this strain to the 

reference S. coelicolor strain. But, this is likely due to the method used that compares 

the models based on BiGG standards the reactions IDs (see Methods); and this model 

did not use BiGG IDs, and Enzyme Commission (EC) numbers had to be used instead, 
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but EC numbers are known for their ambiguity 60. Only 37% of the reactions present in 

the published model were converted in BiGG IDs, so the level of similarity were 

adjusted to the number of reactions actually extracted, making S. clavuligerus the 

second closest strain to the S. coelicolor model.  

The models were further compared by identifying the overlapping of the 

metabolic models, the S. hygroscopicus model covered 94% of the published metabolic 

model; this reach 74% for S. clavuligerus, 75% for C. glutamicum, and 47% for M. 

tuberculosis (Supplementary Figure 4.8). However, the C. glutamicum reconstructed 

model is almost two times bigger than the published model. The pipeline 

overestimates the number of reactions present in the organism, because many 

reactions are transferred from the reference model because these are essential; this is 

further discussed in the Chapter. Another problem in the comparison is the ambiguity 

in annotations; some BiGG IDs are different but describe the same reaction. For 

example, in M. tuberculosis, when 10 reactions not matching in both models are 

selected, 6 reactions were found with the exact same reaction in the published model 

(Supplementary Figure 4.9). Otherwise, the models for M. tuberculosis and 

C. glutamicum correspond to phylogenetically more distant strains from the reference 

strain, so the pipeline may not reconstruct with sufficient precision these models. This 

indicates that the quality is lower for more distant models such as M. tuberculosis and 

C. glutamicum. While for closer strains like S. hygroscopicus seems to reach a high level 

of similarity with high-quality manually curated models 26.  
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Supplementary Figure 4.7: Overall comparison of published metabolic models with 
the reconstructed metabolic models. 

The published metabolic models (PUB) were compared to the reconstructed metabolic 

models (REC) for Streptomyces hygroscopicus, Streptomyces clavuliugerus, 

Corynebacterium glutamicum, and Mycobacterium tuberculosis. Reactions present in 

the different metabolic models including the reference model of Streptomyces 

coelicolor are represented in green, while the absence of reactions is represented in 

black. The closest model to the reference strain is the S. coelicolor, while 

S. clavuligerus is more distant due to the comparison method based on EC numbers 

(see Methods). The most distant strains C. glutamicum and M. tuberculosis are the 

most different from the automatically reconstructed models. 
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Supplementary Figure 4.8: Venn diagram of the overlapping reactions in the 
reconstructed and published models of S. hygroscopicus, S. clavuligerus, 
C. glutamicum, and M. tuberculosis 

Coverage of the published models reactions set (in green) by the reconstructed models 

reaction set (in blue). 

The S. hygroscopicus reconstruction covers 94% of the published model.  

The S. clavuligerus reconstruction covers 74% of the published model; but it has many 

more reaction because the published model reactions were queried using EC numbers, 

which only covered 37% of the total reactions of the published metabolic model. 

The C. glutamicum reconstructed model covers 75% of the published model, however 

the reconstruction have many more reactions than the published metabolic model. This 

is likely due to two main factors, the number of essential reactions reintroduced in the 

model to ensure growth (as described in the Chapter), and due to the ambiguity in 

reactions BiGG IDs that have different names for the same reactions  (Table 4.1). 

The M. tuberculosis reconstructed model covers 47% of the published model. The same 

factors described above for C. glutamicum seems responsible for the low overlap 

between these two models.  
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M. tuberculosis 

reconstruction

M. tuberculosis 

published 
Name in reconstruction Name in published model Notes

FACOAL120 FAS120
Fatty-acid--CoA ligase Fatty acid synthase n C120

Different annotation of the same 

metabolic function

MPTS MOAE1 Molybdopterin synthase MNXR85919

Different annotation of the same 

metabolic function

AHSERL2r ACHMSSH O-acetylhomoserine (thiol)-lyase ACHMSSH

Different annotation of the same 

metabolic function

MNLD X Mannitol 2-dehydrogenase X Absent

PSD150 X Phosphatidylserine decarboxylase (n-C15:0) X Absent

ACONTa/ACONTb ACONT

aconitase (half-reaction A, Citrate hydro-lyase)/ 

aconitase (half-reaction B, Isocitrate hydro-lyase) Aconitase

Reaction more detailed in 

reconstruction

ARGD ARGDr Arginine Deiminase arginine deiminase

Different annotation of the same 

metabolic function

X MPML X MPML Absent

GLYCK2 GLYCK Glycerate Kinase (2pg product) glycerate kinase  (3pg product)

Close reaction exists but slightly 

different product

NTD11e NTD11 5&apos;-nucleotidase (IMP) 5'-nucleotidase (IMP)

Different annotation of the same 

metabolic function

Supplementary Table 4.3: Individual analysis of 10 random reactions only found in 
one of the reconstructed or published models of M. tuberculosis 

The 10 reactions picked randomly had 5 reactions that were only present in the model 

reconstruction (5 upper part yellow reactions) and 5 reactions only present in the 

published model (5 lower part yellow reactions).  

6/10 of the reactions were found to have the same reactions (exact same metabolites 

and stoichiometry). 3 reactions were completely absent, and 1 reaction had one 

product different 2phosphoglycerate (2pg) instead of 3 phosphoglycerate (3pg).  

This shows that it is very likely that many reactions considered as different in the 

comparison are actually the exact same reaction but with a different ID. 
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Chapter V 

5. An automated R tool to integrate exometabolome 

fluxes in constraints-based metabolic modelling 

5.1 Preface 

The work carried here was an in silico study, so most of the experimental data used 

and discussed were from published or publicly available data, apart from the first 

dataset I acquired for Streptomyces coelicolor. This is a manuscript in preparation for 

submission. 

5.2 Abstract 

The microbial production of industrially and medically relevant compounds has 

expanded during the last decade due to the rapid development of synthetic biology 

and metabolic engineering. A major challenge when engineering a production strain is 

to rapidly test and debug the strain. For this purpose, many researchers use constraint-

based metabolic modelling to analyse the metabolic impact on the engineered strains 

and identify new targets to further increase production. This modelling method relies 

on the introduction of flux constraints, particularly exchange fluxes with the media; 

consequently, the estimation of these fluxes is crucial to generate accurate 

predictions. In order to automate this step and directly input test data results into the 

model construction, an R tool was developed to calculate the exchange rates with their 

confidence interval based on metabolite concentration and biomass measurements in 
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the culture (chemostat or flask). The tool was tested with multiple experimental data 

to calculate the exchange rates and use these to constrain a genome-scale metabolic 

model of the antibiotic producer model strain Streptomyces coelicolor A3(2). The tool’s 

outputs were also used to apply an ensemble modelling approach, in which the model 

was constrained using exchange fluxes sampled within the confidence interval and 

hundreds of metabolic states were predicted using the resulting ensemble of 

metabolic models. This automated tool can now be used to bridge the test and design 

phase for strain engineering using synthetic biology.  

5.3  Introduction 

Bioproduction became a key manufacturing technology in the last few decades, from 

the production of biopharmaceuticals to the sustainable production of commodity 

chemicals and biofuels 1,2. This was accelerated by synthetic biology and metabolic 

engineering that enabled fast engineering and optimisation of biological systems 3,4. 

The application of engineering principles in synthetic biology created opportunities to 

produce more complex and diverse compounds in microorganism 5. One main 

engineering principle applied in synthetic biology is the design, build, test, and learn 

(DBTL) cycle. During the last decade, this cycle, especially in the build, the pace has 

substantially accelerated, as a result of the decreasing cost of gene synthesis and 

sequencing, as well as easier and lower-cost technologies for gene-editing (e.g., 

CRISPR, TALENs) and genetic construction (e.g., Gibson assembly). However, a 

bottleneck in the test-to-design transition through the learn phase is stalling this cycle: 

the large amount of data generated are complex to interpret and integrate into the 

design phase 6,7. So, when debugging an engineered strain, a major issue encountered 
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is to rapidly understand the effects of the metabolic modifications on the strains based 

on the test data (e.g., metabolomics) and feed it back in the design phase (e.g., 

metabolic modelling). In the design phase, the application of constraint-based 

metabolic modelling has opened opportunities to integrate omics data from 

engineered strains and analyse the effect of compound production on the biological 

system 8. Constraint-based metabolic modelling with a genome-scale metabolic model 

(GSMM) requires condition-specific constraints, such as uptake of nutrients and export 

of metabolites in the culture media 9. Integration of exometabolomic flux data is a 

powerful method in constraint-based metabolic modelling to predict intracellular 

metabolic fluxes 10,11. These constraints are crucial to accurately predict the strain 

metabolic state. However, the introduction of these constraints requires calculating 

and inputting the exchange rates at multiple time points to simulate the metabolism 

across a growth curve. Furthermore, constraint-based methods like flux-balance 

analysis (FBA) predict one optimum state based on a unique set of constraints, so this 

does not take in to account the inherent uncertainty around the possible exchange 

rates and possible noise in the measurements.  

To automate this step and take into account uncertainty in the process, an 

automated tool was developed to use quantitative exometabolomic data as input 

(Figure 5.1); the tool estimates the exchange fluxes with a 95% confidence interval. 

The tool generates an output with the exchange rates, which are then used to 

constrain the GSMM and predict the intracellular metabolic fluxes with methods like 

FBA 10–12. The tool output is usable to create an ensemble of simulations within the 

95% confidence of exchange flux constraints used. Hence applying a “respectful 

modelling” approach 13, rather than limiting the analysis to the single FBA optimum, 



245 
 

this method takes into account the uncertainty and shows the possible states of the 

metabolic systems. This tool is easily used with time series data from a chemostat or a 

replicate flasks experiment.  

The first advantage of this tool is the ability to estimate fluxes at any time point 

on a growth curve. This is useful for datasets with a small number of time points or 

datasets with gaps (e.g. no metabolite or growth measurement at a given time). The 

tool also eases the calculation of uptake/secretion rates, these are quickly calculated 

based on the input. Furthermore, this also ensures reproducibility in exchange rate 

calculations, avoiding errors to be introduced at the calculation step. The main 

advantage of this tool is the analysis of uncertainty in the flux estimation by giving an 

output with the upper, lower, and median uptake/secretion rates within the 95% 

confidence interval (CI). However, the tool still presents some limitations; the input 

data is limited to a certain type of input well adapted to time series studies. It is also 

necessary to inform the tool prior to the analysis of the type of uptake or secretion 

trend (linear or non-linear). Finally, the tool would not work for uptakes and secretions 

without simple trends (e.g., increase then decrease).  

As a first step, the tool structure and functions were described. The tool was 

then tested with experimental growth and antibiotics data I had collected, then the 

tool was tested with a published chemostat dataset 14. The tool output of this 

chemostat dataset was used to constrain the metabolic model iAA1259 of 

Streptomyces coelicolor A3(2) 15. The predictions were validated using the chemostat 

experimental growth data. Finally, the tool was used to apply an ensemble modelling 

approach by sampling exchange fluxes within the confidence interval estimated, and 

these exchange fluxes were constrained in the metabolic model. This enabled to 
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predict an ensemble of hundreds of plausible metabolic states, which were compared 

and validated by the experimental growth data. 

5.4   Methods and Materials 

5.4.1 Tool development and dependencies 

The tool was developed using the open-source R language in the format of an R 

Markdown notebook. It is built in a modular way to ease adaptation of the scripts to 

the data used. Experimental data is used as an input table and automatically analysed 

by the tool generating outputs at different steps and a final script output for COBRA in 

Python and MATLAB. Two different versions of the tool are available, one for exported 

metabolites and one for metabolites that are taken up. The R notebooks cover each 

step described in Figure 5.1, the conversion of data, the interpolation of biomass, 

uncertainty estimations, calculation of the predicted concentrations, and the output. 

The R notebooks for the different tests and experiments described above are available 

in the Electronic Supplementary 5.1.  

Input and conversions: The data input is in a .csv format containing the biomass 

quantity and the metabolites’ concentrations across time. The tool will convert these 

depending on the user input type indicated in the first notebook R chunk, indicating if 

the metabolite concentration is in OD, mg/L, or mmol/L, and if the biomass input is in 

OD (which necessitates further input of a conversion curve in .csv) or in gram of dry 

weight (gDW). The conversion curve used was provided by Prof. Eriko Takano 16. The 

user must indicate if the data is in technical, or biological replicates, or just averages. 

As well as input the conversion factors based on the Beer–Lambert law if the 

metabolite input is in OD, indicate the culture volume, the time points to analyse, the 
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molecular mass, the compound name, the paths for the input/output folders, and the 

reaction ID in the metabolic model (e.g., BiGG ID). Then, the tool will convert biomass 

in gDW, and metabolites concentrations in mmol/L.  

Data interpolations and fittings: For the growth interpolation, the data is fitted 

with a logistic equation of population growth using the R package “grofit” 17. Then, for 

the equation fitting of the metabolite concentration data, including parameter 

estimation and confidence intervals of the parameter estimations the packages 

“minpack.lm” and “nlstool” 18 are used. The equation parameters are estimated using 

linear and non-linear least square regression from the core R package 18. Then, artificial 

data with noise was generated within a 0.1 standard deviation; this is used to re-

estimate the parameters with a noisy dataset using the linear and non-linear least 

square regression 18 and compare the fitting of the equation with the experimental 

data and with the noisy artificial data. This is a verification step to make sure the “nls” 

package is working with this dataset, as this package cannot fit artificial data without 

noise, so if a dataset is small (e.g. 3 or 4 points) the algorithm could not fit the data 18  

Uncertainty estimations: The confidence interval around the parameters 

estimation is calculated. The 95% CI calculated for the parameter estimation is 

calculated using the “confint” function from the “nlstool” package 18, the minimum 

and maximum values of the parameters are used to plot the fittings with the upper 

and lower parameters equation curves (this is only used to visualise the difference). 

Then, the residuals from the equation fitting are analysed. The residuals and 

standardised residuals are plotted against the fitted values to identify any pattern in 

the data and see if a linear or non-linear equation is more adapted to the dataset. The 

autocorrelation is analysed by plotting residuals at a time (i) against residuals at the 
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next time point (i+1). The normal Q-Q plot of standardised residuals is plotted to verify 

if some data points are poorly fitted (potential outliers). The confidence interval of the 

equation fit to the data is estimated using an inverse estimation approach, this 

computes the maximum likelihood within the 95% confidence interval using the 

“investr” package 19. The maximum and minimum values of the 95% CI interval are 

used as a data input to fit a lower and upper equation. This leads to a max and min 

equation representing the upper and lower predicted 95% CI for the metabolite 

concentration. 

For antibiotics export data, further analysis is done, because the equation used 

is a modified version of the logistic growth equation. First, the estimation of the 

parameters couples’ confidence is analysed using Beale’s 95% unlinearized confidence 

region with the “nlsConfRegions” function; followed with an analysis of the RSS 

contour using “nlsContourRSS” from the “nlstool” package 18. In addition, a 500 

bootstrap sampling using “nlsBoot” 18 was performed to further analyse the possible 

couples of parameters. The bootstrap parameter couples were inputted in the 

equation to plot the 500 curves showing the confidence interval on the concentration 

prediction. Another analysis included a Jackknife resampling to further estimate the 

two parameters’ distribution showing the most probable couples. 

Output: The tool gives multiple outputs to ensure the user can verify if each 

step worked properly. At the different steps of analysis, the tool generates plots 

visualised in the R notebook and as images in the output folder. The tool also outputs a 

file with the time points queried, the average metabolite concentrations (in mmol/L), 

and the upper and lower concentration of the 95% CI (based on the max and min 

equation of the inverse estimation method). This file also includes the biomass (in 
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gDW), the specific growth rate in (h-1), the absolute flux, and the uptake/secretion 

rates. Finally, the tool also generates a script to constrain the exchange fluxes at the 

queried time points in a MATLAB script for COBRA and a Python script for COBRApy.  

5.4.2 Experimental data for antibiotics and growth curve dataset 

I acquired the experimental dataset used to test the ACT and RED data, which were 

performed using the WT plasmid-free (SCP1- SCP2-) strain M145 of Streptomyces 

coelicolor A3(2) M145 20. All the media were based on ion-free water, and all chemicals 

used were of analytical grade. The growth medium used for the growth curves and for 

the antibiotics analysis was a minimal defined media developed for ‘omics analysis of 

S. coelicolor 14,21, phosphate-limited and with glucose and glutamate as a carbon 

source and glutamate as a sole nitrogen source. The medium consisted of Na-

Glutamate, 55.2 g/L; D-glucose, 40 g/L; MgSO4, 2.0 mM; phosphate mix (NaH2PO4 and 

K2HPO4), 4.6 mM; supplemented minimal medium trace element solution SMM-TE (0.1 

g/L of each of ZnSO4.7 H2O, FeSO4.7 H2O, MnCl2.4 H2O, CaCl2 and NaCl)20, 8 mL/L; 

Trace Minimal Supplement 1 (TMS1: FeSO4.7 H2O, 5 g/L; CuSO4.5 H2O, 390 mg/L; 

ZnSO4.7 H2O, 440 mg/L; MnSO4.H2O, 150 mg/L; Na2MoO4.2 H2O, 10 mg/L; CoCl2.6 H2O, 

20 mg/L, and HCl, 50 mL/L), 5.6 mL/L; Antifoam (Sigma 204), 1 ml/L. The pH was 

adjusted to pH 7 by adding NaOH 2M to the media. The cultures were grown in an 

incubator at 30°C and shaking at 250 rpm. Cultivations were performed in 250 mL 

baffled conical flasks (Simax), with a culture volume of 50ml, all the flasks have been 

coated (with SigmaCote) to reduce aggregation of the cells on the side of the flask. 108 

of viable spores were inoculated per flask. The growth was estimated by OD450 

measurements (3 measures per time point). The concentrations of coloured secondary 
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metabolites were spectrophotometrically measured by following a series of extraction 

and measures on a culture aliquot of 1mL for each time-point (Supplementary Figure 

5.5), the amount of yCpk (yellow pigment) produced was estimated by measuring the 

absorption at 460nm in the supernatant after spinning down 1mL of culture (2 min at 

12,000rpm). The Act (blue pigment) concentration was determined by measuring the 

absorption at 640nm after adding the same volume of 1M NaOH to the same volume 

of supernatant (0.7ml), an OD640 of 0.5 is equivalent to 60 µg/mL of Act 22. In order to 

measure the concentration of RED, the mycelium pellet was re-suspended in 1 mL of 

HCl spun down (2 min at 8,000 rpm), the supernatant was discarded and the mycelium 

in the pellet re-suspended in 1 mL of 100% methanol and spun down (2 min at 12,000 

rpm), the absorption in the supernatant was measured at 533 nm, an OD533 of 1 is 

equivalent to a concentration of 3.91 µg/mL of RED 22. These conversion rates were 

used in the input of the tool. The dataset is summarised in Supplementary Figure 5.6. 

5.4.3 Constraint-based metabolic modelling and ensemble modelling 

The experimental data used for the constraint-based metabolic model came from a 

published chemostat dataset using the same media as the one described above 14. This 

dataset contains measurements of the biomass (in gDW), phosphate (in mg/L), glucose 

(in g/L), glutamate (in g/L), actinorhodin (OD), and undecylprodigiosin (OD).  This data 

was then analysed using the tool. The output uptake and secretion rates were used at 

each time point (at 24, 28, 30, 32, 34, 36, 38, 40, and 48 hours) to constrain the 

exchange fluxes in the genome-scale metabolic model. The genome-scale metabolic 

model used is the iAA1259 model of S. coelicolor A3(2) 15. The model was analysed 

using Flux Balance Analysis (FBA) to predict optimal growth using the COBRA toolbox in 
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MATLAB and Python 23,24. The constraints corresponding to the media composition 

were applied; the uptake fluxes for exometabolites not present were set to zero but 

were allowed to leave the metabolic system. The uptake rates are used to define 

constraints of the nutrient uptake for the model. The objective function maximized in 

the modelling was the growth rate. The constraints on glucose, phosphate, and 

glutamate uptake based on fermenter time-course data 14 enabled simulation of the 

growth across time. Finally, the predicted growth curve was compared with the 

experimental growth data. 

 An ensemble modelling approach was used by sampling exchange fluxes to 

constrain the model. Exchange constraints were sampled 500 times between the 

maximum and minimum value of the uptakes and export rates. The sampling method 

used divided the data range in 500 between the maximum and minimum flux 

calculated for each time point. The exchange fluxes were combined in sets of 

constraints in the order of maximum to minimum, this considers that if the strain 

reaches the max/min uptake of a given metabolite it will likely reach the max/min 

uptake or export for the other metabolites, as well as reaching the max/min at the 

next time point.  These 500 sets of exchange fluxes were constrained on the model 

using COBRApy in a loop running for each time point and optimising the growth using 

FBA. The 500 predicted growth curves were plotted with the average predicted growth 

and the experimental data. 
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5.5   Results & Discussion 

5.5.1 Exometabolic fluxes tool development 

The tool was developed in the open-source statistical language R, the tool is based on 

an input/output structure, and the tool is in the format of an R Markdown to ensure 

reproducibility and reusability. The tool needs to be used for a single metabolite at a 

time. The outputs are displayed in the R notebook, as well as saved in a .csv and .png 

format in a folder. The quantitative experimental data is used as an input and it 

outputs a set of fluxes to constrain the genome-scale metabolic model (Figure 5.1). 

The tool structure is described below: 

5.5.1.1 Input and conversions 

One can input a data table in .csv format, containing time points (in hours), 

exometabolites concentrations (in mg/L, mmol/L, or in OD), and biomass 

measurements (in gram of dry weight or in OD). The user needs to input some key 

information at the start of the R script, such as the molecule molecular weight, the unit 

of inputs (e.g. OD or mg/L), culture volumes, uptake/secretion trend (i.e., linear or 

non-linear). The tool is available in two versions, for uptake fluxes and for secretion 

fluxes. Once the input is provided, the user just needs to “Run” the R Markdown 

notebook for the tool to generate the outputs.  

The inputs are converted into suitable units using the R input (i.e., molecular 

weight, culture volume) to calculate fluxes and uptake/secretion rates. Metabolite 

concentrations in OD are converted to mg/L, and then converted to mmol/L. Biomass 

input in OD is converted to gram of dry weight (gDW). These conversions are necessary 
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to calculate fluxes in mmol/gDW/h. There are multiple quality control steps to visualize 

and validate the data analysis, for example, to verify that the equations fit the data.  

5.5.1.2 Interpolation and calculations 

To calculate fluxes at any time points the converted data are fitted with non-linear or 

linear equations. The growth curves were fitted using a logistic equation of growth 

(Equation 5.1) 17, where the growth parameters K (carrying capacity), N0 (initial 

bacterial density), and r (growth rate) are estimated. Once the growth parameters are 

estimated, the equation is used to calculate the biomass in gram of dry weight at any 

time point.   

The next step requires fitting of an equation to the concentrations measured 

across time. The equation fitted depends on the metabolite uptake trend: for a linear 

uptake the equation fitted is a linear equation (Equation 5.2a), and for a non-linear 

uptake it is a decaying logistic equation (Equation 5.2b). The equation fitted for the 

antibiotics secretion is an adapted version of the logistic population growth equation 

(Equation 5.2c). Equation 5.3c was derived from the logistic growth equation, two 

parameters were added, the first one that represents a constant flux (F in mmol.gDW-

1.h-1) and another one delaying the production switch ON time (S in hours). As the flux 

is a derivative of concentration over biomass to time (Equation 5.3a), the biomass at a 

given time point is replaced by the logistic equation (with the previously estimated 

growth parameters). Then, at the given time point the flux is considered as constant 

(steady-state condition), it is multiplied by the logistic growth equation with the 

growth parameters values calculated earlier (Equation 5.1) and divided by the volume  

(V). The value S is subtracted to the time point t in the logistic equation (Equation 5.1); 
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this parameter represents the delayed “switch ON” time of the antibiotic production 

and export. Finally, the constant values F and S are parameters estimated to fit the 

Equation 5.3c to the antibiotics concentration data. The equations’ parameters are 

estimated using linear and non-linear least square regression from the core R 

Equation 5.1: Logistic equation for population growth 

Logistic equation of population growth used to fit the biomass growth curve. G corresponds 

to the biomass (in gDW), K is the carrying capacity (maximum population size), N0 is the 

initial bacterial density, r is the growth rate (or division rate), and t is the time in hours. This 

equation is fitted to the growth curve using the “grofit” R package.  

Equation 5.2:  Equations fitted to the concentration measurements  

a) Linear equation fitted to the concentration measurements with 2 parameters: a, and b. Y is 

the concentration and X is the time. 

b) Non-linear equation fitted for metabolites uptake, with 3 parameters, a, b, and c. When 

c>1 it is a decaying logistic equation fitting the type of decay of limiting metabolites uptake 

like phosphate. Y is the concentration and X is the time.  

c) Non-linear equation adapted from the logistic population growth model to fit the 

antibiotics secretion. The parameter S corresponds to the switch on of the antibiotics 

production. F is a parameter corresponding to a constant flux (in mmol/gDW/h). Y is the 

concentration and X is the time.  

Note: for clarity the volume was omitted but the equations a, b, and c are divided by the 

volume to calculate the concentration in mmol/L. 

 

a) 

b) 

c) 
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package 18. Then, artificial data with noise was generated within a 0.1 standard 

deviation; this is used to re-estimate the parameters with a noisy dataset using the 

linear and non-linear least square regression 18 and compare the fitting of the equation 

with the experimental data and with the noisy artificial data. As the “nls” package 

cannot fit artificial data without noise, in case of a very small dataset (e.g. 3 or 4 

points) the algorithm would not fit the data. 

5.5.1.3 Uncertainty estimations 

Once the parameters are calculated, the tool estimates the parameters uncertainty to 

take it into account when estimating the fluxes 95% confidence interval (CI). First, the 

tool calculates the 95% confidence interval for the parameters used in the equation 

fitting. These parameters are used to plot a first version of the fitted concentration 

with the upper and lower bounds of the confidence interval. Then, the residuals from 

the non-linear fit are analysed by generating plots of the residuals, to verify if the 

linear or non-linear equation fitted is appropriate for the dataset. The tool generates 

Equation 5.5: Flux calculation in mmol.gDW-1.h-1 

a) Absolute flux calculation. C is the concentration in mmol/L, V is the culture volume in 

L, and B is the biomass in gDW, t is the time in hours. 

b) Uptake and export rates function at a time t. This calculates the flux rates to use as 

constraints for the metabolic model. C is the concentration in mmol/L, V is the culture 

volume in L, and B is the biomass in gDW. 

a) 

b) 



256 
 

multiple plots: one of the non-transformed residuals against the fitted values, another 

one of the standardised residuals against fitted values; a plot of the square root of the 

absolute value of the standardised residuals against fitted values, a plot of the auto-

correlation of the residuals; a plot of the histogram for the non-transformed residuals, 

and a plot of the normal Q-Q plot for the standardised residuals 18,25. The estimated 

parameters for the antibiotics production are further analysed, as the equation fitted 

is not a usual linear or non-linear equation (like Equation a, and b) but it contains an 

unusual parameter (S in Equation c) delaying the switch ON time. Beale’s 95% 

confidence interval is calculated for each parameter; from this the tool analyses the 

residual sum of squares (RSS) contours of the two parameters to visualise the area of 

95% confidence of the possible couples of parameters. Then, in all cases, the 

confidence band of the equation fit is estimated and plotted using an inverse 

estimation approach with the 95% confidence interval 19. This is followed by the 

equation fitting to the maximum and minimum predicted values from the inverse 

estimation steps, hence defining the max and min equation parameters. The equations 

with the max and min parameters are used to predict the upper and lower values of 

the concentration over time at each time point, which is converted in the maximum 

and minimum fluxes.  

5.5.1.4 Outputs 

The predicted concentrations (in mmol/L) are calculated at the queried time points 

using the fitted equation as well as the maximum and minimum concentrations of the 

95% CI. The biomass (in gDW) and the specific growth rate (in h−1) are calculated at the 
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Figure 5.1: R tool pipeline structure to estimate exometabolic flux constraints 

Description of the pipeline of different analysis of data processing applied to the input data to 

get an output with exometabolic fluxes to be used as constraints in the genome-scale 

metabolic model. Here the data for Actinorhodin was used as an input to generate the figures 

above.  

- INPUT: data input as a table with biomass time series and metabolite concentrations. The 

data is then converted in the units of interest (e.g. concentration in mM).  

- INTERPOLATION: biomass can be converted in gram of dry weight. The growth is fitted to a 

logistic growth curve interpolating growth between time points. 

- CALCULATION: a linear or non-linear equation is fitted to the metabolite concentrations, 

the equations parameters are estimated and refined.  

- UNCERTAINTY: the parameters 95% confidence interval (CI) is estimated, following 

multiple statistical tests. The 95% CI of the equation fitted is estimated. 

- OUTPUT PREPARATION: the output is prepared by calculated different values at the 

queried time points, such as the exchange rates and absolute flux, the biomass, the growth 

rate, and the exchange rates with the upper and lower values based on the 95% CI. 

- OUTPUT: the tool generates an output table with the fluxes and biomass. The tool also 

generates scripts for COBRA (Python and MATLAB) with the exchange constraints. 
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time points. The absolute fluxes are calculated by calculating the derivative of the 

concentration (multiplied by the volume) to the biomass to the time (Equation 5.3a). 

The reason for calculating the absolute flux is that it is interesting to see the flux 

pattern; for example, the maximum flux of some nutrient uptakes will be at the 

exponential phase and antibiotics production at transition and stationary phase. The 

constraint-based metabolic models use uptake and export rates (in mmol.gDW-1.h-1) as 

constraints so the tool also calculates these exchange rates. It takes the change in 

metabolites concentration (in mM) between the time point and the last time point 

queried, multiply it by the volume (in L), divide these by the biomass (in gDW) 

multiplied by the time (in hours) see Equation 5.3b. This is similar to the method used 

for the “conc2Rate” function in COBRA Metabotools 26. The tool generates plots for 

the flux to time and flux to concentration to visualize the flux dynamics across time. 

Finally, the tool automatically writes scripts lines for COBRApy and COBRA 

MATLAB 23,24 to constrain the exchange fluxes at the time points queried with the 

mean flux, the maximum, and the minimum fluxes at the edge of the 95% CI. All the 

plots and results tables (i.e., converted data, predicted data, and flux outputs) are 

saved in the output folder. 

The tool is automated, but it is critical to verify that the fitting methods and the 

different steps are appropriate for the data input; this is to avoid using an output when 

issues occur such as equations not fitting datasets with any decrease or increase 

pattern. That is why the tool exports multiple analyses of the fitting and uncertainty 

estimations to let the user judge if the data is properly analysed. The tool is modular 

and available in an R Markdown notebook format to ease modification, and tests of 

the script by chunks to adapt it to the data used when necessary.  
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5.5.2 Initial tool tests of antibiotics flux analysis 

A first test of the tool consisted of validating the equation for antibiotics export 

(Equation 5.3c); to this end, the tool was tested using an experimental dataset with 

measurements of biomass OD, as well as actinorhodin and undecylprodigiosin OD 

measurements collected over time. The data was inputted in the tool, where the 

biomass was converted from OD to gDW using a conversion curve (Supplementary 

Figure 5.1a). The logistic growth curve was then fitted to the biomass data 

(Supplementary Figure 5.1b). The OD for undecylprodigiosin was the input and 

converted to mM (as explained in the Method section). The tool fitted the equation by 

estimating the parameters S and F for the Equation 5.3c; these parameters were 

refined by introducing noise in the data. The resulting equation is in agreement with 

the measured concentrations (Figure 5.2a). The tool also estimated the 95% 

confidence interval for the concentrations predictions using the equation (Figure 5.2b). 

The tool analysed the uncertainty around parameter estimations, such as the 95% CI 

for parameters couples (Figure 5.2c and 5.2d). Further parameters analyses are 

available in Supplementary Figure 5.2. The probability to find the two parameters (95% 

CI) within a given range is limited to a tight window (dotted red line in Figure 5.2d). 

This suggests that early switch ON of the production/export necessitate a lower flux, 

whereas a late switch ON would necessitate a higher flux to reach the same 

concentrations. It indicates a trade-off between possible switch ON time parameters S 

for the secondary metabolites production and the maximum constant flux (F). The 

predicted concentrations using the estimated parameters are in good agreement with 

the measured concentrations of coloured antibiotics (Figure 5.2e). This is confirmed by 

a low residual sum of squares (RSS) for undecylprodigiosin fitting (RSS=6.656*10-5, 
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a) b) 

c) d) 

e) f) 

Figure 5.2: Outputs for the analysis of undecylprodigiosin by the tool 

a) Fitting of the equation to the data with noisy simulated data around a sigma=0.1  

b) Fitting of the equation to the data with the 95% CI band 

c) Couple parameters Beale's 95% unlinearized confidence region 

d) Couple parameters RSS contour with 95% CI 

e) Fitted equation with upper and lower values of the 95% CI for the predicted 

concentration 

f) Absolute undecylprodigiosin export flux over time 
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details in Electronic Supplementary 5.1 - Notebook RED 1). Finally, the tool calculated 

the export absolute fluxes and secretion rates (Figure 5.2f), the flux to time has a bell 

shape showing a maximal flux at 80h (corresponds with the start of stationary phase). 

For actinorhodin, the same plots are available in the Supplementary Figure 5.3. This is 

confirmed by a low residual sum of squares (RSS) for actinorhodin fitting (RSS=0.3437, 

details in Electronic Supplementary - Notebook ACT 1). The tool used the starting value 

for the parameter S (at 40h) as no solution was found for the fitting when the 

parameters S fitting was unconstrained; this appears on the parameters residuals 

analysis (Supplementary Figure 5.4).  

5.5.3 Tool testing with constraint-based metabolic modelling 

The tool needed further validation with a larger dataset, and a demonstration 

of the tool usage by using the tool outputs to constrain a constraint-based metabolic 

model. For this, a chemostat dataset 14 previously used to validate the iAA1259 model 

of S. coelicolor A3(2) 15 was used as an input for the tool. This dataset contains 

measurements of phosphate, glucose, and glutamate concentrations, as well as OD 

measurements of ACT and RED, and biomass measurements. The tool analysed these 

data: the phosphate uptake was a non-linear uptake, while glucose and glutamate 

were linear uptakes (Figure 5.3). For all three metabolites, the tool fittings and the 95% 

CI calculations were in good agreement with the experimental data (Figure 5.3a-i). The 

residuals analysis for all three metabolites showed that the fittings were reasonable 

(Figure 5.3j-l). Finally, the tool calculated and exported the uptake fluxes for all three 

metabolites (Figure 5.3m-o). The uptake fluxes for the phosphate peaks during the 

exponential phase dropped rapidly; this makes sense as phosphate is the limiting 
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a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 

m

) 
n) o) 

Figure 5.3: Analysis of exometabolome data for phosphate, glucose, and glutamate. 

a) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 

(phosphate) 

b) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 (glucose) 

c) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 

(glutamate) 

d) Fitting of the equation to the data with the 95% CI band for the phosphate data 

e) Fitting of the equation to the data with the 95% CI band for the glucose data 

f) Fitting of the equation to the data with the 95% CI band for the glutamate data 

g) Fitting of the equation to the data with the refined 95% CI band for the phosphate data 

h) Fitting of the equation to the data with the refined 95% CI band for the glucose data 

i) Fitting of the equation to the data with the refined 95% CI band for the glutamate data 

j) Residuals analysis for the parameters estimation during equation fitting (phosphate) 

k) Residuals analysis for the parameters estimation during equation fitting (glucose) 

l) Residuals analysis for the parameters estimation during equation fitting (glutamate) 

m) Uptake flux values across times for the phosphate 

n) Uptake flux values across times for the glucose 

o) Uptake flux values across times for the glutamate 
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metabolite in this chemostat experiment (Figure 5.3m). The uptake fluxes for the 

glutamate reaches its maximum at early exponential phase then decreases slowly until 

the stationary phase (Figure 5.3o). The glucose uptake fluxes are following the growth 

in an inverse trend, where uptake fluxes are maximal at the start then decreases 

following the exponential phase and reaching near 0 around stationary phase 

(Figure 5.3n). The data for the coloured antibiotics ACT and RED were also analysed 

using the tool (Figure 5.4 and 5.5). The fitting for actinorhodin and the re-estimated 

fittings with the 95% CI are in good agreement with the data and show a close fit 

(Figure 5.4a-c). The confidence interval for the parameters estimation showed a 

narrow window of possible parameter couples (Figure 5.4e and 5.4f); in a similar 

fashion as in test on the ACT and RED data described previously (Figure 5.2c and 5.d). 

The residuals analysis also confirms that the parameters used for the fitting are 

appropriate for the measured ACT concentrations (Figure 5.4g). Finally, the tool 

calculated the export fluxes for ACT (Figure 5.4d); the fluxes start at the transition 

phase, rapidly reach a maximum during stationary phase, and then drop again. This 

suggests that the peak of production of actinorhodin is in a short period of time (20 to 

30 h long). The same analysis was carried on the undecylprodigiosin data; the fitting 

for the RED and the re-estimated fittings with the 95% CI are in agreement with the 

data, but the last data point seems slightly off the fitted trend, but it is still in the 95% 

CI (Figure 5.5a-c). This misfit point needs to be taken into account in the analysis as the 

RED concentration might be higher than predicted after 70h. The confidence interval 

for the parameter estimation showed a narrow window of possible parameter couples 

(Figure 5.5e and 5.5f), in a similar fashion as in testing on the ACT and RED data 

described previously (Figure 5.2c and 5.2d), as well as ACT in the same experiment 
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a) 

b) 

c) 

d) 

e) 

f) 

g) 

Figure 5.4: Analysis of Actinorhodin input data 
a) Fitting of the equation to the concentration data with noisy simulated data sigma=0.1 

b) Fitting of the equation to the ACT concentration data with the 95% CI band 

c) Fitting of the equation to the ACT data with the refined 95% CI band 

d) Calculated ACT secretion flux (in mmol/gDW/h) 

e) Equation parameters couples probability (S&F) using RSS surface (95% CI in dotted red) 

f) Equation parameters couples probability (S&F) using bootstrapping  

g) Residuals analysis for the parameters estimation of the equation fitting 
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a) 

b) 

c) 

d) 

e) 

f) 

g) 

Figure 5.5: Analysis of Undecylprodigiosin input data 

a) Fitting of the equation to the concentration data with noisy simulated data sigma=0.1 

b) Fitting of the equation to the RED concentration data with the 95% CI band 

c) Fitting of the equation to the RED data with the refined 95% CI band 

d) Calculated RED secretion flux (in mmol/gDW/h) 

e) Equation parameters couples probability (S&F) using RSS surface (95% CI in dotted red) 

f) Equation parameters couples probability (S&F) using bootstrapping  

g) Residuals analysis for the parameters estimation of the equation fitting 
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(Figure 5.4e and 5.4f). The residuals analysis also confirms that the parameters used 

for the fitting seem appropriate for the measured RED concentrations (Figure 5.5g). 

However, the Q-Q plot (Figure 5.5g) shows that the last point is violating the 

assumption that the data have a normal distribution, but not the rest of the data that 

are on a straight line. The difference observed with this point might come from a noisy 

measurement, but it is unclear and should be taken into account when using the data 

after this time point as the concentration and flux values could be underestimated. 

Finally, the tool calculated the export fluxes for RED (Figure 5.4d); the fluxes starts at 

the transition phase to rapidly reach a maximum during stationary phase and drops 

back. This suggests that the peak of production of undecylprodigiosin similarly to 

actinorhodin is on a short period of time (20 to 30h long).  

The output flux analysis using the Nieselt et al. chemostat data 14 indicates that 

the strain prefers consumption of glucose in lag phase and early exponential phase, 

once in early exponential, the strain increases its glutamate consumption. Then it 

rapidly increases its consumption of phosphate, the concentration of which drops 

quickly, triggering the strain to undergo a metabolic switch due to the phosphate 

depletion. Finally, the peak of production is reached after the transition phase for the 

two coloured antibiotics ACT and RED. This is in accordance with the metabolic 

measurement of S. coelicolor A3(2) in this phosphate-limited medium 14,27. The 

metabolites’ uptake or secretion concentrations from this dataset are summarized in 

Figure 5.6.  
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5.5.4 Application to ensemble constraint-based metabolic modelling 

The final aim of this tool is to use the uptake and secretion rates calculated to 

constrain genome-scale metabolic models. The uptake and secretion fluxes calculated 

at the different time points by the tool were constrained in the iAA1259 metabolic 

model of S. coelicolor 15. The metabolic model was constrained across the different 

time points of growth (Figure 5.6a). The phosphate, glutamate, and glucose uptake 

rates were also constrained (Figure 5.6b), as well as the ACT and RED production rates  

(Figure 5.6c). The uptakes rates were then automatically input in a script to predict the 

bacteria growth rate using FBA. The metabolic model biomass predictions were in 

good agreement with the experimental growth data (Figure 5.7). Finally, the tool 

output was also used to illustrate the application of an ensemble modelling approach, 

where at each time point 500 FBA simulations were done between the upper and 

lower values of the 95% CI for the flux constraints. Instead of only analysing the 

metabolic predictions with a single optimal result given by FBA, the ensemble 

modelling approach offers the opportunity to explore the uncertainty around the 

possible metabolic solutions and enables a more careful analysis of metabolic 

modelling results 13. Here, the sampling method used is simplified (as described in 

Method) to illustrate the ensemble modelling approach. However, when applying an 

ensemble modelling approach it requires use of an appropriate sampling method 

taking into account the data distribution (normal or log-normal), the data 

autocorrelation at a time point with the next one, as well as how the exchange fluxes 

depends on each other (e.g., does high phosphate uptake implies a more likely pairing 

with high glucose uptake?). The 500 simulations predict a range of possible states for 

the metabolic model where the predicted growth is in agreement with the data for all 
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a) 

b) 

c) 

Figure 5.6: Summary of the tool predictions of biomass and concentrations by the 

tool for the input dataset 

a) Growth curve for S. coelicolor in the chemostat experiment, in red the logistic equation 

fitted by the tool, in black the experimental data. 

b) All the metabolites concentration (black points) with the fitted equation (black line), 

and the 95% CI band (green: glutamate, pink: phosphate, orange: glucose). 

c)  Antibiotics concentrations (black points) with the fitted equation (black line), and the 

95% CI band (blue: actinorhodin, red: undecylprodigiosin). 
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of these (Figure 5.7). There is an interesting feature to these predictions: in 

exponential phase the prediction range is very tight suggesting that the optimum is in 

a narrow zone during exponential growth (Figure 5.7). In contrast, in the transition and 

stationary phases the possible solutions are more diverse, suggesting that the 

uncertainty in determining the metabolic state at this point is higher. This analysis 

shows that the tool is adapted to analyse the input data and convert it into constraints 

for genome-scale metabolic models. Furthermore, this tool facilitates the application 

of ensemble modelling methods to popular constraint-based metabolic methods like 

FBA using COBRA.  

Figure 5.7: Ensemble modelling based on sampling of the exchange rates within the 

confidence interval 

The main growth prediction using the mean uptake rates calculated by the model (in blue) is 

compared to the experiment growth data (red points). This shows that the predictions are in 

good agreement with the experimental. The 500 predictions using exchange (grey lines) rates 

sampled within the 95% CI of exchange fluxes from the tool are compared to the experimental 

data (red points). The 500 predicted growth curves form a range of possible growth states that 

includes most of the experimental points, with a similar optimum at exponential phase then 

more difference from transition to stationary phase suggesting more uncertainty for the 

metabolic predictions.  
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5.6   Conclusion 

Here an automated R tool to calculate exchange rates and their confidence interval for 

constraint-based metabolic modelling was developed and tested for time series data. 

The tool was tested with two different datasets, one based on our experimental 

measurements in a triplicate culture in flasks and one based on chemostat data 14. The 

tool output was then used to constrain a S. coelicolor metabolic model 15 and the 

predictions were validated with the chemostat experimental data 14. Finally, the 

output was also used for an ensemble modelling approach generating 500 metabolic 

predictions by sampling exchange fluxes within the confidence interval.  

 This tool helps to bridge the synthetic biology test and design phase by 

automatically using test data to integrate it in the metabolic modelling, to study the 

metabolic state of a strain following an engineering cycle. Nowadays synthetic biology 

is less limited by the pace of the building phase, but more by the ability to analyse 

engineered strains, learn from the observed phenotype and feed this information back 

into the design phase 7. The tool is modular and open-source (using R Markdown) so 

anyone can adapt it to their datasets. The tool also helps to take into account the 

uncertainty inherent to biological systems by estimating the confidence intervals and 

including the tool outputs for use with ensemble modelling approach. Taking 

uncertainty into account in the modelling will help to increase the robustness of the 

predictions by allowing a more informed assessment of the confidence in individual 

results 13,28. In the future, this type of tool would ideally have a user-friendly interface 

that can integrate test data into a constraint-based genome-scale metabolic model of 

the user’s choice with ease. The development of more user-friendly tools would help 

the experimentalists to quickly test their engineered strain(s), analyse the effect of the 
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modification on metabolism, then predict new targets. Which would accelerate the 

DBTL cycle by putting into the hands of any synthetic biologist the power of constraint-

based metabolic modelling. 

5.7   References 

(1)  Lee, S. Y.; Kim, H. U.; Chae, T. U.; Cho, J. S.; Kim, J. W.; Shin, J. H.; Kim, D. I.; Ko, 
Y.-S.; Jang, W. D.; Jang, Y.-S. A Comprehensive Metabolic Map for Production of 
Bio-Based Chemicals. Nat. Catal. 2019, 2 (1), 18–33. 

(2)  Chubukov, V.; Mukhopadhyay, A.; Petzold, C. J.; Keasling, J. D.; Martín, H. G. 
Synthetic and Systems Biology for Microbial Production of Commodity 
Chemicals. npj Syst. Biol. Appl. 2016, 2 (1), 16009. 

(3)  Breitling, R.; Takano, E. Synthetic Biology Advances for Pharmaceutical 
Production. Curr. Opin. Biotechnol. 2015, 35, 46–51. 

(4)  Nielsen, J.; Keasling, J. D. Engineering Cellular Metabolism. Cell 2016, 164 (6), 
1185–1197. 

(5)  Medema, M. H.; Breitling, R.; Bovenberg, R.; Takano, E. Exploiting Plug-and-Play 
Synthetic Biology for Drug Discovery and Production in Microorganisms. Nat. 
Rev. Microbiol. 2011, 9 (2), 131–137. 

(6)  Cardinale, S.; Arkin, A. P. Contextualizing Context for Synthetic Biology–
Identifying Causes of Failure of Synthetic Biological Systems. Biotechnol. J. 2012, 
7 (7), 856–866. 

(7)  Cameron, D. E.; Bashor, C. J.; Collins, J. J. A Brief History of Synthetic Biology. 
Nat. Rev. Microbiol. 2014, 12, 381–390. 

(8)  Schellenberger, J.; Que, R.; Fleming, R. M. T.; Thiele, I.; Orth, J. D.; Feist, A. M.; 
Zielinski, D. C.; Bordbar, A.; Lewis, N. E.; Rahmanian, S.; et al. Quantitative 
Prediction of Cellular Metabolism with Constraint-Based Models: The COBRA 
Toolbox v2.0. Nat. Protoc. 2011, 6 (9), 1290–1307. 

(9)  O’Brien, E. J. J.; Monk, J. M. M.; Palsson, B. O. Ø. Using Genome-Scale Models to 
Predict Biological Capabilities. Cell 2015, 161 (5), 971–987. 

(10)  Aurich, M. K.; Paglia, G.; Rolfsson, Ó.; Hrafnsdóttir, S.; Magnúsdóttir, M.; 
Stefaniak, M. M.; Palsson, B. Ø.; Fleming, R. M. T.; Thiele, I. Prediction of 
Intracellular Metabolic States from Extracellular Metabolomic Data. 
Metabolomics 2015, 11 (3), 603–619. 

(11)  Cakir, T.; Efe, C.; Dikicioglu, D.; Hortacsu, A.; Kirdar, B.; Oliver, S. G. Flux Balance 
Analysis of a Genome-Scale Yeast Model Constrained by Exometabolomic Data 
Allows Metabolic System Identification of Genetically Different Strains. 
Biotechnol Prog 2007, 23 (2), 320–326. 

(12)  Mo, M. L.; Palsson, B. Ø.; Herrgard, M. J. Connecting Extracellular Metabolomic 
Measurements to Intracellular Flux States in Yeast. BMC Syst Biol 2009, 3, 37. 

(13)  Tsigkinopoulou, A.; Baker, S. M.; Breitling, R. Respectful Modeling: Addressing 
Uncertainty in Dynamic System Models for Molecular Biology. Trends 
Biotechnol. 2017, 35 (6), 518–529. 

(14)  Nieselt, K.; Battke, F.; Herbig, A.; Bruheim, P.; Wentzel, A.; Jakobsen, Ø. M.; 
Sletta, H.; Alam, M. T.; Merlo, M. E.; Moore, J. The Dynamic Architecture of the 



272 
 

Metabolic Switch in Streptomyces Coelicolor. BMC Genomics 2010, 11 (1), 10. 
(15)  Amara, A.; Takano, E.; Breitling, R. Development and Validation of an Updated 

Computational Model of Streptomyces Coelicolor Primary and Secondary 
Metabolism. BMC Genomics 2018, 19 (1), 519. 

(16)  Takano, E. PpGpp and Antibiotic Production in Streptomyces Coelicolor A3(2). 
1993. 

(17)  Kahm, M.; Hasenbrink, G.; Lichtenberg-Fraté, H.; Ludwig, J.; Kschischo, M. 
Grofit : Fitting Biological Growth Curves with R. J. Stat. Softw. 2010, 33 (7), 1–21. 

(18)  Team, R. C. R Foundation for Statistical Computing. R: A Language and 
Environment for Statistical Computing. 2017. 

(19)  Greenwell, B. M.; Schubert Kabban, C. M. Investr: An R Package for Inverse 
Estimation. R J. 2014, 6 (1), 90–100. 

(20)  Kieser, T. Practical Streptomyces Genetics; John Innes Foundation, 2000. 
(21)  Wentzel, A.; Bruheim, P.; Øverby, A.; Jakobsen, Ø. M.; Sletta, H.; Omara, W. A. 

M.; Hodgson, D. A.; Ellingsen, T. E. Optimized Submerged Batch Fermentation 
Strategy for Systems Scale Studies of Metabolic Switching in Streptomyces 
Coelicolor A3(2). BMC Syst. Biol. 2012, 6 (1), 59. 

(22)  Bystrykh, L. V; Fernández-Moreno, M. A.; Herrema, J. K.; Malpartida, F.; 
Hopwood, D. A.; Dijkhuizen, L. Production of Actinorhodin-Related" Blue 
Pigments" by Streptomyces Coelicolor A3 (2). J. Bacteriol. 1996, 178 (8), 2238–
2244. 

(23)  Ebrahim, A.; Lerman, J. A.; Palsson, B. Ø.; Hyduke, D. R. COBRApy: COnstraints-
Based Reconstruction and Analysis for Python. BMC Syst. Biol. 2013, 7 (1), 74. 

(24)  Becker, S. A.; Feist, A. M.; Mo, M. L.; Hannum, G.; Palsson, B. Ø.; Herrgard, M. J. 
Quantitative Prediction of Cellular Metabolism with Constraint-Based Models: 
The COBRA Toolbox. Nat. Protoc. 2007, 2 (3), 727–738. 

(25)  Bates, D. M.; Watts, D. G. Nonlinear Regression Analysis and Its Applications; 
Wiley, 1988. 

(26)  Aurich, M. K.; Fleming, R. M. T.; Thiele, I. MetaboTools: A Comprehensive 
Toolbox for Analysis of Genome-Scale Metabolic Models. Front. Physiol. 2016, 7, 
327. 

(27)  Thomas, L.; Hodgson, D. A.; Wentzel, A.; Nieselt, K.; Ellingsen, T. E.; Moore, J.; 
Morrissey, E. R.; Legaie, R.; Wohlleben, W.; Rodriguez-Garcia, A.; et al. 
Metabolic Switches and Adaptations Deduced from the Proteomes of 
Streptomyces Coelicolor Wild Type and PhoP Mutant Grown in Batch Culture. 
Mol. Cell. Proteomics 2012, 11 (2), M111.013797-M111.013797. 

(28)  Tsigkinopoulou, A.; Hawari, A.; Uttley, M.; Breitling, R. Defining Informative 
Priors for Ensemble Modeling in Systems Biology. Nat. Protoc. 2018, 13 (11), 
2643–2663. 

 



273 
 

5.8  Supplementary Files 

 

a) 

b) 

Supplementary Figure 5.1: Biomass conversion and fitting by the tool for the 
first dataset tested  

a) Curve of calibration of biomass OD450 to biomass in gDW. Blue line 

corresponds to the fitted equation. 

b) Fitted logistic equation of growth to the converted biomass (in gDW). The red 

line corresponds to the fitted equation. 
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a) 

b) 

c) 

d) 

Supplementary Figure 5.2: Parameters analysis for RED 

a) Parameters S and F boxplot of the parameter bootstrap resampling 

b) The residuals and standardised residuals are plotted against the fitted values to 

see if a linear are non-linear equation is more adapted to the dataset. 

c) The autocorrelation is analysed by plotting residuals at a time (i) against residuals 

at the next time point (i+1). The normal Q-Q plot of standardised residuals is 

plotted to verify if some data points are misfits in the equation fitting. 

d) Jackknife resampling to further estimate the two parameters distribution showing 

the most probable couples. 
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a) 

c) 

e) 

Supplementary Figure 5.3: Outputs for the analysis of actinorhodin by the tool 

a) Fitting of the equation to the data with noisy simulated data around a sigma=0.1  

b) Fitting of the equation to the data with the 95% CI band 

c) Couple parameters Beale's 95% unlinearized confidence region 

d) Couple parameters RSS contour with 95% CI. Heatmap colours corresponds to the 

couple of parameters from the least fitting in red to the most fitting in dark blue. 

e) Fitted equation with upper and lower values of the 95% CI for the predicted 

concentration 

f) Absolute undecylprodigiosin export flux over time 

b) 

d) 

f) 
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a) 

b) 

c) 

d) 

Supplementary Figure 5.4: Parameters analysis for ACT 

a) Parameters S and F boxplot of the parameter bootstrap resampling 

b) The residuals and standardised residuals are plotted against the fitted values to see if a 

linear are non-linear equation is more adapted to the dataset. 

c) The autocorrelation is analysed by plotting residuals at a time (i) against residuals at 

the next time point (i+1). The normal Q-Q plot of standardised residuals is plotted to 

verify if some data points are misfits in the equation fitting. 

d) Jackknife resampling to further estimate the two parameters distribution showing the 

most probable couples. 
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Supplementary Figure 5.5: Protocol for coloured secondary metabolites 

concentration measures 

Experimental protocol used to measure the coloured antibiotics from the 

Streptomyces coelicolor flasks culture. yCpk (yellow pigment) was measured by 

absorption at 460nm in the supernatant after spinning down 1mL of culture (2 min at 

12000rpm). The Act (blue pigment) concentration was determined by measuring the 

absorption at 640nm after adding the same volume of 1M NaOH to the same volume 

of supernatant (0.7ml), an OD640 of 0.5 is equivalent to 60 µg/mL of Act 25. In order to 

measure the concentration of RED, the mycelium pellet was re-suspended in 1 mL of 

HCl spun down (2 min at 8000 rpm), the supernatant was discarded and the mycelium 

in the pellet re-suspended in 1 mL of 100% methanol and spun down (2 min at 12000 

rpm), the absorption in the supernatant was measured at 533 nm, an OD533 of 1 is 

equivalent to a concentration of 3.91 µg/mL of RED 25. 
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Cultures 

Act and 
yCpk 

Red 

Supplementary Figure 5.6: Growth curve of S. coelicolor M145 and coloured 

secondary metabolites concentration across time   

Growth curve (in blue) in the minimal chemically defined media for metabolomics, the 

concentration of the coloured secondary metabolites Act, Red and yCpk are respectively 

displayed in purple, red and yellow. 
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Chapter VI 

6. Metabolomics and metabolic model-driven 

Streptomyces strains design for antibiotics production 
Adam Amara1, Katsuaki Nitta 2, Sastia Putri 2, Eiichiro Fukusaki 2, Francesco Del 

Carratore 1, TOPCAPI consortium, Rainer Breitling 1, Eriko Takano 1 (to be submitted)  

1 Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), 

Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, 

University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK 
2 Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 

Yamadaoka, Suita, Osaka 565-0871, Japan 

 

6.1 Preface  

In the first part of this chapter, about actinorhodin production in Streptomyces 

coelicolor, all the experimental data (metabolomics and growth data), and the 

processed metabolomics data was generated by Katsuaki Nitta in Prof. Fukusaki Lab 

(Osaka University). AA did the in silico analysis, such as metabolomics data integration, 

the metabolic modelling, and the gene target identification. 

The second part of this chapter, focused on metabolic modelling of GE2270A 

production, this is part of the Thoroughly Optimised Production Chassis for Advanced 

Pharmaceutical Ingredients (TOPCAPI) project. AA carried out the metabolic modelling 

and target identification for GE2270A production. AA and Francesco Del Carratore 

jointly introduced and verified the GE2270A pathway in the model, ran the knockouts 

algorithm and the OptGene algorithm, and interpreted the OptGene output. The 

experimental data (CMAN media determination) was generated by the TOPCAPI 
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consortium (http://topcapi.eu/).  This is aimed to be submitted for publication at a 

later date. 

6.2 Abstract  

The decreasing rate of new antibiotics discovery is failing to meet the need of new 

antibiotics to face the rising antibiotics resistance; this is partly due to economic 

barriers making antibiotic discovery and production unattractive to industry. Thus, the 

production of antibiotics at industrially relevant levels is essential to enable cost-

effective production, and accelerate novel antibiotics production. The Actinobacteria 

phylum is a rich source of antibiotics and other secondary metabolites of clinical or 

industrial interest, and among this phylum the Streptomyces species are the most 

prominent group of antibiotic producing bacteria. Most antibiotics are produced in 

improved native producing strains or by heterologous production in a host organism. 

Application of omics’ data analysis and metabolic modelling has helped to identify 

engineering strategies to improve production in both native and heterologous hosts. In 

order to better understand and increase the production of the actinorhodin antibiotic 

in the native host Streptomyces coelicolor, we studied in vivo and in silico the 

production of this antibiotic in four different mutants of S. coelicolor. We also studied, 

by metabolic modelling, the heterologous production of a thiopeptide antibiotic in 

clinical trial, GE2270A, in the host strain S. coelicolor M1146. This enabled 

identification of two promising gene knockout targets to favour metabolic production 

of GE2270A in the host strain. 

http://topcapi.eu/
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6.3 Introduction 

The Actinobacteria phylum is a prolific producer of antibiotics with two thirds of 

antibiotics on the market derived from the Streptomyces genus 1,2. Many of the 

antibiotic producing strains are not producing high enough titres of compounds to 

enable cost-efficient production, or production at sufficient levels to be assayed (e.g., 

for clinical testing) 3,4. To produce more antibiotics and other secondary metabolites, 

one can improve production in the native strain, or improve heterologous production 

of the compound in a chassis strain 5–7. The main advantages of improving production 

in a native strain is that the metabolism is already wired to produce this compound 

(metabolic precursors are produced); so one can increase production of the compound 

by directly genetically manipulating the strain 7,8. However, if the organism is 

genetically intractable, or difficult to cultivate under laboratory conditions then it is 

complicated to increase production because it becomes impossible to engineer the 

organism 6,7. Here, heterologous production is a good solution to face this problem, by 

expressing the BGC into a chassis strain that is in general a well-studied organism, such 

as Streptomyces coelicolor for the Actinobacteria phylum. Heterologous production 

used to have major practical challenges, such as problems with genetic manipulation 

of the expression host or with the difficulty in cloning large sized BGCs. These barriers 

are partially overcome by the implementation of gene editing tools (e.g., CRISPR, or 

TALENs) 9, low-cost gene synthesis 10, and expression vectors 11 added to the synthetic 

biology toolbox 6,12,13. This is particularly important for secondary metabolite 

production, where Streptomyces strains (e.g., S.  coelicolor, or Streptomyces albus) are 

better hosts to produce BGCs discovered in Actinobacteria strains compared to other 

model organisms from different phylum (e.g., Escherichia coli, or Saccharomyces 
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cerevisiae) 13. The Streptomyces strains are more likely to have the necessary 

metabolic precursors for the secondary metabolites pathway, and to have the 

machinery to express the BGCs without issues with the Actinobacteria gene sequences 

(e.g., avoiding issues with GC content) 6,7.  

Synthetic biology has the potential to accelerate the engineering of these 

organisms for antibiotics production and other secondary metabolites 3,12. The 

engineering for the production of high-value chemicals (e.g., antibiotics) in 

microorganisms (i.e., Streptomyces) using synthetic biology is driven by the design-

build-test-learn (DBTL) cycle (see Chapter I for more details) 14,15. There are two main 

approaches used to produce a known secondary metabolite: the production in a native 

producer strain or the heterologous production in a host strain 7. The application of 

the synthetic biology DBTL cycle on a native strain starts by analysing the production in 

this organism (test phase), integrating the data (e.g., omics data) into a genome-scale 

metabolic model to analyse the organism metabolism (learn phase), then predict 

potential targets (e.g., gene knockouts and overexpression) to increase production 

(design phase), and finally execute the design (build phase) 6,14,16. Then, repeat the 

cycle to iteratively improve the production. A similar method is applied for using 

synthetic biology approaches for heterologous production, starting with the selection 

of a chassis strain and the refactoring of the heterologous pathway (design phase), 

followed by the expression of the construct with the metabolic pathway in the chassis 

strain (build phase), the strain is tested (e.g., concentration, and omics data) to identify 

any bottleneck in the production (test phase), the data is then integrated in a 

metabolic model to analyse the organism metabolism (learn phase), to finally create 

new designs (e.g., genes knockouts) 5–7.   
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The native and heterologous production of antibiotics studied here are in the 

S. coelicolor strain as this strain has the highest quality genome-scale metabolic model 

available for the Streptomyces species 17,18 which was published as part of this thesis. 

Here, we studied the native and heterologous production of actinorhodin in 

S. coelicolor M145 and M1146 strains, as well as the heterologous production of 

GE2270A in the M1146 strain (see Chapter I for more details on M1146 and M145 

strains). Actinorhodin (ACT) is a type II polyketide (PK), and a pH dependent blue-

pigmented antibiotic 19,20. This compound is produced in S. coelicolor, naturally, and its 

production is triggered by the depletion of nutrients such as phosphate or nitrogen 

21,22. GE2270A is a ribosomally synthesized and post-translationally modified peptide 

(RiPP), it is a thiopeptide antibiotics with derivatives of clinical interest 23,24. GE2270A is 

natively produced by Planobispora rosea, but this strain is genetically intractable; so, 

to further study the compound biosynthesis, and to improve production of this 

compound, it was expressed in the well-studied S. coelicolor chassis strain M1146 25. 

S. coelicolor was also chosen as host because it is the closest model organism to the 

Actinobacteria species P. rosea 25. 

In the first part, we present the study and design of the production of ACT in 

the WT and mutants S. coelicolor strains. The production of ACT was studied in four 

different strains, the WT M145, M145 with an ACT cosmid introduced, M1146, and 

M1146 with an ACT cosmid introduced. Metabolomics data and nutrient exchange 

were used to validate the iAA1259 17 metabolic model for the four strains. The 

exometabolomics data was used to study the metabolic trade-offs of metabolic 

exports on growth and on ACT production. The exometabolomics data was also 

integrated in the metabolic model to predict the intracellular metabolic pathways 
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active in the different strains. The reactions with predicted metabolic fluxes correlated 

to high levels of ACT production were also identified. Finally, the metabolomics 

integration and the modelling were interpreted to identify potential gene knockouts or 

overexpression targets to redirect metabolic fluxes toward ACT biosynthetic pathway.  

In the second part, we present the heterologous production of the RiPP, 

GE2270A, in S. coelicolor M1146. The GE2270A pathway was introduced in the 

iAA1259 model and tested in silico in a complex industrial media which was used to 

obtain the measurements. The antibiotic production trade-off with biomass in this 

media was analysed, followed by an analysis of the predicted metabolic exchange 

within the complex media. Then, a simulation was conducted to predict the single and 

double gene deletions which are non-essential to growth or to GE2270A production. 

Then, the genes predicted as non-essential were used as an input for the OptGene 

algorithm. OptGene is an evolutionary algorithm that was used to simulate multiple 

generations of in silico mutants to identify gene deletions that can give an advantage 

to GE2270A production. This led to the identification of 5 main possible gene deletions 

that were tested in silico by comparing the predicted metabolic fluxes from simulated 

mutant strains with the different possible combinations of knockouts. Following this 

analysis, two promising gene knockouts were selected (both associated to FMN 

reductases); these gene deletion were predicted to couple GE2270A production to 

biomass, hence forcing production of the compound. 

6.4 Methods & Material 

Part I: Production of Actinorhodin in S. coelicolor 
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6.4.1 Experimental growth conditions and metabolomics data acquisition  

The laboratory experiments described here were carried out by Katsuaki Nitta at Osaka 

University. Multiple strains were tested, M145, M145+ACT, M1146 26, M1146+ACT, a 

cosmid containing the actinorhodin BGC (+ACT) was expressed in the M145 and 

M1146 strains 26. The strains were cultivated in a minimal fully-defined glutamate 

based media 22. The medium consists of Na-Glutamate, 46.4 g/L; D-glucose, 40 g/L; 

MgSO4, 2.0 mM; phosphate mix (NaH2PO4 and K2HPO4), 4.6 mM; supplemented 

minimal medium trace element solution SMM-TE (0.1 g/L of each of ZnSO4.7H2O, 

FeSO4.7H2O, MnCl2.4H2O, CaCl2 and NaCl), 8 mL/L; Trace Minimal Supplement 1 (TMS1: 

FeSO4.7 H2O, 5 g/L; CuSO4.5 H2O, 390 mg/L; ZnSO4.7 H2O, 440 mg/L; MnSO4.H2O, 150 

mg/L; Na2MoO4.2 H2O, 10 mg/L; CoCl2.6 H2O, 20 mg/L, and HCl, 50 mL/L), 5.6 mL/L; 

Antifoam, 1 ml/L. The pH was adjusted to pH 7 by adding NaOH 2M to the media. The 

cultures were grown in an incubator at 30°C and shaking at 250 rpm. Cultivations were 

performed in 250 mL baffled conical flasks containing springs, with a culture volume of 

50 ml; all the flasks have been coated to reduce aggregation of the cells on the side of 

the flask. 109 of viable spores were inoculated per flask. The growth was estimated by 

OD450 measurements (3 measures per time point). In order to calculate growth 

(DCW/mL) of each strain for growth curve, the cultures were collected and separated 

to supernatant and cell pellet by centrifugation (10,000 rpm, 5 min, 4°C). The cell pellet 

were washed by twice amount of milliQ water and centrifuged (10,000 rpm, 5 min, 

4°C) to obtain medium-free cell pellet and the cell pellet were frozen by liquid N2 and 

followed by freeze drying.  The supernatant was used for following secondary 

metabolites analysis and other primary extracellular metabolites. The concentrations 

of coloured secondary metabolites were spectrophotometrically measured by 
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following a series of extraction and measurements on a culture aliquot of 1 mL for 

each time-point. The amount of yCpk (yellow pigment) produced was estimated by 

measuring the absorption at 460nm in the supernatant after spinning down 1mL of 

culture (2 min at 12,000rpm). The Act (blue pigment) concentration was determined 

by measuring the absorption at 640 nm after adding the same volume of 1M NaOH to 

the same volume of supernatant (0.7 ml), an OD640 of 0.5 is equivalent to 60 µg/mL of 

Act 19. In order to measure the concentration of RED, the mycelium pellet was re-

suspended in 1 mL of HCl spun down (2 min at 8,000 rpm), the supernatant was 

discarded and the mycelium in the pellet re-suspended in 1 mL of 100% methanol and 

spun down (2 min at 12,000 rpm), the absorption in the supernatant was measured at 

533 nm, an OD533 of 1 is equivalent to a concentration of 3.91 µg/mL of RED 19. The 

glucose, glutamate, and phosphate levels in the media were measured using a F-kit-D-

Glucose (J.K.International), a L-glutamate assay kit Yamasa NEO (Yamasa), and a PiBlue 

Phosphate Assay kit POPB-500 (Bio Assay Systems).  

Cells for intracellular metabolome analysis were collected by fast-filtration with 

5.0 µm pore size nylon membrane filter. The cells were washed with twice the amount 

of NaHCO3 to eliminate medium component and the filter with cells are transferred to 

15 mL falcon tube and the metabolism of cells was quenched by liquid N2 immediately. 

The cells were kept at -80°C until extraction. 

In order to extract intracellular metabolites, 4 mL of mixed-solvent solution 

(MeOH: CHCl3: Water = 5:2:2, v/v/v) including 20 µg/L (+)-10 Camphorsulfonic acid 

and 20 µg/L ribitol as internal standards was added to quenched samples. Three cycle 

of freeze and thaw cycle as follows were conducted to improve metabolites extraction 

efficiency: (1) freezing at -80°C , (2) thawing at -30°C, (3) vortex for 5 seconds and 
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sonicating for 10 seconds. The extracts were centrifuged (10,000 rpm, 5 min, 4°C) and 

the supernatant was transferred to new tube. 1.0 mL ultrapure water was added to 

the 3 mL supernatant and vortexed well. The mixture was centrifuged (10,000 rpm, 5 

min, 4°C) and the upper layer (polar phase) was filtered by 0.2 µm PTFE filter. 2.0 mL of 

the upper layer was used for LC-MS/MS analysis while 1.0 mL of the upper layer was 

used for GC-MS analysis. The upper layer samples were concentrated by spin dryer (at 

4°C for 2 hours) and freeze dried for later analysis. Here pooled sample was obtained 

from all the samples and prepared as QC samples to check metabolome analysis 

stability during the analysis, especially untargeted GC-MS analysis. The lyophilized 

sample was kept at -80°C until analysis. On the other hand, for extracellular 

metabolites analysis, 50 µL of supernatant of cell culture was added to 1.8 mL mixed-

solvent solution (MeOH: CHCl3: Water = 5: 2: 2, v/v/v) and incubated at -30°C for 30 

minutes. The extracts were centrifuged (10,000 rpm, 5 min) and 400 µL of ultrapure 

water was added to the supernatant. The mixture was vortexed well and centrifuged 

for two layers separation. The upper layer was filtered and 700 µL was transferred to 

new tube for concentrating by spin dryer and freeze drying. The freeze dried sample 

was kept at -80°C until analysis. Freeze dried intracellular and extracellular samples 

were reconstituted with 100 µL ultrapure water for LC-MS/MS analysis. The solution 

was centrifuged (10,000 rpm, 5 min) and 40 µL supernatant was transferred to LC vial. 

Intracellular and extracellular metabolites were analysed by two kinds of LC-MS/MS 

analysis platforms. One LC-MS/MS analysis platform is ion-pair LC-MS/MS with 

LCMS8030 Plus and L-column2 ODS (150 nm × 2.1 mm, particle size 3 μm). The mobile 

phase A is 10 mM tributylamine with 15 mM acetate in ultrapure water while the 

mobile phase B is MeOH. The analysis was performed with gradient mode, metabolites 
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were ionized by negative ion mode and the injection volume was 3 µL. The data file 

from LC-MS/MS was converted to abf format file by Abf file converter and analysed by 

MRM probes 27. Another LC-MS/MS analysis platform is LC-MS/MS with LCMS8050 and 

Discovery HS F5-3 (150 nm × 2.1 mm, particle size 3 μm). The mobile phase A is 0.1% 

formic acid in ultrapure water while the mobile phase B is ACN. The analysis was 

performed with gradient mode, metabolites were ionized by positive ion mode and the 

injection volume is 3 µL. The data file from LC-MS/MS was analysed by Lab solution 

(SHIMADZU). MRM parameters are optimized from authentic standards in advance 

and all MS/MS analysis was performed by MRM mode. Each metabolite’s annotation 

was performed by the MRM parameters and RT of authentic standards.  On the other 

hand, samples for GC-MS untargeted intracellular metabolites analysis was derivatized 

by 100 µL of 20 mg/ml methoxyamine hydrochloride in infinity pure pyridine at 30°C, 

1,200 rpm for 90 minutes and by 100 µL of MSTFA solution at 37°C, 1,200 rpm for 30 

minutes. The derivatized sample was centrifuged (10,000 rpm, 5 min) and 40 µL of the 

supernatant was transferred to GC-vial. The analysis was performed by GC-ultra (single 

Q-MS) with InertCap 5MS-NP column (30 m × 0.25 mm I.D., df. = 0.25 µm). The carrier 

gas is He and the linear velocity was set to 39 cm/second. The injection volume was 1 

µL and the split ratio was 1:25. The analysis was performed by scan mode with mass 

range from 85 to 500 and column oven was changed by gradient mode. The data file 

from GC-MS analysis was converted to abf file by Abf file converter and the Abf file 

was analysed by MS-DIAL 28.  Metabolites were annotated by similarity comparison of 

RI and mass fragmentation pattern between real data and online library.  In whole 

analysis, extracellular data was normalized by IS while intracellular data was 

normalized by IS and cell amount.  
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6.4.2 Metabolic model experimental constraints and validation 

The nutrient and antibiotic levels in the media for the 4 different S. coelicolor strains 

were converted into exchange rates using the R tool described in the Chapter V. The 

metabolite import tool version was used for glucose, glutamate, and phosphate, while 

the metabolite export tool version was used for ACT and RED. The tool was applied to 

ACT data only for M145, M145+ACT, and M1146+ACT, as only these strains were 

producing ACT. The tool was applied to RED data only for M145, and M145+ACT as 

only these strains were producing RED. However, the tool could not fit an equation to 

the RED data in M145+ACT due to noisy data and the overall trend with high 

fluctuations between time points (levels going up and down and up again); so the RED 

export rates were estimated manually at each time point. The uptake and export rates 

calculated for the different strains were used to constrain the iAA1259 model 17; then 

the biomass was optimised using flux balance analysis (FBA) 27 in the COnstraint-Based 

Reconstruction and Analysis in Python (COBRApy) framework 28. The growth rates 

(gDW/h) predicted was converted into accumulated biomass (in gram of dry weight) 

which was compared to the measured biomass for each of the four strains. An 

ensemble modelling approach was used to predict the biomass by sampling exchange 

fluxes to constrain the model (method described in more details in Chapter V). 

Exchange constraints were sampled 500 times between the maximum and minimum 

value of the uptakes and export rates. The sampling method used divided the data 

range in 500 between the maximum and minimum flux calculated for each time point. 

The exchange fluxes were combined in sets of constraints in the order of maximum to 

minimum. This considers that if the strain reaches the max/min uptake of a given 

metabolite it will likely reach the max/min uptake or export for the other metabolites, 
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as well as reaching the max/min at the next time point. These 500 sets of exchange 

fluxes were constrained on the model using COBRApy in a loop running for each time 

point and optimising the growth using FBA. Finally, the 500 predicted growth curves 

were visualised with the average predicted growth and the experimental data. All the 

program scripts, data inputs, data outputs, and visualisations from the tool are 

available in the Electronic Supplementary 6.1. 

6.4.3 Exometabolomic data integration in the metabolic model 

The ratio of metabolites for M145+ACT to M145 (and inversely) as well as M1146+ACT 

to M1145 (and inversely) were calculated from the normalised metabolomics data 

(based on ion intensity) to identify if metabolites were higher or lower in the different 

strains. The metabolomics data was processed and normalised by Katsuaki Nitta. Then, 

I used this dataset to visualise it on a heatmap and cluster it using Ward’s hierarchical 

clustering from R 29. The metabolites identified in the extracellular milieu of the 

different strains were checked in the optimised metabolic models to find out if the 

model predicted their export, but none of the exometabolites were predicted as 

exported by the models. Some of the metabolites to export did not have a transporter 

in the model nor an extracellular metabolite annotation. So the transporters and the 

extracellular metabolites were added in the models for citrulline, hypoxanthine, S-

adenosyl-methionine, S-adenosyl-homocysteine, and urate. 

All the metabolites identified in the media were used to simulate the 

metabolites export in the models for the different strains to determine the trade-off 

cost of exporting these metabolites for the organism. The metabolic models were 

constrained with the metabolic exchange fluxes of glucose, glutamate, phosphate, 

ACT, and RED (as described in the previous section) at exponential growth phase (30h) 
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and stationary phase (64h). Then, the metabolites export were set as objective one by 

one for the models and optimized using FBA 30 in COBRApy 28; the optimum value was 

saved as the maximum possible export. The export fluxes were then individually 

constrained between 0 and the maximum possible export flux (using a range of 50 

points in between), at each export flux value constrained (within the range) the 

biomass or the ACT production was optimized by FBA in COBRApy 28. The constrained 

export fluxes values were plotted in the X-axis and the optimized biomass or ACT 

production rates in the Y-axis, to visualise the trade-off between the export and the 

optimal biomass or ACT production predicted. This trade-off curve represents the 

predicted cost of exporting these metabolites for the metabolic network under these 

conditions. 

The metabolic models were first constrained using the media conditions and 

the exchange fluxes (as described in the previous section). The exometabolites were 

then used to integrate new constraints to the metabolic models by forcing export of 

these metabolites. However, as these metabolomics datasets are semi-quantitative, 

the metabolite export rates were constrained to simply force exports at the maximum 

level at which the constrained models could still optimise growth. The combination of 

the metabolite export rates cannot be forced to levels so high that the model cannot 

optimise growth at the same time. So, the maximum possible exports rates for all the 

metabolites at the same time were determined to be between 0.1 and 0.0001 

mmol/gDW/h depending on the metabolite. The aim is to simply simulate the 

metabolic pathways activated by these exports even if the fluxes are not accurately 

predicted. Once the metabolite exports were constrained, the growth was optimised in 

the four metabolic models, at the 6 time points. Then, a Pearson correlation was 
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calculated between the predicted intracellular fluxes and ACT production across time, 

and the reactions were ranked from the most to the least correlated in each strain.  

6.4.4 Identification of the metabolic differences due to metabolites secretion and 

actinorhodin production 

The initial metabolite analysis was conducted by Katsuaki Nitta (University of Osaka). It 

focused on the isolation of the metabolic differences between M1146 and 

M1146+ACT. M1146 has a cleaner metabolic background 31 in comparison with M145 

as the native ACT, CDA , CPK, and RED biosynthetic genes clusters are deleted.  

Further analysis using the model was conducted by AA, the metabolic models 

for M1146 and M1146+ACT were constrained at the 6 time points with the 

corresponding media uptakes. Next, the metabolites exported were individually 

defined as the objective function and the models were optimised to predict optimal 

export and the intracellular metabolic fluxes under these conditions. The predicted 

fluxes for each optimised metabolites exports are then compared to the fluxes when 

growing only (M1146) or when growing and producing ACT (M1146+ACT). These flux 

comparisons at each time point were then compiled into a single matrix where all the 

reactions carrying fluxes when exporting a given metabolite are kept. In this analysis all 

the predicted fluxes inferior to 10-8 or inferior to -10-8 mmol/gDW/h were considered 

as null. So, this final matrix represents all the metabolic reactions predicted as active 

due to the metabolic exports only, as the metabolic fluxes associated to other 

functions such as growth or ACT production were filtered out. Here the optimisation 

was done using parsimonious FBA (pFBA), which improves intracellular fluxes 

distribution predictions but obtain the same optimal value for the objective compared 

to FBA 32,33 . 
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The metabolic model is constrained with the minimal media open constraints, 

where the uptakes and exports rates for glucose, glutamate, and phosphate were open 

to the maximum and minimum possible. The optimal ACT production value is 

predicted by optimising the model with ACT production as objective. Then, the 

objective function is set on biomass, while the ACT production is progressively 

constrained from 0 to the optimal value at 7 different points (0, 5, 10, 30, 50, 90, and 

100% of the optimal value). Finally, the Pearson correlation is calculated between the 

predicted fluxes compared and the ACT production to identify the reactions increasing 

or decreasing with ACT production. Here the optimisation was done using pFBA 32 . 

The metabolic reactions predicted to be correlated to ACT production, the 

reactions predicted to be activated by the metabolic exports, and the reactions 

carrying fluxes but not associated to the two previous groups are mapped on an Escher 

map 34 of central metabolism. The central metabolism map was built from the E. coli 

metabolic model 35, by adapting it to the S. coelicolor central metabolism from 

iAA1259 17 using the Python version of Escher 34. This was based on the BiGG 

identification for both models as the iAA1259 model is compliant with the BiGG 

standards 17,36. 

Part II: Heterologous production of GE2270A in S. coelicolor chassis strain 

6.4.5 GE2270A pathway introduction, complex media constraints, and production 

modelling 

The GE2270A biosynthetic pathway 23,25 was introduced in the S. coelicolor iAA1259 

metabolic model 17. The pathway was divided in two reactions, the first corresponding 

to the production of the precursor peptide by the ribosome from the aminoacyl-tRNAs, 

and the second corresponding to the post-translational modifications, and the 
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cleavage of the leader peptides leading to the final GE2270A compound. The 

compound production was then entirely tested in silico as no experimental data was 

available. The growth was simulated in the complex Manchester (CMAN) media, which 

was developed by the Manchester team of the TOPCAPI consortium. The CMAN media 

is a complex media based on glucose (10g/L), soluble potato starch (5g/L), hydrolysed 

casein (5g/L), Yeast extract (8g/L), and calcium carbonate (2g/L). As the exact 

concentrations of most of the metabolites in the media were unknown, the 

metabolites from the different components of the media were openly constrained 

(uptake of -1000 mmol/gDW/h); unless the tryptophan and cysteine which are present 

in very low concentrations in yeast extract and in casein. Also, glucose was constrained 

to a maximum possible import of 55 mmol/gDW/h (as its concentration could be 

calculated). The CMAN media composition is available in the Supplementary Table 6.1. 

The GE2270A production was set as objective function and optimized using FBA 

30 in COBRApy 28; the optimum value was used as the maximum possible production. 

Then, GE2270A production was constrained between 0 and the optimum GE2270A 

production rate at each point the biomass was optimised by FBA in COBRApy 28. The 

optimum growth against the GE2270A constraint helped to generate a trade-off curve 

to visualise the cost of an increasing production on the growth. 

The metabolic exchanges within the CMAN media were studied with growth as 

an objective, with GE2270A production as an objective, then with growth as an 

objective and GE2270A production constrained to 98% of the optimal growth. The 

metabolites consumed and exported were predicted by FBA 30 analysis  under the 

three different conditions(growth, GE2270A production, and growth and GE2270A 

production at the same time), the metabolites only exchanged under a particular 
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condition were were highlighted. The metabolic exports and imports increasing or 

decreasing between two conditions (GE2270A production, and growth) were 

normalised to the optimum growth to identify if the flux increase or decrease is 

associated to biomass, and the same with GE2270A optimum.  

6.4.6 Gene knockout targets for GE2270A production 

 The metabolic model was used to identify single gene knockouts essential to 

growth and the ones essential to GE2270A in the CMAN media (developed by the 

TOPCAPI consortium). The single knockouts were simulated using the knockout tool in 

the COBRApy 28 toolbox; a gene is essential if its deletion leads to an impossible 

optimisation of the objective function (growth or GE2270A production) by FBA 27. The 

optimum value obtained for the gene knockouts for growth and for GE2270A 

production were matched based on the genes locus ID, and plotted to identify the 

genes that lead to a decrease in growth and/or to GE2270A production. The exact 

same method was applied for double knockouts, as double knockouts are more likely 

to impact significantly the metabolism by cutting multiple reactions at once 37. 

 The metabolic model constrained in CMAN medium was considered by the 

evolutionary algorithm OptGene 38 to identify potential gene knockouts to improve 

GE2270A production. Glucose was used as the main carbon source in the algorithm, 

while the minimum growth allowed was 0.1 gDW/h, and the objective to optimise was 

GE2270A production. The space of possible genes knockouts for the algorithm to 

consider was reduced to the non-essential genes for biomass and GE2270A 

production. The OptGene algorithm considers GE2270A as the fitness trait (objective) 

with a fitness score (objective optimum). 1) The algorithm generates a population of 

500 individuals, by introducing random mutations to the initial model (the rate of 
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mutations is adjusted to a minimum of 1 mutation and maximum of 10). 2) OptGene 

performs an FBA analysis on each of the models maximising growth. 3) All the 

individuals are ranked according to their fitness score (GE2270A production). 4) The 

best “individuals” are selected for mating based on their fitness score, and 

subsequently crossed to produce a new “generation” of 500 individuals. 5) OptGene 

introduces new random mutations in the populations (based on the rate of mutations 

of 1 to 10). 6) The algorithm goes back to step 2 in a loop. The algorithm stops when 

the best individual of a “generation” satisfy a specific criteria, or when it reaches the 

maximum number of generation set (10,000 here) 38. The OptGene outputs are then 

visualised, such as the fitness value across generations and the mutations histogram 

showing the number of knockouts per individuals in the final selected population. The 

final generation of 500 in silico mutants was studied in more detail by comparing the 

genes most frequently mutated to identify a list of the genes most frequently deleted 

by the algorithm. This revealed 6 genes that were very frequently knocked out (>70% 

frequency) in the final population, but 5 gene deletions out of 6 led to a reaction 

knockout. The 5 genes were knocked out in the model in all possible combinations, 

leading to 30 in silico mutant strains; the genes were also knocked out in silico using 

the COBRApy gene knockout function 28. The 30 mutant strain models and a WT model 

(non-producer) were optimised for growth using pFBA 33. The predicted metabolic 

fluxes were then compared between all the strains, and divided into groups based on 

the sum of all fluxes to identify the mutants that have the same metabolic phenotype 

as the WT, and the mutants that were producing GE2270A without constraining it. The 

predicted fluxes higher or lower in GE2270A producers compared to non-producers 
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were analysed to identify the metabolic fluxes predicted as increasing or decreasing in 

the GE2270A producing strains.  

6.5 Results & Discussion 

Part I: Production of Actinorhodin in S. coelicolor 

The S. coelicolor strain is a native producer of the blue-coloured type II PKS antibiotic 

actinorhodin (ACT) 19,20. The study of ACT production in S. coelicolor is used as a model 

for polyketides antibiotic production in Streptomyces species 19,21,39. Here, the ACT 

production was studied in the wild-type (WT) reference strain M145 and in the 

S. coelicolor chassis strain M1146. 

6.5.1 Model constraints and validations 

The production of ACT was studied under four different conditions, in the S. coelicolor 

WT strain (M145), in the WT with a cosmid containing the ACT BGC (M145+ACT), in a 

S. coelicolor strain with the four active antibiotics (ACT, CDA, CPK, RED) BGCs deleted 

(M1146), and in the M1146 strain containing the ACT cosmid (M1146+ACT) (Table 6.1). 

This cosmid integrates a single copy of the entire ACT BGC into the host strain genome 

26. So, the M145 strain contains one native copy of ACT cluster, the M145+ACT 

contains two copies of the ACT cluster, the M1146 contains no ACT cluster, and 

M1146+ACT contain one introduced ACT cluster (in a different location compared to 

M145). Collaborators from the Osaka University acquired time-point data (20, 30, 40, 

50, 64, and 72 hours) in the 4 different strains, for biomass, glutamate, glucose, 

phosphate, RED, and ACT concentrations in a minimum glutamate medium 22,40. They 

also acquired targeted intracellular and extracellular metabolomics data at all the time 

points. 
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Strains 
Streptomyces 
coelicolor 
M145 

Streptomyces 
coelicolor 
M145 + ACT 

Streptomyces 
coelicolor 
M1146 

Streptomyces 
coelicolor 
M1146 + ACT 

Characteristics 

Plasmid-free WT 
strain S. 
coelicolor A3(2). 
Plasmids SCP1- 
and SCP2- 
curated. 

M145 strain 
containing a 
cosmid with 
the 
actinorhodin 
BGC 

Derived from the 
M145 strain, with 
the main BGCs 
deleted. 

Dact Dred Dcpk 

Dcda  

M1146 strain 
containing a 
cosmid with the 
actinorhodin 
BGC 

Table 6.1: The four different Streptomyces coelicolor strains used in the experiments 

 

 The strain was grown in a minimal fully-defined media with phosphate as a 

limiting nutrient, once the phosphate is depleted, it triggers the entry into the 

stationary growth phase and secondary metabolites production 40. The media 

conditions, nutrients, antibiotics, and growth data measurements were used to apply 

specific-constraints on the S. coelicolor metabolic model iAA1259 17 for the four strains 

(Figure 6.1). The exchange rates of nutrients (glucose, glutamate, and phosphate) and 

antibiotics (ACT, and RED) of the cultures for the four strains were calculated and 

automatically constrained using the flux tool described in the Chapter V (Figure 6.1). 

The constraints applied generated by the flux tool for the M145 data are shown in 

Figure 6.1, while the data for all four strains are available in the Supplementary Figures 

6.1 to 6.9. In all four strains, the phosphate consumption decreased following a 

decreasing logistic curve (Figure 6.1a, Supplementary Figures 6.1g, 6.1h, 6.4g, 6.4h, 

6.7g, 6.7h, 6.8g, and 6.8h). The resulting uptake flux of phosphate has a bell shape 

peaking during exponential (Figure 6.1b, Supplementary Figures 6.1i, 6.4i, 6.7i, and 

6.8i), the point after the peak is phosphate depletion leading to stationary phase. The 

glucose and glutamate levels are decreasing linearly in the media (Figure 6.1c, 6.1e, 

Supplementary Figures 6.1a, 6.1b, 6.1e, 6.1f,  6.4a, 6.4b, 6.4e, 6.4f, 6.7a, 6.7b, 6.7e, 

6.7f, 6.8a, 6.8b, 6.8e, and 6.8f ). The uptake fluxes are proportional to the growth 
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trends with a maximal uptake during exponential growth and a near zero uptake 

during stationary phase (Figure 6.1d, 6.1f, Supplementary Figures 6.1c, 6.1g, 6.4c, 6.4g, 

6.7c, 6.7g, 6.8c,and 6.8g). RED is only produced in M145 and M145+ACT as the cluster 

is deleted from the M1146 strain, RED production exponentially increases after 

stationary phase (Figure 6.1g, 6.1h, Supplementary Figures 6.3, and 6.6). However, the 

tool does not reliably analyse RED levels and fluxes in M145+ACT as the data is very 

noisy and do not follow a linear, exponential, or logistic trend (Supplementary Figure 

6.6). This is likely due to the introduction of the extra ACT cluster that must perturb 

RED regulation or production. ACT is only produced in M145, M145+ACT, and 

M1146+ACT, with a rapidly increasing production after stationary phase (Figure 6.1i, 

Supplementary Figures 6.2, 6.5, and 6.9). The uptake and secretion fluxes estimated by 

the tool (Figure 6.1b, d, f, and h) are used to constraint the metabolic models at the 6 

time points.  

The constrained metabolic models for the four strains were validated by 

predicting the growth rate at the 6 different time points (20, 30, 40, 50, 64, and 72 

hours); the growth predictions were compared to the experimental growth curves 

(Figure 6.2). The predicted growth curves for all four conditions are in good agreement 

with the experimental data (Figure 6.2a, b, c, and d). An ensemble of 500 different 

constraints sets within the 95% confidence interval of uptake and secretion fluxes was 

generated by the flux tool (see Chapter V for more details), then an ensemble of 500 

models at the 6 time points were optimised to predict 500 different growth curves 

(Figure 6.2a, b, c, and d). The ensemble of different growth predictions created a band 

of possible growth curves similar to a confidence interval of growth predictions 

(Figure 6.2a, b, c, and d).  
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Figure 6.1: Example of metabolites exchange constraints automatically applied on 
the metabolic models  

The data presented here is for the M145 culture, the detailed data for all four strains is available in 

Supplementary File 1 (Supplementary Figures 1 to 9). 

a) Fitting of a decreasing logistic equation to the phosphate concentration data with the 95% 

confidence interval band. The black points correspond to experimental data. 

b) Uptake flux values across times for the phosphate 

c) Fitting of a linear equation to the glucose concentration data with the 95% confidence interval 

band. The black points correspond to experimental data. 

d) Uptake flux values across times for the glucose 

e) Fitting of a linear equation to the glutamate concentration data with the 95% confidence 

interval band. The black points correspond to experimental data 

f) Uptake flux values across times for the glutamate 

g) Fitting of a logistic equation to the undecylprodigiosin concentration data with the 95% 

confidence interval band. The red points correspond to experimental data. 

h) Secretion flux values across time for the undecylprodigiosin 

i) Fitting of a logistic equation to the actinorhodin concentration data with the 95% confidence 

interval band. The blue points correspond to experimental data. 

j) Secretion flux values across time for the actinorhodin 
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Figure 6.2: Validation of the metabolic model iAA1259 growth predictions under the 
four different conditions 

a) Predicted growth by the constrained metabolic model (blue line) and 500 ensemble 

predictions (grey band) compared to the experimental data (red points) for the 

S. coelicolor M145 strain. 

b) Predicted growth by the constrained metabolic model (blue line) and 500 ensemble 

predictions (grey band) compared to the experimental data (red points) for the 

S. coelicolor M145 strain with the ACT cosmid (M145+ACT). 

c) Predicted growth by the constrained metabolic model (blue line) and 500 ensemble 

predictions (grey band) compared to the experimental data (red points) for the 

S. coelicolor M1146 strain (with no antibiotic gene clusters). 

d) Predicted growth by the constrained metabolic model (blue line) and 500 ensemble 

predictions (grey band) compared to the experimental data (red points) for the 

S. coelicolor M1146 strain with the ACT cosmid (M1146+ACT). 

 

6.5.2 Exometabolome integrative analysis 

Microorganisms consume and secrete metabolites in the media during growth, which 

are a direct result of the intracellular metabolism. The metabolites taken up are 

consumed to feed the cellular processes, whereas the metabolites secreted have many 

different functions, such as secondary metabolites, overflow primary metabolism 

intermediates, waste by-products, or cell lysis 41,42. So the analysis of extracellular 
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metabolites can give an insight into the metabolic state of a microorganism 41. Uptake 

fluxes are already widely used to constrain the metabolic models used to predict the 

physiological state of an organism, as described in Chapter V. However, secreted 

metabolites are less commonly used as constraints but it was shown to generate 

better predictions of intracellular metabolic states when integrated in metabolic 

models 27,43,44. Thus, the exometabolome data acquired for the four strains at the 6 

time-points was analysed and integrated in the metabolic models already constrained 

with the nutrients uptake and antibiotics export.   

First, the exometabolome was processed and normalised by Katsuaki Nitta, I 

then analysed this processed data to identify the metabolites with higher or lower 

levels in the media for the high ACT producers: M145+ACT compared to M145 and 

M1146 compared to M1146+ACT. However, this dataset is semi-quantitative, so the 

data was not converted into metabolite concentrations, which would allow calculating 

the exchange rates to constrain the models. So only the trends were analysed 

(increasing or decreasing) and the differences of metabolite levels between strains 

(higher or lower). The metabolites are clustered in groups based on the data trends 

and on the ratio values; so these groups correspond to metabolites globally higher, 

lower, or with no difference between the two strains compared (Supplementary Figure 

6.10 and 6.11). The strain with an extra ACT cluster M145+ACT, secreted multiple 

metabolites associated with glycolysis and TCA cycle (FBP, DHAP, GAP, PEP, iso-

/citrate, pyruvate) at higher levels than M145, a few with purines & pyrimidines 

metabolism (urate, CDP, UDP, orotate, thymine, cystine, cAMP), pentose phosphate 

pathway (R5P, Ru5P/Xu5P), and with amino-acid metabolism (glutamine, aspartate, 

serine, ornithine) (Supplementary Figure 6.10). Whereas the M145 strain secreted 
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higher levels of many metabolites associated with purines & pyrimidines metabolism 

(uridine, uracil, xanthine, guanosine, guanine, hypoxanthine, inosine, thymidine, UMP, 

xanthosine, adenine, cytosine, adenosine), and a few metabolites associated to central 

and amino-acid metabolism (6PGA, UDP-glucose, SAH, glycine) (Supplementary Figure 

6.10). The strain with no ACT production (M1146) secreted higher levels than 

M1146+ACT of a few metabolites associated with amino-acids and central metabolism 

(citrulline, ornithine, glutamine, 4-aminobutyrate, lactate, SAH, and gluconate), with 

purines & pyrimidines metabolism (cytosine, and urate) (Supplementary Figure 6.11). 

In contrast, M1146+ACT strain excreted higher levels than M1146 of metabolites 

associated with purines & pyrimidines metabolism (uracil, thymine, xanthine, adenine, 

orotate, xanthosine, guanosine, adenosine, uridine, thymidine, cytidine, hypoxanthine, 

guanine), and with central and amino-acids metabolism (SAM, iso-/citrate, pyruvate, 2-

oxoglutarate, cAMP, aspartate) (Supplementary Figure 6.11). The metabolite cAMP 

was identified by our collaborators as correlated with ACT production, as the cAMP 

levels in the media increase at the same time as ACT extracellular concentrations 

(Supplementary Figure 6.12). This metabolite is thought to have an important role in 

Streptomyces germination 45, secondary metabolism regulation 46, and central 

metabolism regulation 46,47. Further transcriptomics experiments by our collaborators 

are currently being carried on genes expression levels to identify the impact of cAMP 

on ACT production. The cAMP role will be further discussed with the integration of the 

metabolomics data. 

It is also important to make sure that these extracellular metabolites are not 

the result of cell lysis or damage 41. For example, if multiple primary metabolites are 

measured as increasing in the extracellular milieu during low growth rates this is 
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unlikely to be caused by overflow metabolism, but rather by lysis. One of the possible 

reason for cell damage is the overproduction of antibiotics compounds such as 

Actinorhodin that may lead to autolysis but this has not been observed here. The data 

analysed here did not seem to show major patterns related to cell lysis, such as 

primary metabolites higher during stationary. However, to make sure there is no 

significant cell lysis occuring the cultures need to be tested for live and dead cell count. 

In the metabolic models constrained and optimised, none of the metabolites 

measured in the media were predicted as exported because only a few growth-

coupled waste metabolites secretions contribute to maximise biomass (e.g., CO2). The 

metabolic model, when optimised using FBA, only predicts balanced fluxes complying 

with the constraints or objective optimisation 27,30. So, constraining these metabolite 

exports is necessary to predict the metabolism more accurately. 

The metabolite exports have a cost for the organism metabolism, and these 

exports may compete for metabolic resources used for biomass and ACT production. 

So, studying the impact and the cost of metabolic secretions on the metabolism could 

help to identify metabolites involved in non-essential metabolic processes, which 

could be deleted to redirect metabolic resources toward ACT production. All the 

exports of metabolites (identified in the exometabolome) were individually studied in 

silico for the four strains during exponential phase (at 30h) and during stationary phase 

(at 64h) (see Electronic Supplementary – Additional File 2). The metabolites exported 

were divided in two groups the ones in direct and the ones in indirect competition with 

biomass. For example, in all four strains, increasing exports of cAMP lead to a direct 

decrease of biomass (Figure 6.3a). Whereas an increasing export of 2-oxoglutarate did 

not impact biomass growth until a “breaking” point in high cAMP export rates, where 
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biomass growth rates dropped to near 0 values (Figure 6.3b). The metabolites 

predicted as in direct competition with growth are different between the M1146 and 

the M145 derived strains (Electronic Supplementary 6.1 – Additional File 2). In M145 

and M145+ACT, the metabolites exported predicted as competing with biomass are 

involved in glycolysis and the pentose phosphate pathway (G6P, DHAP, F6P, FBP, G3P, 

PEP, R5P, S7P, UDP-glucose, cAMP, PEP), and in the purines and pyrimidines 

metabolism (CDP, UDP, UMP) (Electronic Supplementary 6.1 – Additional File 2). In 

M1146 and M1146+ACT, the exported metabolites predicted as competing with 

biomass are involved in amino-acid metabolism (glycine, arginine, asparagine, and 

methionine), in purine and pyrimidine metabolism (xanthosine, hypoxanthine) and 

central metabolism (pyruvate, 2-oxoglutarate, lactate, and cAMP) (Electronic 

Supplementary 6.1 – Additional File 2). The same strategy was applied to ACT 

production to identify metabolite exports predicted as directly competing with the 

antibiotic production (Electronic Supplementary 6.1 – Additional File 2). However, in 

the case of ACT production for all four strains at both exponential (30h) and at 

stationary phase (64h) the metabolites exported all directly competed with ACT 

production, under all circumstances. For example, cAMP is already in direct 

competition with biomass (Figure 6.3a) and also with ACT production (Figure 6.3c), 

whereas 2-oxoglutarate did not compete with biomass (Figure 6.3b) but it is competing 

with ACT production (Figure 6.3d). Some of these metabolites cost more than ACT 

production to the metabolism, for example an increasing cAMP export leads to a faster 

predicted decrease of biomass than ACT does at exponential phase (32h) 

(Supplementary Figure 6.13a) and even more at transition phase (64h) where nutrients 

are depleted (Supplementary Figure 6.13b). If all the metabolites exported are really in 
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direct competition with ACT production as predicted by the model, this suggests that 

even small export rates of these metabolites are using metabolic resources that could 

be used for ACT production.  

The extracellular metabolites detected in the culture media of the different 

strains were used to further constrain the metabolic models by forcing export of the 

metabolites. The growth was then optimised in the four metabolic models, at the 6 

time points. This allowed to predict the intracellular metabolic fluxes of the organisms 

at the different time points 43,44. The correlation between the predicted intracellular 

fluxes and the ACT production in each strain was calculated to identify metabolic 

pathways and reactions that are directly dependent on ACT production (Electronic 

Supplementary 6.1- Additional File 1). In M145 and M145+ACT all the reactions highly 

correlated with ACT production (Pearson correlation r>0.5) are involved in glycolysis 

(pyruvate kinase, phosphoglycerate mutase, and enolase) and in the pentose 

phosphate pathway (ribulose 5-phosphate 3-epimerase) (Supplementary Figure 6.14a). 

Whereas in M1146 and M1146+ACT, the reactions highly correlated with ACT 

production (r>0.5) are the cAMP export reaction, and an NAD transhydrogenase 

(Supplementary Figure 6.14b). There are no reactions correlated with ACT production 

in common between the three ACT producers (M145, M145+ACT, and M1146+ACT). 

The 4 reactions correlated with ACT production in the two M145 strains are involved in 

glycolysis and the PPP which are involved in the production of the ACT precursors 

acetyl-CoA and malonyl-CoA 48. However, these reactions do not show correlation with 

ACT production in M1146+ACT, only the NAD transhydrogenase and cAMP export 

correlated with ACT production. 
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Figure 6.3: Cost of metabolites export to biomass growth and to ACT production 
rates 

Data shown here is a selection of two metabolites exported by M145, these two metabolites 

are exported in a similar trend (different values) by all four strains, and the full dataset is 

available in Supplementary File 6.1 – Additional File 2. 

a) Biomass growth rate to cAMP export rates: direct competition between metabolite 

export and biomass production. Increasing cAMP export lead to a direct decrease of 

biomass. 

b) Biomass growth rates to 2-oxoglutarate export rates: non-direct competition 

between metabolite export and biomass production. 2-oxoglutarate export does not 

impact biomass until a “breaking” point where high export rates lead to a decrease in 

predicted biomass. 

c) ACT production rates to cAMP export rates: direct competition between metabolite 

export and ACT production. Increasing cAMP export lead to a direct decrease of ACT 

production. 

d) ACT production rates to 2-oxoglutarate export rates: direct competition between 

metabolite export and ACT production. Increasing 2-oxoglutarate export lead to a 

direct decrease of ACT production rates. 
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6.5.3 Metabolic differences associated to metabolites secretions and actinorhodin 

production  

An in silico analysis was carried out to identify primary metabolism reactions and 

pathways needed for ACT production under these conditions; in parallel, an analysis 

was carried out to predict the metabolic pathways activated by the metabolic exports 

observed (based on the exometabolome). This analysis aims at determining the 

metabolic states of ACT producers compared to non-producers, and identify potential 

metabolic engineering targets (e.g., gene overexpression or knockout). The analysis 

was focused on the M1146 and M1146+ACT strains as these do not produce other 

secondary metabolites that M145 produces, so the M1146 has a “cleaner” metabolic 

background 31. Furthermore, this enables an easier comparison between an ACT 

producer (M1146+Act) and a non-producer (M1146). The constrained metabolic 

models for M1146 and M1146+ACT were used to individually produce the metabolites 

identified in the M1146 and M1146+ACT exometabolome (Supplementary Figure 6.11). 

The metabolite exports were set as unique objective (no biomass and no ACT 

production) to identify the metabolic reactions involved in the production of the 

exometabolites. The comparison of all the predicted intracellular fluxes for the 

metabolic exports, the growth, and the ACT production helped to identify all the 

intracellular metabolic reactions that were activated only by the metabolites exported. 

There were only 60 predicted active metabolic reactions when exporting these 

metabolites (Figure 6.4). Most of the reactions were involved in nucleotide salvage 

pathways (41% of the reaction). A significant portion of the predicted reactions were 

associated with pathways involved in carbon central metabolism (32% in total) such as 

the pentose phosphate pathway (12%), alternate carbon metabolism (10%), 

anaplerotic reactions (7%), glycolysis and gluconeogenesis (3%); as well as amino-acid 
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Figure 6.4: Metabolic reactions with fluxes predicted as activated by exports 

The metabolic objectives are in the column, such as the ACT production, biomass, and the 

individual metabolic exports. The metabolic reactions exclusively switched ON by the 

metabolic exports and not carrying fluxes when producing biomass or ACT are highlighted in 

green with associated metabolite exported that activated the reaction. If the reaction did not 

carry any flux the column is in black. A group of reactions were frequently (> 15 times) 

predicted as switched ON by the different metabolic exports these are shown by the dashed 

grey box. 
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metabolism (12%) (Figure 6.4, and Supplementary Figure 6.15). The activation of the 

nucleotide salvage pathways and carbon central metabolism reactions make sense 

when taking the measured data into account as the metabolites exported by M1146 

and M1146+ACT were largely nucleotides (33%) of all the exported metabolites, while 

central carbon metabolites represent about 15%. Interestingly, amino acids represent 

42% of the metabolites exported but only 12% of the metabolic reactions were 

predicted to be activated. Only a few reactions associated to amino acids metabolism 

are predicted as activated by the exports (despite many amino acids identified in the 

media), because the main amino acid metabolism reactions are already carrying fluxes 

for growth; so these reactions are not activated but may carry higher fluxes than 

predicted. The predicted most active metabolic pathways (most frequently switched 

ON) due to the metabolic exports are involved in the nucleotide salvage pathway and 

the PPP (Figure 6.4). These two pathways are connected by the PPP intermediate 

ribose-5-phosphate that is converted into 5-phosphoribosyl-1-pyrophoshate (PRPP) to 

enter the de novo biosynthesis of nucleotides 49.  

 An analysis was carried out to understand if the predicted metabolic pathways 

activated by the exports are linked to ACT production. First, the analysis focused on 

identifying metabolic reactions directly associated to ACT production. The ACT 

production in the model was progressively increased from 0 to the maximal value 

possible (optimum), the fluxes were predicted (Electronic Supplementary 6.1 – 

Additional File 3), then the reactions with fluxes highly correlated (Pearson correlation, 

r>0.7) with production were isolated (Supplementary Figure 6.16). The model 

predicted that under these conditions, most of the metabolic reactions correlated to 

ACT production are involved in central metabolism (53%), because glycolysis is the 
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main pathway converting glucose in the media leading to the acetyl-CoA precursor 

needed for ACT biosynthesis. The other reactions are associated to exchange and 

transport reactions, oxidative phosphorylation, and glutamate degradation 

(Supplementary Figure 6.16). The predicted metabolic reactions activated by exports 

and the predicted metabolic reactions associated to ACT biosynthesis were visualised 

onto metabolic maps of the central metabolism and of the nucleotides metabolism 

(Figure 6.5, and Supplementary Figures 6.17). Parts of the central and nucleotides 

metabolisms are only predicted as active when the metabolic model is optimised for 

growth, so these reactions were also added to the metabolic maps. While other parts 

of metabolism are only activated by the metabolic exports or are highly correlated to 

ACT production.  

In nucleotide metabolism, the metabolite exports led to the predicted 

activation of parts of the adenine, uridine, cytosine, guanine, and thymine metabolism, 

but did not activate the inosine metabolism which was already active for biomass 

production (Supplementary Figures 6.17). The activation of nucleotide metabolism is 

either due to a degradation of DNA and RNA (autophagy) by the organism bringing 

nucleotides into the nucleotide salvage pathway 49, or to de novo production of purine 

and pyrimidines and derivatives from the PPP 49. The ACT producers’ metabolomics 

data showed higher levels of nucleotides and derivatives (Supplementary Figure 6.10 

and 6.11), such as increased cAMP levels in the media and highly correlated with ACT 

production (Supplementary Figure 6.12a and 6.12b), and PRPP levels are also higher in 

the producer strain (Supplementary Figure 6.18a and 6.18b). The purine and 

pyrimidines metabolism is important for antibiotic production in Streptomyces, for 

example the accumulating levels of ppGpp (coming from the guanine metabolism) are 
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critical in triggering antibiotic biosynthesis 50,51. This mechanism is triggered by 

nutrient starvation such as phosphate or nitrogen depletion, leading to accumulation 

of ppGpp that binds to the actII-ORF4 which is the pathway transcriptional activator of 

the ACT cluster (present in the native strain and in the ACT cosmid) 52. Interestingly, 

the cAMP binding protein EshA is involved in ppGpp synthesis, and has been shown to 

be important for ACT production, as its knockout lead to lower ppGpp levels and no 

ACT production 53. Some studies observed higher levels of cAMP after transition phase 

suggesting that cAMP extracellular levels may have a role in secondary 

metabolism 45,53,54; which may explain the strong correlation observed between 

extracellular cAMP and ACT production levels. Another metabolites with a signalling 

role for stationary growth and secondary metabolism is the cyclic diGMP; which is 

produced from GTP, like ppGpp; cyclic diGMP plays a vital role in the control of 

developmental processes such as sporulation and vegetative growth 51. During nutrient 

stress, when ATP levels are decreasing, the depletion of cyclic diGMP leads to 

morphological differentiation with the accumulation of ppGpp triggering antibiotics 

production 51.  Here, the metabolic fluxes from the purines salvage pathway generate 

GTP which is used to produce ppGpp rather than cyclic diGMP. Also, the large 

activation predicted in purine and pyrimidine metabolism due to the extracellular 

purine and pyrimidine associated metabolites (which are mostly higher in the ACT 

producer) suggests that this metabolism is correlated to ACT production.  

Multiple parts of the central metabolism predicted have metabolic fluxes that 

are highly correlated to ACT production, such as the glycolysis and glutamate 

catabolism (green reactions in the Figure 6.5). Glycolysis consumes glucose in the 

media to generate the ACT precursor acetyl-CoA (then converted in malonyl-CoA), and 
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the glutamate is degraded to enter the tricarboxylic acid (TCA) cycle through 2-

oxoglutarate. The model optimises the consumption of glucose and glutamate to 

produce ACT. In the constrained model (without exometabolome exports constraints) 

the optimisation of biomass predicts fluxes through other reactions in the TCA cycle, 

and to produce glycogen (blue reactions in the Figure 6.5). These are not predicted as 

correlated to ACT production but are still essential to generate metabolic 

intermediates essential for central metabolism (e.g., TCA cycle intermediate). The 

metabolite exports activated multiple reactions such as a lactate dehydrogenase, 

anaplerotic reactions (phosphoenolpyruvate carboxykinase and carboxylase), reactions 

of the glyoxylate cycle, and reactions of the PPP (red reactions in the Figure 6.5). The 

PPP activation is related to higher nucleotide metabolism, either to produce de novo 

nucleotides through the PRPP or from the degradation of DNA and RNA 49,51. The 

observation of lactate in the media suggests that under these conditions the organism 

may have a fermentative growth 55,56, despite growing in an O2 rich environment. It 

was previously suggested that S. coelicolor may have a fermentative metabolism as it 

has a lactate dehydrogenase annotated in its genome 56. Furthermore, lactic acid 

production was previously observed in Streptomyces griseus 55 suggesting a 

fermentative metabolism. It was previously shown that Streptomyces cultures have a 

tendency to aggregate in liquid cultures leading to a depletion of O2 for the cells in the 

centre of the aggregate 58, which may explain the observation of lactate despite 

growing in O2 rich conditions. The activation of the anaplerotic pathways and of the 

glyoxylate pathway suggests that fluxes from glycolysis are redirected to replenishing 

the TCA cycle, which may reduce fluxes toward acetyl-CoA (for ACT production) by 

going toward the TCA cycle (Figure 6.5). 
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Figure 6.5: Central metabolism map with fluxes associated to ACT production and 
with metabolic exports 

The predicted metabolic reactions highly correlated with ACT production (Pearson 

correlation, r>0.7) are highlighted in green, with most of the reaction associated to glycolysis 

and with generating acetyl-CoA for ACT production. The other reactions predicted as carrying 

fluxes are highlighted in blue, these reactions are associated with the TCA cycle, the 

anaplerotic reactions, and the glycogenesis. The metabolic reactions predicted as switched 

ON are highlighted in red; these reactions are associated with the PPP, the glyoxylate bypass 

metabolism, and some anaplerotic reactions. 

A high-resolution version is available in Supplementary Electronic 6.1 – Additional File 4. 
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6.5.4 Metabolomics data integration to metabolic modelling for rational strain 

design 

The metabolic reactions identified as highly correlated with ACT production may 

highlight relevant overexpression targets to increase genes expression levels and push 

metabolic fluxes toward ACT production. While the metabolic reactions activated by 

exports highlight potential knockouts or downregulation targets to reduce metabolic 

waste or overexpression targets to redirect these intermediates toward ACT 

production. Some of the reactions identified as activated by metabolites exports or 

correlated with ACT in the central metabolism (Figure 6.5) were previously 

experimentally tested in S. coelicolor to increase ACT production or study S. coelicolor 

metabolism 48,59–62.  

A large part of glycolysis was highly correlated to ACT production, and the PPP 

was largely active due to the metabolic exports constrained in M1146+ACT and M1146 

(Figure 6.6). A study in M145 reduced glycolytic fluxes by deleting a 

phosphofructokinase isoenzyme gene (pfkA2) to increase fluxes toward the 

phosphoketolase from the PPP increasing acetyl-CoA production, which lead to a 

significant increase in ACT and RED production 62. In another study in M145, the fluxes 

through the PPP were reduced by knocking-out the glucose-6-phosphate 

dehydrogenase (zwf), which led to a decreased yield in ACT 59. Furthermore, the PPP 

generates NADPH which is an essential cofactor for ACT production, the importance of 

NADPH generated by the PPP for antibiotics production was previously highlighted in 

S. coelicolor 62,63 and S. lividans 48,64. Interestingly, the NADP+ levels were measured as 

higher in the M1146+ACT than in M1146 (Supplementary Figure 6.19a), so the 

producing strain may benefit from higher NADPH fluxes if the balance of 

NADPH/NADP+ was low (no data about NADPH levels). Also, a carbon-flux analysis 
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previously showed that M1146 strain had higher PPP fluxes than M145, as well as 

higher levels of NADPH due to oxidative stress 65.  

The metabolic model predicted that the transaldolase (TALA) fluxes were highly 

correlated with ACT production (Figure 6.5). The transaldolase reversibly converts 

sedoheptulose-7-phosphate (S7P) and glycerate-3-P (G3P) into erythrose-4-phosphate 

(E4P) and fructose-6-phosphate (F6P). The model also predicted a conversion of E4P 

and F6P into S7P and G3P by the TALA, which makes glycolysis more efficient by 

avoiding the conversion of F6P into fructose-1,6-biphosphate (FBP) and into G3P and 

DHAP (saving 1 ATP). Bypassing the preparatory phase of glycolysis by reducing the 

conversion of the F6P into FBP (pfkA2 KO) 62 reduces the use of ATP, while redirecting 

fluxes toward the PPP generating more NADPH 63 and directly leading to G3P with the 

TALA to enter the oxidative part of glycolysis generating more ATP and continue 

generating pyruvate and acetyl-CoA, as well as going toward more acetyl-CoA with the 

phosphate acetyl-transferase (PAT) from the transketolase pathway 62. The FBP and 

ATP are strong allosteric inhibitors of the PFK, so these two metabolites can inhibit the 

glycolysis and reduce glycolytic metabolic fluxes. So, bypassing the PFK enzymatic step 

may have increase the glycolytic fluxes going toward acetyl-CoA. The gene associated 

with the TALA enzyme (SCO6662) was identified as a strongly activated by glucose in 

S. coelicolor, so this enzyme is likely to have a role with glucose degradation 66,67. 

Hence, a combined increase of fluxes in specific part of the PPP (TALA and PAT) as well 

as decreased fluxes in the preparatory phase of glycolysis (PFK) would increase ACT 

production by increasing fluxes toward acetyl-CoA and NADPH.  

The anaplerotic reactions are important to replenish the TCA cycle 

intermediates and are involved in carbon metabolism response to nutrient depletion 
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(switch between catabolism and anabolism) 61,68. The malic enzyme (me2) generating 

NADPH and CO2 while converting malate into pyruvate is predicted as highly correlated 

with ACT production, whereas the other malic enzyme (me1) is predicted as carrying 

fluxes for biomass production but generates NADH (Figure 6.5 and 6.6). While the 

phosphopenolpyruvate carboxylase (PEPC) and the phosphoenolpyruvate 

carboxykinase (PEPCK) were activated by the metabolite exports (Figure 6.5 and 6.6). 

Overexpression of the malic enzyme genes (me1 and me2) could help ACT production 

by increasing the fluxes consuming TCA cycle intermediates to generate pyruvate and 

afterward acetyl-CoA. For PEPCK and PEPC, these enzymes are heavily regulated as 

these have an anaplerotic role to replenish oxaloacetate (OAA) from 

phosphoenolpyruvate (PEP) or to generate more PEP from OAA. The PPC converts PEP 

into OAA while consuming CO2 and H2O and producing Pi, whereas PEPCK converts 

OAA into PEP while consuming ATP and producing ADP and CO2 68. The malic enzymes, 

the PEPC, and the PEPCK are associated to the PEP-pyruvate-OAA node involved in the 

switch of carbon fluxes between catabolism and anabolism 68. The deletion of the 

malic enzymes (me1 and me2) led to a strong reduction in ACT production and an 

accumulation of TAG in S. coelicolor 69. These deletions seems to trigger an 

accumulation of TCA cycle intermediates disturbing the carbon flux balance, which 

may impact regulation of the ACT cluster as the ActII-ORF4 transcription decreased in 

the mutant 69. The regulation of these enzymes is still unclear. PEPCK is used to 

generate OAA from PEP for gluconeogenesis 66,70,71; however, this enzyme has been 

reported as operating in the opposite direction as well 67,72. So, the overexpression of 

PEPCK in Streptomyces lividans led to an anaplerotic activity of PEPCK rather than a 

PEP production from OAA 71. So, deleting these enzymes would be a better strategy 
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than overexpression to ensure that their anaplerotic activity is absent and keep the 

PEP usage for pyruvate formation.  

The metabolic model predicted a high correlation between ACT production and 

the citrate lyase (CITL) which can convert citrate into OAA and produce an acetate 

byproduct that can be transformed into acetyl-CoA (via the acetyl-phosphate 

pathway). Another enzyme, the citrate synthase (CS), converts OAA and acetyl-CoA 

into citrate. The CITL overexpression has never been tested, while its overexpression 

could lead to increased level of acetate convertible into acetyl-CoA. The metabolic 

exports also activated fluxes in the glyoxylate bypass metabolism, where the malate 

synthase (MALS) consumes acetyl-CoA and glyoxylate to produce malate. But, the 

deletion of a citrate synthase (citA) in S. coelicolor made it a glutamate auxotroph in 

minimal media, and lead to defective antibiotic biosynthesis 60,73. This pathway is 

heavily regulated 74,75 and is important in oxidative response which may impact ACT 

production 76. Multiple TCA cycle intermediates were measured as higher in 

M1146+ACT than in M1146 (citrate, isocitrate, 2-oxoglutarate, succinyl-CoA) as well as 

some amino-acids derived from the TCA intermediates (isoleucine, arginine, 

methionine, S-adenosylmethionine). Reducing the fluxes toward the TCA cycle 

(anaplerotic reactions deletion) could reduce amino-acids biosynthesis and 

consumption of acetyl-CoA (glyoxylate pathway deletion). Furthermore, as discussed in 

Chapter III, this bypass is absent from the S. lividans strain and may have a role in 

differences of ACT production between S. lividans and S. coelicolor, however, the 

impact of the bypass absence is still unknown. Another enzyme was highly correlated 

to ACT production, the acetyl-CoA carboxylase (ACC) responsible for the conversion of 

acetyl-CoA into malonyl-CoA (Supplementary Figure 6.16). The overexpression of the 
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Figure 6.6: Summary metabolic map of ACT producer versus non-producer 

The non-producer M1146 and the ACT producer M1146+ACT strains were compared using 

the metabolomics data and the metabolic predictions. The comparison is focused on the 

central metabolism connection to the pentose phosphate pathway and the purines and 

pyrimidines metabolism. The metabolic predictions for the reaction associated to ACT 

production (reactions in green) are showed with the metabolic predictions resulting from the 

exometabolome integration (reactions orange) and the prediction of biomass (reactions in 

grey). Based on the predictions and literature a set of enzymatic reactions that could carry 

higher fluxes to increase ACT production (e.g., by gene overproduction) are represented 

(purple up arrow). As well as reactions to block (e.g., via gene) are represented (black down 

arrow).  

Metabolites abbreviations: G6P: glucose-6phosphate; F6P: fructose-6-phosphate; FBP: 

fructose-1,6-biphosphate; GA3P: glyceraldehyde-3-phosphate; DHAP: dihydroxyacetone 

phosphate; PEP: phosphoenolpyruvate; 6PGL: 6-phospho-D-glucono-1,5-lactone; 6PGC: 6-

Phospho-D-gluconate; Ru5P: D-Ribulose 5-phosphate; Xu5P: D-Xylulose 5-phosphate; R5P: 

Ribose 5-phosphate; PRPP: phosphoribosyl pyrophosphate; S7P:  sedoheptulose-7-

phosphate; E4P: D-Erythrose 4-phosphate.  

Enzymes abbreviations: PFK: phosphofructokinase; PEPCK: phosphoenolpyruvate 

carboxykinase; PEPC: phosphoenolpyruvate carboxylase; CITL: citrate lyase; MALS: malate 

synthase; ME1/2: malic enzymes; ACC: acetyl-CoA carboxylase; PRPPS: PRPP synthase; TALA: 

transaldolase. 
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ACC showed an increased ACT yield as it increased acetyl-CoA conversion into malonyl-

CoA (ACT main precursor) 59. So, a combination of knockouts to reduce fluxes toward 

the TCA cycle consuming acetyl-CoA with an overexpression of the known ACC target 

would force fluxes toward conversion of acetyl-CoA for ACT production instead of 

production of TCA intermediates. 

Finally, the higher levels of purines and pyrimidines (except cytosine) exported 

by M1146+ACT, with the higher level of intracellular PRPP, with the higher predicted 

fluxes in the PPP reactions and nucleotide salvage suggest that nucleotide metabolism 

has an important role in ACT production. However, its precise metabolic role in ACT 

production is still unclear; there are no ACT correlated reactions associated with 

nucleotide metabolism. But nucleotide levels have been shown to have an important 

regulatory role on ACT production (e.g., ppGpp, ATP/ADP, cAMP) 51. The increase in 

nucleotide metabolism may come from DNA/RNA degradation through the nucleotide 

salvage pathway, or via de novo biosynthesis of nucleotides. If the de novo 

biosynthesis is predominant during ACT production it would be interesting to reduce 

the PRPP synthase (PRPPS) activity that consumes the R5P from PPP to generate PRPP, 

which is then used for nucleotides biosynthesis. It seems like the PRPP synthase has 

never been deleted in a Streptomyces strain before, so it may also help to learn more 

on the impact of the nucleotide metabolism on antibiotics production. However, it 

would require to first experimentally confirm that the observed increase in nucleotides 

metabolism originate from de novo biosynthesis and not from degradation of DNA 

and/or RNA.  

The identification of single knockouts in primary metabolism presents a major 

challenge as primary metabolism, particularly the central carbon metabolism, is heavily 
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regulated and has multiple routes for similar functions to ensure robustness and 

adaptation of the organism 77. However, a more holistic approach to rewire the central 

metabolism has proved successful in other model organisms such as E. coli, C. 

glutamicum, and S. cerevisiae to respectively increase bioproduction of poly(3-

hydroxybutyrate) ,methyl-3-hydroxybutyrate, and ethanol by combining multiple gene 

KOs and overexpression 61. Here, based on the integration of the metabolomics data 

and metabolic modelling, combined with results from published experimental studies, 

a set of 5 enzymes to KO or downregulate and 5 enzymes to overexpress were 

identified (Figure 6.6). In total, 4 out of the 5 knockout targets and 4 out of the 5 

overexpression targets suggested have not been tested experimentally in S. coelicolor 

before. 

The phosphofructokinase has three different associated genes pfkA1-3 

(respectively SCO2119, SCO5426, and SCO1214), where the pfkA2 deletion was shown 

to increase ACT production 62. Interestingly, the pfkA2 gene (SCO2119) in M145 in the 

glutamate minimal media is expressed during exponential and transition phase while 

the two other genes pfkA1 and pfkA3 have a higher expression during exponential 

phase than in transition phase (ACT production starting) 22 (Supplementary Figure 

6.20a). This may explain why the ACT production increase was only observed with 

pfkA2 KO and not with the two other genes 62. The PRPP synthase KO has never been 

tested in vivo in Streptomyces species, but PRPP synthase in silico KO is predicted as 

essential in the minimal media. In Escherichia coli, the PRPP synthase KO made it a 

NAD, guanosine, uridine, histidine, and tryptophan auxotroph 78; S. coelicolor predicted 

growth was recovered when importing these metabolites. So, to only reduce fluxes 

through the PRPP synthase (without KO the reaction) deleting one of the two genes 
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associated with this reaction (SCO0782 and SCO3123) within a complex media 

(containing NAD, guanosine, uridine, histidine, and tryptophan) would be an option. 

One of the two genes SCO3123 expression decreases after transition phase whereas 

SCO0782 expression increases after transition phase in S. coelicolor M145 under the 

same media conditions 22 (Supplementary Figure 6.20b). Thus, deleting SCO0782 might 

help to avoid de novo production of purines and pyrimidines from PPP intermediates 

after transition phase without reducing the growth potential during exponential phase. 

The anaplerotic reactions PEPCK and PEPC are respectively associated to SCO4979 and 

SCO3127. The PEPC gene SCO3127 heterologous overexpression in S. lividans led to a 

decrease in growth rate and the authors suggested that this was due to a 

sequestration of PEP that also led to a delayed onset of secondary metabolism 79. The 

overexpression of PEPCK in S. lividans led to a growth decrease and to a higher yield of 

amino-acids and protein 71, as well as a decrease in pyruvate levels. So the deletion of 

the PEPC and/or PEPCK could help decrease the TCA cycle intermediates replenishing 

from the PEP, and increase the available pool of PEP for pyruvate generation. 

Interestingly, PEPCK and PEPC genes expression in M145 have an opposite pattern, 

PEPC (SCO3127) expression is higher during exponential phase and the opposite for 

PEPCK (SCO4979) (Supplementary Figure 6.20c and 6.20d). In theory, the sole deletion 

of PEPCK gene (SCO4979) would have less impact than PEPC on growth as it is mostly 

expressed during stationary phase. The malate synthase (MALS) deletion has not been 

tested in Streptomyces species. Its deletion may reduce the use of acetyl-CoA, while 

helping to understand its possible role in ACT production (see Chapter III) 80. The 

glyoxylate bypass was shown to have an important role for glucose and glutamate 

catabolism regulation and oxidative metabolism in bacteria 74,81, so the positive or 
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negative impact of its deletion on ACT production is hard to predict as it may cause 

large regulatory changes in the organism. This enzyme has two genes associated to it 

(SCO0983 and SCO6243) both genes do not show any distinct expression pattern in 

M145 22 (Supplementary Figure 6.20e), so no particular is prioritised for deletion.  

 The overexpression targets for the two malic enzymes NADH (me1) and NADPH 

(me2) dependent are respectively associated to SCO2951 and SCO5261. The deletion 

of these two genes in S. coelicolor abolished ACT production 69. The expression of both 

genes is higher during exponential phase then decreases after transition phase 

(Supplementary Figure 6.21a) 22. Overexpression of these two genes may redirect 

fluxes from the TCA cycle to pyruvate to produce more acetyl-CoA during exponential 

and transition phase. Another target, the acetyl-CoA carboxylase is encoded by 

multiple genes accA1 (SCO2777) or accA2 (SCO4921), accC (SCO2445) or accB 

(SCO5535) and accE (SCO5536). The ACC was previously overexpressed by 

heterologous expression of accA2, accB, and accE leading to an increased ACT 

production 59; all three genes are the only ones mostly expressed at early exponential 

phase (Supplementary Figure 6.21b). The citrate lyase was not studied in Streptomyces 

before, but overexpression of CITL in yeast to increase fluxes toward acetyl-CoA for 

terpenoids production revealed that in this strain the acetyl-CoA synthase was a 

limiting step to convert the acetate into acetyl-CoA 82. In Streptomyces, the acetate is 

converted into acetyl-phosphate, then into acetyl-CoA via an acetate kinase and a 

phosphotransacetylase; so there is a risk that the enzymes degrading the acetate into 

acetyl-CoA may be limiting. The two genes associated to the citrate lyase are 

expressed across all growth phases (Supplementary Figure 6.21c). The transaldolase 

(TALA) has not been studied yet in Streptomyces species. The two genes associated to 
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TALA (SCO1936 and SCO6662) have an expression higher during the exponential phase 

than during stationary phase (Supplementary Figure 6.21d), so their expression during 

stationary phase may help to increase the fluxes from the PPP toward the second part 

of glycolysis to generate acetyl-CoA. These targets are summarised in Table 6.2 and in 

the metabolic map Figure 6.6. 

 

Table 6.2: Summary of potential genes targets to delete or overexpress 

Reaction 

ID
Reaction Name Pathway Genes associated

Essential 

Reaction
Possible Strategy

PFK Phosphofructokinase Glycolysis
SCO2119 (pfkA1) or SCO5426 (pfkA2 ) or 

SCO1214  (pfkA3 )
NO

Isoenzyme deletion 

pfkA2  (SCO5426)

SCO5426 deletion 

increased ACT 

production

PRPPS PRPP synthase
Nucleotides 

Biosynthesis
SCO0782 or SCO3123 YES

Deletion

of SCO0782 and/or 

SCO3123 in a complex 

media containing 

NAD, guanosine, 

uridine, histidine, and 

tryptophan

NA

PEPCK Phosphoenolpyruvate carboxykinase Anaplerotic Reaction SCO4979 NO

Overexpression  

decrease 

secondary 

metabolism

PEPC Phosphoenolpyruvate carboxylase Anaplerotic Reaction SCO3127 NO

Overexpression  

increase amino-

acids production

MALS Malate synthase Glyoxylate Bypass SCO0983 or SCO6243 NO
Double knockout of 

SCO0983 & SCO6243

NA 

N.B.:  Absent in 

S. lividans

ME1 Malic enzyme (NADH dependent) Anaplerotic Reaction SCO2951 NO

ME2 Malic enzyme (NADPH dependent) Anaplerotic Reaction SCO5261 NO

ACC Acetyl-CoA carboxylase
Precursor 

Biosynthesis

(SCO2445 or (SCO5535 and SCO5536))

 and (SCO2777 or SCO4921)
YES

Overexpression of 

couple of isoenzyme

Overexpression 

of SCO4921, 

SCO2445, and 

SCO5536 

increased ACT 

production

CITL Citrate lyase TCA Cycle SCO2033 or SCO6471 NO
Overexpression of 

one of the genes
NA

TALA Transaldolase
Pentose Phosphate 

Pathway
SCO1936 or SCO6662 NO

Overexpression of 

one of the genes
NA

PEPCK and PEPC 

double knockout

SCO4979 & SCO3127

Or PEPCK (SCO4979) 

single KO

Overexpression of 

SCO2951 and/or 

SCO5261

Deletion or downregulation targets

Overexpression targets

Published 

Approach in 

Streptomyces

Deletion of both 

genes led to 

abolition of ACT 

production 
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Part II: Heterologous production of GE2270A in S. coelicolor chassis strain 

GE2270A is a thiopeptide RiPP antibiotic natively produced in P. rosea and 

heterologously expressed in the S. coelicolor M1146 23,24. Here, the heterologous 

production of GE2270A was studied in silico in the S. coelicolor metabolic model to 

identify potential gene knockout targets to increase its production.  

6.5.5 GE2270A production in the S. coelicolor metabolic model 

The GE2270A is a RiPP compound (more details in Chapter I). The first step of the 

biosynthetic pathway is the production of a precursor peptide (containing a leader 

peptide and the final peptide) by the ribosome, where the main metabolic precursors 

are the aminoacyl-tRNAs used by the ribosome. The precursor peptide is then 

modified by multiple enzymes, first by serine and threonine dehydratases alongside a 

thiazoline dehydrogenase and a cyclohydratase to modify the amino-acids in the 

peptide. A cycloaddition leads to a cyclic precursor peptide, and then the leader 

peptide is cleaved generating the final compound GE2270A 25,83. The enzymes 

responsible for the post-translational modifications on the peptide use ATP and FMN 

cofactors, so these two metabolites are also important for GE2270A production. This 

biosynthetic pathway was introduced in the S. coelicolor genome-scale metabolic 

model iAA1259 17. As no experimental data was available the metabolic model was 

constrained with an estimated composition of the complex media CMAN (see 

Methods). First, the metabolic cost of producing GE2270A was analysed, when 

GE2270A production rates increase, the growth rates decrease (Figure 6.7). So 

GE2270A production is in direct competition with biomass. This is expected as 

GE2270A’s main precursors are aminoacyl-tRNAs that are also needed for biomass, so 
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the two functions compete for resources such as amino-acids and ATP (needed to load 

amino-acids on the tRNA).  

 The native strains start producing antibiotics at transition and stationary phase 

when the growth slows down or stops, hence the biomass and antibiotics cannot really 

be considered as in competition under these conditions. However, this is relevant here 

for a heterologous overproducing strain, where production is triggered early in the 

growth phase. In the native strains, antibiotics biosynthesis may rather help to cope 

with excess of metabolites, such as ATP and reducing metabolites, which are 

generated by an excess of catabolism over anabolism during slow or no growth. 

The predicted metabolic exchanges with the constrained media are a good way 

to study the nutrients needed for the different functions (i.e., biomass and GE2270 

production) and identify important media components. The metabolic exchanges with 

Figure 6.7: Trade-off of GE2270A production to biomass growth 

The GE2270A production is in direct competition with biomass, as the growth rate decreases 

when the GE2270A production rate increases. So the two functions are in competition for 

metabolic resources.  
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the CMAN media predicted by the model were analysed for optimal production of 

GE2270A (Supplementary Figure 6.22), for optimal biomass production (Supplementary 

Figure 6.23), and for optimal production of biomass with a constrained GE2270A 

production (Figure 6.8). All of the exometabolites needed for GE2270A production are 

also needed for growth; this partly explains the direct competition between the two 

functions (Figure 6.7). The import of all amino acids (except glutamate) increased for 

GE2270A production compared to biomass, highlighting their importance for the 

secondary metabolite production. So, serine, histidine, asparagine, methionine, 

glycine, leucine, proline, phenylalanine, threonine, and cysteine are important 

component of the media to produce GE2270A (and biomass). While glutamate, 

maltohexose, and phosphate imports decreased because these are mostly used for 

biomass production, and the GE2270A constraint led to a decrease in biomass 

compared to the optimal biomass production levels so these imports decreased 

(Figure 6.7). Many exometabolites imported are exclusively used for biomass 

production and not for GE2270A production, including amino-acids, vitamins, and 

metals ions. The associated metabolism also produces exported by-products, for 

example, the only export unique to GE2270A production is the GE2270A compound 

and the cleaved leader peptide. However, the production of GE2270A led to an 

increase in exported dialuric acid, formate, and 5-dehydro-D-gluconate, which are 

associated to metabolic pathways in amino-acids biosynthesis, pentose phosphate 

pathway, and cofactors recycling. The alanine exports decreased due to GE2270A 

production, because the alanine biosynthesis fluxes were partially redirected to tRNA-

alanine production for GE2270A biosynthesis (Figure 6.7). However, amino-acid 

imports do not reach the maximum import constraint, and the limiting resource is the 
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Figure 6.8: Predicted metabolite imports and exports from media for S. coelicolor 
growth and GE2270A production 

The predicted exchange fluxes are represented here for S. coelicolor M1146 in a CMAN media 

producing GE2270A and biomass, with the import fluxes (red bars) and export fluxes (green 

bars). Many metabolites were only imported or exported to allow growth (metabolites with an 

orange square), while GE2270A and its leader peptide (lpGE2270A) were only produced for 

GE2270A production (purple square), and many metabolites were exchanged for both biomass 

and GE2270A production (blue square). The production of GE2270A led to some import and 

export of some metabolites to increase (purple triangle) and some to decrease (orange 

triangle). 
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O2 needed (reaching the maximum import) for oxidative phosphorylation to generate 

the ATP needed to convert the imported amino-acids into aminoacyl-tRNAs 

(Figure 6.6). Thus, the cost of ATP for growth and for GE2270A production is 

responsible for the competition. Here, it is important to have enough amino acids 

available in the media for both biomass and GE2270A production; such as the 

following amino acids: serine, histidine, asparagine, methionine, glycine, leucine, 

proline, phenylalanine, threonine, and cysteine.  

 

6.5.6 Identification of gene knockouts targets to improve GE2270A production 

The metabolic model producing GE2270A and constrained with the CMAN media is 

used to determine the essential and non-essential single and double gene knockouts. 

The gene KOs identified as non-essential for GE2270A and for growth in the CMAN 

media will be used to identify a list of potential gene KO to increase GE2270A 

production. The majority of the single gene KO had little to no impact on growth or on 

GE2270A production (Figure 6.9a). Most of the predicted single gene deletions were 

non-essential with 986 genes (more than 78% of all genes) and only 52 genes reduced 

growth by less than 10% , whereas 152 genes (12%) were essential for growth, and 

only 12 genes deletions were predicted as reducing growth by more than 10% 

(Supplementary Table 6.2). For GE2270A production, the very large majority of the 

single gene deletions were non-essential for production, with 1123 genes (more than 

89% of all genes), and only 38 genes were predicted as reducing production by less 

than 10%, whereas only 14 genes (12%) were predicted as essential for production and 

only 27 genes reduced production by more than 10% (Supplementary Table 6.3). The 

vast majority of the single gene KO have no or a small impact (<10% reduction of the 
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a) 

b) 

Figure 6.9: Growth rate to GE2270A production for single and double gene knockouts  

a) Single-gene knockout effects on biomass and GE2270A production optimisation. The red 

lines correspond to the optimum value -10%, the red square at the intersection corresponding 

to the single knockouts with maintained fluxes toward both biomass and GE2270A. The 

majority of the single knockouts have a limited impact on both functions, hence the clustering 

in the top right corner (red square). 

b) Double-gene knockouts effect on biomass and GE2270A production optimisation. The red 

lines correspond to the optimum value -10%, the red square at the intersection corresponding 

to the double knockouts with maintained fluxes toward both biomass and GE2270A. For the 

double knockouts as well, the majority of the knockouts have a limited impact on both 

functions, hence the clustering in the top right corner (red square). 
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objective) on biomass and GE2270A. This group of genes that have no or a very small 

impact are clustered together (Figure 6.9a) and will be used to identify potential gene 

KO to increase GE2270A production without significantly decreasing growth. The same 

analysis was applied with double KO (Figure 6.9b). The double KO showed a similar 

tendency where most of the double gene KO were non-essential for growth (55%) or 

for GE2270A production (88%), while a small portion of the double KO were essential 

for growth (19%) or for GE2270A production (0.02%) (Supplementary Table 6.4 and 

6.5). In the single and double KO none led to an increase in optimal production of 

biomass or GE2270A; because the metabolic model already optimises growth or 

production so the flux distribution is already optimised and avoids metabolic pathways 

or reactions that could lead to a lower optimum.   

The list of non-essential genes significantly decreases the space of potential 

gene KO targets, which were used as input for the OptGene algorithm 38. From a list of 

non-essential genes, with an objective function to optimise (i.e., GE2270A production), 

a minimal growth rate constraint, and media constraints, the OptGene algorithm 

determines the best genes KO combination to optimise the fitness function (GE2270A 

flux). OptGene is an evolutionary algorithm that simulate the propagation of beneficial 

mutations to optimise the fitness function. It generated a population of 500 individuals 

with random mutations. The model growth is optimised by FBA and the individuals 

were ranked based on their fitness score (GE2270A production). The best individuals 

are selected and crossed with 500 other individuals from the next generation, the 

steps were repeated over 10,000 generations. In total, the algorithm tested 500,000 in 

silico mutants to identify potentially beneficial mutations to GE2270A production 

(Supplementary Figure 6.24). The algorithm reached a near optimal fitness score after 
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a) 

b) 

c) 

Figure 6.10:  Summary of the OptGene output for the production of GE2270A in 
M1146 

a) Diagram of the in silico mutants fitness score over 10,000 generations. The 

fitness score is determined by the objective function (GE2270A production), the 

algorithm tries to maximise the fitness score at each generation of mutants. Here the 

fitness score reaches its maximum around 5,000 generations. 

b) Histogram of the number of genes knockouts in the final population of 500 

individuals. The optimal number of mutations to maximise the fitness score seems to 

be from 6 to 7 gene knockouts. 

c) Top 25 genes present in the final population after 10,000 generations. In the 

500 individuals there are 6 genes that are frequently knocked out in the population 

between 443 and 372 number of knockouts (nKO). In these 6 knockouts, only two are 

always present in the individuals with the two highest fitness score (green and yellow 

bar), SCO3102 and SCO3295. 
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5,000 generations of mutants (Figure 6.10a). The algorithm managed to increase and 

stabilise the fitness score which means it identified a potential combination of gene 

deletions providing an advantage for GE2270A production 38. The optimal number of 

knockouts in the final population of 500 individuals (after 10,000 generations of 

mutations) is from 6 to 7 genes knockouts per individual (Figure 6.10b). In the final 

population only 25 genes are present in 4 (0.01% of the mutants) to 443 (89% of the 

mutants) mutants (Figure 6.10c, and Supplementary Table 6.6). The genes KO with the 

highest frequency in the population are probably the ones confering the fitness 

advantage for GE2270A production. Out of the 25 genes, 6 genes are very frequently 

knockedout (between 74 to 89% of the time), which should contain the genes that are 

responsible for this predicted fitness advantage (Figure 6.10c). The 6 genes, SCO1223, 

SCO6102, SCO3295, SCO6754, SCO5515, and SCO6658 are involved in different 

metabolic pathways from amino-acid metabolism to cofactors metabolism (Table 6.3). 

However, the SCO6658 is not a functional knockout as it is a redundant gene, so its 

deletion do not have any impact on the metabolism as it does not delete any reactions 

(Table 6.3). 

In the final population of 500 mutants, there are three different fitness score 

values ranked from the highest to the lowest (Figure 6.10c). But, only 2 gene 

knockouts are systematically present across the two groups with the highest fitness 

scores, SCO6102 and SCO3295, both associated to reactions involved in cofactor 

regeneration. The five functional genes knockout were simulated in the different 

possible knockouts combinations to identify their impact on the metabolism and on 

GE2270A production (Supplementary Figure 6.25). The multiple combinations of these 

5 genes knockouts lead to 31 strains tested in silico that were compared to each other 
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and to a “WT” reference model not producing GE2270A (M1146 strain).  The metabolic 

models of the different mutants were optimised and ranked based on the sum of 

fluxes. This created four groups of strains, the ones with the same flux distribution as 

the reference strain, two other groups that do not produce GE2270A but have slightly 

different flux distributions, and one group producing GE2270A (Supplementary 

Figure 26). The group producing GE2270A is producing the compound without any 

constraint on production, only the knockouts forced production. The GE2270A 

producing strains have multiple metabolic reactions predicted as carrying higher 

fluxes, most of these reactions are associated to amino-acids biosynthesis and 

aminoacyl-tRNA charging for GE2270A production (79% of the reactions), the rest are 

involved in central carbon metabolism needed for de novo amino-acids and for ATP 

regeneration (needed for tRNA-charging and GE2270A production) (Supplementary 

Figure 26). Some reactions were lower for GE2270A producers, such as the pentose 

phosphate pathway and lactate production, which are due to a higher growth in the 

non-producers (Supplementary Figure 26). The mutants predicted as forcing 

production of GE2270A all have SCO3295 and SCO6102 knocked out (Supplementary 

Figure 25 and 26). While none of the other knockouts seem to have a significant 

impact on the metabolism or on GE2270A production.  

 Finally, the two genes KO responsible for the predicted production of 

GE2270A (SCO3295 and SCO6102) in the models were further studied to identify their 

role in the GE2270A production. The SCO3295 gene is associated to a NADPH-

dependent FMN reductase and a NADH-dependent FMN reductase, both reactions 

convert FMN into FMNH2. The SCO6102 gene is also associated to the NADH-

dependent FMN reductase,  
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Genes 

KO 

Reactions 

associated 
Function 

SCO6102 
FMNRx2, FADRx2, 

FLVR, SULRi 

Cofactor nitrite or sulphite reductase: 

Reduce NADH or NADPH to generate FMNH2, FADH2, 

Riboflavin, or H2S SCO3295 FMNRx, FMNRx2 

SCO1223 ORNTA 

Ornithine transaminase: 

Use alpha-ketoglutarate to transform ornithine in 

Glutamate 

SCO6754 GLYCDx Glycerol dehydrogenase 

SCO5515 PGCD Phosphoglycerate dehydrogenase 

SCO6658 GND* Phosphogluconate dehydrogenase (redundant gene) 

Table 6.3: Most frequently predicted genes knockouts in the final mutants 
population 

as well as to a FAD reductase (NADPH-dependent), a flavin reductase (NADPH-

dependent), and a sulfite reductase (NADPH-dependent). So, it appears that the 

models with these genes KO predict GE2270A production because the production 

becomes essential for the organism growth by using the GE2270A pathway to produce 

FMNH2. In a WT strain, the FMN reductases produce the FMNH2 (which is used for 

growth) by converting a FMN while using an NADPH or NADH cofactor (Figure 6.11a). 

So, in the case of a single SCO6102 deletion this may reduce fluxes producing FMNH2 

through the NADPH dependent FMN reductase and force the use of the GE2270A 

pathway to produce more FMNH2 (Figure 6.11b). A single SCO3295 deletion could 

result in flux decreases through both FMN reductases, hence forcing production of 

FMNH2 through the GE2270A pathway (Figure 6.11c). Finally, a double knockout of 

SCO3295 and SCO6102 would make the strain completely reliant on GE2270A for 

FMNH2 production necessary for biomass, so by coupling GE2270A production to 

biomass the strain would have to produce GE2270A making it an essential by-product 

(Figure 6.11d). The SCO3295 gene has never been studied before in Streptomyces, but 

the SCO6102 (sirA) has been deleted from S. coelicolor before of its enzyme sulfite 
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a) 

b) 

c) 

d) 

Figure 6.11: Scenarios of the metabolic impact of the SCO3295 and SCO6102 

knockouts 

a) Predicted state without knockouts 

Without knockout FMNH2 is normally produced from a NADPH and/or a NADH FMN 

reductase. GE2270A is not predicted as produced as it is not necessary metabolically to 

produce biomass. 

b) SCO6102 knockout effect on GE2270A 

Knockout of SCO6102 (SirA) may reduce the NADPH dependent FMN reductase fluxes but not 

abolish it. If not enough FMNH2 is produced this may force some GE2270A production. 

c) SCO3295 knockout effect on GE2270A 

Knockout of SCO3295 would abolish the NADH dependent FMN reductase activity and 

potentially reduce NADPH dependent FMN reductase fluxes. If FMNH2 is not sufficient for 

growth this may force GE2270A production. 

d) SCO3295 and SCO6102 double knockout effect on GE2270A  

The double knockout would abolish production of FMNH2 and force production of GE2270A to 

continue production of FMNH2 for growth. 
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reductase activity 84. The strain with a SCO6102 KO was not able to assimilate sulfate 

so it needed cysteine or methionine in the media to grow 84. Here, the cysteine and 

methionine amino-acids are already present in the CMAN media, hence the ability to 

grow despite the SCO6102 knockout. Both genes are expressed in S. coelicolor M145 

growing in minimal media 22 (Supplementary Figure 27a) and in R2YE media 85 

(Supplementary Figure 27b), with SCO6102 showing higher expression levels. So the 

deletion of these two genes in vivo should have an impact on metabolism and flux 

redistribution without being essential for growth under the conditions used, while 

potentially forcing production of GE2270A. However, this would mainly work if the 

FMN is used as a free pool of cofactor by the GE2270A biosynthetic enzymes making it 

available for the metabolism. But the enzymatic mechanism of the FMN-dependent 

oxidoreductase from the GE2270A pathway is still unknown. Also, this is based on the 

metabolic model genes annotations, so if there are other FMNH2 producing enzyme 

this prediction would be compromised. However, the other genes predicted in the S. 

coelicolor genome as FMN-binding are all associated to reactions consuming FMNH2 

for biosynthesis of diverse compounds such as desferrioxamine B or thymidylate 

(Supplementary Table 6.7). So, SCO3102 and SCO3295 are likely the only genes 

encoding enzymes capable of converting FMN into FMNH2.  

 Finally, this stepwise method reduced the number of candidate knockouts from 

1259 in the model to 2 genes knockouts. A major challenge here was that the GE2270A 

biosynthesis has a limited dependence over the rest of the metabolism as the main 

precursors are the aminoacyl-tRNA and the FMN and ATP cofactors needed for 

production. So the knockouts identified here could help to force the S. coelicolor strain 

to produce the compound by coupling it to biomass production. Other parameters may 
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be more important for GE2270A production in the S. coelicolor host such as gene 

expression levels, translation efficiency by the ribosome, ribosome availability, and 

compound toxicity. But identifying a metabolic approach to force production of these 

compounds would help to push the production levels further. 

6.6 Conclusion 

Here, we presented the integrated analysis of metabolomics data and metabolic 

modelling of native and heterologous actinorhodin production in four different 

S. coelicolor strains. The exometabolomics data helped to identify major metabolic 

pathways activated during ACT production, such as those involved in nucleotide 

metabolism (Figure 6.6, and Supplementary Figure 6.15). The modelling and 

metabolomics data analysis were used to predict 5 potential gene knockouts and 5 

gene overexpression targets in the primary metabolism for increased ACT production, 

for example, bypassing the first part of glycolysis and increasing the pentose 

phosphate pathway (see Table 6.2) 48,62.  

The measured cAMP levels correlated with increase in ACT production in the 

exometabolomics dataset; this metabolite has been reported to be important for 

antibiotic production and morphology changes in Streptomyces 45,46,54, however its role 

in regulating ACT production is still unclear. Further transcriptomics experiments on 

the impact of ACT production are ongoing.  

Another important point is to experimentally determinate if the increase in nucleotide 

metabolism is the result of de novo production of nucleotides or of RNA/DNA 

degradation. Also the potential role of purines and pyrimidines metabolism in 

antibiotics production was highlighted, as this metabolism is still understudied in 
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Streptomyces species; despite molecules such as ppGpp, GTP, cAMP, or ATP that were 

shown to be directly or indirectly involved in antibiotic regulation  51. 

The heterologous production of the GE2270A thiopeptide antibiotic in 

S. coelicolor M1146 was modelled in a complex industrial media. A stepwise method 

was used to reduce the potential gene knockouts from 1259 genes in the model to 2 

gene knockout targets. The modelling predicted that the double knockout of genes 

SCO6102 (sirA) and SCO3295 (FMN reductase gene) associated to NADH and NADPH 

dependents FMN reductases would force production of GE2270A in M1146. These 

knockouts could force GE2270A production from the start of growth by making it 

essential for the organism to produce the antibiotics, and increasing production of this 

compound. This is currently being tested in vivo to identify the impact of these 

deletions and determine if the predictions were accurate and forced GE2270A 

production.  

Constraint-based genome-scale metabolic modelling combined with 

metabolomics showed its versatility as a tool to interpret omics data, and to help 

identifying engineering targets for native and heterologous production of antibiotics in 

Streptomyces species. Due to the robustness and high adaptability of metabolisms 86,87 

it becomes increasingly necessary to apply a combination of engineering targets such 

as knockouts and overexpression to remodel metabolism 61. Here, the application of 

metabolic modelling with omics data helped to highlight these potential targets; now, 

more experimental data is needed to validate the predictions.  
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6.8 Supplementary Files 

 

7 Metabolites present in the CMAN media (uptake flux constraint) 

# Glucose 10g/L (55.51 mmol/L)  
Carbon source 

Glucose (-55.55) 

# Soluble potato starch 35g/L  
Carbon source: mixtures of glucan and malto-polymers 

1,4-alpha-D-glucan (-1000) 
Maltohexose (-1000) 
Maltopentose (-1000) 
Maltotetraose (-1000) 
Maltothriose (-1000) 
Maltose (-1000) 

#Hydrolysed casein 5g/L  
Nitrogen source: amino acids from casein 

Alanine (-1000) 
Arginine (-1000) 
Asparagine (-1000) 
Cysteine (-10) 
Glutamine (-1000) 
Glutamate (-1000) 
Glycine (-1000) 
Histidine (-1000) 
Isoleucine (-1000) 
Leucine (-1000) 
Lysine (-1000) 
Methionine (-1000)  
Phenylalanine (-1000) 
Proline (-1000) 
Serine (-1000) 
Threonine (-1000) 
Tryptophan (-10) 
Tyrosine (-1000) 
Valine (-1000) 

#Yeast extract 8g/L  
Vitamin source and ions 

Panthotenate (-1000) 
K+ (-1000) 
Mg2+ (-1000) 
Na+ (-1000) 
Fe3+ (-1000) 
Fe2+ (-1000) 
Cu2+ (-1000) 
Cl- (-1000) 
Mn2+ (-1000) 
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Choline (-1000) 
Inositol (-1000) 
Biotine (-1000) 
Thiamine (-1000) = Vitamin B1 
Pyridoxine (-1000) = Vitamin B6 
Phosphate (-1000) 

#Calcium carbonate 2g/L 
Calcium source 

Ca2+ (-1000) 

Supplementary Table 6.1: Complex media CMAN composition 
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Flux tool analysis for M145

 

Glucose 

Glutamate 

Phosphate 

a)

a) 

b)

a) 

c)

a) 

d)

a) 

e)

a) 

f) 

g)

a) 

h)

a) 

i) 

Supplementary Figure 6.1 Flux tool analysis for glucose, glutamate, and phosphate 
uptake in M145 

a) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 (glucose) 

b) Fitting of the equation to the data with the 95% CI band for the glucose data 

c) Uptake flux values across times for the glucose 

d) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 (glutamate)  

e) Fitting of the equation to the data with the 95% CI band for the glutamate data  

f) Uptake flux values across times for the glutamate 

g) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 (phosphate) 

h) Fitting of the equation to the data with the 95% CI band for the phosphate data 

i) Uptake flux values across times for the phosphate 
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a)

a) 

b)

a) 

c)

a) 

d)

a) 

e)

a) 
f) 

Supplementary Figure 6.2: Flux tool analysis for Actinorhodin secretion in M145 
a) Fitting of the equation to the data with noisy simulated data around a sigma=0.1  
b) Fitted equation with upper and lower values of the 95% CI for the predicted 

concentration. 
c) Absolute actinorhodin export flux over time. 
d) Couple parameters Beale's 95% unlinearized confidence region. 
e) Couple parameters RSS contour with 95% CI. Heatmap colours corresponds to the couple 

of parameters from the least fitting in red to the most fitting in dark blue. 
f) Residuals analysis for the parameters estimation during equation fitting.  
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a)

a) 

b)

a) 
c)

a) 

d)

a) 

e)

a) 
f) 

Supplementary Figure 6.3: Flux tool analysis for Undecylprodigiosin secretion in 
M145 

a) Fitting of the equation to the data with noisy simulated data around a sigma=0.1  
b) Fitted equation with upper and lower values of the 95% CI for the predicted 

concentration. 
c) Absolute undecylprodigiosin export flux over time. 
d) Couple parameters Beale's 95% unlinearized confidence region. 
e) Couple parameters RSS contour with 95% CI. Heatmap colours corresponds to the 

couple of parameters from the least fitting in red to the most fitting in dark blue. 
f) Residuals analysis for the parameters estimation during equation fitting.  

 



350 
 

 

Glucose 

Glutamate 

Phosphate 

a)

a) 
c)

a) 

d)

a) 

e)

a) 
f) 

g)

a) 

h)

a) 
i) 

Supplementary Figure 6.4: Flux tool analysis for glucose, glutamate, and phosphate 
uptake in M145+ACT 

a) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 

(glucose) 

b) Fitting of the equation to the data with the 95% CI band for the glucose data 

c) Uptake flux values across times for the glucose 

d) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 

(glutamate)  

e) Fitting of the equation to the data with the 95% CI band for the glutamate data  

f) Uptake flux values across times for the glutamate 

g) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 

(phosphate) 

h) Fitting of the equation to the data with the 95% CI band for the phosphate data 

i) Uptake flux values across times for the phosphate 
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Flux tool analysis for M145 + ACT 

  

  

a)

a) 

b)

a) 

c)

a) 

d)

a) 

e)

a) 
f) 

Supplementary Figure 6.5: Flux tool analysis for Actinorhodin secretion in M145 + ACT 

a) Fitting of the equation to the data with noisy simulated data around a sigma=0.1  
b) Fitted equation with upper and lower values of the 95% CI for the predicted concentration 
c) Absolute actinorhodin export flux over time. 
d) Couple parameters Beale's 95% unlinearized confidence region. 
g) Couple parameters RSS contour with 95% CI. Heatmap colours corresponds to the couple 

of parameters from the least fitting in red to the most fitting in dark blue. 
e) Residuals analysis for the parameters estimation during equation fitting.  

 

b)

a) 
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e)

a) 
f) 

Supplementary Figure 6.6: Flux tool analysis for Undecylprodigiosin secretion in 
M145 + ACT 

a) Fitting of the equation to the data with noisy simulated data around a sigma=0.1  
b) Fitted equation with upper and lower values of the 95% CI for the predicted 

concentration. 
c) Absolute undecylprodigiosin export flux over time. 
d) Couple parameters Beale's 95% unlinearized confidence region. 
e) Couple parameters RSS contour with 95% CI. Heatmap colours corresponds to the 

couple of parameters from the least fitting in red to the most fitting in dark blue. 
f) Residuals analysis for the parameters estimation during equation fitting.  
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Flux tool analysis for M1146 

 

Glucose 

Glutamate 

Phosphate 

a)

a) 

b)

a) 

c)
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d)

a) 

e)

a) 
f) 

g)

a) 

h)

a) 

i) 

Supplementary Figure 6.7: Flux tool analysis for glucose, glutamate, and phosphate 
uptake in M1146 

a) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 (glucose) 

b) Fitting of the equation to the data with the 95% CI band for the glucose data 

c) Uptake flux values across times for the glucose 

d) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 

(glutamate)  

e) Fitting of the equation to the data with the 95% CI band for the glutamate data  

f) Uptake flux values across times for the glutamate 

g) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 

(phosphate) 

h) Fitting of the equation to the data with the 95% CI band for the phosphate data 

i) Uptake flux values across times for the phosphate 
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Flux tool analysis for M1146 + ACT 

 

Glucose 

Glutamate 

Phosphate 
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b)

a) 
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e)
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f) 

g)

a) 
h)

a) 

i) 

Supplementary Figure 6.8: Flux tool analysis for glucose, glutamate, and phosphate 
uptake in M1146+ACT 

a) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 (glucose) 

b) Fitting of the equation to the data with the 95% CI band for the glucose data 

c) Uptake flux values across times for the glucose 

d) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 

(glutamate)  

e) Fitting of the equation to the data with the 95% CI band for the glutamate data  

f) Uptake flux values across times for the glutamate 

g) Fitting of the equation to the data with noisy simulated data with a sigma=0.1 

(phosphate) 

h) Fitting of the equation to the data with the 95% CI band for the phosphate data 

i) Uptake flux values across times for the phosphate 
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f) 

Supplementary Figure 6.9: Flux tool analysis for Actinorhodin secretion in M1146 + 
ACT 

a) Fitting of the equation to the data with noisy simulated data around a sigma=0.1  
b) Fitted equation with upper and lower values of the 95% CI for the predicted 

concentration. 
c) Absolute actinorhodin export flux over time. 
d) Couple parameters Beale's 95% unlinearized confidence region. 
e) Couple parameters RSS contour with 95% CI. Heatmap colours corresponds to the 

couple of parameters from the least fitting in red to the most fitting in dark blue. 
f) Residuals analysis for the parameters estimation during equation fitting.  
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Supplementary Figure 6.10: Exometabolome data analysis M145 and M145+ACT 

Metabolome measured in the culture media at 6 different time points (19/20, 30, 40, 50, 64, and 

72h) for the four strains. The ratios of metabolites relative quantities are calculated and plotted 

as heatmaps where the relative high values are in green and low values are in red. The heatmap 

colour code corresponds to lower relative ion count in red and in green for the higher relative 

ion count. 

Exometabolome of M145 and M145+ACT 
The ratios of normalised ion counts for the metabolites measured are calculated as 

M145/M145+ACT and M145+ACT/M145. The metabolites are clustered in 3 groups, the ones 

with higher levels in the strains with the ACT cosmid and the ones with higher levels with the 

strain without the cosmid. 

The cAMP, pyruvate, thymine, and cystine are not clustered in the right group as these are 

clearly higher in the M145+ACT. This clustering issue seems to be caused by the different trend 

of these metabolites. 
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Supplementary Figure 6.11: Exometabolome data analysis for M1146 and M1146+ACT 

Metabolome measured in the culture media at 6 different time points (19/20, 30, 40, 50, 64, and 

72h) for the four strains. The ratios of metabolites relative quantities are calculated and plotted 

as heatmaps where the relative high values are in green and low values are in red.  

Exometabolome of M1146 and M1146+ACT 
The ratios of normalised ion counts for the metabolites measured are calculated as 

M1146/M1146+ACT and M1146+ACT/M1146. The metabolites are clustered in 3 groups, the ones 

with higher levels in the strains with the ACT cosmid and the ones with higher levels with the 

strain without the cosmid. 
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a) 

b) 

Supplementary Figure 6.12: Extracellular cAMP relative intensity in all the strains  

a) Extracellular levels of cAMP in M145 and M145+ACT 

b) Extracellular levels of cAMP in M1146 and M1146+ACT 

Supplementary Figure 6.13: Metabolic trade-off of cAMP compared to ACT 

a) Exponential phase: ACT and cAMP secretion fluxes competition with biomass growth 
at 32 hours 

b) Stationary phase: ACT and cAMP secretion fluxes competition with biomass growth 
at 64 hours  
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Reaction name Subsystem Rxn_detailGenes

S. coelicolor  biomass - objective function M145 M1146

Actinorhodin Pathway Summary Actinorhodin Biosynthesis ACPact_c + malcoa_c <=> coa_c + malACPact_cSCO5089 1.00 1.00

pyruvate kinase Glycolysis and Gluconeogenesis adp_c + h_c + pep_c --> atp_c + pyr_c(SCO2014 or SCO5423) 0.95 -0.21

phosphoglycerate mutase Glycolysis and Gluconeogenesis 3pg_c <=> 2pg_c(SCO2576 or SCO4209 or SCO6818) 0.88 -0.34

enolase Glycolysis and Gluconeogenesis 2pg_c <=> h2o_c + pep_c(SCO3096 or SCO7638) 0.88 -0.34

ribulose 5-phosphate 3-epimerase Pentose Phosphate Pathway ru5p_DASH_D_c <=> xu5p_DASH_D_cSCO1464 0.67 -0.36

M145 M145+Act M1146 M1146+Act Correlation ACT

a) 

b) 

Reaction name Subsystem

S. coelicolor  biomass - objective function M145 M1146

Actinorhodin Pathway Summary Actinorhodin Biosynthesis 1.00 1.00

2',3'-Cyclic AMP exchange Exchange 0.00 0.88

NAD transhydrogenase Oxidative Phosphorylation -0.12 0.67

M145 M145+Act M1146 M1146+Act Correlation ACT

Supplementary Figure 6.14: Reactions correlated to actinorhodin production after 
exometabolomics constraints and media constraints for each strain 

a) Reactions correlated to ACT production in the M145 and M145+ACT 

b) Reactions correlated to ACT production in M1146+ACT 

Only the reactions with a Pearson correlation superior to 0.5 were taken into account as 

correlated to ACT production. In the heatmap the red colour corresponds to lower predicted 

flux and green higher predicted flux. 

 

Supplementary Figure 6.15: Metabolic pathways activated by the 
metabolites secretions 

Metabolic pathways associated to the metabolic reactions predicted as activated by 

the metabolic exports constrained in the model. 
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RXN_ID Rxn_name Metabolic pathway Correlation

ACTt actinorhodin transport via facilitated transportTransport and Membrane NA

Biomass S. coelicolor biomass - objective function - 75.79 GAM estimateExchange 0.004309 10fthf_c + 0.019494 15dap_c + 0.0118 2dmmql9_c + 0.011698 2fe2s_c + 0.005849 4fe4s_c + 0.004431 5mthf_c + 0.001286 adocbl_c + 0.60978 ala_DASH_L_c + 0.005085 amet_c + 0.10195 arg_DASH_L_c + 0.18343 asn_DASH_L_c + 0.18599 asp_DASH_L_c + 75.81045 atp_c + 0.001282 bmocogdp_c + 0.008349 btn_c + 0.004952 ca2_c + 0.004952 cl_c + 9.8e-05 clpn140_c + 6.1e-05 clpn150_c + 0.001116 clpn160_c + 0.000287 clpn161_c + 0.001055 clpnai150_c + 0.00097 clpnai170_c + 0.000213 clpni140_c + 0.00061 clpni150_c + 0.001238 clpni160_c + 0.000451 clpni170_c + 0.00266 coa_c + 2.4e-05 cobalt2_c + 0.13226 ctp_c + 0.000674 cu2_c + 0.08069 cys_DASH_L_c + 0.016297 datp_c + 0.042326 dctp_c + 0.016297 dgtp_c + 0.042326 dttp_c + 0.002592 fad_c + 0.006388 fe2_c + 0.007428 fe3_c + 0.1418 gln_DASH_L_c + 0.25085 glu_DASH_L_c + 0.55317 gly_c + 0.154187 glycogen_c + 0.003536 gtca1_c + 0.003536 gtca2_c + 0.003536 gtca3_c + 0.10035 gtp_c + 71.62443 h2o_c + 0.002387 hemeA_c + 0.002427 hemeO_c + 0.07991 his_DASH_L_c + 0.24831 ile_DASH_L_c + 0.18-0.93

ACTS Actinorhodin Biosynthesis pathwayActinorhodin Biosynthesis 1.00

ACCOAC acetyl-CoA carboxylase Membrane Lipid Metabolism 1.00

HCO3E HCO3 equilibration reaction Unassigned 1.00

PDH pyruvate dehydrogenase Glycolysis and Gluconeogenesis 1.00

ENO enolase Glycolysis and Gluconeogenesis 0.98

PGM phosphoglycerate mutase Glycolysis and Gluconeogenesis 0.98

GAPD glyceraldehyde-3-phosphate dehydrogenaseGlycolysis and Gluconeogenesis 0.98

PGK phosphoglycerate kinase Glycolysis and Gluconeogenesis 0.98

PYK pyruvate kinase Glycolysis and Gluconeogenesis 0.97

TPI triose-phosphate isomerase Glycolysis and Gluconeogenesis 0.97

ME2 malic enzyme (NADP) Anaplerotic Reactions 0.97

EX_nh4(e) Ammonia exchange Exchange nh4_e <=> 0.97

NH4t ammonia reversible transport Inorganic Ion Transport and Metabolism 0.97

GLUDxi glutamate dehydrogenase (NAD, irreversible)Glutamate Metabolism 0.96

GLCt2 D-glucose transport in via proton symportTransport and Membrane 0.95

EX_glc(e) D-Glucose exchange Exchange glc_DASH_D_e <=> 0.95

PFK phosphofructokinase Glycolysis and Gluconeogenesis 0.94

FBA fructose-bisphosphate aldolase Glycolysis and Gluconeogenesis 0.94

EX_h2o(e) H2O exchange Exchange h2o_e <=> 0.93

H2Ot H2O transport via diffusion Transport and Membrane 0.93

CYO2a cytochrome bc1 oxidoreductase complex (reductase, menaquinol: 2 protons)_ Complex IIIOxidative Phosphorylation 0.92

CYO2b cytochrome aa3 oxidase (menaquinol: 2 protons)_ Complex IVOxidative Phosphorylation 0.92

CITL Citrate lyase Citric Acid Cycle 0.91

ACKr acetate kinase Pyruvate Metabolism 0.91

PTAr phosphotransacetylase Pyruvate Metabolism 0.91

EX_h(e) H+ exchange Exchange h_e <=> 0.90

XYLI2 xylose isomerase Alternate Carbon Metabolism 0.89

HEX7 hexokinase (D-fructose:ATP) Alternate Carbon Metabolism 0.89

HCYSMT homocysteine S-methyltransferaseMethionine Metabolism 0.88

AHC adenosylhomocysteinase Methionine Metabolism 0.83

GLUt2r L-glutamate transport via proton symport, reversibleTransport and Membrane 0.82

EX_glu-L(e) L-Glutamate exchange Exchange glu_DASH_L_e <=> 0.82

TALA transaldolase Pentose Phosphate Pathway 0.77

ACT 0 to 

100%

Supplementary Figure 6.16: Intracellular predicted fluxes highly correlated to 
increasing ACT production 

The predicted metabolic fluxes are represented as a heatmap with low relative to the row 

predicted fluxes in red and higher relative to the row predicted fluxes in green. 
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Supplementary Figure 6.17: Metabolic map of nucleotides metabolism with fluxes 
associated to ACT production and with metabolic exports 

Reactions in red corresponds to the reaction fluxes associated to metabolic exports while 

the reactions in blue corresponds to the reactions associated with ACT production. 
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Act production 
starts 

Act 
production 

starts 

 

Act 
production 
starts 

No Act 
production  

 

a b

Supplementary Figure 6.18: Intracellular PRPP relative intensity in all the strains  

a) Intracellular levels of PRPP in M145 and M145+ACT. The orange curve corresponds to 

M145+ACT and the blue curve corresponds to M145. 

b) Intracellular levels of PRPP in M1146 and M1146+ACT. The orange curve corresponds 

to M1146+ACT and the blue curve corresponds to M1146. 

Data visualisation by Katsuaki Nitta 

 

a) b) 

c) 

Supplementary Figure 6.19: Intracellular NADP+, ATP, and ADP relative intensity in 
all the strains  

a) Intracellular levels of NADP+ in M1146 and M1146+ACT 

b) Intracellular levels of ATP in M1146 and M1146+ACT 

c) Intracellular levels of ADP in M1146 and M1146+ACT 

The orange curve corresponds to M1146+ACT and the blue curve corresponds to M1146. 

Data visualisation by Katsuaki Nitta 
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SCO2119 6-phosphofructokinase 6.4

SCO5426 6-phosphofructokinase 7.5

SCO1214 6-phosphofructokinase 6.6

a) Phosphofructokinase (PFK) 

SCO3123 ribose-phosphate pyrophosphokinase 8.1

SCO0782 ribose-phosphate pyrophosphokinase 5.2

SCO6243 malate synthase 6.5

b)  PRPP synthase 

e) Malate 

synthase SCO0983 malate synthase 5.8

SCO4979 phosphoenolpyruvate carboxykinase (GTP) 9.8

SCO3127 phosphoenolpyruvate carboxylase 8.1

c) Phosphoenolpyruvate carboxykinase (PEPCK) 

d) Phosphoenolpyruvate carboxylase (PEPC) 

Supplementary Figure 6.20 Gene expression data in the minimal media for M145 for 
deletion targets 

a) Gene expression for Phosphofructokinase (PFK) 

b) Gene expression for PRPP synthase 

c) Gene expression for Phosphoenolpyruvate carboxykinase (PEPCK) 

d) Gene expression for Phosphoenolepyruvate carboxylase (PEPC) 

e) Gene expression for Malate synthase 

The heatmap colour code corresponds to low gene expression level in blue and high gene 

expression level in red. 

Data by Nieselt et al 2010  
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SCO5261 malate oxidoreductase 5.7

SCO2951 malate oxidoreductase 9.0

a) Malic enzymes 

b) Acetyl-CoA carboxylase 

(ACC) 

SCO5535 carboxyl transferase 7.3

SCO5536 hypothetical protein 8.5

O

AN

O

SCO4921 acyl-CoA carboxylase complex A subunit 9.3

SCO2777 acetyl/propionyl CoA carboxylase alpha subunit 6.2

SCO2445 acetyl CoA carboxylase (alpha and beta subunits) 5.4

c) Citrate lyase 

SCO2033 citrate lyase beta chain 6.6

SCO6471 citratelyase 6.2

d) Transaldolase 

SCO1936 transaldolase 9.3

SCO6662 transaldolase 7.7

Supplementary Figure 6.21: Gene expression data in the minimal media for M145 for 
the overexpression targets 

a) Gene expression for Malic enzymes 

b) Gene expression for Acetyl-CoA carboxylase (ACC) 

c) Gene expression for citrate lyase 

d) Gene expression for transaldolase 

The heatmap colour code corresponds to low gene expression level in blue and high gene 

expression level in red.  

Data by Nieselt et al 2010  
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Supplementary Figure 6.22: Predicted metabolites imports and exports from 
media for GE2270A production only in CMAN media 

Red histogram corresponds to the predicted uptake fluxes, while the green histogram 

corresponds to the predicted export fluxes. 
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Supplementary Figure 6.23: Predicted metabolites imports and exports from media 
for S. coelicolor growth only in CMAN media 

Red histogram corresponds to the predicted uptake fluxes, while the green histogram 

corresponds to the predicted export fluxes. 
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Strains  Number of 
essential genes 
for growth 

Genes reducing 
growth by >10% 

Genes reducing 
growth by <10% 

Non-essential 
genes (not 
reducing growth) 

S. coelicolor 
M1146 

152 12 52 986 

Supplementary Table 6.2: Single gene deletion results for biomass optimisation. 

 

Strains  Number of 
essential genes 
for GE2270A 
production 

Genes reducing 
GE2270A 
production by 
>10% 

Genes reducing 
GE2270A 
production by 
<10% 

Non-essential 
genes (not 
reducing 
production) 

S. coelicolor 
M1146  

14 27 38 1123 

Supplementary Table 6.3: Single gene deletion results for GE2270A production 
optimisation. 

 

Strains  Number of 
essential gene 
pairs for growth 

Gene pairs 
reducing 
growth by >10% 

Gene pairs 
reducing 
growth by 
<10% 

Non-essential 
gene pairs (not 
reducing growth) 

S. coelicolor 
M1146 

172,502 12,829 218,374 475,798 

Supplementary Table 6.4: Double gene deletion results for biomass optimisation. 

 

Strains  Number of 
essential genes 
pair for 
GE2270A 
production 

Genes pair 
reducing 
GE2270A 
production by 
>10% 

Genes pair 
reducing 
GE2270A 
production by 
<10% 

Non-essential 
genes pair (not 
reducing 
production) 

S. coelicolor 
M1146  

17,970 29,572 41,036 635,629 

Supplementary Table 6.5: Double gene deletion results for GE2270A production 
optimisation. 
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Gene 
nKO 
(%) 

Reactions Function Priority 

SCO6102 88.6 
FADRx2, 

FLVR, SULRi, 
FMNRx2 

Cofactor nitrite or sulphite reductase:  
Reduce NADH or NADPH to generate 

FMNH2, FADH2, Riboflavin, or H2S 

Group I 
(>25%) 

SCO3295 88.4 
FMNRx, 
FMNRx2 

SCO1223 80 ORNTA 
Ornithine transaminase: 

Use alpha-ketoglutarate to transform 
ornithine in Glutamate 

SCO6754 79.2 GLYCDx Glycerol dehydrogenase 

SCO5515 78.8 PGCD Phosphoglycerate dehydrogenase 

SCO6658 74.4 GND*, GND2* Phosphogluconate dehydrogenase 

SCO2390 28.2 
40 Reactions:*  

3OAS*,  KAS14* 
3-oxoacyl-ACP synthase, and beta-

ketoacyl-ACP synthase 

SCO2640 12.2 ASAD* Aspartate-semialdehyde dehydrogenase 

Group II 
(>5%) 

SCO6697 10.8 
4CMLCL*, 
OXOAEL* 

4-carboxymuconolactone decarboxylase, 
and 3-oxoadipate enol-lactone hydrolase 

SCO6700 9.4 PCADYOX Protocatechuate 3,4-dioxygenase 

SCO3473 8.6 DDPGA*, EDA* 
2-dehydro-3-deoxy-phosphogluconate 

aldolase, 2-dehydro-3-deoxy-
phosphogluconate aldolase 

SCO0213 7.2 
NO2t2r*, 
NO3t7* 

Nitrite transport in via proton symport, 
and Nitrate transport via nitrite antiport 

SCO2148 1.6 CYO2a* Cytochrome bc1 oxidoreductase complex 

Group III 
(>0.75%) 

SCO1170 1.4 XYLK*, DXYLK* Xylulokinase, 1-Deoxy-D-xylulose kinase 

SCO5366 1.4 ATPS4r* ATP synthase 

SCO7266 1.2 
38 Reactions: 

3OAR* 
3-oxoacyl-ACP reductase 

SCO1488 1 UPPRT Uracil phosphoribosyltransferase 

SCO3899 1 
MI1PS*, 
MI1PS2* 

Myo-Inositol-1-phosphate synthases 

SCO4830 1 PROabc* L-proline transport via ABC system 

SCO5848 1 TGBPA* Tagatose-bisphosphate aldolase 

SCO6731 1 
3OXCOAT*, 

OXDHCOAT* 
3-oxoadipyl-CoA thiolase, and 3-oxo-5,6-

dehydrosuberyl-CoA thiolase 

SCO0814 0.8 RMK Rhamnulokinase 

SCO2093 0.8 HCO3E* HCO3 equilibration 

SCO2546 0.8 ADA*, DADA* 
Adenosine deaminase, and 
Deoxyadenosine deaminase 

SCO4388 0.8 CS Cytosine transport in via proton symport 

Supplementary Table 6.6: List of 25 genes knockout candidates to increase 
production of GE2270A in S. coelicolor M1146. 
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Supplementary Figure 6.24: Matrix of all the metabolic genes knocked out in the 
last generation of mutants by OptGene 

Most frequent genes knockouts on the column in green and least frequent in red. In the 

row the fitness value is ordered in green for the highest and red for the lowest. 

Strain Strain1 Strain2 Strain3 Strain4 Strain5 Strain6 Strain7 Strain8 Strain9 Strain10

KO n°1 SCO6102 SCO3295 SCO1223 SCO6754 SCO5515 SCO6102 SCO6102 SCO6102 SCO6102 SCO3295

KO n°2 NA NA NA NA NA SCO3295 SCO1223 SCO6754 SCO5515 SCO1223

KO n°3 NA NA NA NA NA NA NA NA NA NA

KO n°4 NA NA NA NA NA NA NA NA NA NA

KO n°5 NA NA NA NA NA NA NA NA NA NA

Strain Strain11 Strain12 Strain13 Strain14 Strain15 Strain16 Strain17 Strain18 Strain19 Strain20

KO n°1 SCO3295 SCO3295 SCO1223 SCO1223 SCO6754 SCO6102 SCO6102 SCO6102 SCO6102 SCO6102

KO n°2 SCO6754 SCO5515 SCO6754 SCO5515 SCO5515 SCO3295 SCO3295 SCO3295 SCO1223 SCO1223

KO n°3 NA NA NA NA NA SCO1223 SCO6754 SCO5515 SCO6754 SCO5515

KO n°4 NA NA NA NA NA NA NA NA NA NA

KO n°5 NA NA NA NA NA NA NA NA NA NA

Strain Strain21 Strain22 Strain23 Strain24 Strain25 Strain26 Strain27 Strain28 Strain29 Strain30 Strain31

KO n°1 SCO6102 SCO3295 SCO3295 SCO3295 SCO1223 SCO6102 SCO6102 SCO6102 SCO6102 SCO3295 SCO6102

KO n°2 SCO6754 SCO1223 SCO1223 SCO6754 SCO6754 SCO3295 SCO3295 SCO3295 SCO1223 SCO1223 SCO3295

KO n°3 SCO5515 SCO6754 SCO5515 SCO5515 SCO5515 SCO1223 SCO1223 SCO6754 SCO6754 SCO6754 SCO1223

KO n°4 NA NA NA NA NA SCO6754 SCO5515 SCO5515 SCO5515 SCO5515 SCO6754

KO n°5 NA NA NA NA NA NA NA NA NA NA SCO5515

Supplementary Figure 6.25: Combination of all possible viable mutant strains 
tested in silico. 

Each gene has a different colour code, brown for SCO6102, pink for SCO3295, blue for 

SCO1223, green for SCO6754, and purple for SCO5515. 



370 
  

W
T

S30
S24

S5
S10

S25
S11

S14
S22

S12
S23

S2
S4

S3
S13

S15
S29

S9
S21

S20
S7

S1
S8

S19
S6

S27
S26

S31
S17

S28
S18

S16
D

IFF

R
e

actio
n

R
e

actio
n

 N
am

e
M

e
tab

o
lic Su

b
syste

m
H

2O
t

H
2O

 tran
sp

o
rte

r
Tran

sp
o

rt
3

5
2

3
5

2
3

5
2

3
5

2
3

5
2

3
5

2
3

5
2

3
5

2
3

5
2

3
5

2
3

5
2

3
5

2
3

5
2

3
5

2
3

5
2

3
5

2
3

5
2

3
5

2
3

5
2

3
5

2
3

5
2

3
5

2
3

5
2

3
5

2
3

2
6

3
2

6
3

2
6

3
2

6
3

2
6

3
2

6
3

2
6

3
2

6
26.1324

D
-LA

C
t2

D
-lactate

 tran
sp

o
rt

Tran
sp

o
rt

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

3
-3

9
3

-3
9

3
-3

9
3

-3
9

3
-3

9
3

-3
9

3
-3

9
3

2.81681

LD
H

_D
D

-lactate
 d

e
h

yd
ro

ge
n

ase
P

yru
vate

 m
e

tab
o

lism
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
6

-3
9

6
-3

9
3

-3
9

3
-3

9
3

-3
9

3
-3

9
3

-3
9

3
-3

9
3

-3
9

3
2.81681

C
Y

TB
D

1
cyto

ch
ro

m
e

 o
xid

ase
 b

d
 I

O
xid

ative
 P

h
o

sp
h

o
rylatio

n
4

7
1

4
7

1
4

7
1

4
7

1
4

7
1

4
7

1
4

7
1

4
7

1
4

7
1

4
7

1
4

7
1

4
7

1
4

7
1

4
7

1
4

7
1

4
7

1
4

7
1

4
7

1
4

7
1

4
7

1
4

7
1

4
7

1
4

7
1

4
7

1
4

6
9

4
6

9
4

6
9

4
6

9
4

6
9

4
6

9
4

6
9

4
6

9
1.78572

N
H

4t
N

H
4 tran

sp
o

rte
r

Tran
sp

o
rt

-4
0

4
-4

0
4

-4
0

4
-4

0
4

-4
0

4
-4

0
4

-4
0

4
-4

0
4

-4
0

4
-4

0
4

-4
0

4
-4

0
4

-4
0

4
-4

0
4

-4
0

4
-4

0
4

-4
0

4
-4

0
4

-4
0

4
-4

0
4

-4
0

4
-4

0
4

-4
0

4
-4

0
4

-4
0

3
-4

0
3

-4
0

3
-4

0
3

-4
0

3
-4

0
3

-4
0

3
-4

0
3

1.39396

G
1D

H
glu

co
se

 1-d
e

h
yd

ro
ge

n
ase

P
e

n
to

se
 P

h
o

sp
h

ate
 P

ath
w

ay
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
5

6
0

5
6

0
5

6
0

5
6

0
5

6
0

5
6

0
5

6
0

5
1.09769

G
LC

N
t2r

D
-glu

co
n

ate
 tran

sp
o

rt
A

lte
rn

ate
 C

arb
o

n
 M

e
tab

o
lism

-6
0

6
-6

0
6

-6
0

6
-6

0
6

-6
0

6
-6

0
6

-6
0

6
-6

0
6

-6
0

6
-6

0
6

-6
0

6
-6

0
6

-6
0

6
-6

0
6

-6
0

6
-6

0
6

-6
0

6
-6

0
6

-6
0

6
-6

0
6

-6
0

6
-6

0
6

-6
0

6
-6

0
6

-6
0

5
-6

0
5

-6
0

5
-6

0
5

-6
0

5
-6

0
5

-6
0

5
-6

0
5

1.09769

G
LN

LA
SE

glu
co

n
o

lacto
n

ase
A

lte
rn

ate
 C

arb
o

n
 M

e
tab

o
lism

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

5
6

0
5

6
0

5
6

0
5

6
0

5
6

0
5

6
0

5
6

0
5

1.09769

B
io

m
ass_SC

OB
io

m
ass

B
io

m
ass

5
2

.4
5

2
.4

5
2

.4
5

2
.4

5
2

.4
5

2
.4

5
2

.4
5

2
.4

5
2

.4
5

2
.4

5
2

.4
5

2
.4

5
2

.4
5

2
.4

5
2

.4
5

2
.4

5
2

.4
5

2
.4

5
2

.4
5

2
.4

5
2

.4
5

2
.4

5
2

.4
5

2
.4

5
1

.9
5

1
.9

5
1

.9
5

1
.9

5
1

.9
5

1
.9

5
1

.9
5

1
.9

0.54292

R
e

actio
n

R
e

actio
n

 N
am

e
M

e
tab

o
lic Su

b
syste

m
P

R
O

t2r
L-P

ro
lin

e
 tran

sp
o

rt
A

m
in

o
 A

cid
s Tran

sp
o

rt
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
2

0
.5

2
0

.5
2

0
.5

2
0

.5
2

0
.5

2
0

.5
2

0
.5

2
0

.5
-0.9282

IC
D

H
yr

iso
citrate

 d
e

h
yd

ro
ge

n
ase

C
itric acid

 cycle
-0

-0
-0

-0
-0

-0
-0

-0
-0

-0
-0

-0
-0

-0
-0

-0
-0

-0
-0

-0
-0

-0
-0

-0
-1

-1
-1

-1
-1

-1
-1

-1
-1.005

IC
L

Iso
citrate

 lyase
C

itric acid
 cycle

0
.0

3
0

.0
3

0
.0

3
0

.0
3

0
.0

3
0

.0
3

0
.0

3
0

.0
3

0
.0

3
0

.0
3

0
.0

3
0

.0
3

0
.0

3
0

.0
3

0
.0

3
0

.0
3

0
.0

3
0

.0
3

0
.0

3
0

.0
3

0
.0

3
0

.0
3

0
.0

3
0

.0
3

1
.0

3
1

.0
3

1
.0

3
1

.0
3

1
.0

3
1

.0
3

1
.0

3
1

.0
3

-1.005

A
SN

t2r
L-asp

aragin
e

 tran
sp

o
rt

A
m

in
o

 A
cid

s Tran
sp

o
rt

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

9
.6

1
9

.6
1

1
0

.6
1

0
.6

1
0

.6
1

0
.6

1
0

.6
1

0
.6

1
0

.6
1

0
.6

-1.0313

A
SN

TR
S

A
sp

aragin
yl-tR

N
A

 syn
th

e
tase

tR
N

A
 C

h
argin

g
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

.1
3

1
.1

3
1

.1
3

1
.1

3
1

.1
3

1
.1

3
1

.1
3

1
.1

3
-1.1309

A
SP

TR
S

A
sp

aragin
yl-tR

N
A

 syn
th

e
tase

tR
N

A
 C

h
argin

g
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

.1
3

1
.1

3
1

.1
3

1
.1

3
1

.1
3

1
.1

3
1

.1
3

1
.1

3
-1.1309

P
R

O
TR

S
P

ro
lyl-tR

N
A

 syn
th

e
tase

tR
N

A
 C

h
argin

g
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

.1
3

1
.1

3
1

.1
3

1
.1

3
1

.1
3

1
.1

3
1

.1
3

1
.1

3
-1.1309

G
LU

D
yi

glu
tam

ate
 d

e
h

yd
ro

ge
n

ase
 

G
lu

tam
ate

 M
e

tab
o

lism
3

1
.5

3
1

.5
3

1
.5

3
1

.5
3

1
.5

3
1

.5
3

1
.5

3
1

.5
3

1
.5

3
1

.5
3

1
.5

3
1

.5
3

1
.5

3
1

.5
3

1
.5

3
1

.5
3

1
.5

3
1

.5
3

1
.5

3
1

.5
3

1
.5

3
1

.5
3

1
.5

3
1

.5
3

2
.7

3
2

.7
3

2
.7

3
2

.7
3

2
.7

3
2

.7
3

2
.7

3
2

.7
-1.1811

G
LY

t2r
glycin

e
 tran

sp
o

rt
A

m
in

o
 A

cid
s Tran

sp
o

rt
1

4
.9

1
4

.9
1

4
.9

1
4

.9
1

4
.9

1
4

.9
1

4
.9

1
4

.9
1

4
.9

1
4

.9
1

4
.9

1
4

.9
1

4
.9

1
4

.9
1

4
.9

1
4

.9
1

4
.9

1
4

.9
1

4
.9

1
4

.9
1

4
.9

1
4

.9
1

4
.9

1
4

.9
1

6
.2

1
6

.2
1

6
.2

1
6

.2
1

6
.2

1
6

.2
1

6
.2

1
6

.2
-1.3536

A
C

LS
ace

to
lactate

 syn
th

ase
V

alin
e

 Le
u

cin
e

 an
d

 Iso
le

u
cin

e
 M

e
tab

o
lism

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
4

.8
1

4
.8

1
4

.8
1

4
.8

1
4

.8
1

4
.8

1
4

.8
1

4
.8

-1.3685

D
H

A
D

1
d

ih
yd

ro
xy-acid

 d
e

h
yd

ratase
V

alin
e

 Le
u

cin
e

 an
d

 Iso
le

u
cin

e
 M

e
tab

o
lism

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
4

.8
1

4
.8

1
4

.8
1

4
.8

1
4

.8
1

4
.8

1
4

.8
1

4
.8

-1.3685

K
A

R
A

1i
ace

to
h

yd
ro

xy acid
 iso

m
e

ro
re

d
u

ctase
V

alin
e

 Le
u

cin
e

 an
d

 Iso
le

u
cin

e
 M

e
tab

o
lism

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
3

.5
1

3
.5

1
4

.8
1

4
.8

1
4

.8
1

4
.8

1
4

.8
1

4
.8

1
4

.8
1

4
.8

-1.3685

V
A

LTA
valin

e
 tran

sam
in

ase
V

alin
e

 Le
u

cin
e

 an
d

 Iso
le

u
cin

e
 M

e
tab

o
lism

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
2

-1
3

-1
3

-1
3

-1
3

-1
3

-1
3

-1
3

-1
3

-1.3876

LEU
ab

c
A

m
in

o
 A

cid
s Tran

sp
o

rt
8

.6
8

8
.6

8
8

.6
8

8
.6

8
8

.6
8

8
.6

8
8

.6
8

8
.6

8
8

.6
8

8
.6

8
8

.6
8

8
.6

8
8

.6
8

8
.6

8
8

.6
8

8
.6

8
8

.6
8

8
.6

8
8

.6
8

8
.6

8
8

.6
8

8
.6

8
8

.6
8

8
.6

8
1

0
.1

1
0

.1
1

0
.1

1
0

.1
1

0
.1

1
0

.1
1

0
.1

1
0

.1
-1.418

A
LA

TR
S

A
lan

yl-tR
N

A
 syn

th
e

tase
tR

N
A

 C
h

argin
g

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
.5

1
1

.5
1

1
.5

1
1

.5
1

1
.5

1
1

.5
1

1
.5

1
1

.5
1

-1.5079

LEU
TR

S
Le

u
cyl-tR

N
A

 syn
th

e
tase

tR
N

A
 C

h
argin

g
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

.5
1

1
.5

1
1

.5
1

1
.5

1
1

.5
1

1
.5

1
1

.5
1

1
.5

1
-1.5079

V
A

LTR
S

V
alyl-tR

N
A

 syn
th

e
tase

tR
N

A
 C

h
argin

g
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

.5
1

1
.5

1
1

.5
1

1
.5

1
1

.5
1

1
.5

1
1

.5
1

1
.5

1
-1.5079

A
TP

S4r
A

TP
 syn

th
ase

O
xid

ative
 P

h
o

sp
h

o
rylatio

n
7

7
4

7
7

4
7

7
4

7
7

4
7

7
4

7
7

4
7

7
4

7
7

4
7

7
4

7
7

4
7

7
4

7
7

4
7

7
4

7
7

4
7

7
4

7
7

4
7

7
4

7
7

4
7

7
4

7
7

4
7

7
4

7
7

4
7

7
4

7
7

4
7

7
5

7
7

5
7

7
5

7
7

5
7

7
5

7
7

5
7

7
5

7
7

5
-1.6121

C
Y

O
2a

cyto
ch

ro
m

e
 b

c1 o
xid

o
re

d
u

ctase
 co

m
p

le
xO

xid
ative

 P
h

o
sp

h
o

rylatio
n

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

9
5

2
9

5
2

9
5

2
9

5
2

9
5

2
9

5
2

9
5

2
9

-1.8076

C
Y

O
2b

cyto
ch

ro
m

e
 aa3 o

xid
ase

O
xid

ative
 P

h
o

sp
h

o
rylatio

n
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
7

5
2

7
5

2
9

5
2

9
5

2
9

5
2

9
5

2
9

5
2

9
5

2
9

5
2

9
-1.8076

G
LY

TR
S

G
lycyl-tR

N
A

 syn
th

e
tase

tR
N

A
 C

h
argin

g
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

.8
8

1
.8

8
1

.8
8

1
.8

8
1

.8
8

1
.8

8
1

.8
8

1
.8

8
-1.8849

SER
t2r

Se
rin

e
 tran

sp
o

rt
A

m
in

o
 A

cid
s Tran

sp
o

rt
4

8
1

4
8

1
4

8
1

4
8

1
4

8
1

4
8

1
4

8
1

4
8

1
4

8
1

4
8

1
4

8
1

4
8

1
4

8
1

4
8

1
4

8
1

4
8

1
4

8
1

4
8

1
4

8
1

4
8

1
4

8
1

4
8

1
4

8
1

4
8

1
4

8
3

4
8

3
4

8
3

4
8

3
4

8
3

4
8

3
4

8
3

4
8

3
-1.9587

M
ETab

c
M

e
th

io
n

in
e

 tran
sp

o
rt

A
m

in
o

 A
cid

s Tran
sp

o
rt

9
.2

4
9

.2
4

9
.2

4
9

.2
4

9
.2

4
9

.2
4

9
.2

4
9

.2
4

9
.2

4
9

.2
4

9
.2

4
9

.2
4

9
.2

4
9

.2
4

9
.2

4
9

.2
4

9
.2

4
9

.2
4

9
.2

4
9

.2
4

9
.2

4
9

.2
4

9
.2

4
9

.2
4

1
1

.4
1

1
.4

1
1

.4
1

1
.4

1
1

.4
1

1
.4

1
1

.4
1

1
.4

-2.1661

C
Y

Sab
c

C
yste

in
 tran

sp
o

rt
A

m
in

o
 A

cid
s Tran

sp
o

rt
7

.7
8

7
.7

8
7

.7
8

7
.7

8
7

.7
8

7
.7

8
7

.7
8

7
.7

8
7

.7
8

7
.7

8
7

.7
8

7
.7

8
7

.7
8

7
.7

8
7

.7
8

7
.7

8
7

.7
8

7
.7

8
7

.7
8

7
.7

8
7

.7
8

7
.7

8
7

.7
8

7
.7

8
9

.9
6

9
.9

6
9

.9
6

9
.9

6
9

.9
6

9
.9

6
9

.9
6

9
.9

6
-2.1813

C
Y

STR
S

C
yste

in
yl-tR

N
A

 syn
th

e
tase

tR
N

A
 C

h
argin

g
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

.2
6

2
.2

6
2

.2
6

2
.2

6
2

.2
6

2
.2

6
2

.2
6

2
.2

6
-2.2618

M
ETTR

S
M

e
th

io
n

yl-tR
N

A
 fo

rm
yltran

sfe
rase

tR
N

A
 C

h
argin

g
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

.2
6

2
.2

6
2

.2
6

2
.2

6
2

.2
6

2
.2

6
2

.2
6

2
.2

6
-2.2618

G
LU

TR
S

G
lu

tam
yl-tR

N
A

 syn
th

e
tase

tR
N

A
 C

h
argin

g
4

.8
8

4
.8

8
4

.8
8

4
.8

8
4

.8
8

4
.8

8
4

.8
8

4
.8

8
4

.8
8

4
.8

8
4

.8
8

4
.8

8
4

.8
8

4
.8

8
4

.8
8

4
.8

8
4

.8
8

4
.8

8
4

.8
8

4
.8

8
4

.8
8

4
.8

8
4

.8
8

4
.8

8
7

.4
7

7
.4

7
7

.4
7

7
.4

7
7

.4
7

7
.4

7
7

.4
7

7
.4

7
-2.5882

SER
TR

S
Se

ryl-tR
N

A
 syn

th
e

tase
tR

N
A

 C
h

argin
g

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
.6

4
2

.6
4

2
.6

4
2

.6
4

2
.6

4
2

.6
4

2
.6

4
2

.6
4

-2.6388

G
LU

t2r
G

lu
tam

ate
 tran

sp
o

rt
A

m
in

o
 A

cid
s Tran

sp
o

rt
9

3
3

9
3

3
9

3
3

9
3

3
9

3
3

9
3

3
9

3
3

9
3

3
9

3
3

9
3

3
9

3
3

9
3

3
9

3
3

9
3

3
9

3
3

9
3

3
9

3
3

9
3

3
9

3
3

9
3

3
9

3
3

9
3

3
9

3
3

9
3

3
9

3
6

9
3

6
9

3
6

9
3

6
9

3
6

9
3

6
9

3
6

9
3

6
-3.3345

P
5C

R
p

yrro
lin

e
-5-carb

o
xylate

 re
d

u
ctase

A
rgin

in
e

 an
d

 P
ro

lin
e

 M
e

tab
o

lism
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
6

.1
9

6
.1

9
6

.1
9

6
.1

9
6

.1
9

6
.1

9
6

.1
9

6
.1

9
6

.1
3

6
.1

3
6

.1
3

6
.1

3
6

.1
3

6
.1

3
6

.1
3

6
.1

3
-6.1276

P
R

O
D

2
P

ro
lin

e
 d

e
h

yd
ro

ge
n

ase
A

rgin
in

e
 an

d
 P

ro
lin

e
 M

e
tab

o
lism

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6
.1

9
6

.1
9

6
.1

9
6

.1
9

6
.1

9
6

.1
9

6
.1

9
6

.1
9

6
.1

3
6

.1
3

6
.1

3
6

.1
3

6
.1

3
6

.1
3

6
.1

3
6

.1
3

-6.1276

P
P

A
_1

in
o

rgan
ic d

ip
h

o
sp

h
atase

A
n

ap
le

io
tro

p
ic re

actio
n

s
1

6
1

1
6

1
1

6
1

1
6

1
1

6
1

1
6

1
1

6
1

1
6

1
1

6
1

1
6

1
1

6
1

1
6

1
1

6
1

1
6

1
1

6
1

1
6

1
1

6
1

1
6

1
1

6
1

1
6

1
1

6
1

1
6

1
1

6
1

1
6

1
1

8
0

1
8

0
1

8
0

1
8

0
1

8
0

1
8

0
1

8
0

1
8

0
-19.824

A
D

K
1

ad
e

n
ylate

 kin
ase

N
u

cle
o

tid
e

s Salvage
 P

ath
w

ay
6

1
.3

6
1

.3
6

1
.3

6
1

.3
6

1
.3

6
1

.3
6

1
.3

6
1

.3
6

1
.3

6
1

.3
6

1
.3

6
1

.3
6

1
.3

6
1

.3
6

1
.3

6
1

.3
6

1
.3

6
1

.3
6

1
.3

6
1

.3
6

1
.3

6
1

.3
6

1
.3

6
1

.3
8

2
.2

8
2

.2
8

2
.2

8
2

.2
8

2
.2

8
2

.2
8

2
.2

8
2

.2
-20.852

Strain
s

Su
m

 To
tal Flu

x (m
m

o
l/gD

W
/h

)

W
T p

h
e

n
o

typ
e

 gro
u

p
G

ro
u

p
 2

G
ro

u
p

 3
G

E2270A
 p

ro
d

u
ce

rs

H
igh

e
r in

 n
o

n
-p

ro
d

u
cin

g m
u

tan
ts

20034.74006

W
T p

h
e

n
o

typ
e

 gro
u

p

H
igh

e
r in

 G
E2

2
7

0
A

 p
ro

d
u

cin
g m

u
tan

ts

20106.25049
20047.12361

G
ro

u
p

 2
G

ro
u

p
 3

G
E2270A

 p
ro

d
u

ce
rs

20034.83492

Supplementary Figure 6.26: Metabolic differences between the producing and non-
producing mutants (and WT) 

In the row the predicted growth rates in red are the highest and blue ones are the lowest. While 

the row with the fitness value is ordered in green for the highest and red for the lowest. 
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Supplementary Figure 6.27: Transcription levels of SCO6102 and SCO3295 under 
minimal media conditions  

a) Gene expression data in minimal media (Nieselt et al 2010) 

b) Gene expression data in complex media (Jeong et al 2016) 
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Gene Enzyme Reaction function Reversible 
reaction 

SCO5711 FMN adenylyltransferase FMN conversion to FAD No 
SCO5711 riboflavin kinase Riboflavin conversion into FMN No 
SCO2781 ferricoelichelin reductase Production of coelichelin No 
SCO2781 ferrioxamine B reductase Production of Desferrioxamine B No 
SCO2781 ferrioxamine E reductase Production of Desferrioxamine E No 
SCO5743 thymidylate synthase 

(Flavin-dependent) 
Synthesis of thymidylate from 
Methylenetetrahydrofolate 

No 

Supplementary Table 6.7: Genes with FMN binding sites and their associated 
reactions 
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Chapter VII 

7. Conclusions and future perspectives 

In this thesis, I have presented the reconstruction and analysis of constraint-based 

genome-scale metabolic models to study and engineer primary and secondary 

metabolism of Streptomyces species. The aim of this work is to better understand how 

it can be used to increase antibiotic production in Streptomyces spp., which would 

ultimately help in the discovery and production of new antibiotics to face the rise of 

antimicrobial resistance. This involved the update and validation of a high-quality 

genome-scale metabolic model of Streptomyces coelicolor to study its primary and 

secondary metabolism (Chapter II) 1. This new model was then used to reconstruct a 

model of Streptomyces lividans, a strain that is phylogenetically very closely related, 

which is then compared with the S. coelicolor metabolism to identify differences 

potentially responsible for antibiotics production differences (Chapter III). The 

comparative reconstruction and comparison method were automated to compare 

about 50 different Actinobacteria strains and identify metabolic differences between 

these organisms (Chapter IV). The step necessary to obtain condition-specific 

predictions by constraining metabolic exchanges in the model was automated by 

building an R tool, which was then tested and validated with experimental data 

(Chapter V). Finally, the models and tools developed and validated in this thesis were 

used to help design theoretically better S. coelicolor antibiotic producing strains; such 

as the native production of actinorhodin and the heterologous production of the 

antibiotic GE2270A (Chapter VI). Each chapter addresses a specific challenge in the 
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design-build-test-learn (DBTL) cycle of secondary metabolites synthetic biology, with a 

strong focus on learn and design phases of the cycle (Figure 7.1). 

7.1 Streptomyces coelicolor metabolic modelling and future 

improvements 

The updated genome-scale metabolic model iAA1259 of the antibiotic producer model 

strain S. coelicolor presented in this thesis (Chapter I) is one of the most advanced 

metabolic model of this species currently available 1,2. A new updated metabolic model 

iKS1317 of S. coelicolor was published recently with reactions and transporters 

recently identified 3. The new model predictions were validated using gene knockout 

predictions, but the quantitative growth predictions and the fluxes predictions were 

not validated or compared to previous models 3. The iAA1259 model is validated with 

multi-omics data across the growth curve, and benchmarked to previous metabolic 

models to show its superiority in predicting metabolic processes of this organism 1. In 

future, the iAA1259 model can easily be updated by introducing the secondary 

metabolites pathways and the transports added in the iKS1317 model. This metabolic 

model can now be used in the synthetic biology DBTL cycle by integrating multi-omics 

data from the learn phase to the design phase (Figure 7.1) to better design S. coelicolor 

strains for the production of antibiotics and other secondary metabolites. 

Furthermore, with the recent development of hybrid genome-scale metabolic 

models, this model is a good starting point to build the next generation of models. For 

example, by constraining the intracellular metabolic fluxes based on the kinetic data 

available on the organism, as applied to Saccharomyces cerevisiae 4. Additionally, next 

generation models will include more information about the cell processes, such as 

protein structural information, or gene regulation networks, as applied for Escherichia 
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coli 5. Of course, S. coelicolor does not benefit the same profusion of large-scale 

datasets as Escherichia coli and Saccharomyces cerevisiae. Nevertheless, once 

sufficient data becomes available in the future for S. coelicolor, building an hybrid 

model of this strain will help to further improve the metabolic predictions as it did for 

other organisms 4,5. 

7.2 The importance of primary metabolism for secondary metabolites 

production 

Despite the very high similarity between S. coelicolor and S. lividans, the S. coelicolor 

strain is a superior actinorhodin and undecylprodigiosin natural producer (Chapter III). 

The comparative metabolic modelling of S. coelicolor and S. lividans strains helped 

identifying metabolic differences in the central metabolism (e.g., flux distribution, or 

enzymes absent), potentially responsible for the lower antibiotics production in 

S. lividans. This work also highlighted once more the importance of better 

understanding the central metabolism of Streptomyces spp. and its influence on 

antibiotics production. Central metabolism is the “metabolic platform” distributing 

resources for carbon-based molecules, the rewiring of this metabolism has been a 

major objective for metabolic engineering and synthetic biology 6,7. The production of 

polyketide antibiotics, such as actinorhodin, is directly dependent on metabolic 

precursors produced by this metabolism (i.e., acetyl-CoA and malonyl-CoA) 8,9. 

Furthermore, studying the connection between primary and secondary metabolism in 

the light of the evolution theories of secondary metabolisms 10,11 will help better 

understand and better engineer secondary metabolic pathways; as described for 

actinorhodin in Chapter III. A more holistic understanding of the metabolic regulations 

and flux distributions from primary to secondary metabolism will help to rationally 



376 
 

engineer organisms. In the meantime, as our knowledge is still insufficient for fully 

rational designs, applying genome-scale metabolic modelling and the integrative 

analysis of multi-omics data helps to identify engineering targets to design better 

antibiotics producers  (Figure 7.1) 12,13.  

7.3 Large-scale comparison and analysis of microorganisms 

metabolisms 

The rapid development of high throughput sequencing technologies has recently 

allowed the full-genome sequencing of thousands of microbial genomes, including 

those of Actinobacteria. At the same time, new tools were developed to rapidly 

reconstruct genome-scale metabolic models from the genome sequences 14,15, such as 

the pipeline developed and presented in Chapter IV. The combination of the available 

full-genome data with the fast metabolic model reconstruction tools allows building of 

tens or hundreds of metabolic models at a time for different organisms 16–19. The 

comparative analysis of these metabolic models can help to identify major metabolic 

differences between organisms (from individuals to entire phyla), informing on their 

evolutionary and environmental differences 19. In this thesis, the development of a 

comparative reconstruction pipeline allowed the reconstruction and analysis of 50 

different Actinobacteria metabolic models, to compare metabolic characteristics such 

as their core and accessory metabolism, or their different predicted environmental 

conditions. The comparative metabolic analysis of relevant strains can help to identify 

alternative chassis strains for the bioproduction of a compound, for example by 

identifying the strains able to metabolically produce a target compound in the learn 

phase (Figure 7.1).  
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Also, future metabolic models developed here can be used as a base to build 

models of similar quality to that of S. coelicolor for other Actinobacteria strains, to 

engineer secondary metabolites production or integrate omics data. Then, the high-

quality metabolic models of the different chassis strains can be compared in-silico for 

their production capabilities and help create a list of candidate producer strains. 

7.4 Metabolic modelling driven strain design for synthetic biology 

The development of predictive models, such as genome-scale metabolic models, aims 

at studying biological systems. As the quality of these models increase in each 

generation, as shown in Chapter II with the updated computational model for 

S. coelicolor 1, their predictive power increases as well. The integration of omics data is 

a crucial step to learn from the data to represent the organism metabolic state more 

accurately and better predict the biological system behaviours across the growth 

phases, as it was presented in Chapter II, III, and VI (Figure 7.1). 

Automation of the DBTL cycle is a key step to accelerate synthetic biology. 

Hence, the introduction of new tools to automate the data integration and the 

reconstruction of metabolic models (Chapter III and V) can help to speed-up the DBTL 

cycle by accelerating the learn and design phases (Figure 7.1). In the future, the 

development of more automated user-friendly tools working at different steps of the 

DBTL cycle would help to move toward true computer-aided design (CAD) of biological 

systems. The success of CAD biological engineering will also depend on the capacity of 

computational models to take into account the inherent uncertainty of biological 

systems. So, the integration of methods to estimate uncertainty in predictive 
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modelling, such as ensemble modelling 22,23 (as introduced in Chapter V), will help to 

have a greater predictive power for the next generation of CAD tools. 

7.5 Other applications and final remarks 

The work presented in this thesis can be used beyond secondary metabolite 

production in Streptomyces and other Actinobacteria. The metabolic models 

developed in Chapter II, III, and IV can be used to design strains producing other 

valuable biomolecules, such as proteins 24, or biofuels 25. The tools developed in 

Chapter IV and V can be used for any other microorganisms to study and/or engineer 

their biological systems. 

With an ever-increasing amount of biological data, particularly with multi-omics 

approaches, scientists need new tools to rapidly and reliably make sense of these data. 

In parallel, systems and synthetic biology applications have the potential to help us 

better understand and engineer life. This ultimately aims at helping us address major 

challenges that our societies are facing, from the rise of antimicrobial resistances to 

the climate catastrophe. The work carried for this thesis, hopefully, makes a useful 

contribution to the scientific and technologic endeavour of engineering biology to 

solve current and future problems.  
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Figure 7.1: Thesis overview 

Overview of the thesis chapters and their place in the design-build-test-learn cycle for the 

synthetic biology of antibiotics. 

Chapter II: Development and validation of an updated computational model of Streptomyces 

coelicolor primary and secondary metabolism. Design phase. 

Chapter III: Comparative metabolic modelling of Streptomyces coelicolor and Streptomyces 

lividans: exploring the impact of primary metabolism variations on antibiotics production. 

Design phase. 

Chapter IV: Comparative analysis of the predicted metabolic capabilities of biotechnologically 

relevant Actinobacteria. Learn phase. 

Chapter V: An automated R tool to integrate exometabolome fluxes in constraints-based 

metabolic modelling. Learn phase. 

Chapter VI: Metabolomics and metabolic model driven Streptomyces strains design for 

antibiotics production. Design phase. 
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