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Abstract. 

Education and other cognitively stimulating activities (CSA) are potentially modifiable factors 

which may improve cognitive maintenance in later life. As these social exposures are not 

possible to effectively randomise, inferences from observational data are particularly important. 

Existing research findings differ regarding whether CSA are associated with cognitive 

maintenance. This may be explained in part by limitations and implicit assumptions in the most 

commonly used methods to analyse these associations.  

This thesis asks how modifiable social exposures affect cognitive maintenance and examines 

some of the assumptions underlying standard methods such as growth modelling. The analysis 

uses the English Longitudinal Study of Ageing (ELSA), a nationally representative longitudinal 

cohort study of adults aged over 50 living in England. A series of assumptions in standard 

regression approaches and their implications for the association between education or CSA and 

cognitive maintenance are examined. Firstly, ELSA’s scoring method for memory and executive 

function is examined using factor analysis. The memory score performs well, but the executive 

function score does not reflect the data. This leads to incorrect estimation of the association 

between cognitive maintenance and some important predictors such as age. I then tested for 

longitudinal measurement invariance (MI) in the cognitive factors and found this did not hold for 

memory in ELSA using Bayesian approximate MI. This is an advance on conventional tests of 

MI which had found equivocal results. The assumption that the ELSA sample is drawn from one 

homogenous population, and that the effect of education on cognitive maintenance is the same 

across sub-populations, were then tested using growth mixture modelling. A small beneficial 

effect of higher educational attainment on cognitive maintenance was found in a stable 

cognition latent class but no association was seen in latent classes with declining cognition. 

If CSA participation improves cognitive maintenance, and better cognition increases the 

likelihood of participation in CSA, this generates time varying confounding affected by prior 

exposure. Standard growth curves must assume this to be absent. Using inverse probability of 

treatment weighted marginal structural models to relax this assumption, volunteering and 

internet use activities were still found to reduce the risk of dementia or cognitive impairment.    

This research contributes methodologically to the existing literature by demonstrating how some 

of the assumptions underpinning the regression models most commonly used to estimate the 

association between CSA and cognitive maintenance can influence the substantive conclusions 

drawn. Specifically, it finds that ELSA’s executive function index does not represent the data 

well and Bayesian approximate MI can be used to clarify equivocal conventional tests of 

longitudinal measurement invariance of the cognitive test factors. Substantively, I find that the 

effect of education on cognitive maintenance varies somewhat depending on underlying 

trajectory, and that the association of volunteering and internet use activities with improved 

cognitive maintenance is robust after time varying confounding is accounted for.  
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1. Introduction 

1.1 Overview and motivation  

Dementia and cognitive impairment are amongst the greatest challenges in contemporary 

global health.(Livingston et al., 2017; Prince et al., 2013; Vos et al., 2012)  Dementia is now one 

of the most feared illnesses in western nations.(Cutler, 2015; Wortmann, Andrieu, Mackell, & 

Knox, 2010) This thesis aims to make its own small contribution to understanding the 

relationship of social exposures to the maintenance of cognitive function and prevention of 

dementia. Whilst many studies have addressed this topic, the study of social exposures on 

cognitive function at a population level poses a range statistical and methodological challenges 

which leave many questions open.  

Newer methods allow the processes underlying cognitive change to be modelled with less 

restrictive assumptions. This allows some of these open questions about how social exposures 

effect cognitive maintenance to be answered in new ways. In this thesis, the social exposures of 

interest are education in earlier life and cognitive stimulating activities in later life. Both are 

social exposures which stimulate mental activity and may promote better cognitive 

maintenance. However, as these exposures occur at very different times in the life-course, they 

require different analytic approaches to ultimately achieve the same ends of estimating their 

association with cognitive maintenance whilst overcoming modelling restrictions in the current 

literature.    

There continues to be substantial debate about the theoretical framework used to understand 

underlying changes in cognitive function in later life.(Arenaza-Urquijo & Vemuri, 2018; Cabeza 

et al., 2018; Stern et al., 2018) Nevertheless, cognitive maintenance, reserve and related 

concepts form the lens through which cognitive ageing will be viewed. It is important 

groundwork needed to understand the way social exposures are related to cognitive functioning, 

and will be reviewed in the section 1.2.  

After this review we will then turn to the literature informing the specific social exposures 

addressed in this thesis. In section 2.1 the literature will be reviewed on how education 

influences cognitive maintenance in later life. Past research has come to competing conclusions 

about how this early life exposure affects later life cognitive function.(X. Meng & D’Arcy, 2012; 

Valenzuela & Sachdev, 2006)  I will then review a more specific literature including only those 

studies which have tested this association using methods to account for population 

heterogeneity.  

Before being able to answer my question about what association education has with cognitive 

maintenance, I needed to establish how I was going to measure cognitive maintenance. I had to 

ensure I was using the available data on cognitive function in a valid way. In the English 

Longitudinal Study of Ageing (ELSA) dataset which I used for this thesis there is a battery of 

cognitive tests with a pre-specified scoring system.(Steel, Huppert, McWilliams, & Melzer, 2004)  

The measurement properties of this scoring system had not previously been examined. It was 

therefore important to establish whether the scoring system accurately reflected the data. The 
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structure of the data was tested using latent variable modelling. I identified that there were some 

discrepancies between the scoring system and the factor analysis. The question then became 

whether this discrepancy was enough to make a substantively important difference. This forms 

the substance of the first paper presented as part of this thesis.  

Having established the factor structure I needed to establish if that structure remained constant 

over time. This is known as longitudinal measurement invariance (MI).(van de Schoot, Lugtig, & 

Hox, 2012) Without this MI it is not possible to know whether changes over time are due to 

changes in cognitive function itself or the performance of the tests used to measure it. In my 

analysis of ELSA the results from the standard tests for measurement invariance were 

ambiguous. To solve this, I turned to an alternative Bayesian approximate measurement 

invariance approach.(van de Schoot et al., 2013) This was able to define how much 

measurement invariance was present and which parameters were the invariant ones. I was then 

able to conclude that the property of measurement invariance did not hold for the memory factor 

I had identified in ELSA. It did hold for an orientation factor, but this factor had a low ceiling and 

therefore was not likely to be as informative as I would wish for analysing longitudinal change. 

So, in order to examine change over time I needed to use single cognitive measures separately, 

rather than combined as either a score or latent variable. These analyses are presented in the 

second paper in this thesis. I was then able to turn to the substantive question of whether 

education moderated cognitive decline within latent class of decline and the implications this 

has for cognitive maintenance. This is the focus of the third paper presented in this thesis. 

 Population heterogeneity is a situation which arises when within a population there are multiple 

subpopulations, but that membership of that subpopulation is not directly observable. This is the 

case in studies of cognitive function in older adults. As the pathology of common dementia’s 

pre-dates the onset of symptoms by many years, within population samples of older adults there 

is likely to be at least two major clinically relevant sub-populations.(Braak & Del Tredici, 2015)  

Those with a developing dementia pathology (even if this is unobserved) and those without. As I 

will show in section 2.2, in studies of cognitive function which have accounted for population 

heterogeneity nearly all have used education to predict latent class or adjusted observed 

cognitive scores by education level (figure 1.1.A). This makes implicit assumptions about the 

underlying causality which do not appear to represent the clinicopathological research.(Brayne 

et al., 2010; Koepsell et al., 2008; Roe, Xiong, Miller, & Morris, 2007; Serrano-pozo et al., 2013) 

However, level of education and the cognitive reserve this provides could modify the trajectory 

someone is on, even if it does not change the likelihood of the underlying pathology. Attending 

to this translation of clinicopathological research into population research may provide valuable 

insights into how education contributes to cognitive maintenance in later life. It is made possible 

by advances in structural equation modelling which have enabled more complex 

representations of substantive theory and causal structures.  

Having tested a more nuanced view of how education in early life is associated with cognitive 

function, I maintained an emphasis on the representation of causal structures but moved to the 

maintenance cognitive function in later life. Specifically, in the fourth paper I tested whether or 
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not engaging in cognitively stimulating activities (CSA) in later life could reduce the risk of 

meeting the threshold for cognitive impairment or dementia after 10 years of follow-up. CSA are 

an important potential protective factor against dementia or cognitive impairment.(Sajeev et al., 

2016) Whereas the first substantive question utilises developments in structural equation 

modelling to address population heterogeneity, the second uses developments in marginal 

structural modelling to address another methodological challenge, time varying confounding 

influenced by prior exposure.(Daniel, Cousens, De Stavola, Kenward, & Sterne, 2013; Robins, 

Hernan, & Brumback, 2000) This is a critical question in observational studies of cognitive 

maintenance because of the potential for bi-directional causality. It has the potential to bias 

estimates of the effect of exposures over time either towards or away from the null and standard 

regression approaches with covariate adjustment are unable to account for this complex causal 

structure.  

Marginal structural models (MSMs) were developed as an alternative to standard regression 

approaches which can account for time varying confounding influenced by prior 

exposure.(Daniel et al., 2013; Robins et al., 2000) Under strong assumptions MSMs can 

provide causal estimates from observational data. Despite the advantages they offer, they have 

seen little application in the study of cognitive ageing. They have not been used to test if time 

varying confounding explains the association between CSA and cognitive function. Due to the 

practical and ethical difficulties in performing randomised trials of CSA in older adults, making 

appropriate inferences from observational studies is of particular importance in this area.   

Throughout the thesis I will be using data from the English Longitudinal Survey of Ageing.  This 

is a large cohort study with a sample which was nationally representative of the English 

population aged over 50 at recruitment.(Steptoe, Breeze, Banks, & Nazroo, 2013) Data on 

cognitive function and a wide range of medical, behavioural and social covariates is collected in 

biennial waves. Starting in 2002 I will be using up to wave 5 for the first 3 papers and up to 

wave 7 for paper 4, due to changes in cognitive tests used in the study at various times. 
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Figure 1.1. Structural equation models demonstrating the theoretical models for how education may affect cognitive function in summary.  

1.1.A Education predicts latent class. 1.1.B Observed scores adjusted for education.  1.1.C Association with education moderated by 

class. 

 

 

 

C indicates latent class of change, Edu the level of educational attainment of an individual, Cog1-Cog5 a test of cognitive function on 5 measurement 

occasions, I is the latent intercept or baseline cognitive function, S is the latent linear rate of change and Q the quadratic term for latent growth. Boxes 

indicate observed variable’s; circles latent variables and lines indicate potential associations with implied direction of causality. Residual variances and 

covariance’s are omitted for simplicity. 1.1.A shows a model where education predicts latent class and, if class is driven by pathological status, assumes 

that education influences risk of dementia pathology. 1.1.B Represents what is done when cognitive scores are adjusted for education. It shows how this 

assumes education to affect test performance but not ‘true’ latent cognitive function or disease status. 1.1.C shows the theoretical model for educations 

effect on cognitive function used in this analysis. Latent class is independent of education but moderates the effect of education on latent cognitive function. 
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1.2 Cognitive Reserve, Maintenance and Related Concepts 

In the past year three separate groups have proposed differing visions of the key concepts 

underlying cognitive function in later life.(Cabeza et al., 2018; Stern et al., 2018) These 

documents represent a shift from the concepts present in the literature when the thesis was first 

conceptualised and much of the analysis was conducted. However, they work well to refine the 

concepts important to this thesis, at which time cognitive reserve was the preferred umbrella 

term. With these extensive expert consensus documents recently published an additional 

literature review of this specific areas is of limited use. Here I will present summaries of the 

models proposed by each group and the evidence supporting those models. I will then seek to 

highlight areas of similarities and differences between them. Two of the reviews discuss 

research primarily in the context of healthy older adults but the principles apply equally to pre-

clinical or clinical states of pathological change as shown in the third review.(Arenaza-Urquijo & 

Vemuri, 2018) Before this I will briefly summarise the theoretical model under which the thesis 

was originally developed. 

Based on the work of Stern, cognitive reserve was principally divided into passive (brain) 

reserve and active (cognitive reserve).(Stern, 2002, 2012) Passive reserve was conceptualised 

in quantitative anatomical terms such as the number of neurones or synapses possessed. It 

moderated the expression of age or disease related cognitive change by increasing baseline 

cognition function. It is passive in the sense that it is not associated with rate of decline. Active 

reserve was viewed as primarily related to functional networks. It moderates the expression of 

age or disease related changes by modifying the rate of change in cognitive function. This could 

be either slower or more rapid depending on the theory adopted for a given cognitive function. 

As will be seen in the discussion below active and passive reserve remain largely consistent 

with more recent conceptualisations. However, they have now been subdivided into more 

nuanced models, joined by other complementary processes and moved into broader frames of 

reference.  

One of those alternative frames is Arenaza-Urquijo and Vemuri preference for the terms 

resistance and resilience.(Arenaza-Urquijo & Vemuri, 2018) These terms are defined in the 

context of Alzheimer’s disease neuropathology (ADP), meaning the presence or absence of 

significant levels of abnormal tau or amyloid-beta (Aβ) in brain tissue.(Dubois et al., 2014, 2016) 

They define brain resistance as “avoiding the appearance of ADP” and brain resilience as “an 

individual’s ability to sustain a better-than-expected cognitive performance in relation to the 

degree of ADP”. Making this distinction is important for understanding the role of protective and 

risk factors for dementia and cognitive impairment and they can be linked to difference 

phenotypic traits.  

An individual with high resistance will have a lower level of ADP than expected for their 

chronological age and, conversely, an individual with low resistance with have a higher level. 

Resistance does not relate to how well one performs with a given level of pathological change 

but the quantity of pathology present. Resistance to Alzheimer’s pathology is therefore 

determined by the relative rates of tau and Aβ deposition and clearance.(Arenaza-Urquijo & 
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Vemuri, 2018) I would add to this the rate of accumulation of cerebrovascular disease, which 

has both a direct effect on cognition itself and is also strongly associated with Aβ and tau 

pathology.(Koncz & Sachdev, 2018) Whilst the exact mechanisms of resistance and resilience 

may be different between the two pathologies the conceptual framework applies equally well for 

any dementia pathology (DP).  

In Arenaza-Urquijo and Vemuri’s terminology brain resistance encompasses neuroprotection, 

brain maintenance, neural efficiency and neural cognitive reserve. Neuroprotection is a broad 

term which has been used in several different ways. I use it to refer to any process which either 

reduces the degree or frequency of pathological insult. For example smoking is thought to 

contribute to DP via increased oxidative stress.(Durazzo, Mattsson, & Weiner, 2014) Brain 

maintenance is distinguished from metabolic maintenance and structure maintenance. Brain 

maintenance is the term used specifically to the brain’s response to the primary pathological 

insult, not its cognitive consequences. An example of brain maintenance would be the 

differential rates of Aβ clearance in carriers of different apolipoprotein E alleles.(Castellano et 

al., 2011) Exercise is an example of an exposure which acts via both these pathways, it is 

neuroprotective in reducing cerebrovascular disease and promotes brain maintenance though 

the stimulation of growth factors in the hippocampus.(Cotman, Berchtold, & Christie, 2007) 

Greater neural efficiency contributes to brain resistance because it appears to be related to 

lower Aβ deposition.(Jagust & Mormino, 2011) However, it also contributes to brain resilience in 

that more efficient functional networks result in improved cognitive function in the presence or 

absence of ADP.(Barulli & Stern, 2013; Weiler et al., 2018) 

For some authors this places neural efficiency primarily within brain resilience.(Fischer, Wolf, & 

Fellgiebel, 2019) Similarly, Arenaza-Urquijo and Vemuri include neural cognitive reserve in 

brain resistance but, as neural cognitive reserve is typically defined, it has conventionally been 

thought of as a source of cognitive reserve.(Arenaza-Urquijo & Vemuri, 2018; Barulli & Stern, 

2013) The conventional definition of cognitive reserve as “differences in cognitive processes as 

a function of lifetime intellectual activities and other environmental factors that explain 

differential susceptibility to functional impairment in the presence of pathology or other 

neurological insult”.(Barulli & Stern, 2013) This is clearly very similar to that of brain resilience 

above. Brain resilience as defined above by Arenaza-Urquijo and Vemuri is, in effect, cognitive 

reserve as applied in the context of DP only. Considerable confusion is occasioned by the 

frequent use of the term ‘cognitive reserve’, or simply ‘reserve’, to refer to multiple different 

concepts. I will therefore be using the term brain resilience as the name of this umbrella 

category with reference to both ageing and disease.  

Neural cognitive reserve is one of a range of subordinate categories and mechanisms thought 

to contribute to brain resilience in total. It is here where we must address the alternative 

terminologies and differing theoretical models proposed by Cabeza et al. (the “McGill Group”) 

and Stern et al. (the “International Society to Advance Alzheimer's Research and Treatment 

(ISTAART) group”).(Cabeza et al., 2018; Stern et al., 2018) Both groups propose a division of 

brain resilience into three main sub-categories. The ISTAART group propose categories of 



21 

 

cognitive reserve, brain reserve and brain maintenance.(Stern et al., 2018) The McGill group 

propose using the terms neurocognitive reserve, maintenance and compensation.  

As the area which appears to show greatest agreement, we will start with brain maintenance. 

The ISTAART group define brain maintenance as “reduced development over time of age-

related brain changes and pathology based on genetics or lifestyle”.(Stern et al., 2018) This 

definition of brain maintenance appears to fall solely within the broader domain of brain 

resistance. The McGill group drops the specification of brain and defines maintenance more 

broadly as “the preservation of neural resources, which entails ongoing repair and 

replenishment of the brain in response to damage incurred at the cellular and molecular 

levels”.(Cabeza et al., 2018) This definition includes brain resistance to developing disease but 

also encompasses maintenance processes which attempt to preserve neuronal function in the 

presence of disease, and are therefore part of brain resilience. This can be further divided into 

structural and metabolic maintenance. An example of structural brain maintenance is that 

greater maintenance of white matter tract integrity is associated with better cognitive function in 

health or disease.(Fischer et al., 2019) An example of metabolic brain maintenance is the 

protective down-regulation of energy consumption observed with ADP.(Sun, Feng, Liang, Duan, 

& Lei, 2012) Clarity regarding whether maintenance is in relation to the primary disease process 

or responses to preserve function in the face of neuronal insults is important for understanding 

different targets for intervention to improve cognitive function. Despite the use of a singular term 

by both groups, there is important difference in the theoretical frameworks used.  

The difference discussed in most detail in correspondence between the authors themselves is 

whether neurocognitive reserve should be viewed as a singular concept or a distinction drawn 

between cognitive reserve and brain reserve.(Cabeza et al., 2019; Stern et al., 2019) The 

McGill group define neurocognitive reserve as “a cumulative improvement, due to genetic 

and/or environmental factors, of neural resources that mitigates the effects of neural decline 

caused by ageing or age-related diseases”.(Cabeza et al., 2018) They further specify that 

“reserve is hypothesized to result in the accumulation of neural resources before the brain is 

affected by age-related processes and to take place over a period of years”.(Cabeza et al., 

2018)  This is a broad definition which emphasises that all cognition is brain based. It does not 

seek to draw distinctions between brain structure and function.  

The ISTAART group split neurocognitive reserve into brain reserve and cognitive reserve. Brain 

reserve is defined as “neurobiological capital (numbers of neurons, synapses, etc.)”.(Stern et 

al., 2018) This structural differences in reserve were previously known as passive reserve. Brain 

reserve is passive in the sense that, whist it may be increased over the life-course, it is fixed at 

a given point in time. It moderates the expression of DP by increasing the time to the clinical 

expression of cognitive or functional impairment without affecting the underlying disease or 

ageing process. In a longitudinal study of cognitive function greater levels of brain reserve 

would be seen to increase baseline functioning but not to affect the rate of decline.  

Cognitive reserve is defined as “the adaptability (i.e., efficiency, capacity, flexibility) of cognitive 

processes that helps to explain differential susceptibility of cognitive abilities or day-to-day 
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function to brain ageing, pathology, or insult”.(Stern et al., 2018) This is a theoretical construct 

for the sum of additive and emergent effects resulting from “networks of brain regions 

associated with performing a task and the pattern of interactions between these 

networks”.(Stern et al., 2018) This was previously associated with the term active reserve and 

emphasises dynamic function capacity to respond to pathological or age-related changes. 

Unlike brain reserve, cognitive reserve is predicted to moderate cognitive decline as the brain 

responds to advancing pathological changes. However, different neural implementations of 

cognitive reserve lead to differing potential trajectories of cognitive change over time.(Lenehan, 

Summers, Saunders, Summers, & Vickers, 2015) 

The two main versions of cognitive reserve are neural cognitive reserve and neural 

compensation reserve. Neural cognitive reserve relates to the efficiency, capacity and flexibility 

in selection of primary networks responsible for performing a cognitive task.(Barulli & Stern, 

2013) Neural compensation reserve relates to the use of secondary networks recruited to 

perform tasks after failure in the primary networks. If an exposure, education in our case, 

contributes to neural cognitive reserve then this would be anticipated to slow cognitive 

decline.(Weiler et al., 2018) The greater efficiency in the primary networks compensates for 

ageing or pathological change due to greater redundancy in the primary network. If an exposure 

contributes to neural compensation then it enables the recruitment of secondary networks to 

compensate for damaged primary networks.(Colangeli et al., 2016; Serra et al., 2017) So, if an 

exposure contributes to neural compensation reserve then it would be expected that observed 

cognitive decline may initially be slower but would then accelerate rapidly as the secondary 

networks are also overcome by the disease process.(Lenehan et al., 2015; Serra et al., 2017)  

In Stern and colleagues previous work and under the ISTAART group framework the neural 

compensation they include in cognitive reserve has significant overlap with the McGill groups 

definition of neural compensation.(Barulli & Stern, 2013; Cabeza et al., 2018; Stern et al., 2018) 

However, the McGill group view compensation not on a life-course timescale but as the neural 

resource which can be activated on task specific timescale.(Cabeza et al., 2019) The ISTAART 

group, on the other hand, emphasise compensation as a persistent alteration in patterns of 

activation which would be seen completing the same task many times on differing occasions. 

This difference in emphasis between a predominantly neuropsychological and clinical or social 

gerontological perspective, rather than a difference in interpretation of the research literature, 

appears to be behind the reasons for the differences in classification. As such, I will be using 

the ISTAART group classification of compensation as a part of cognitive reserve.  

There is considerable overlap between the active forms of reserve, neural reserve and neural 

compensation and maintenance. Reserve reflects differences in the use of available neural 

resources and maintenance the preservation of those resources. Neither is able to operate 

without the other. As stated in Cabeza et al. “if education augments reserve by increasing 

synaptic density , this can attenuate age-related cognitive decline if the new synapses are 

preserved via maintenance”.(Cabeza et al., 2018) In longitudinal analysis without access to 

detailed measures of brain structure, metabolic function and pathological burden it is not directly 
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possible to assess maintenance of brain structures. I will therefore be using the term cognitive 

maintenance as an over-arching category to refer to longitudinal cognitive change, bridging 

brain maintenance and longitudinal aspects of cognitive reserve. Using the term cognitive 

maintenance, I will not be referring to any specific neural or disease process but the common 

end result of these processes which is observable through change in measurements of 

cognitive function. Essentially this captures all active or dynamic processes and not passive 

cognitive reserve (figure 1.2). 

 

Figure 1.2 Hierarchy of terminology used to describe subordinate categories underlying 

observed cognitive function.† 

  

† The colours used indicate which terms are included under which of the 3 main umbrella terms. 

Those with blue are subsumed under brain resilience, those with red under brain resistance and 

those with green under cognitive maintenance.  

 

1.3 Research Questions 

The aim of this thesis was to use new statistical methods to develop our understanding of 

whether education and cognitively stimulating activities may improve cognitive maintenance. 

Due to these exposures occurring at different points in the life course they required different 

statistical approaches. During the process of answering whether education is associated with 

changes in cognitive maintenance, additional methodological questions presented themselves 

as necessary hurdles to be overcome. The first two research questions below therefore closely 

inform how the third was approached. The fourth question addressing the cognitively stimulating 

activities develops the major argument of the thesis with respect to how new methodologies can 

provide new insights into cognitive maintenance by addressing limitations of the existing 

literature.  

The primary and secondary research questions I will address in this thesis are: 

1) When analysing variables associated with cognitive maintenance does analysing 

growth with a sum score or factor score lead to different substantive conclusions? 
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a. What is the factor structure of the cognitive tests in the English Longitudinal 

Study of Ageing? 

b. How does this factor structure compare to the pre-specified cognitive index 

scores? 

2) When conventional tests for longitudinal measurement invariance based on the 

comparative fit index provide inconclusive results can Bayesian approximate 

measurement invariance be used as a suitable alternative? 

a. Do the cognitive function latent factors in ELSA show longitudinal measurement 

invariance? 

3) Is education associated with cognitive maintenance and does this association vary by 

latent class of decline? 

4) Does exposure to cognitively stimulating activities in later life reduce risk of dementia or 

cognitive impairment once time-varying confounding affected by past exposure is 

accounted for? 

a. Does exposure to cognitively stimulating activities in later life improve cognitive 

function once time-varying confounding affected by past exposure is accounted 

for? 

The fourth research question directly addresses a fundamental challenge in population studies 

of cognitive maintenance, time-varying confounding affected by past exposure. In this analysis 

there is an emphasis on the prevention of cognitive impairment and dementia as one of key 

outcomes of improved maintenance. The secondary outcome asks the same question but using 

a continuous, rather than dichotomous, outcome to provide a supplementary view on whether 

cognitive maintenance is affected more broadly than the prevention of impairment alone.  
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2. Education, cognitively stimulating activities and cognitive function 

This chapter introduces the literature on education, other cognitively stimulating activities and 

cognitive maintenance. It also reviews the existing literature using the methodologies of growth 

mixture modelling and marginal structural models which are important for relaxing particular 

assumptions in standard regression analyses. This chapter focusses on practical and 

theoretical aspects of their use in the existing literature, the statistical motivation for the 

methods will be described in chapter 3. In this chapter section 2.1.1 and 2.1.2 will review the 

literature on education and cognitive function and dementia risk. Section 2.1.3 focussed on the 

issue of population heterogeneity and reviews the literature on the association between 

education and cognitive function which has used growth mixtures models to account for this. 

2.1.4 gives a brief review of literature on the relationships between dementia pathology, 

education and cognitive function. Section 2.2 reviews literature on cognitively stimulating 

activities. This section starts with an overview in 2.2.1 before moving on to discuss the literature 

on general cognitive enrichment in 2.2.2 and specific cognitive activities in 2.2.3. The literature 

reviewed in section 2.1.1 and 2.1.2 dates from the beginning of the thesis in 2014-15 and 

reflects the state of the evidence at that time. The reviews in sections 2.1.3 onwards are 

focussed more narrowly and were conducted up to 2018 and revised in 2019. 

 

2.1 Education and Cognition 

Dementia and mild cognitive impairment are highly prevalent in older adults globally.(Alexander 

et al., 2015; Prince et al., 2013) Both dementia and mild cognitive impairment have a high cost 

in terms of individual suffering, caregiver burden, healthcare and long-term care.(Alzheimer’s 

Association, 2014; Emerson et al., 2017; P.-J. Lin & Neumann, 2013; P. J. Lin, Zhong, Fillit, 

Chen, & Neumann, 2016; Paradise et al., 2015; Prince et al., 2013) Given the scale of the 

problem it is important that modifiable factors are identified which can improve cognitive 

maintenance. Improving cognitive maintenance may then either reduce the probability of 

developing impairment or slow the progression of impairment. Higher levels of education is one 

modifiable factor which has attracted considerable interest for both reducing dementia/cognitive 

impairment risk and better maintenance of cognitive function in healthy old age.(Livingston et 

al., 2017) This discussion will attempt to discuss dementia and cognitive ageing separately, 

however there will inevitably be some overlap.  

 

2.1.1 Systematic Reviews of Education and Dementia Risk 

Several systematic reviews have included much of the literature on the association between 

education and dementia risk.(Beydoun et al., 2014; X. Meng & D’Arcy, 2012; Sharp & Gatz, 

2011) I will focus on the reviews which were most recently published in 2014-2015. This 

includes two focussed reviews and one including education amongst a range of other modifiable 

risk factors. 
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Meng and D’Arcy in their 2012 paper synthesise a large number of epidemiological and non-

epidemiological studies into a comprehensive review of education as related to dementia 

risk.(X. Meng & D’Arcy, 2012) This review views education as a proxy for cognitive reserve as 

described by Stern and described in section 1.2.(Stern, 2012) They view higher levels of 

education as resulting in changes in brain structure and processing. These delay the onset of 

clinically observable impairment but are not related to progression of the underlying pathology 

of dementia. This means that their conclusions are specifically with respect to the clinical 

syndrome of dementia and not pathological change.  

A dichotomous exposure variable of high or low education was created for the meta-analysis. 

This was done on a study by study basis without a fixed set of reference categories for the 

exact amount of education received or attained. This meant that a wide range of studies could 

be included. The trade-off is that the low and high education groups used are quite 

heterogenous. It implies that a consistent dose response relationship is assumed across studies 

with different ordinal levels of exposure to education. They conclude from their fixed effects 

meta-regression of cohort studies that those with ‘low’ education have a pooled odds ratio (OR) 

of 1.88 (1.51-2.34) of incident dementia (all types) compared with those with high education.  In 

sub-analyses the OR is similar for Alzheimer’s disease (AD) at 1.82 (1.36-2.44) but considerably 

higher for vascular dementia at 2.75 (2.20-3.45). They conclude from their meta-analysis that 

higher education reduces both incidence and prevalence of dementia. 

In contrast to the finding that high education is protective in terms of incidence of dementia, in 

their qualitative review they find that 70% of studies report more rapid cognitive decline amongst 

more highly educated dementia sufferers. They find that 5/8 studies report earlier age of 

diagnosis in more highly educated individuals, with no studies finding later age of onset in more 

educated participants. On the other hand, they find that cognitive scores at initial presentation 

are higher in more highly educated participants and that 10/14 pathological studies find higher 

levels of pathology in the more highly educated. They conclude overall that their qualitative 

analysis supports the idea that education provides cognitive reserve, as described in section 

1.2, and moderates the clinical expression of disease.  

At face value these conclusions seem almost contradictory. The finding of more rapid decline 

and higher pathological loads in those with higher education at equivalent levels of function to 

those in the low education group suggests they are presenting at a later stage in their illness as 

defined pathologically. However, the authors also find that more highly educated individuals 

have earlier age of onset. Therefore, more highly educated individuals must either experience a 

more rapid progression of pathology or develop the pathology substantially earlier than those 

with less education. Moreover, the overall incidence and prevalence are reduced by higher 

education. Taken together the findings of the Meng and D’Arcy systematic review would 

suggest that higher education reduces one’s risk of dementia but makes it earlier or more 

severe if suffered. This may be partially explained by a case detection bias. Those with greater 

education but also greater genetic risk may be identified as cases at earlier ages with more 

aggressive disease.(S. J. van der Lee et al., 2018) Those with greater education but lower 
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genetic risk may not be reaching the levels of cognitive impairment required to be detected. 

Nevertheless, Meng and D’Arcy’s finding of earlier onset and more severe disease being 

associated with greater education does not correspond well with conventional theories of 

cognitive reserve.  

However, those findings are what one would expect if individuals with higher education had 

higher passive cognitive reserve, and therefore presented with the clinical syndrome of 

dementia at a later stage in pathology, but were more likely to access services for diagnosis and 

disclose problems in diagnostic interviews compared to those with lower education. This is 

particularly likely given that the samples in the studies with positive findings were drawn from 

patients at dementia clinics, of which several were in countries without comprehensive medical 

provision, rather than from general population samples.(Bowler, Munoz, Merskey, & Hachinski, 

1998; Brodaty et al., 2014; Kokmen, Beard, Brien, & Roccu, 1996) As dementia tends to 

progress more rapidly with earlier onset, it may also be the case that education is protective 

against later onset dementia but not early onset dementia.(Jacobs et al., 1994) These 

explanations could all be potential explanations explain the surprising combination of earlier 

onset but lower incidence and prevalence. 

In their systematic review published 1 year earlier, Sharp and Gatz focus only on studies of 

incidence and prevalence.(Sharp & Gatz, 2011) They report that the majority of studies they 

included report lower prevalence and lower incidence amongst more highly educated 

participants. Sharp and Gatz felt that the heterogeneity between studies was too high to 

conduct a meta-analysis. This contrasts with Meng and D’Arcy who did perform a meta-analysis 

but relied upon a dichotomous low-high education variable to do so. They identify that studies 

from more economically developed regions were considerably more likely to find an association 

between education and dementia than those from developing regions. 

However, a considerable number of prevalence and incidence studies either did not adjust for 

any other variables or only for age and gender. This raises the distinct possibility that the 

observed associations might be affected by unadjusted confounding and provides little 

information about potential causal mechanisms. Indeed, the authors recognise this and propose 

a lifespan developmental model in which education is both the result and cause of multiple 

factors across the lifecourse which may ultimately effect dementia risk. They propose that 

cognitive reserve should be considered in relationship to the ability meet the demands of one’s 

environment, which may lead to differing effects of education across populations, cohorts, 

ethnicity and gender. Whilst this is an attractive hypothesis, few studies have the necessary 

methodological complexity to begin to disentangle these effects. 

Whereas the prior two reviews focussed specifically on education, a systematic review by 

Beydoun and colleagues examined education as one of several modifiable risk factors for 

dementia or cognitive impairment.(Beydoun et al., 2014) They identified 25 cross sectional 

studies of dementia prevalence which met their inclusion criteria, of which only 1 found no 

association between education and either prevalent vascular dementia (VaD) or prevalent AD.  



28 

 

Although these cross-sectional studies were included, their analysis primarily focussed on 

cohort studies which examined the association between education and incident dementia or 

cognitive impairment. They included 27 cohort studies. 18 (66.7%) of these studies did find an 

association between greater education and lower risk of dementia or cognitive impairment in the 

population. Only 4 of the studies they included found no association with any dementia 

outcome. The others found the association only in women (2 studies), in APOE4 negative 

individuals only (2 studies), with VaD but not AD (1 study), with baseline cognitive function but 

not decline (1 study), or that the association was not significant once IQ was accounted for (1 

study). There was significant heterogeneity in the effect size estimates. Only 4 were ultimately 

included in their meta-analysis, primarily because of non-comparable data on covariates. In 

their pooled analysis of those studies the risk ratio for incident AD for high (defined as ≥8 years) 

versus low (defined as <8 years) education was 1.99 with a 95% confidence interval of 1.3 to 

3.04.     

Overall, there is a strong consensus amongst the systematic reviews to date that higher levels 

of education is associated with reduced risk of being diagnosed with dementia. It is worth noting 

that these studies focussed on the diagnosis as a clinical syndrome. As it is possible to have 

sub-clinical levels of impairment despite the presence of considerable quantities of dementia 

pathology, these findings do not mean that education is associated with lower risk of dementia 

pathology. Additional limitations common to these reviews include frequently inadequate 

adjustment for confounding factors (such as the time of diagnosis and the availability and 

accessibility of dementia diagnoses services) and the potential for ascertainment or 

measurement bias. This means that there remains considerably uncertainty about the 

mechanism(s) responsible for the observation of this association. In order to consider this more 

fully it will be helpful to turn to look at those reviews studying the association between education 

and normal cognitive ageing. 

In the period since these reviews until the point of writing prior to the deadline for this thesis, 

perhaps the most influential publication on dementia risk was the report from the Lancet 

commission on dementia prevention, intervention and care.(Livingston et al., 2017) Their 

estimate of the effect of education is smaller than the meta-analyses above with an estimate of 

a relative risk of 1.59 (95% CI 1.26–2.01) for having no time in secondary education. Due to the 

global prevalence of low education, they find that it has the highest population attributable 

fraction of all the modifiable risk factors they review. A point of difference with the other reviews 

above is that they remain considerably less certain about the effects of education above this 

basic level.  

 

2.1.2 Systematic Reviews of Education and Cognitive Ageing. 

In Beydoun and colleagues’ systematic review discussed above, the effect of education on 

cognitive function is also examined in a subsection of studies. Of the 11 cross sectional studies 

which met their inclusion criteria higher education was positively associated with better cognitive 

function in all of them. Of 15 longitudinal studies, 4 did not find a significant association between 
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education and cognitive decline. Due to the broad scope of the review, they provide little detail 

about the nature or strength of the associations found. 

The overall conclusion that education is related to less cognitive decline was also the 

conclusion of Valenzeula and Sachdev’s systematic review from 2006.(Valenzuela & Sachdev, 

2006) They performed a non-parametric meta-analysis of 13 longitudinal studies, which reports 

a large effect of education on slowing cognitive decline.(Valenzuela & Sachdev, 2006)  

However, their approach to meta-analysis rests on strong assumptions about the equivalence of 

effect sizes and the fact that all studies are equally weighted regardless of size or quality. 

It comes as something of a surprise then that the systematic review by Plassman and 

colleagues from 2009 found that the evidence regarding cognitive decline and ageing to be 

‘inconsistent’.(Plassman, Williams Jr, Burke, Holsinger, & Benjamin, 2010) This difference will 

partially result from different availability of papers at the time of analysis. However, Plassman 

and colleagues also employed the Agency for Healthcare Research and Quality criteria to 

assess methodological quality which should have led to the inclusion only of more 

methodologically rigorous research. Moreover, as table 2.1 demonstrates, only a small 

proportion of the studies reviewed are included in both reviews despite only 3 of the papers 

reviewed in Beydoun et al. being published after the search period of Plassman et al. One 

potential explanation for the differing findings is that no association is found more often in 

studies with 3 or more measurement occasions and thus superior modelling of change over 

time.(Wilson, Hebert, Scherr, Barnes, & Leon, 2009) It is noticeable from table 2.1 that 

Plassman et al. included several more papers with 3 measurement occasions. 

Another proposed mechanism is that studies which have identified a different rate of decline 

due to education have used cognitive tests which are prone to ceiling effects and would 

therefore mask decline in more able individuals.(Karlamangla et al., 2009) Indeed, the higher 

quality studies using better instruments do seem less likely to report an effect of education on 

the rate of change. Perhaps the differing conclusions say more about the process of systematic 

review than the effect of education on rates of cognitive decline. Nevertheless, I am more 

inclined to agree with the conclusion of the older systematic review that the evidence does 

indeed appear inconsistent with regards to the effect of education on cognitive change over time 

in older adults. 
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Table  2.1 Papers included in the systematic reviews of cognitive ageing and education by Beydoun et al. and Plassman et al. 

Study Country 

(project) 

Age at 

recruitment 

Sample 

size 

Years Sampling Education Analysis Type Covariates Main Result 

Studies Shared Between Beydoun et al. and Plassman et al. 

(Alvarado, 

Zunzunegui, Del 

Ser, & Béland, 

2002) 

Spain 65+ 557 ON 

REQUEST 

     

(Kalmijn et al., 

1997) 

Netherlands 

(Zutphen 

Elderly Study) 

Not spec. 390 1990,1993 Not described ≤6 years, 

>6 years 

Logistic 

Regression 

ApoE4 status, 

age, baseline 

function 

Higher odds of 

decline for low 

educated ε4 

negative 

individuals 

(S. Lee, Kawachi, 

Berkman, & 

Grodstein, 2003) 

USA (Nurses 

Health Study) 

70-79 15594 1995-2000, 

2001-2002 

Not described 

here. 

Postgraduate 

Degree, 

Degree, 

Nursing 

Diploma 

Logistic 

Regression, 

Linear 

Regression 

Husbands 

education, 

Paternal 

occupation, area 

income, multiple 

others 

Higher odds of 

low baseline 

score and 

change score for 

Diploma nurses. 

(Sunmin Lee, 

Buring, Cook, & 

Grodstein, 2006) 

USA 

(Women’s 

Health Study) 

≥66 5573 1998, 2000 Follow-on 

study from 

RCT of aspirin 

and vitamin E 

6 categories 

from 

Vocational 

nurse to PhD 

Linear 

Regression, 

Logistic 

regression 

Focus on 

income, also 

traditional 

Education 

predicts baseline 

function and rate 

of decline, 
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cardiovascular 

risk factors 

income strong 

predictor of 

baseline function. 

(Wilson et al., 

2009)*† 

USA 

(Chicago 

Health and 

Ageing 

Project) 

≥65 6533 1993-2007 Stratified 

Random 

Sample 

Years of 

education 

(continuous) 

Mixed-effects 

model 

Race, 

occupation, 

chronic disease 

Higher levels of 

education not 

associated with 

rate of cognitive 

decline. 

(Yaffe et al., 2009) 

†‡ 

USA (Health 

ABC) 

70-79 2509 1997-

2004/5 

Simple 

random 

sample from 

selected ZIP 

codes 

Literacy <9th 

grade or ≥ 9th 

grade, 

Education > 

highschool or 

≥ highschool 

Random 

effects to 

identify 

individual rates 

of change. 

Multinomial 

logistic 

regression to 

predict decline 

category. 

Demographics, 

self-rated health 

and 

cardiovascular 

risk factors and 

diseases, various 

biomarkers 

Education 

associated with 

lower odds of 

being in declining 

groups, strong 

effect for literacy. 

 

Studies in Beydoun et al. only 

Study Country 

(project) 

Age at 

recruitment 

Sample 

size 

Years Sampling Education Analysis Type Covariates Main Result 

(Aevarsson & 

Skoog, 2000) 

Sweden 

 

85-88 494 1986-1990 Whole 

population of 

≤6 years vs >6 

years. 

Logistic 

regression to 

None included. Higher baseline 

MMSE score in 
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G𝑜̈teborg 

aged 85 

predict 

dementia. 

more educated, 

slower decline in 

more highly 

educated women. 

(Castro-Costa et 

al., 2011) † 

Brazil  

(Bambui 

Study) 

≥60 1606 1997-2007 Whole 

population of 

Bambui aged 

≥60 

≤3, 4-7 or ≥8 

years of 

school 

Mixed effects 

modelling of 

MMSE results 

Age and gender 

only. Interactions 

estimated 

separately. 

Women and 

those with higher 

level of education 

declined faster. 

(H Christensen et 

al., 1997) ‡ 

Australia 

(PATH 

Through Life) 

≥70 540 1990-1994 Simple 

random 

sample of 

Canberra and 

Queanbeyan 

residents 

≤9 years, 10-

13 years or 

≥14 years 

schooling. 

Linear 

regression on 

wave 2 score 

for 8 separate 

cognitive tests. 

Wave 1 score, 

age, gender, 

activity level, 

disability, health 

and change in 

health. 

Education 

protective against 

decline in 

crystallised 

intelligence, not 

other cognitive 

domains. 

(Helen 

Christensen et al., 

2009)* ‡ 

 

Australia 

(PATH 

through life) 

60-64 416 2001/2002 

to 

2005/2006 

Simple 

random 

sample of 

Canberra and 

Queanbeyan 

residents 

From 4-12, 13, 

14-15 and ≥16 

years. 

 

 

Linear 

regression on 

the difference 

between time 

1 and time 2 

scores. 

Age, gender and 

initial cognitive 

test scores. 

Education was 

not associated 

with rates of 

cognitive decline 

(nor were white 

matter 

hyperintensities, 

atrophy or 



33 

 

intracranial 

volume). 

(Evans et al., 

1993) ‡ 

USA ≥65 2273 1982/1983 

to 

1986/1986 

Individuals in 

age range 

from East 

Boston, 

Massachusetts  

Unclear, 

represented 

both as ordinal 

and 

continuous 

variable. 

Linear 

Regression of 

normalised 

rank of change 

in cognitive 

scores 

Occupation, 

income, 

birthplace, 

language, age, 

gender and 

cardiovascular 

diseases. 

Lower levels of 

education 

associated with 

faster rates of 

cognitive decline. 

(Lykestos, Chen, & 

Anthony, 1999)  

USA 

(Baltimore 

Epidemiologic 

catchment 

area study) 

≥18 1488 1981 – 

1993/1996 

Random 

sample within 

area 

0-8, 9-11, 12 

(GED), 13-15 

or ≥16 years. 

Change in 

MMSE 

between 

waves 2&3 

adjusted for 

wave 1 

performance 

Age, gender, 

ethnicity and 

baseline score. 

Fewer years of 

education (and 

non-white 

ethnicity) were 

associated with 

greater decline. 

(Marengoni, 

Fratiglioni, 

Bandinelli, & 

Ferrucci, 2011) 

Italy 

(inCHIANTI) 

≥60  1998/2000 

– 

2001/2003 

Total 

population 

within defined 

area 

 Logistic 

Regression 

and Cox 

Proportional 

Hazard of 

cognitive 

impairment not 

dementia 

Demographics, 

job stress and 

physical demand, 

cardiovascular 

diseases, 

diabetes, 

apolipoprotein E 

(APOE)genotype, 

Lower level of 

education 

associated with 

higher odds of 

CIND. 
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(defined as ≥1 

S.D decline in 

MMSE)  

smoking, alcohol 

consumption, 

depressive 

symptoms, and 

C-reactive 

protein 

(Schmand et al., 

1997) † 

The 

Netherlands 

(Longitudinal 

Ageing Study 

Amsterdam 

and 

Amsterdam 

Study of the 

Elderly) 

65-84 & 

65-85 

1774 & 

1950 

1992/1993 

& 1990 - 

1994 

Clustered 

random 

sample 

9 point ordinal 

scale 

analysed in 

separately in 

lower and 

higher strata & 

6 point scale 

Two way 

ANOVA & 

ANOVA with 

repeated 

measures 

Age and Gender Fewer years of 

education 

associated with 

faster and earlier 

decline in 

cognitive 

function. 

(Seeman et al., 

2005) † 

USA 

(MacArthur 

Studies of 

Successful 

Ageing) 

70-79 895 1988/1989 

- 1995 

high 

functioning 

subsample of 

community 

cohorts 

0-8 years, 9-

11 years, 12 

years 

(completed 

high school) 

and ≥13 years 

Summed 

score from 

multiple 

cognitive tests 

or <7 on 

SPMSQ by 

Generalised 

estimating 

equations.  

Age, gender, 

physical activity, 

smoking diabetes 

and stroke 

(selected on 

significance from 

wider range) 

More years of 

education 

associated with 

better cognitive 

performance, but 

APOE allele 

associated with 

poorer cognition 
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in those with 

more education. 

(White et al., 1994) 

‡ 

USA 

(Established 

Populations 

for 

Epidemiologic 

Study of the 

Elderly) 

≥65 10294 at 

baseline, 

total 

used in 

analysis 

not 

specified 

1981/1983 

– 

1987/1989 

full population 

of target areas 

and 1 stratified 

sample 

Education 

dichotomised 

into ≥8 or ≥9 

years of 

education 

Multiple 

Logistic 

Regression for 

odds of 

incident 

cognitive 

impairment 

Age, Gender, 

Occupation, 

stroke and 

baseline score 

Lower level of 

education 

associated with 

incident cognitive 

impairment. 

(van Hooren et al., 

2007) 

The 

Netherlands 

(Maastricht 

Ageing 

Study) 

64-81 578 1992-2004 Stratified 

random 

sample (older 

subsample 

used for 

analysis) 

Ordinal scale 

of primary 

education, 

lower 

secondary 

education and 

higher 

secondary or 

greater. 

Multivariate 

ANOVA for 

standardised 

scores in 

multiple 

cognitive 

domains. 

Age and gender Education 

associated with 

higher cognitive 

function in 

multiple domains. 

(Zahodne et al., 

2011b) 

Australia 

(Victoria 

Longitudinal 

Study) 

55-94 1023 1986/87 - 

2003 

Not described 

nor referenced 

description 

Education 

considered 

primarily as 

continuous 

variable of 

Linear Growth 

Curve 

Modelling of 

multiple 

cognitive 

domains 

Age and gender Education related 

to baseline 

cognitive 

performance but 

not change over 

time 
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years of 

education 

 

Studies in Plassman et al. only 

Study Country Age at 

recruitment 

Sample 

size 

Years Sampling Education Analysis Type Covariates Main Result 

(Helen 

Christensen et al., 

2008)* 

Australia 

(PATH) 

60-64 2021 2001-2002, 

2005-2006 

Stratified 

random 

sample 

Years of 

education 

grouped as 0-

12, 13, 14-15 

and ≥16. 

Multivariate 

ANOVA 

Genotype, head 

injury, 

cardiovascular 

risk, intelligence. 

No effect of 

education or 

intelligence, 2/6 

domains 

interaction 

between 

education and 

APOE genotype. 

(Karlamangla et 

al., 2009)* † 

USA 

(AHEAD) 

≥69 6476 1993-2002 Multistage 

Probability 

Sampling 

Years of 

education 

grouped as 

<8, 8-11, 12-

14 and >14. 

Mixed Effects Demographics 

and 

socioeconomic 

variables 

Education not 

associated with 

decline but 

income is. 

(Koster et al., 

2005) ‡ 

 

USA (Health 

ABC) 

70-79 2574 1997, 2001 Simple 

random 

sample from 

selected ZIP 

codes 

Years of 

education 

grouped as 

<12, 12 and 

>12. 

Logistic 

Regression, 

odds of 

cognitive 

decline 

Demographic 

and 

socioeconomic 

variables, 

cardiovascular 

Education and 

income were 

associated with 

lower odds of 

cognitive decline. 
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disease and risk, 

biomarkers. 

(Manly, Schupf, 

Tang, & Stern, 

2005) *† 

USA 

(WHICAP) 

≥67 1002 1997-2004 Stratified 

Random 

Sample 

High (>12 

years) or low 

(<12 years) 

Generalised 

Estimating 

Equations 

Age, gender, 

literacy, ethnicity. 

Education itself is 

not associated 

with slower 

decline but 

literacy is. 

(Shadlen et al., 

2005) *† 

USA (ACT 

Study) 

≥65 2140 1994-2000 Random 

sample from a 

group health 

co-operative 

Years of 

education 

(continuous) 

Generalised 

Estimating 

Equations 

APOE genotype, 

demographics, 

diabetes, 

depression, 

cardiovascular 

disease. 

Educational 

alone no effect, 

but significantly 

less decline in 

APOE ε4 

homozygotes 

with high 

education than 

low education. 

(Tervo et al., 2004) Finland 

(Kuopio) 

60-76 747 1997/1998, 

2000-2002 

Random 

sample from 

Kuopio 

Years of 

education 

(continuous) 

Logistic 

Regression 

Demographics, 

cardiovascular 

disease and risk 

factors 

Odds of incident 

mild cognitive 

impairment 

reduced with 

more years of 

education. 
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(Tyas et al., 2007) 

† 

USA (Nun 

Study) 

≥75 470 1991-2002 All members of 

Sisters of 

Notre Dame 

born pre-1917 

≤ High school, 

undergraduate 

degree, 

postgraduate 

degree 

Polytomous 

Logistic 

Regression 

Age, education, 

APOE status 

More education 

reduces risk of 

mild cognitive 

impairment but 

not progression 

to dementia. 

(Winnock et al., 

2002) 

France 

(PAQUID) 

≥65 600 1988-1998 Random 

sample from 

Southwest 

France 

Completion vs. 

non-

completion of 

primary school 

Random 

effects linear 

regression. 

Age, gender, 

time in study, 

APOE status 

No difference in 

rate of change 

over time by 

education. 

* No or minimal independent effect of education on rate of change. 

† More than 2 measurement occasions used in analysis (not including adjustment for baseline performance). 

‡ Duplicate inclusion of the study sample in another referenced analysis. 
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2.1.3 Population heterogeneity and growth mixture models 

There is a general consensus that education reduces an individual’s risk of being diagnosed 

with dementia, as shown in the reviews above.(Beydoun et al., 2014; Livingston et al., 2017; X. 

Meng & D’Arcy, 2012; Sharp & Gatz, 2011) However, uncertainty remains regarding how 

education has this effect. Much of this relates to differences in how dementia and cognitive 

ageing are defined differently in neuropsychological and pathological terms. In other words, 

should you consider someone as having dementia if they have a certain set of pathological 

brain changes or when they reach a threshold level in cognitive function?  

The distinction between Alzheimer’s disease pathology (ADP) and Alzheimer’s disease (AD) 

can now be drawn in a setting where pathophysiological markers are available.(Dubois et al., 

2014) The discrepancy between pathology and function creates difficulties in research where 

these biomarkers are not available. When comparing an individual with poorer cognitive function 

to another with better cognitive function it becomes complex to determine if they have more 

pathology, less cognitive reserve which acts independently of pathology or less cognitive 

reserve which moderates the effect of the pathology. Moreover, even if biomarkers are available 

there remains a considerable degree of uncertainty with regards to the natural history of the 

progression of ADP in the early stages of disease.(Dubois et al., 2016) Cohort studies or 

analysis of clinical and registry data may provide important insights on dementia risk, normal 

cognitive ageing in healthy individuals or those with diagnosed dementia or cognitive 

impairment but lack the pathophysiological markers. This is the case in the English Longitudinal 

Study of Ageing which is the source of data used in this thesis.   

In clinical or epidemiology studies those with low baseline cognitive function and a degree of 

age-related cognitive decline may be diagnosed as having dementia, whilst in those with high 

baseline function and ADP may go undiagnosed. In studies on dementia incidence or 

prevalence, this will lead to upwardly biased risk in the less educated. On the other hand, if 

those same individuals are then excluded from studies on normal cognitive ageing, this will 

downwardly bias the apparent effect of higher education. Whilst, the scientific consensus is that 

AD is a distinct pathological process which is not on a continuum with normal ageing, the 

potential for significant biases in diagnosis with respect to underlying pathology is problematic 

for ageing research.(Nelson et al., 2012, 2011) This is further complicated by the presence of 

other diseases causing cognitive impairment, especially small vessel cerebrovascular disease 

(SVD) which is both a cause of cognitive impairment alone and highly prevalent in subjects both 

with and without AD.(Slavin, McManus, & Stott, 2012) 

In the general population, a high proportion of older adults will have ADP or SVD even if they 

are not overtly cognitively impaired.(Braak & Del Tredici, 2015; Dubois et al., 2016; Riley et al., 

2011) It is beyond the scope of this thesis to provide a detailed discussion of many nuanced 

ways old age may be defined or who may be classified as an older adult. For the purposes of 

this thesis the terms old age and older adult will be used to refer to adults aged 60 or over. 

Whilst this is in many ways chronologically very young to qualify as ‘old age’, around the age of 
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60 there is a point of inflection after which the prevalence of ADP and other dementia 

pathologies start to rise exponentially.(Nelson et al., 2011)  

A population sample of older adults will contain at least two sub-populations, those with ADP 

pathology and those without. In samples or databases without pathophysiological markers of 

ADP it is not directly possible to observe who is in which population. The presence of distinct 

but not directly observable (latent) sub-populations is known as population 

heterogeneity.(Muthen, 2004) This is important for population studies to take consider because 

there is evidence that the effect of education on cognitive ageing may vary depending on ADP 

status.(Colangeli et al., 2016; Serra et al., 2017) If education provides neural compensation, 

then those in the latent sub-population with ADP may decline more rapidly with higher levels of 

education, but this effect would not be seen in healthy old age.(Y.-N. Song et al., 2018) 

Probably the most common method used to account for population heterogeneity in longitudinal 

studies is growth mixture modelling.(Muthen, 2004) This provides a flexible modelling 

framework which can be specified to test whether education contributes to brain resistance or 

resilience through brain reserve, neural reserve or neural compensation. Figure 2.1. uses 

structural equation models to demonstrate the different potential forms of reserve by adding 

additional detail to that shown figure 1.1. Figure 2.1 includes 3 graphics showing different 

plausible sets of causal assumptions linking education, latent disease status, cognitive reserve 

and latent cognitive function and observed cognitive tests.  

Figure 2.2 graphically demonstrates the predictions of different theories of cognitive reserve in 

terms of predicted change over time in observed cognitive test scores. Graphs 1-3 demonstrate 

the hypothetical relationships between education and cognitive maintenance under the 

assumptions of brain (passive), neural compensation and neural cognitive reserve in the single 

class case. For simplicity only two categories of education, high and low, are present. Graphs 4-

12 demonstrate the potential combinations of these 3 theories in a two-class setting. The stable 

class represents probable healthy cognitive ageing and the declining class probable cases of 

dementia. There is one graph for each combination of reserve in either class.  All of these 

graphs demonstrate plausible hypotheses which could be identified in a growth mixture model 

where the effect of education is moderated by class of latent trajectory. 
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Figure 2.1 Structural equation models showing hypothetical casual pathways through which education could affect cognition with respect to theories of cognitive 

reserve. 

1. Education contributes to brain resilience by 

affecting brain reserve only, independent of 

disease status. 

2. Education contributes to brain resilience via 

brain reserve and resistance by reducing ADP 

build-up. 

3. Education contributes to brain resilience by 

affecting both brain reserve and cognitive reserve. 

 

 

 

 

 

 

 

 

Squares represent observed variables and circles unobserved variables. Variables are: 𝑌1-𝑌5 - a measure of cognitive function on 5 occasions, I - latent 

intercept (baseline cognitive function), S - latent slope (rate of change), Q - latent quadratic growth term (non-linear rate of change), C - latent class of 

cognitive trajectory, BR - brain reserve, Edu – educational attainment, ADP – Alzheimer’s disease pathology, CR- cognitive reserve.   
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Figure 2.2 Trajectories of cognitive decline due to age or disease under different theoretical assumptions (adapted from Lenehan et al. 2015.) 

1. Brain (passive) reserve single class 2. Neural Cognitive reserve single class 3. Neural compensation reserve single class 

   

4. Brain (passive) reserve in both of two 

classes 

5. Brain (passive) reserve in a stable class and 

neural cognitive reserve in a declining class 

6. Brain (passive) reserve in a stable class and 

neural compensation reserve in a declining 

class 
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7. Neural compensation in both of two classes 
8. Neural compensation in a stable class and 

brain reserve in a declining class 

9. Neural compensation in a stable class and 

neural cognitive reserve in a declining class 

   

10. Neural cognitive reserve in both of two 

classes 

11. Neural cognitive reserve in a stable class 

and brain reserve in a declining class 

12. Neural cognitive reserve in a stable class 

and neural compensation in a declining class 
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Further detail on the statistical methodology and motivation for growth mixture modelling is 

provided in the methods section. In 2014 when this project was started there were few studies 

which had taken this approach to cognitive ageing. Several years on, there is now a 

considerably larger body of literature which has used a latent class growth model or growth 

mixture modelling to study the association between education and cognitive ageing.(Baker et 

al., 2017; Ding et al., 2019; Downer, Chen, Raji, & Markides, 2017; Hayden et al., 2011; 

Hochstetler et al., 2016; Seonjoo Lee et al., 2018; Marioni et al., 2014; Min, 2018; Muniz-

Terrera, Brayne, & Matthews, 2010; Olaya, Bobak, Haro, & Demakakos, 2017; Pietrzak et al., 

2014; Royall, Palmer, Chiodo, & Polk, 2014; Small & Bäckman, 2007; Zahodne, Wall, et al., 

2015) All to date have used frequentist estimation of single indicator growth and most are 

descriptive of the classes identified. 

The first paper examining cognition using a GMM was written in 2005 primarily as a 

methodological paper in which cognition is a motivating example.(Proust & Jacqmin-Gadda, 

2005) They analysed Mini-Mental State Examination (MMSE) scores from the French PAQUID 

study of 1392 community dwelling adults aged ≥65 from two French districts who were followed 

up on 5 occasions from 1988 to 1998. They found two latent classes of cognitive change. The 

first class was a stable class and the second a class with quadratic decline over time. They 

found that participants diagnosed with dementia but classified in the stable class had lower 

levels of education. This is suggestive of those individuals having low levels of pathology but 

poor baseline functioning.   

A research team comprising many of the same investigators has more recently published a 

further analysis with an additional 10 years of follow-up of the PAQUID cohort.(Marioni et al., 

2014)  They also extended their previous work by incorporating joint modelling of mortality risk. 

In this study they were able to subdivide their previously identified classes into stable groups 

with low and high baseline and declining groups with delayed or immediate decline. Both 

decliner groups had higher mortality rates (the immediate higher than the delayed) than the two 

stable groups (the high-performance stable group having the best survival overall). With regards 

to educational attainment they found that higher levels of education were a strong predictor of 

not belonging to the immediate or slow decline groups. 

The second paper to be published on cognition using GMM was Small and Backman’s 2007 

paper.(Small & Bäckman, 2007) As with the paper by Proust and Jacqmin-Gadda the primary 

outcome modelled is MMSE score. They used data from the Kungsholmen project in Sweden 

on 457 adults aged ≥75 at recruitment who were either dementia free at the end of the three 

year follow-up period or had incident dementia at the last measurement occasion. They 

assumed a two-class model a priori. Their analysis focussed on whether decline was linear or 

quadratic and the relationship between class as identified by the GMM and diagnosis (assumed 

to be accurate). The best fitting model they identified was one in which both classes had 

quadratic decline with the poor performance group having both lower intercepts and more 

rapidly accelerating decline over time. They found that their ‘false positive’ group (those 

classified in the poor cognitive trajectory who did not receive a dementia diagnosis) had fewer 
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years of education than the ‘false negative group’ (those who received a dementia diagnosis but 

were classified as higher functioning).  

Muniz-Terrera and colleagues used GMM to analyse data from the Cambridge City over 75 

Cohort Study (CC75C).(Muniz-Terrera et al., 2010) They also used MMSE score as their 

measure of cognitive performance. They identified three groups, a class with high baseline 

performance with slight linear decline, a group with poor baseline performance and accelerating 

decline and a small group with poor baseline performance with rapid linear decline. In contrast 

to the previous two studies, they identified similar levels of education in each class. 

Furthermore, education only affected cognitive performance in the higher performing group 

where having had a shorter education was associated with lower baseline performance and 

faster average decline. Their class of poor performers with accelerating decline was unusually 

large (54% of the sample or n=1102 individuals). Dropout and death were modelling through the 

inclusion of a logistic regression model dependent on observed variables which may account for 

some of the differences with the earlier two studies. 

Xie, Mayo and Koski studied trajectories of change in MMSE score in 187 outpatients identified 

as having mild cognitive impairment over a 3 and a half year period.(Xie, Mayo, & Koski, 2011) 

They identified 5 separate classes of which 4 were largely ordinal separations but one small 

class of 4.2% of participants demonstrated considerably more rapid decline from a moderate 

baseline. They found that, although poorer performing groups were progressively less likely to 

have >12 years of education, education did not significantly affect the probability of group 

assignment. As this study is based upon a small opportunistic clinical sample, its results do lack 

generalisability to the broader population of older adults. 

A similar difficulty with generalisation is present in Hayden et al.’s GMM analysis of cognitive 

change in the Religious Orders Study.(Hayden et al., 2011) However, it does have the 

significant advantage of a comprehensive battery of cognitive tests to draw upon as well as a 

subsample who underwent post-mortem examination for dementia pathology. In this study three 

classes were identified with progressively more rapid slopes of decline over time. There was no 

particular difference in educational level between the classes, but the Religious Order Study 

participants are a highly educated cohort. Analysis of the subsample who underwent autopsy 

found a medium sized effect for amyloid load, and large effect for tangle density, on class 

membership probabilities. This confirmed that the classification of decline trajectories did 

correspond to underlying pathological burden of disease.  

Leoutsakos and colleagues put GMM to an interesting use in the analysis of a trial on the effect 

of non-steroidal anti-inflammatory drugs and cognition.(Leoutsakos, Muthen, Breitner, & 

Lyketsos, 2012) Whilst their concern was primarily whether the treatment effect differed within 

class rather than social determinants of cognitive ageing, it is interesting to note that as with 

Hayden et al. and Terrera et al. they identified three classes separated by increasing speed of 

decline.  

Royal and colleagues undertook a GMM of cognitive ageing with the specific intention of 

identifying a latent class which represents an ageing specific (disease free) phenotype.(Royall 
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et al., 2014) They analysed data from a sample of 547 retirees living in a single American 

retirement community evaluated over a 3 year period. The data on cognition includes a range of 

cognitive tests which the researchers had previously identified as having minimal retest effects. 

They analysed each test separately and identified 2 or 3 latent classes depending on the test. 

For most tests the classes primarily represented an ordinal difference in initial performance with 

modest differences in slope. However, in keeping with previous findings for the MMSE there 

were 3 distinct classes with an 11% subgroup who had considerably more rapid decline than 

the high-performance group.  

Pietrzak and colleagues examined data from 333 ≥60 year old adults who were cognitively 

normal at baseline over a 54 month period.(Pietrzak et al., 2014) They identified 3 classes 

which were high stable performance, low to average performance with slight decline and poor 

baseline with rapid decline classes. In their bivariate analysis low levels of education was 

associated with higher risk of belonging to the slight decline group. There was not a significant 

bivariate association between education and membership of the rapid decline class, but there 

were only 13 participants in this group, so the confidence intervals were very wide. They did not 

include education in their multivariate model predicting class membership. 

Zahodne and colleagues used GMM to analyse cognitive trajectories from 2593 participants in 

the Washington Heights Inwood Columbia Ageing Project over 8 years of follow-up.(Zahodne, 

Wall, et al., 2015) They identified 4 classes. These were stable-high, stable-low, gradual decline 

and rapid decline. Rather than testing for an effect of education on latent class or on slope 

within latent class, their outcome was cognitive function adjusted for educational attainment and 

age. This implicitly either assumes that education contributes to brain resistance through 

passive brain reserve, or that the authors are attempting to correct for the effect of education 

biasing results with respect to underlying pathology as discussed earlier in this section. This 

method of adjustment allows for neither brain resistance nor cognitive reserve to be identified. 

Another notable feature of this analysis is that they had a sub-sample with structural MRI scan 

data. Using this they were able to validate their gradual decline and rapid decline latent classes 

as having greater hippocampal atrophy and thinner cortices. This lends important support to the 

validity of the GMM approach for correctly identifying an individual’s disease status.  

Hochstetler and colleagues analysed trajectories of MMSE score from a mix of healthy controls 

and patients with mild cognitive impairment or Alzheimer’s disease (n=1192 in total) 

participating in the Alzheimer’s disease neuroimaging initiative.(Hochstetler et al., 2016) They 

jointly modelled outcomes on the functional activities questionnaire and Alzheimer’s disease 

assessment scale cognitive subscale. They identified 3 classes. These were high-stable, 

intermediate-moderate decline and low-rapid decline classes. Age, higher alcohol consumption, 

APOE status and amyloid positivity on positron emission tomography were strongly predictive of 

membership of the 2 poorer performing classes. They used education as a predictor of class 

membership but there was no significant association. Of 325 health controls in this study, 2 

were placed in the intermediate class and none were in the rapid decline class. This supports 

the clinical validity of classes identified using GMM. A further analysis of the Alzheimer’s 
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disease neuroimaging initiative data was presented by Ding and colleagues once additional 

follow-up was available.(Ding et al., 2019) They used data from older adults who were initially 

diagnosed as cognitively healthy (n=219) and with mild cognitive impairment (n=372) over 9 

years of follow-up and up to 12 measurement occasions. In the initially healthy older adults, 

they identified 6 latent classes and 5 latent classes in those with MCI. Education was used as a 

predictor of latent class and more education was associated with membership of the higher 

performance stable classes but not with membership of a rapid-curvilinear decline class.  

Using the English longitudinal study of ageing (ELSA), which is the data I will also be basing my 

analysis on, two studies have been published giving group trajectories for cognitive 

function.(Olaya et al., 2017; G. Tampubolon, Nazroo, & Pendleton, 2017) Olaya and colleagues 

used growth-based trajectory models, closely related to GMM, to analyse 10 word immediate 

and delayed recall trajectories over 6 occasions and 10 years in n=9515 ELSA participants 

aged 50-79.(Olaya et al., 2017) They split the cohort by age at 65. In both age groups they 

found a very similar 4 class structure with low-decline, low-stable, medium-stable and high-

stable groups of cognitive performance. Education was a very strong predictor of group 

membership. Tampubolon and colleagues in their analysis of the ELSA data focussed on the 

ability of latent class membership to predict the distal outcome of probable dementia at the end 

of the observation period.(G. Tampubolon et al., 2017) 4 latent classes are reported which 

essentially follow an ordinal scale in baseline performance with the worse performance classes 

also showing moderately faster decline. The effect of education either within or between class is 

not reported.  

Downer and colleagues used data from 1336 participants of the Hispanic Established 

Population for the Epidemiologic Study of the Elderly who were observed during four Waves 

from 2004–2005 to 2012–2013. They separately examined 3 cognitive domains of memory, 

global cognition and non-memory tasks. In each of these three areas they identified 3 latent 

classes. The latent classes of cognitive function were high stable, intermediate-slight decline 

and low-rapid decline. There was a 95% rate of agreement between the classes for the different 

cognitive domains. Years of formal education was used to predict latent class membership. 

More years of education was strongly associated with greater likelihood of membership of the 

high-stable latent class.   

Baker and colleagues performed a retrospective cohort study on 3441 patients from a large 

mental health trust in the UK who had had 3 or more MMSE conducted during their clinical 

care.(Baker et al., 2017) The identified 6 trajectories of change over time. 5 of these trajectories 

had ordinal levels of baseline and change in MMSE with only a single qualitatively different 

intermediate-rapid decline class. The study is focussed on the association of neuropsychiatric 

symptoms with class of cognitive trajectory and the effect of education is not reported. 

Using the Korean Longitudinal Study of Ageing, Min analysed data from 2445 adults aged 60 or 

above without diagnosed dementia.(Min, 2018) Using a Korean version of the mini-mental state 

examination as their outcome over a period of 6 years, they had 2 latent classes. One high-
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stable and one low-decline class. Higher levels of education strongly predicted membership of 

the high-stable class in a dose-response fashion.  

 Lee and colleagues combined data from several north American ageing study cohorts, 

including several of those already mentioned.(Seonjoo Lee et al., 2018) In their pooled sample 

of 13037 adults aged 72-85 with between 2 and 15 years of follow-up they identified 2 latent 

classes of change in episodic memory function. They found that higher levels of education were 

associated with membership of the non-declining class across most of the cohorts included.  

These studies have all used GMM or a closely related methodology to analyse cognition in a 

population of elders but there are substantial differences between them. The majority of 

analyses identified 3 or 4 classes of cognitive decline. In all cases there was no more than 3 

qualitatively different classes showing either stability, linear decline or accelerating decline. 

Additional classes tended to have differences in baseline performance but not change over 

time. Education was predominantly associated with membership of higher performing classes. 

All analyses used sum scores of standardised cognitive batteries or single cognitive tests 

(delayed recall for example). None of these analyses used factor analysis to identify if their 

standardised battery was an adequate fit to the data. This meant they were unable to use factor 

scores longitudinally (known as multiple indicator growth) or test their measurement instruments 

for measurement invariance. Summed MMSE score was the most common outcome measure. 

This represents a significant limitation in the literature to date as significant untested 

assumptions are made about the measurement of cognition and the invariance of those 

measures over time. The MMSE in particular is also known to have a relatively strong ceiling 

effect.(Franco-marina et al., 2019) Moreover, few of the studies incorporated explicit 

management of non-random missingness. Of those studies which included education, few have 

focussed on the effect of education on class membership or trajectory within class. This is 

important because, whilst several studies interpret their results in terms of cognitive reserve, by 

making education a predictor of class this implicitly assumes a mechanism of brain resistance 

rather than reserve. This does not reflect the findings of clinicopathological studies which 

suggest that higher levels of education are not associated with differences in ADP. However, as 

shown by Hayden et al. and Pietrzak et al., the primary determinant of latent class membership 

is underlying ADP and SVD pathology.(Hayden et al., 2011; Pietrzak et al., 2014) 

 

2.1.4 Dementia Pathology and Education 

As stated in the previous section, the majority of the studies using a longitudinal mixture 

modelling approach to cognitive ageing have used education to predict class membership. This 

choice could mean that the authors are focussing purely on dementia as a level of impairment 

or clinical syndrome without reference to underlying pathological status. Alternatively, given that 

the primary driver of latent class is underlying ADP/SVD, it means that the primary hypothesis 

that tested is whether education contributes to brain resistance. This approach assumes that 

the mechanism through which education provides its effect is by reducing ADP/SVD. However, 
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this assumption is not necessarily supported by the clinicopathological literature.(Bennett, 

Arnold, Valenzuela, Brayne, & Schneider, 2014; Bennett et al., 2003; Brayne et al., 2010; Del 

Ser, Hachinski, Merskey, & Munoz, 1999; Farfel et al., 2013; Koepsell et al., 2008; Serrano-

pozo et al., 2013) 

Bennett and colleagues evaluated whether education modified the association between ADP at 

autopsy and cognitive function in 130 participants of the Religious Orders Study.(Bennett et al., 

2003) They found no association between ADP and education. The did find strong evidence 

that education moderated the association of diffuse and neuritic plaques with cognitive function. 

This effect was strongest for a decrease in the negative effect of plaques on episodic memory 

and perceptual speed. Education did not moderate the effect of neurofibrillary tangles on 

measured cognitive function. This suggests that education may provide greater resilience in 

earlier disease stages when amyloid-β plaques are most closely associated with cognitive 

function than neurofibrillary tangles. The ECLipSE study harmonised 3 population cohort 

studies with post-mortem brain donation from 872 participants, of which 56% were demented at 

death.(Brayne et al., 2010) They found that more years in education were related to increase 

brain weight, consistent with theories of brain reserve. However, education was not 

independently associated with either ADP or SVD. The found that greater education was 

associated with a lower risk of dementia in a dose dependent fashion but that this was 

independent of ADP/SVD. Del Ser and colleagues early study included 87 individuals with 

Alzheimer’s disease, Lewy body dementia or both.(Del Ser et al., 1999) They found no 

difference in the quantitative level of ADP, but did find higher levels of SVD in individuals with 

lower levels of education.   

Farfel and colleagues performed a cross-sectional study of 675 individuals with low levels of 

formal education at autopsy.(Farfel et al., 2013) They found that, compared to a group with no 

formal education, individuals with more than 1 year of formal education had no significant 

differences in ADP, lacunar infarcts or cortical Lewy bodies. They did find that education was 

associated with SVD. They found that education moderated the effect of lacunar infarcts but not 

other pathological changes on informant reported cognitive function. Koepsell and colleagues 

performed a large autopsy study on 2051 participants drawn from 27 Alzheimer’s disease 

centres across the USA.(Koepsell et al., 2008) As a clinical sample recruited from dementia 

assessment centres, only 13.7% of the sample was non-demented. They found no correlation 

between education and severity of ADP. However, they did find that the effect of education on 

cognitive function was attenuated at more advanced stages of ADP. This would support the 

neural compensation theory of cognitive reserve.  Further analysis of this cohort by Serrano-

Pozo and colleagues confirmed that the effect of education on cognitive function was 

independent of ADP and SVD.(Serrano-pozo et al., 2013) This also indicates that the effect of 

education on cognitive function is not mediated via brain resistance.  

Taken together these studies make a comprehensive case that education does not contribute 

substantially towards brain resistance. This would suggest that if the underlying latent trajectory 

classes of cognitive function are believed to be primarily driven by pathology, then it is more 
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substantively coherent to model education as a moderator of the association between latent 

trajectory class and rate of cognitive decline.  
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2.2 Cognitively Stimulating Activities Literature Review 

 

2.2.1 Cognitive Stimulating Activities 

The ‘use it or lose it’ hypothesis posits that activation of neuronal activity is an important part of 

maintaining brain function into later life.(Swaab, 1991) Neuronal activation increases the 

potential for damage, such as DNA damage from increased oxidative stress, which is one of the 

primary drivers of cell ageing. However, the stimulation of neurons also triggers protective 

mechanisms, such as DNA repair.(Q. Bin Zhu, Bao, & Swaab, 2019) Within normal 

physiological limits the balance tends to favour repair when compared to less stimulated 

neurons. This may contribute to cognitive maintenance by reducing promoting Alzheimer’s 

disease pathology (ADP) clearance or preserving neuronal integrity despite the presence of 

ADP or cerebrovascular disease. Environmental stimulation is one mechanism by which this 

protective level of stimulation may be achieved. Cognitively stimulating activities (CSA) are an 

important potential source of this stimulation which makes them a promising modifiable factor 

for cognitive maintenance. They have received attention from academics and are also the 

behaviour most frequently identified by adults in western countries as reducing their risk of 

dementia.(Friedman et al., 2015; Sajeev et al., 2016; Yates, Ziser, Spector, & Orrell, 2016) 

The Global Council on Brain Health has defined CSA as ‘mentally engaging activities or 

exercises that challenge a person’s ability to think’.(Global Council On Brain Health, 2017) This 

is the definition which will be used in this thesis. However, the breadth of the definition does 

create problems for researchers trying to operationalise the measurement of CSA. The list of 

possible activities which could be included under this definition is vast. The frequency, intensity 

and duration of those activities is also highly variable. Comparison across studies and across 

culture-bound activities is difficult when the types of activities undertaken by older adults can 

differ substantially.  

This has led many studies to use a composite score comprised of many different 

activities.(Sajeev et al., 2016; Yates et al., 2016) This approach presupposes a degree 

exchangeability between different activities. It is only possible to sum different activities if the 

assumption is made that each activity has a similar effect size on cognitive maintenance. This 

essentially views CSA as part of a cognitively enriched lifestyle rather than as specific activities 

which may have different effects.  

Typically composite scores of cognitive activity have been modelled as a linear or proportional 

odds ordinal scale.(Yates et al., 2016) This introduces an additional assumption regarding the 

additive effect of each cognitive activity which has to be correctly specified as linear, quadratic, 

or otherwise. Any interactions modelled this way must also be exchangeable. The advantage of 

a composite score approach is primarily a large reduction in dimensionality. As many activities 

could be classified as CSA, the number of potential interactions is very high. This reduces 

statistical power substantially, increases the likelihood of empty cell problems, and increases 

the risk of chance findings.  
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A further methodological difficult is that if CSA do improve cognitive maintenance, they may also 

influence propensity to further CSA, thus creating bi-directional causality (figure 2.3). This 

requires specific modelling approaches which will be given fuller treatment in the statistical 

analysis section and the marginal structural modelling section of the literature review.  

Randomised controlled trials (RCTs) are the most common way of avoiding this problem but are 

beyond the scope of this thesis. Adequate RCTs are very difficult to conduct because of the 

long follow-up time needed, the aforementioned lack of agreement in operationalising CSAs and 

the practical and ethical implications of trying to randomised people’s leisure time. Nonetheless, 

it is worth noting the limitations of the evidence regarding trials of targeted (mostly 

computerised) cognitive interventions. They have been found to be effective at improving the 

specific abilities tested in healthy old age, mild cognitive impairment and dementia. (García-

Casal et al., 2017; Hill et al., 2017; Karbach & Verhaeghen, 2014; Lampit, Hallock, & 

Valenzuela, 2014) However, there is much more limited evidence for the effect of transfer to 

benefits to un-related cognitive tasks, on daily functioning or when used at home in more 

externally valid environments.(García-Casal et al., 2017; Guye & von Bastian, 2017; Kane et al., 

2017; Lampit et al., 2014; Melby-Lervåg & Hulme, 2016) This makes understanding the effect of 

non-targeted CSA which are already accessible to older adults particularly important. 

There are many ways which CSA in later life could be subdivided. For the present discussion, a 

broad distinction between leisure and non-leisure activities will be made. The literature 

discussed will be primarily based upon two systematic reviews focussed on leisure activities, 

one on retirement, another on volunteering and one further on general computer use 

specifically.(Guiney & Machado, 2018; Liapis & Harding, 2017; A. Meng, Nexø, & Borg, 2017; 

Sajeev et al., 2016; Yates et al., 2016) These reviews contain limited discussion of cognitive 

maintenance or the mechanisms by which observed associations may occur.  Taking a broad 

view of cognitive maintenance as including mechanisms consistent with both brain resistance 

and resilience, then reduced risk of dementia or cognitive impairment is a valid and important 

surrogate for improved maintenance for activities undertaken in later life.  

 

2.2.2 Cognitive enrichment. 

The systematic review by Sajeev and colleagues operationalised CSA as information seeking 

and/or processing and focussed on the outcome of dementia risk.(Sajeev et al., 2016) A meta-

analysis was not conducted because of the variation in how CSA was defined between studies. 

They included 12 papers from 11 cohort studies with a combined total of 13939 participants with 

a mean follow-up time of between 2.5 and 6.1 years. They only included studies with a clinical 

diagnosis of dementia. All studies reported on activities undertaken during the study period as 

their primary exposures of interest. CSA activities were combined in composite scores of either 

frequency (9), number of activities (3) or time spent (1). All studies estimated a lower risk of 

dementia with greater activity participation, this reached statistical significance in 9 of the 

studies. In studies which differentiated between low, moderate or high participation or between 
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stimulating or passive activities, high participation and stimulating rather than passive activities 

were associated with lower risk.  

A major focus in this review was on a method for the estimation of the degree of reverse 

causation or unmeasured confounding which would be required to explain any observed 

associations. They calculated bias corrected estimates for a range of hypothetical unobserved 

confounders and from this were able to establish how large or common an unobserved 

confounder would need to be. For this analysis they focussed on a single study as an exemplar 

of the approach.(Akbaraly et al., 2009) Under this calculation a strong harmful unobserved 

confounder would need to be between 40-80% more prevalent in the low activity group to 

explain the observed association, whilst a weak harmful unobserved confounder would not 

explain the association under any of the simulated scenarios. This suggests that, whilst some 

unobserved confounding is likely, it is highly improbable that there is no association.  

In their calculations for reverse causation, they estimated relatively realistic scenarios, such as 

10% or 25% prevalence of unobserved pre-clinical dementia in the high CSA group. Under 

these scenarios, prevalence in the low CSA groups would have to be between 8-25% higher 

than in the high CSA group to totally explain the association. Whilst relatively unlikely, this is by 

no means impossible. This suggests that reverse causation is likely to be a greater problem 

than unobserved confounding. Methods to account for reverse causation are therefore 

particularly important to address in an analysis of the contribution of CSA to cognitive 

maintenance. The way in which the marginal structural models used in this thesis address this 

problem will be developed further in the methods section.  

In addition to Sajeev et al., Yates and colleagues conducted a systematic review of the 

association of cognitively stimulating leisure activities with either risk of dementia or cognitive 

impairment.(Yates et al., 2016) They focussed primarily on this association and did not perform 

the additional bias analyses conducted by Sajeev et. al. They included 19 studies, of which 7 

were longitudinal and 2 were case control studies of clinical samples with dementia. 15 of these 

studies were taken forward to meta-analysis. 11 found statistically significant reductions in the 

probability of dementia or cognitive impairment. Due a split in studies reporting risk ratio, odds 

ratio or hazard ratio of either cognitive impairment or dementia, they performed 5 separate 

meta-analyses. Of these the pooled hazard ratio (2 studies), risk ratio (3 studies) and odds ratio 

(2 studies) for dementia found significant reductions, as did the pooled odds ratio for cognitive 

impairment (5 studies). The overall reduction was estimates to be in the 40-50% range for 

higher levels of CSA. The pooled hazard ratio for cognitive impairment was not significant (3 

studies).  

The authors of the systematic review noted than in many of the studies, CSA was distilled from 

a range of activity scoring systems into an ordinal scale of low, moderate and high. The studies 

included are noted to consider the possibility of reverse causation in their discussions. However, 

the only step identified to reduce this risk was the exclusion of participants with dementia at 

baseline. The review authors note that further steps to address this problem are required in 

future research. They also comment that it is important for future studies to examine whether 
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specific activities, and general computer use in particular, are associated with reduced risk of 

dementia or cognitive impairment. In this thesis I will be attempting to both address the issue of 

reverse causation and examining the effect of specific CSAs including general computer use.  

Despite the very consistent finding from these reviews of a positive association between CSA 

and dementia risk, some notable studies with different analytic approaches  highlight problems 

with reverse causation.(M. J. Aartsen, Smits, van Tilburg, Knipscheer, & Deeg, 2002; Gow, 

Corley, Starr, & Deary, 2012) In their analysis of the Lothian cohort, Gow and colleagues made 

use of access to a confounder which is not typically accessible, childhood intelligence.(Gow et 

al., 2012) After adjusting for childhood intelligence, they found that the association between 

CSA and function was no longer significant. Another alternative method which has been 

employed is to utilise cross-lagged models. Examples of this type of analysis have found that, in 

general, past cognition is more strongly predictive of future cognitive activity, although this effect 

may differ depending on baseline levels of literacy.(M. J. Aartsen et al., 2002; Lifshitz-Vahav, 

Shrira, & Bodner, 2017) 

Several studies have also used data from the English Study of Ageing to examine the 

association between CSA and cognitive function. Haslam, Cruwys and Haslam in their analysis 

of ELSA waves 3-5 focussed on the issue of group social engagement as opposed to individual 

social engagement or loneliness.(Leopold, Engelhardt, & Engelhartdt, 2013) They found that 

high levels of group engagement were associated with considerably better cognitive function 

and that this association was greater with advancing age. The relevance of this analysis to the 

current discussion is that many of their group activities, such as group memberships, activities 

and hobbies or attendance at cultural events, can also be viewed as CSA. Contrastingly, the 

individual level social participation, such as relationship quality and frequency of social contact 

would not typically be included under the umbrella of CSA. Their analysis also was unable to 

account for problems of reverse causation. Given that psychological symptoms of dementia 

include apathy, depression and social withdrawal, this is a substantial limitation.(Ismail et al., 

2016) It is also not possible to determine whether the association of equal effects across 

activities is suitable.   

Other analyses of ELSA have come to contrasting conclusions. Shankar and colleagues found 

that loneliness and social isolation (which also means participation in fewer CSA) were both 

associated with poorer cognitive function.(Shankar, Hamer, McMunn, & Steptoe, 2013a) In total 

contrast to Leopold et al, Rafnsson and colleagues found that in ELSA social isolation was not 

associated with dementia risk but that more intimate relationships were protective.(Rafnsson, 

Orrell, Orsi, Hogervorst, & Steptoe, 2017) Rafnsson and colleagues used Cox proportional 

hazards regression rather than multilevel modelling. This suggests that the association between 

social and cognitively stimulating activities and cognitive maintenance may be quite sensitive to 

model specification. 

 

2.2.3 Specific Cognitively Stimulating Activities 
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The association between general or ‘meaningful’ computer use and cognitive function was the 

subject of the systematic review conducted by Liapis and Harding.(Liapis & Harding, 2017) 

They defined meaningful use as ‘technology selected specifically for or by the participant for the 

purpose of leisure, social connection or activities of daily living and intended to be either useful 

or pleasurable.’. This is the kind of self-directed computer use which is recorded in ELSA. It has 

been given separate attention to the two previous systematic reviews because computer use 

was not considered a CSA by the majority of the studies included in those reviews. 

Nonetheless, it falls within the definition of CSA used in this thesis.  

They included 9 studies in their review.(Liapis & Harding, 2017) 5 of these studies were small 

studies (n<20) of the feasibility of implementing compute use with older adults and were not 

powered to assess for effects on dementia risk. The remaining 4 were from population cohorts 

which tested for an association between computer use and cognitive function, impairment or 

dementia. All found an association between greater computer use and reduced risk of cognitive 

impairment. Of particular note for this thesis are the analyses by Xavier, D’Orsi and colleague 

which utilise the data from ELSA.(d’Orsi et al., 2017; André J. Xavier et al., 2014) The 2014 

paper included in the review by Liapis et al., focussed on cognitive decline whereas the 2017 

paper focussed on dementia diagnosis.(d’Orsi et al., 2017; Liapis & Harding, 2017) The 2014 

paper found a modest but statistically significant improvement of 3.07% in delayed recall of a 10 

word list for current internet users in a generalised estimating equations model.(André J. Xavier 

et al., 2014) This effect was not modified by gender, age or wealth. The 2017 paper used 

participant self-reported or informant reported dementia as their primary outcome over 5 waves 

of data analysis.(d’Orsi et al., 2017) Using Cox proportional hazards regression they found an 

approximately 40% reduction in the hazard of dementia in those who were internet users. These 

studies are informative, but neither of these analyses make use of the validated cognitive 

testing for dementia and cognitive impairment available in wave 7 of ELSA.  Additionally, their 

methods do not address the problem of time dependent confounding affected by past exposure 

which, as previously mentioned, which is a key methodological challenge in studies of cognitive 

maintenance.  

Alongside internet use, another activity within the definition of CSA which will be used in my 

analysis is volunteering. Guiney and Machado both review the literature on the association 

between volunteering and cognition as well as develop a theoretical framework for the 

association.(Guiney & Machado, 2018) This framework posits that volunteering is a complex 

multifactorial exposure or intervention which increases cognitive activity, social activity and 

physical activity. This in turn improves cognitive maintenance and mental health more broadly. 

Both in turn lead to improvements in cognitive functioning.  

In their literature review they identify 15 articles testing for an association between cognitive 

functioning and volunteering.(Guiney & Machado, 2018) Seven cross sectional studies of older 

adults consistently found that volunteering was associated with better cognitive functioning. Five 

longitudinal studies found that baseline volunteering had mixed results with 2 finding modest 

protective effects against cognitive decline and 2 others finding protective effects which neared 
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statistical significance. 2 longitudinal studies which accounted for change in behaviour over time 

were included in the review. Both studies found that those who maintained their participation in 

volunteering also had improved maintenance of their cognitive function. They identified only a 

small single RCT in institutionalised adults who already had moderate dementia. This study 

found no significant effect on rate of decline. Of those longitudinal studies included the analysis 

of the health and retirement study by Infurna and colleagues has subsequently been undated by 

Proulx and colleagues to include more detailed information about the amount of time spent 

volunteering.(Infurna, Okun, & Grimm, 2016; Proulx, Curl, & Ermer, 2018) The analyses are not 

directly comparable because of differences in the outcomes used (risk of impairment vs overall 

cognitive scores) but both appear to confirm an association of moderately improved cognitive 

maintenance in old adults who volunteer. Guiney and Machado’s literature review did not 

include any analyses from ELSA and I have not been unable to locate any studies specifically 

aimed at the association between volunteering and cognitive function.  

Alongside volunteering, working into later life is another potential source of stimulation which 

could contribute to improve cognitive maintenance.(A. Meng et al., 2017) In older adults this is 

usually viewed as later retirement. Meng and colleagues systematic review found only weak 

evidence that later retirement was related to better maintenance of crystallised cognitive abilities 

and conflicting evidence regarding fluid cognitive abilities.(A. Meng et al., 2017) Due to the 

exponential rise of dementia being most notable 5-10 years after retirement ages in most 

countries, a substantial follow-up period or very large cohort of young-old adults is needed to 

test this association. Starke and colleagues used a mixed effects model to examine the 

association between retirement age and episodic memory in ELSA.(Starke, Seidler, Hegewald, 

Klimova, & Palmer, 2019) They found that there was no significant difference in the rate of 

change in episodic memory after retirement.  

As with the other areas discussed above, none of the included studies used methods to account 

for time-dependent confounding influence by past exposure. This is still relevant regarding 

retirement decisions for older adults who were becoming cognitively impaired at young-old 

ages. However, due to the lower incidence of cognitive impairment around retirement age than 

in later decades of life, this is perhaps slightly less problematic for retirement than for other 

CSA.  

The other CSA from ELSA which I will use are newspaper reading, membership of a social club 

and membership of ‘education, arts or music group or evening classes’. Limited research has 

been conducted on these specific areas.(Sprague et al., 2019) In the analysis of ELSA data by 

Haslam, Cruwys and Haslam discussed in section 2.2.2, they formed part of two of their 

measures of group social engagement.(Leopold et al., 2013) Whilst they found that group 

engagement was strongly associated with improved cognitive performance this enables us to 

say little about these specific activities.  

Educational interventions have been attempted in a few small intervention studies.(de Medeiros, 

Mosby, Hanley, Pedraza, & Brandt, 2011; Iizuka et al., 2019; Sprague et al., 2019) De Medeiros 

and colleagues conducted a randomised trial which recruited 51 non-demented adults aged 67-
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96 and allocated them to either an autobiographical writing class, a reminiscence group or a no 

intervention arm.(de Medeiros et al., 2011) They found no significant difference between the 

study arms after 34 weeks. However, with only 51 participants and a brief (for the timescale of 

cognitive ageing) follow-up, their power to detect differences was limited. Other intervention 

studies have examined art classes in healthy old adults with mixed results.(Iizuka et al., 2019) 

This would correspond to the types of classes ELSA respondents may be attending.  

Reading has frequently been included in total enrichment scores, but some of the population 

research literature has analysed reading as an individual activity. Varghese et al., performed a 

very highly cited analysis of the 469 participants aged 75-85 from the Bronx ageing 

study.(Verghese et al., 2003) They found that reading, as well as writing, dancing, playing 

musical instruments and playing board games, was associated with reduced hazard of incident 

dementia over 5 years of follow-up. However, in their primary analysis which was a fully 

adjusted cox regression they used a composite score of total cognitive activity. Zhu et al. 

analysed of 7 years of data on 6586 adults aged 65-015 in the Chinese Longitudinal Healthy 

Longevity Survey.(X. Zhu, Qiu, Zeng, & Li, 2017) They found a modestly protective effect of 

reading with a hazard ratio of 0.91 (95% confidence interval 0.84-0.99). Of relevance to the 

other CSA in this thesis, they also found no association between organised social activities and 

cognitive function. There have also been a couple of relevant small intervention studies, though 

these suffer from the lack of power and follow-up as discussed with similar trials previously. A 

book club was used as a control group by Shatil in their randomised controlled trial.(Shatil, 

2013) They found no change in cognitive function after 4 months of intervention.  Suzuki et al, 

randomised 58 older adults with mild cognitive impairment to either a picture book reading 

intervention or a series of lectures on staying healthy.(Suzuki et al., 2014) They found 

improvements in episodic memory, attention and executive function in the treatment arm.  

Taken as a whole, this literature indicates the potential for specific CSA to improve cognitive 

maintenance and reduce dementia risk. It also demonstrates problems conducting adequate 

randomised controlled trials on specific CSA and the need for methods of observational analysis 

which may be able to account for reverse causation in the form of time varying confounding 

affected by past exposure.  
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Figure 2.3 Causal diagrams showing potential longitudinal confounding structures in the 

association between cognitively stimulating activities, cognitive function and dementia 

diagnosis. 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

𝐴𝑡 is the exposure. 𝐿𝑡 is a time varying covariate. 𝑈𝑡 is an unmeasured confounder. 𝑌  is the 

outcome (cognitive impairment or dementia in this case). 

(1) Shows time dependent confounding of the association between 𝑌 and 𝐴𝑡 by 𝐿(𝑡−1). This 

can be adjusted for using standard regression models. (2) Shows mediation of the effect of 𝐴𝑡 

by 𝐿(𝑡+1). Alternatively, 𝐴𝑡 can be seen as a confounder of  𝐿(𝑡+1) and 𝑌. If the quantity of 

interest is the effect of  𝐴𝑡 on 𝑌 then standard regression adjustment with block indirect 

effects mediated by 𝐿(𝑡−1). (3) Shows time dependent confounding affected by prior 

exposure. Here 𝐴𝑡 has a causal effect on 𝐿(𝑡+1) and 𝐿𝑡 has a causal effect on 𝐴(𝑡+1). 
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Conditioning on 𝐿𝑡 with block the confounding of 𝐴(𝑡+1) and 𝑌, but will also block the effect of 

𝐴(𝑡−1) mediated via 𝐿𝑡. If the exposure 𝐴𝑡 is cognitively stimulating activities, 𝐿𝑡 cognitive 

function and 𝑌 is a diagnosis of dementia then much of the effect of earlier 𝐴𝑡 CSA is likely to 

be mediated by future cognitive function 𝐿(𝑡+1) and blocking this effect would not be 

substantively coherent. Hence standard regression is unable to produce unbiased effects if 

this is the underlying causal structure. (4) Illustrates the presence of unmeasured 

confounders.  
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3. Methods 

This chapter introduces the statistical methods used in this thesis. Section 3.1 reviews methods 

for modelling trajectories of cognitive function over time and its relationship to predictor 

variables. Section 3.2 discusses models for informative missingness which can be applied 

alongside the methods in section 3.1 to account for missing data. Section 3.3 introduces the 

concept of longitudinal measurement invariance, from both frequentist and Bayesian 

perspectives. Section 3.4 introduces marginal structural models and their estimation using 

inverse probability of treatment and censoring weighting.  

 

3.1 Modelling change in cognitive function over time 

 

3.1.1 Growth curve models 

As described in the previous section population heterogeneity is a major challenge in the study 

of cognitive ageing. Growth mixture models (GMMs), or the related latent class growth models 

(identical except for the lack of a random intercept) are one of the primary methods of 

identifying heterogeneity in change over time. 

GMMs are, in essence, a combination of latent class analysis and latent growth curve models. 

The models estimate change over time and cluster similar trajectories into latent sub-

populations. In this case latent classes of cognitive decline or stability which are likely to 

represent unobserved disease states. They are generalisations of conventional hierarchical 

models and it is from this starting point they will be described. This section draws extensively on 

the excellent chapters by Muthen, Bollen and Curran and the initial notation is based upon that 

used by Steele (Bollen & Curran, 2006; Muthen, 2004; Steele, 2014). First, random effects 

models will be described so that the parallel with equivalent latent growth curve models can be 

demonstrated.  

Let our sample contain n individuals whose cognitive function has been measured on up to T 

occasions. Let 𝑦𝑡𝑖  be the score on a cognitive test for individual i (i=1,…,N) on occasion t 

(t=1,2,…,T). Let 𝜆𝑡𝑖 be the metric of time for individual i which may vary between individuals on 

the same measurement occasion. Including this allows variation in the timings of 

measurements, though if all subjects are observed at the same time then this reduces from 𝜆𝑡𝑖 

to 𝜆𝑖. So, in a random intercepts model which is specified as: 

1. 𝑦𝑡𝑖 =  𝛽0𝑖 +  𝛽1𝜆𝑡𝑖 + 𝑒𝑡𝑖 

 𝛽0𝑖 =  𝛽0 + 𝑢0𝑖 

Here 𝛽0 represents the mean intercept and 𝛽1 the change in y per unit time, known as the 

growth rate.  𝑒𝑡𝑖 is the occasion specific error and 𝑢0𝑖 the individual specific error or random 

effect. Both error terms are assumed to follow a normal distribution with mean 0 and variance 
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𝜎𝑒
2  and 𝜎𝑢0

2  respectively. This is a random intercept model meaning individuals starting values 

are allowed to vary but the growth rate is held constant over all individuals. 

These models can then be extended into random slopes models which allows the growth rate to 

vary across individuals.  This can be expressed in the following format: 

2. 𝑦𝑡𝑖 =  𝛽0𝑖 +  𝛽1𝑖𝜆𝑡𝑖 +  𝑒𝑡𝑖 

 𝛽0𝑖 =  𝛽0 + 𝑢0𝑖 

 𝛽1𝑖 =  𝛽1 +  𝑢1𝑖 

The term 𝛽1𝑖 now captures both the mean effect of a unit change in 𝜆𝑡𝑖 on y and the individual 

error 𝑢1𝑖 in this slope. So the growth rate for any given individual is now 𝛽1 + 𝑢1𝑖. The random 

errors 𝑢0𝑖 and 𝑢1𝑖 are assumed to follow a bivariate normal distribution with mean 0, variance 

𝜎𝑢0
2  and 𝜎𝑢1

2  and covariance 𝜎𝑢01. It is possible to add non-linear growth functions or splines but 

they are not directly relevant to the current discussion and for simplicity these will not be 

outlined at this stage.  

One can then add time invariant or baseline covariate 𝑥1, such as gender or baseline age, 

which may be expressed as: 

3. 𝑦𝑡𝑖 =  𝛽0𝑖 +  𝛽0𝑖𝜆𝑡𝑖 +  𝛽2𝑥1𝑖  +  𝑒𝑡𝑖 

 𝛽0𝑖 =  𝛽0 + 𝑢0𝑖 

 𝛽1𝑖 =  𝛽1 +  𝑢1𝑖 

An alternative way of including the baseline covariate is to include it in the level 2 section of the 

model. This is more similar to the notation used in the structural equation modelling literature. 

This is expressed as: 

4. 𝑦𝑡𝑖 =  𝛽0𝑖 +  𝛽0𝑖𝜆𝑡𝑖 +  𝑒𝑡𝑖 

 𝛽0𝑖 =  𝛽0 + 𝛽02𝑥2𝑖  +  𝑢0𝑖 

 𝛽1𝑖 =  𝛽1 + 𝛽12𝑥2𝑖  +  𝑢1𝑖 

This is all expressed in the format known variously as a multilevel model, random effects model 

or growth curve model. These have been a popular way to measure cognitive change. Latent 

growth curve models are an alternative way of representing change over time. In the latent 

variable framework the observed values of an individual’s trajectory are thought of as 

measurements used to represent an underlying and unobserved latent trajectory which gives 

rise to those measurements. Whilst, in general, the multilevel modelling approach is more 

computationally efficient and latent growth curve modelling more flexible, it should be noted that 

they produce comparable results when used to estimate the same set of relationships and 

assumptions.(Chou, Bentler, & Pentz, 1998; Curran, 2003) 

A latent growth curve model with a linear growth assumption can be expressed as: 
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5. 𝑦𝑡𝑖 =  𝜂0𝑖𝜆0𝑡 +  𝜂1𝑖𝜆1𝑡 + 𝜖𝑡𝑖 

 𝜂0𝑖 =  𝜈0 + 𝜁0𝑖 

 𝜂1𝑖 =  𝜈1 +  𝜁1𝑖 

The similarities with equation 2 are quite clear. Instead of the first line representing the level 1 

portion of a multilevel model, it now represents the measurement part of a latent growth curve 

(LGC). Similarly, the second and third lines here represent the structural part of a LGC which 

are broadly equivalent to latent intercepts and slopes. 

The β’s representing coefficients have been replaced with 𝜂0𝑖 representing a latent variable for 

the intercept and 𝜂1𝑖 which represents a latent variable for growth trajectory. The term 𝜖𝑡𝑖 

represents the measurement error variances, these are assumed to be homogenous over time. 

The terms 𝜈0 and 𝜈1 represent the intercepts for the corresponding latent variables and 𝜁0𝑖 and 

𝜁1𝑖 their residuals. The loading factors for the latent variables are 𝜆0𝑖 and 𝜆1𝑡. For the intercept 

all factor loadings are fixed to 1 so 𝜆0𝑡=1. For the growth trajectory the loading is done such that 

it represents the appropriate measure of time, so for linear growth 𝜆1𝑡 = 𝑡 − 1. Additional terms 

can be added to allow non-linear change over time.  

One can then expand this model in a similar fashion to equation 4 by adding time invariant 

covariates: 

6.  𝑦𝑡𝑖 =  𝜂0𝑖𝜆0𝑡 +  𝜂1𝑖𝜆1𝑡 + 𝜖𝑡𝑖 

 𝜂0𝑖 =  𝜈01 +  𝜈02𝑥2𝑖  +  𝜁0𝑖 

 𝜂1𝑖 =  𝜈11 + 𝜈12𝑥2𝑖  +  𝜁1𝑖 

Time-varying covariates can also be added. The time varying covariates directly influence 𝑦𝑡𝑖 in 

the structural part of the model. They can be allocated random slopes if this is substantively of 

interest. In this model used for this thesis the substantive interest was on influences on 

longitudinal trajectories rather than occasion specific measurements. Moreover, the focus is on 

the total effect of education and therefore only additional confounders, not mediators following 

education were included. The fact that the time varying covariates have a separate effect on 

both latent intercept and change over time is key for testing what type of brain resilience 

education provides. If there is only a significant effect on the intercept then this provides support 

for education providing brain reserve but not neural or neural compensation reserve. If there is 

an effect on latent growth then the direction of this effect will differentiate between neural 

reserve or neural compensation.   

 

3.1.2 Growth Mixture Models 

The advantage of an SEM approach is that this model can then be extended in a variety of 

ways which are different to the extensions possible in the multilevel modelling framework. One 

of the most straightforward SEM extensions is that either outcomes or covariates can 
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themselves be latent variables. This has particular potential for cognitive function because it is 

measured using a combination of tests and is not directly observable. Another important 

extension emphasised previously is the ability to model trajectories for multiple groups with 

different covariance structures. 

The growth curve models above account for individual differences in baseline and change over 

time by allowing intercept and slope to vary between individuals. These individual differences 

are what is captured as the random effects. However, these models implicitly assume that the 

sample is drawn from a single population with a single set of population parameters around 

which individuals vary randomly. As described in previous sections this assumption is unlikely to 

hold in studies of cognitive ageing. 

In a growth mixture model (GMM) individuals in the sample are allocated to classes of latent 

trajectory and vary randomly around the mean growth curve for their class. To do this one 

introduces a categorical latent trajectory variable 𝑐𝑗which represents unobserved group 

membership for individual i. There are K possible latent classes such that 𝑐𝑗 = 1, … , 𝐾. Note that 

the time invariant variable now has effects on both likelihood of class membership and directly 

on the intercept and slope within class. Algebraically this can be represented using a 

superscript to denote that parameter estimates are contingent upon class membership. 

7. 𝑦𝑡𝑖
𝑐𝑖 =  𝜂0𝑖

𝑐𝑖 𝜆0𝑡 +  𝜂1𝑖
𝑐𝑖 𝜆1𝑡 +  + 𝜖𝑡𝑖

𝑐𝑖 

 𝜂0𝑖
𝑐𝑖 =  𝜈01

𝑐𝑖  + ∑ 𝜈02
𝑐𝑖 𝑥2𝑖

𝑘
𝑖  +  𝜁0𝑖

𝑐𝑖 

 𝜂1𝑖
𝑐𝑖 =  𝜈11

𝑐𝑖 +  ∑ 𝜈12
𝑐𝑖 𝑥2𝑖

𝑘
𝑖  +  𝜁1𝑖

𝑐𝑖   

Here 𝑦𝑡𝑖
𝑐𝑖  denotes the outcome at occasion t for individual i who is a member of the latent class 

𝑐𝑖. Otherwise all terms retain the same interpretation, except for where a 𝑐𝑖 superscript indicates 

that the parameter is estimated within latent class and not the total sample. 𝜂0𝑖
𝑐𝑖  is the class 

dependent latent intercept and 𝜂1𝑖
𝑐𝑖  class dependent latent growth. The intercepts of these latent 

variables are 𝜈01
𝑐𝑖  and 𝜈11

𝑐𝑖 . A vector of covariates which have a class dependent effect on the 

latent intercept and slope are given by ∑ 𝜈02
𝑐𝑖 𝑥2𝑖

𝑘
𝑖  and ∑ 𝜈12

𝑐𝑖 𝑥2𝑖
𝑘
𝑖 . For simplicity all covariates in 

equation 7 have class dependent effects, however it is possible to have a mix of covariates with 

both class dependent and independent effects. The error terms for the intercept 𝜁0𝑖
𝑐𝑖 and slope 

𝜁1𝑖
𝑐𝑖 are shown here also being free to vary by class. As with the covariates this can, and 

frequently is, be restricted to be constant across class. All residuals continue to be assumed to 

be normally distribute and independent and identically distributed, however they can be allowed 

to covary.  

As described in the literature review the inclusion of latent classes of cognitive function is 

important to allow for population heterogeneity. The identification of population heterogeneity 

then allows for the effect of education on intercept and slope to vary by class. This explicitly 

models education as a source of brain resilience and not brain resistance. Furthermore, certain 

mechanisms of resilience may only function in health, or only need to function in disease, and 
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education’s impact on these may not be equal. The ability to allow the effect of education to 

vary by class means that we are able to test this in an ante-mortem population sample. 

 

3.1.3 Multiple Indicator Growth 

As mentioned above one of the other advantages to the SEM approach to modelling change 

over time is that the outcome in question can be a latent variable itself. These models are 

variously known as multiple indicator growth curve models (MI-GCM, the preferred term here), 

second order growth curve models or curve-of-factors models.(Chan, 1998; Hancock, Kuo, & 

Lawrence, 2001) 

These models have several advantages over single indicator growth curve models. These 

include greater statistical power, being the ability to separate change over time from 

measurement error and the ability to test measurement invariance over time.(Bishop, Geiser, & 

Cole, 2015; Chan, 1998; Ferrer, Balluerka, & Widaman, 2008; McArdle, Grimm, Hamagami, 

Bowles, & Meredith, 2009; von Oertzen, Hertzog, Lindenberger, & Ghisletta, 2010) The latter 

two are of particular importance for this research, with longitudinal invariance being particularly 

neglected in most cognitive ageing research.  

Firstly, we return to the unconditional single class case in order to focus on the describing 

multiple indicator growth. The key difference is that on the left-hand side of the measurement 

model the outcome is no longer a single observed variable 𝑦𝑡𝑖but a latent variable 𝜏𝑡𝑖. Let 𝑦1𝑡𝑖, 

𝑦2𝑡𝑖 and  𝑦3𝑡𝑖 be the 3 observed indicators of 𝜏𝑡𝑖: 

8. 𝜏𝑡𝑖 =  𝜂0𝑖𝜆0𝑡 +  𝜂1𝑖𝜆1𝑡 +  𝜁𝑡𝑖 

 𝜂0𝑖 =  𝜈0 + 𝜁0𝑖 

 𝜂1𝑖 =  𝜈1 +  𝜁1𝑖 

 𝑦1𝑡𝑖 = 𝛼01 + 𝛼11𝜏𝑡𝑖 + 𝜖1𝑡𝑖 

               𝑦2𝑡𝑖 = 𝛼02 + 𝛼12𝜏𝑡𝑖 + 𝜖2𝑡𝑖 

               𝑦3𝑡𝑖 = 𝛼03 + 𝛼13𝜏𝑡𝑖 + 𝜖3𝑡𝑖 

Here 𝛼01 to 𝛼03 represent the intercept of the observed factor indicators, also known as 

thresholds in the case of binary factor indicators. 𝛼11 to 𝛼13 are the factor loadings relating to the 

factor τ for each of 𝑦1𝑡𝑖 to 𝑦3𝑡𝑖. The terms 𝜖1𝑡𝑖 to 𝜖3𝑡𝑖 represent the unique factor score for each 

individual at each time point. As mentioned above an important strength of this approach is that 

it is possible to separate measurement error from change over time and improvements in 

statistical power. The first of the individual research papers presents results comparing a 

multiple indicator growth curve model to those from a conventional regression analysis which 

uses of sum-score approach. This was an extension from initial descriptive work identifying to 

cognitive factors within the available dataset.  
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To extend equation 8 further, we can then add back into the equation multiple classes of 

change over time (note the factor structure is assumed to be invariant across classes): 

9.  𝜏𝑡𝑖
𝑐𝑖 =  𝜂0𝑖

𝑐𝑖 𝜆0𝑡 + 𝜂1𝑖
𝑐𝑖𝜆1𝑡 + 𝜁𝑡𝑖

𝑐𝑖 

 𝜂0𝑖
𝑐𝑖 =  𝜈0

𝑐𝑖 +  𝜁0𝑡𝑖
𝑐𝑖  

 𝜂1𝑖
𝑐𝑖 =  𝜈1

𝑐𝑖 +  𝜁0𝑡𝑖
𝑐𝑖  

 𝑦1𝑡𝑖 = 𝛼01 + 𝛼11𝜏𝑡𝑖 + 𝜖1𝑡𝑖 

               𝑦2𝑡𝑖 = 𝛼02 + 𝛼12𝜏𝑡𝑖 + 𝜖2𝑡𝑖 

               𝑦3𝑡𝑖 = 𝛼03 + 𝛼13𝜏𝑡𝑖 + 𝜖3𝑡𝑖 

One of the core assumptions required by this model is that the factor structure (𝛼01 to 𝛼03 and 

𝛼11 to 𝛼13) does not change over time. This is known as measurement invariance, which will be 

addressed in a subsequent section. 

 

3.2 Modelling Missing Data Mechanisms in Bayesian Growth Mixture Models 

Missing data is typically divided into data which is missing completely at random (MCAR; 

independent of observed and unobserved data, missing at random (MAR; independent of 

unobserved data conditional on observed data) and not missing at random (NMAR; not 

independent of unobserved data).(Rubin, 1976) Modern implementations of both frequentist full 

information maximum likelihood and Bayesian estimators are able to unbiasedly estimate 

growth curve models under MAR or MCAR but not NMAR.(Q. Chen & Ibrahim, 2014; X.-Y. 

Song, Lu, Hser, & Lee, 2011) The assumptions of MCAR or MAR are unlikely to be valid in the 

context of longitudinal analysis of cognitive function. The rate of decline is very likely to be 

related to the propensity to drop-out via death, loss to follow-up or other mechanisms. MCAR is 

therefore not a not a valid assumption. MAR is more probable, but it is still unlikely that, even 

with a wide range of covariates, dropout is random conditional on observed data.  

This means that there is likely to be at least one unobserved, or latent, missing data 

mechanism. It is likely that this dropout mechanism is associated with both education and 

cognitive function. Individuals with higher levels of cognitive function are likely to be able to 

sustain a greater degree of loss before becoming functionally impaired. This would mean that 

those individuals are observed for longer than individuals with similar decline but lower 

education and poorer baseline functioning. If not adjusted for this would give the impression of 

greater education being associated with greater decline in cognition. If present, this would mean 

that the effect of education on cognitive reserve is mis-interpreted and so it is important to 

account for if possible.  

 A variety of approaches have been developed in the Bayesian and frequentist SEM literature 

for handling NMAR which focus on modelling that latent process. NMAR is also known as 

informative missingness because this latent process can be seen not simply as a nuisance in 
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the data but as an indicator of an important process in its own right. These models fall into two 

principle approaches, selection modelling (closely related to joint survival modelling) and pattern 

mixture modelling.(Muthen et al., 2011) These are able to account for at least one potential 

informative missingness model present in the data. The cost of this is that the missingness 

model must rely on untestable parametric modelling assumptions.(Enders, 2011)   

The distinctive feature of pattern mixture modelling is that dropout is made a predictor of change 

over time.(Muthen, Asparouhov, Hunter, & Leuchter, 2011) One way of implementing this is that 

the latent variables for intercept and growth are regressed on missingness at each time 

point.(Little, 2008) This makes cognitive function at one time point conditional on survival to that 

time point. In the context of a GMM, an alternative formulation is to use missingness indicators 

to predict latent class of growth trajectory.(Roy, 2003) The latter model is not possible to 

implement in MPlus using Bayesian estimation at the current time and writing a software 

program to run these models was beyond the scope of this thesis.(Muthen et al., 2011) From a 

substantive perspective, these models are not a particularly good fit with cognitive function, as 

the model assumes that one’s propensity to drop out influences cognitive function.  

The other main family of NMAR models in SEM, selection models, do make good substantive 

sense. The distinctive feature being that cognitive function predicts dropout. The classical 

example of selection modelling is the Diggle and Kenward model, in which missingness at each 

time point is regressed on the observed outcome on that occasion and the previous 

occasion.(Diggle & Kenward, 1994) These models can alternatively be specified so that dropout 

is dependent not on occasion specific values, but on the latent intercept and slope. More 

recently, both of these models have been extended to the growth mixture modelling case in 

which missingness is dependent on latent class and the effect of slope and intercept may vary 

by latent class.(Beunckens et al., 2008; Lu, Zhang and Lubke, 2011; Muthen et al., 2011) If 

dementia pathology is the causal mechanism underlying latent class of cognitive trajectory, then 

it is highly plausible that both one’s individual latent cognitive function and latent trajectory class 

would be likely to influence propensity to dropout. In this study, the analysis will be started using 

a model where missingness is dependent on latent class, intercept and slope. Applying this to 

the single indicator GMM with time-invariant covariates from equation 7, the latent class 

selection model is specified as: 

10. 𝑦𝑡𝑖
𝑐𝑖 =  𝜂0𝑖

𝑐𝑖 𝜆0𝑡 +  𝜂1𝑖
𝑐𝑖 𝜆1𝑡 +  + 𝜖𝑡𝑖

𝑐𝑖 

 𝜂0𝑖
𝑐𝑖 =  𝜈01

𝑐𝑖  + ∑ 𝜈02
𝑐𝑖 𝑥2𝑖

𝑘
𝑖  +  𝜁0𝑖

𝑐𝑖 

 𝜂1𝑖
𝑐𝑖 =  𝜈11

𝑐𝑖 +  ∑ 𝜈12
𝑐𝑖 𝑥2𝑖

𝑘
𝑖  +  𝜁1𝑖

𝑐𝑖   

𝑙𝑜𝑔𝑖𝑡(𝑑𝑡𝑖) =  𝛽0𝑖
𝑐𝑖 + 𝛽2𝑖

𝑐𝑖𝜂0𝑖
𝑐𝑖 + 𝛽3𝑖

𝑐𝑖𝜂1𝑖
𝑐𝑖 + ∑ 𝛽(𝑛+3)𝑖

𝑐𝑖 𝑥𝑛𝑖
𝑛
1 +  𝜄𝑡𝑖  

The first 3 lines of the equation remain unchanged to equation 7. A logistic regression is 

specified dropout at time 𝑡, denoted 𝑑𝑡𝑖. 𝛽0𝑖
𝑐𝑖 gives the class specific intercept for dropout at time 

t. The difference in the intercept between classes is interpreted as the effect of class on the 
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propensity to dropout. In this model there is a coefficient for both latent intercept (𝛽2𝑖
𝑐𝑖𝜂0𝑖

𝑐𝑖 ) and 

latent growth (𝛽3𝑖
𝑐𝑖𝜂1𝑖

𝑐𝑖 ) affecting propensity to dropout. If strictly implemented as per Beunckens 

(2008) then only a term for the latent intercept is included. A vector of covariates and 

coefficients for those covariates are included in ∑ 𝛽(𝑛+3)𝑖

𝑐𝑖 𝑥𝑛𝑖
𝑛
1  as well as a residual variance for 

the dropout logistic regression 𝜄𝑡𝑖. 

 

3.3 Measurement Invariance 

 

3.3.1 Conventional (frequentist) Measurement Invariance 

Tests of cognitive function are never pure measurements in the same sense as height or 

weight. Each test, whether aimed at a specific cognitive function or global cognition, measures 

that function and a range of other functions. For example, whilst a word recall task primarily 

tests short term memory, it also tests other cognitive functions such as attention. As well as 

other cognitive functions, physical functions such as hearing will also be tested by this task to a 

certain degree. This is the primary motivation for analysing cognitive function as a latent 

variable. Several tests of one primary function will place different demands on secondary 

cognitive and physical functions required to complete each of the tasks. By extracting the 

common variance between different working memory tasks, one is able to estimate a latent 

factor of working memory.(Horn & McArdle, 1992)  

In the longitudinal setting, this creates a problem because these secondary functions may be 

affected at a different rate to the primary function by ageing or disease.(McAvinue et al., 2012; 

Wiegand et al., 2014). Even the way the data is collected, for example if the same task was 

performed using paper on one occasion and computerised later in the study, could affect the 

relative contributions of each function to the overall score. Practice effects can also play an 

important role. (Calamia, Markon, & Tranel, 2012) For example, more efficient retrieval 

strategies could be used in a working memory task which would increase the relative 

contribution of working memory to the overall test score.  

Say one has a working memory task. At baseline this task measures 80% working memory, 

15% attention and 5% hearing. After 8 years of follow-up this samples attention and hearing 

have deteriorated more rapidly than their working memory. The latent variables now measures 

70% working memory, 20% attention and 10% hearing. You have no way to measure this 

directly. So, if your participants overall scores have reduced, you cannot be certain whether the 

change is due to deterioration in working memory, the primary cognitive function of interest, or 

one of the secondary functions. 

In factor analysis, this is known as measurement invariance (MI).(van de Schoot et al., 2012). 

MI has been identified as a problem in longitudinal studies of cognitive function since at least 

the late 1980s and early 1990s. (Horn & McArdle, 1992; Schaie, Willis, Jay, & Chipuer, 1989). 
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Population research on cognitive function has frequently overlooked this issue.(Blankson & 

McArdle, 2013; McArdle, Fisher, & Kadlec, 2007; Wicherts, 2016). Most often a summed score, 

such as the MMSE, is used and the instrument’s measurement properties are not examined.  

If MI is ignored, it biases estimates of latent cognitive function towards the direction of the 

change in latent intercept.(Ferrer et al., 2008; Horn & McArdle, 1992; van de Schoot et al., 

2013; Wicherts, 2016; Widaman, Ferrer, & Conger, 2011). An increase in latent intercept means 

an over-estimation of latent cognition. Practice effects would be expected to increase the latent 

intercept leading to an over-estimation of cognitive ability at follow-up visits. This would lead to 

an underestimation of decrease over time.(Wicherts & Dolan, 2010)  

A change in factor loading is more complex and less predictable.(Wicherts, 2016) Take the 

example of the factor loading for a mean centred continuous variable where at a second time 

point the factor loading has decreased. In this case the latent mean will be under-estimated for 

those with an above mean score and over-estimated for those with a below mean score. For 

example, increased sensory impairment at later visits would weaken the association between 

measurable and latent cognitive function. This would decrease the factor loading and lead to 

overestimation of cognitive function for low scorers and underestimation for high scorers as time 

progresses. See Wicherts (2016) for a clear and concise discussion of this problem with 

additional illustrations. If either form of invariance is present it may lead to either quantitative or 

qualitatively incorrect inferences regarding the cognitive reserve provided by education.    

We return to focus on the measurement part of our earlier growth model. Underlying the set of l 

(n=0,…,l) continuous observed variables (y) that have been measured, there is a latent variable 

𝜏 (B. O. Muthén & Asparouhov, 2013; van de Schoot et al., 2013). As above, they are measured 

in individual i at time t. The measurement part is: 

11.  𝑦𝑙𝑡𝑖 = 𝛼0𝑙𝑡 + 𝛼1𝑙𝑡𝜏𝑡𝑖 + 𝜖𝑙𝑡𝑖  

Here 𝑦𝑙𝑡𝑖 is the observed value of variable l at time t in individual i, 𝛼0𝑙𝑡 is the intercept for 

variable 𝑙 at time t. 𝛼11𝑡 is the loading for variable 𝑙 at time t. 𝜏𝑡𝑖 is the value of the latent variable 

at time t for the variable 𝑙 and 𝜀𝑙𝑡𝑖 is the error for individual i at time t for observed variable 𝑙. 

This model assumes independence amongst the observed variables conditional on the factor. 

The residuals are uncorrelated with the factors and normally distributed with a mean of 0. The 

factor metric is usually set by fixing 𝛼1𝑙𝑡 = 1 for one observed variable across all measurement 

occasions. By convention 𝑙 = 1 is set as this reference variable, but the variable order is 

arbitrary. In equation 9 it can be seen that the assumption of measurement invariance is shown 

by the fact that there is no 𝑡 subscript for either the intercepts (𝛼01 to 𝛼03) or loadings (𝛼11 to 

𝛼13). Linear growth of a factor over time can be specified as in equation 8 above, but with the 

addition of those subscripts: 

12. 𝜏𝑡𝑖 =  𝜂0𝑖𝜆0𝑡 +  𝜂1𝑖𝜆1𝑡 +  𝜁𝑡𝑖 

 𝜂0𝑖 =  𝜈0 + 𝜁0𝑖 

 𝜂1𝑖 =  𝜈1 +  𝜁1𝑖 
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 𝑦1𝑡𝑖 = 𝛼01𝑡 + 𝛼11𝑡𝜏𝑡𝑖 + 𝜖1𝑡𝑖 

               𝑦2𝑡𝑖 = 𝛼02𝑡 + 𝛼12𝑡𝜏𝑡𝑖 + 𝜖2𝑡𝑖 

               𝑦3𝑡𝑖 = 𝛼03𝑡 + 𝛼13𝑡𝜏𝑡𝑖 + 𝜖3𝑡𝑖 

 

For continuous variables, the specification of MI consists of 4 steps.(van de Schoot et al., 2012; 

Widaman et al., 2011)  

 

i) The same variables load onto the same factors at each time point (the same vector 

of 𝑦𝑙𝑡𝑖 for each 𝜏𝑡𝑖). 

ii) The factor loadings are equal at each time point (𝛼1𝑙1 = 𝛼1𝑙2 = ⋯ = 𝛼1𝑙𝑡).  

iii) The intercepts are equal at each time point ( 𝛼0𝑙1 = 𝛼0𝑙2 = ⋯ = 𝛼0𝑙𝑡). 

iv) The residual variances fixed across time (𝜖𝑙1𝑖 = 𝜖𝑙2𝑖 = ⋯ = 𝜖𝑙𝑡𝑖).  

If only i holds, this is known as configural invariance, i-ii weak invariance, i-iii strong invariance 

and i-iv strict invariance. In the case of binary observed variables the second stage, weak 

factorial invariance is skipped because the item probability curve is influenced simultaneously 

by loading and intercept.(L. K. Muthén & Muthén, 2014) In many respects, the most important 

criteria are i to iii because strong measurement invariance needs to be established in order to 

compare latent means over time (Ferrer et al., 2008; Widaman et al., 2011). If the assumption of 

strong MI does not hold, then mean differences over time in a latent variable of cognitive 

function cannot be clearly attributed to change in true cognitive function. This is because the 

scale of the dependent variable has changed. This means that the latent mean at one time point 

is not directly comparable to the latent mean at another time point.  It should be noted that this 

same problem applies to any cognitive score made from combining multiple cognitive tests 

whether they are combined using factor analysis, simple addition of results or any other method. 

One significant advantage of the latent variable method is that unlike, say simple addition, it is 

possible to test whether this assumption holds true. 

However, testing for measurement invariance is not always straightforward. The simplest 

informal approach involves simply running models with and without MI. The results can then be 

compared and if there is conflict between these results then it is inferred that MI is not 

present.(Widaman et al., 2011). The results from these models will never match perfectly. So, 

with this approach an implicit decision is made about the degree of conflict in the results which 

is acceptable before MI is rejected. This decision is made using substantive prior subject 

knowledge and includes an assumption about the acceptable degree of invariance. Within a 

frequentist framework there is no way to formalise this judgement.  

The standard approach to formally testing MI is sequentially testing global model fit for each 

level of measurement invariance. Initially configural invariance is specified and global model fit 



70 

 

checked to see if this adequately matches the data. Each increasing level of strictness is then 

specified (weak, strong then strict) and the global model fit statistics compared. The basic test is 

the chi-squared test of model fit, However, with large sample sizes this is a very strict test and 

strong factorial invariance over time may be rejected even in robust longitudinal studies of 

cognitive ageing (Blankson & McArdle, 2013; B. O. Muthén & Asparouhov, 2013). Therefore, 

especially with large sample sizes, alternative fit indices, in particular the comparative fit index 

(CFI), are frequently used instead (Cheung & Rensvold, 2002; Meade & Bauer, 2007).  

Recommendations for the change in CFI which establishes MI differ between studies and these 

recommendations vary between 0.01 and 0.002.(F. F. Chen, 2007; Cheung & Rensvold, 2002; 

Meade & Bauer, 2007; Meade, Johnson, & Braddy, 2008; Short, 2014). These are clearly large 

relative differences. The most appropriate cut-off depends on both the number of occasions 

used and the number of indicators for the latent variable being used. As with any diagnostic 

test, in diagnosing measurement non-invariance, the pre-test probability of measurement 

invariance is also important in determining the post-test probability of MI. However, in a 

frequentist framework there is no formal way to include this in the calculation.  

In addition to these uncertainties with tests of MI, they are not informative about which 

parameters are invariant. The global tests of MI rely on the choice of an invariant reference 

indicator.(Shi, Song, Liao, Terry, & Snyder, 2017) The reference variable sets the scale against 

which the other indicator variables are tested for invariance. If reference variable is non-

invariant then that scale is changing over time. This can lead to other invariant factor indicators 

testing ‘false positive’ for non-invariance. Equally, if other observed variables show non-

invariance of the same direction and magnitude then they can test ‘false negative’ for 

invariance.  

Assuming a non-invariant reference variable has been chosen, there still remains the question 

of identifying which indicator variables are non-invariant.  To identify which parameters are non-

invariant one can either relax each equality constraint in turn or use modification indices (which 

give a measure of the improvement in model fit which would result from relaxing certain 

modelling assumptions). Relaxing each equality constraint sequentially means allowing each 

loading (𝛼1𝑙𝑡) or intercept (𝛼0𝑙𝑡) at each time point individually to be different to the same 

intercept or loading at all other time points. The change in model fit can then be assessed. If the 

model fit improves then this parameter is likely to be non-invariant. This rapidly escalates with 

increased numbers of measurement occasions or indicator variables. 3 indicator variables 

measured at 3 time points means a total of 12 parameters need to be tested. Simply increasing 

this to 4 observed variables at 4 time points means 24 parameters. This increases further if the 

reference variable is changed in order to assess for a non-invariant reference variable. In 

addition to being time-consuming, it significantly increases the chance that random variation will 

lead to different invariance solutions being identified depending upon the order in which the 

constraints are relaxed (R. C. MacCallum, Roznowski, & Necowitz, 1992; Bengt Muthén & 

Asparouhov, 2012). Modification indices avoid this problem by testing parameters 

simultaneously. However, they are limited in application because they are only validated for two 
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time points, less than is necessary for growth curve analysis.(B. O. Muthén & Asparouhov, 

2013)  

An additional consideration is the source of the invariance once this has been identified. In 

some cases, a small number of parameters may be highly non-invariant. It may be possible to 

omit one of these indicators and thus avoid the non-invariance. Whilst losing information in this 

manner is undesirable, it is usually preferable to lose information but have valid and 

interpretable results. If it is not possible for either substantive reasons or because there are 3 or 

less observed factor indicators partial measurement invariance can used. This is where the non-

invariant loadings are freed and the others held constant. This may avoid making incorrect 

assumptions about measurement invariance but does not eliminate difficulties in interpretation 

of the results.  

Non-invariance may also result from multiple loadings have minor amounts of non-invariance. 

This may result from random sampling variation if there are a large number of parameters or 

from slight changes across multiple cognitive domains influencing observed scores on cognitive 

tests. Commonly used criteria for the rejection of strong or strict measurement are overly 

sensitive to the rejection of models with trivial invariance of multiple factor loadings in large 

samples.(Meade & Bauer, 2007) Substantively insignificant amounts of non-invariance may 

then lead to the rejection of MI in situations where it would not result in meaningful differences 

to the conclusions drawn from the analysis. There is no particular frequentist solution to either 

quantifying or solving this problem. When I found uncertain results regarding measurement 

invariance using frequentist tests in my analysis of the ELSA cognitive function data, a Bayesian 

approach to measurement invariance offered a possible solution. This formed the basis of the 

second paper presented in this thesis.  

 

3.3.2 Bayesian Measurement Invariance 

Bayesian structural equation modelling (BSEM) has the potential to address some of the 

problems outlined above with conventional measurement invariance. Approximate MI has been 

developed to take account of multiple small or moderate non-invariances in loadings, intercepts 

or thresholds which are large enough to cause the model to be rejected by conventional fit 

statistics but small enough to be substantively unimportant. This makes it possible in some 

situations to avoid having to reject an essentially valid model or having a valid model where one 

cannot compare latent means over time. Additionally, it provides a one-step method of 

identifying which parameters are invariant.(B. O. Muthén & Asparouhov, 2013; van de Schoot et 

al., 2013; Verhagen & Fox, 2013) This provides similar information to that which is obtained 

using modification indices but is not limited by the number of measurement occasions.  

The basic effect of approximate MI is that instead of requiring that all loadings be exactly equal, 

they are instead ‘tethered’. They do not have to be exactly equal but are allowed to differ only 

by a substantively unimportant amount. This means that it is possible to compare latent means 

over time despite small amounts of non-invariance. As described above the conventional 
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condition which must be met for strong factorial invariance that for each of the observed 

variables factor loadings must be equal (𝛼1𝑙1 = 𝛼1𝑙2 = ⋯ = 𝛼11𝑡) and the intercepts must also be 

equal (𝛼0𝑙1 = 𝛼0𝑙2 = ⋯ = 𝛼0𝑙𝑡).  

Let ђ be the difference between 𝛼’s such that 𝛼1𝑙1 −  𝛼1𝑙2 = ђ𝑙12 , 𝛼1𝑙2 −  𝛼1𝑙3 = ђ𝑙23 and 𝛼1𝑙1 −

𝛼1𝑙3 = ђ𝑙13. Also let be the difference between 𝑣’s such that 𝛼0𝑙1 − 𝛼0𝑙2 = и𝑙12 , 𝛼0𝑙2 − 𝛼0𝑙3 =

и𝑙23 and 𝛼0𝑙1 −  𝛼0𝑙3 = и𝑙13. The conventional frequentist assumption of strong invariance can 

then be defined in Bayesian terms as the strongly informative priors of ђ𝑙𝑋𝑋~𝑁(0,0) and 

и𝑙𝑋𝑋~𝑁(0,0) (B. O. Muthén & Asparouhov, 2013). From a Bayesian perspective, the factor 

loadings and intercepts are themselves random variables. This makes the assumption of 0 

variance between them defined in the priors above much less plausible. If there is past 

evidence or substantive logic which suggests there will be extremely limited differences 

between intercepts or loadings then this more plausible assumption can be included in the prior. 

Aside from the practical reasons to consider approximate measurement invariance, this 

provides a strong theoretical rational for preferring the Bayesian approach in this situation. 

Exact equality is a very strong assumption in longitudinal studies of cognitive function due to 

issues such as random variation across many time-points, attrition or practice effects.(Blankson 

& McArdle, 2013; Putnick & Bornstein, 2016)  

Approximate measurement invariance is implemented as a strongly informative prior with 0 

mean and small variance such as ђ𝑙𝑋𝑋~𝑁(0,0.01) and и𝑙𝑋𝑋~𝑁(0,0.01) for all loadings and 

intercepts except 1 factor loading at one time point which is fixed to set the scale. The 

researcher can decide a priori how long to make the tether by specifying an appropriate prior for 

the difference between loadings or intercepts over time. The size of the prior variance therefore 

sets the length of the tether and formalises the degree of invariance which is allowable. 

Difference statistics are then calculated for parameter by dividing the difference from the mean 

for the parameter by the standard deviation of the differences (
[и−и̅]

𝜎и
,

[ђ−ђ̅]

𝜎ђ
). The difference at 

each time-point is tested to see whether it is statistically significantly different from the mean of 

the loadings at all time-points. This tells you if any of the loadings have broken the tether and 

show a degree of non-invariance beyond that believed to be unimportant by the researcher. If 

desired one can then either reduce or elevate the variance in the prior and inspect the pattern 

by which factor loadings change. As both numerator and denominator are related to the prior 

variance then this relationship can be unpredictable as the prior variance in changed. However, 

there is as yet no established body of literature on model selection. So, whilst these additional 

results may be informative, to some extent they invalidate the theoretical value of the prior as a 

quantification of pre-test probability which was chosen with a specific rationale.  

Once this model with all loadings and intercepts specified as approximate MI has been run then 

a further model is run. If there are no parameters which break their tether then it is appropriate 

to specify a model with full MI in the traditional sense.(van de Schoot et al., 2013) If there are a 

small number of highly non-invariant parameters then partial measurement invariance performs 

optimally. If it is the case that the source of non-invariance is many parameters small amounts 
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of non-invariance then continuing with approximate measurement invariance is most 

appropriate.  

As an additional note approximate MI overcomes the problems in identifying the truly non-

invariant parameters caused by fixing one indicator’s loadings at 1 for all time-points. This is 

because, as mentioned above, when using the Bayesian approximate MI approach, one need 

only fix single loading for a single observed indicator at a single time-point to 1 (B. O. Muthén & 

Asparouhov, 2013; Xu & Green, 2015).  

 

3.4 Marginal Structural Models and Inverse Probability of Treatment and Censoring Weighting 

 

3.4.1 Statistical Motivation 

As described in the previous section, the flexibility afforded by growth mixture models allows 

detailed exploration of which aspect of brain resilience and cognitive reserve is contributed to by 

education. Drawing on the theoretical models outlined in the introduction cognitive reserve is 

conceptualised as ‘the accumulation of neural resources before the brain is affected by age-

related processes’.(Cabeza et al., 2018) This framework fits well with education because the 

vast majority of education occurs during early life, a period of particular brain growth and 

development. This model does not fit as well with activities which older adults can undertake in 

later life which may improve their cognitive functioning. Once one’s level of cognitive reserve 

has been achieved, concern then turns to how to prevent this being lost. This is known as 

cognitive maintenance as is defined as ‘the preservation of neural resources, which entails 

ongoing repair and replenishment of the brain in response to damage’.(Cabeza et al., 2018)  

This can include mechanisms involved in both brain resistance and brain resilience. As damage 

may be due to either disease or ageing, the study of brain maintenance at a population level 

orientates towards a pragmatic approach focussed on preventing clinical levels of impairment 

as a common end point. Cognitively stimulating activities (CSA) are one of the most important 

potential means by which individuals may be able to improve their brain maintenance. However, 

because it is a dynamic process, studying how CSA may contribute to brain maintenance 

presents methodological challenges distinct to those found in studying reserve. 

The challenge which we will focus on is that good cognition is associated with greater exposure 

to CSA and greater exposure to CSA may be related to improved cognition. So, if CSA 

improves cognition then it also increases the chance of re-exposure and thus confounds itself. 

Does better brain maintenance cause increased CSA exposure, does increased CSA exposure 

improve brain maintenance or both? This problem is known as time dependent confounding 

where the confounder is affected by prior exposure.(Daniel et al., 2013) This effect is 

particularly problematic in the study of dementia due to the long prodromal phase of the illness 

prior to overt functional impairment. There is often a period of years in which developing ADP 

may cause an observable change individual’s behaviour and social exposures before functional 
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decline. This may lead to a situation commonly referred to as reverse causation. Because the 

social change is observed before the dementia it appears as if the social change is influencing 

the dementia when in reality it may be the other way around. The situation may be further 

complicated if both cognitive function and CSA affect each other. One method which is able to 

account for this type of confounding, but not yet used to study cognitive maintenance, is 

marginal structural models (MSMs) to which we now turn.  

The following section draw broadly from the works of Robins (Robins et al., 2000) for the initial 

development of MSMs, the exposition of the approach by VanderWeele (VanderWeele, 

Hawkley, Thisted, & Cacioppo, 2011) and Daniel (Daniel et al., 2013), the implementation in 

Stata by Fewell (Fewell et al., 2004) and Bodnar (Bodnar, Davidian, Siega-Riz, & Tsiatis, 2004) 

for the informative application of a MSM of treatment over time with a single final outcome, as 

well as all their respective co-authors. We also reference papers by Zou who has developed the 

use of a Poisson regression with robust error variance estimation to directly estimate relative 

risk in preference to the odds ratio more commonly obtained with logistic regression.(G. Zou, 

2004; G. Y. Zou, 2009) This tends to provide a degree of additional efficiency, but the primary 

reason for its use is simply the more straightforward interpretation of the results.  

The need to account for time varying confounding affected by prior treatment when making 

causal claims from observational data was one of the primary motivations for the development 

of MSMs and implementation using IPTW.(Robins et al., 2000) Unlike time-invariant 

confounding, time varying confounding affected by past exposure cannot be adjusted for using 

standard regression even if measured adequately. For example, volunteering and employment 

in later life have been associated with better maintenance of cognitive function.(Clouston & 

Denier, 2017a; Jenkinson et al., 2013; Kivipelto, Mangialasche, & Ngandu, 2018) Better 

maintenance of cognitive function is also associated with likelihood of remaining in employment 

and either continuing or starting volunteering.(Clouston & Denier, 2017b; Shen, 2017) This 

creates a hypothetical causal model where participation in CSA improves cognition, which in 

turn increases the probability of continuing CSA participation. If CSA improves cognition and 

better cognition makes future participation more likely, then the treatment effect of earlier CSA 

will be blocked, or collider stratification bias will be introduced using standard regression 

adjustment (see figure 3.1 for a directed acyclic graph of the model, which more specifically 

represents the model used in this thesis than the generalised model presented in figure 

2.3).(Daniel et al., 2013)  

Let a binary variable of CSA exposure be denoted 𝐴1, 𝐴2, … , 𝐴𝑡. Let 𝐿1, 𝐿2 … . , 𝐿𝑡 represent a 

vector of observed confounders at each time-point (including cognition at that time) and 

𝑈1, 𝑈2 … . , 𝑈𝑡 be a vector of unmeasured confounder’s at each wave. Let 𝐶1, 𝐶2 … . , 𝐶𝑡 indicate 

whether an individual was censored at each measurement occasion.(Daniel et al., 2013) Let 𝑌 

be observed cognitive status at the end of follow-up. For illustration, we will imagine that 𝐿 

contains only one variable, cognitive function measured longitudinally. We will also not directly 

address censoring and unmeasured confounding but will review the theory behind MSMs for 

readers new to the topic to illustrate why we have taken this approach to the analysis.  
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Starting from 𝐴𝑡 in figure 3.1a let us assume CSA affects longitudinal cognitive function but 

cognitive function does not affect CSA exposure. From 𝐴𝑡 we have the paths 𝐴𝑡 → 𝑌,  𝐴𝑡 →

𝐿𝑡+1 → 𝑌, 𝐴𝑡 → 𝐴𝑡+1 → 𝑌 and several paths via the descendants of 𝐴𝑡+1. There is no path from 

any 𝐿𝑡 to any 𝐴𝑡+1 meaning 𝐿𝑡 does not confound the association between any 𝐴 and 𝑌. This 

means that conditioning on 𝐿𝑡 in the mistaken belief it is a confounder will block the path 𝐴𝑡 →

𝐿𝑡+1 → 𝑌 and underestimate the total effect of 𝐴𝑡 on 𝑌. If the total effect is the quantity of 

interest, a naïve analysis not adjusting for 𝐿𝑡 will provide an unbiased estimate under this 

condition.(Daniel et al., 2013)  

In the example in figure 3.1b, the probability of CSA exposure is now affected by cognitive 

function but cognitive function is not affected by CSA. It can be seen that 𝐿𝑡 is a confounder of 

the association between 𝐴𝑡+1 and 𝑌. Under these conditions those continuing CSA would 

become a progressively more cognitively elite group giving the appearance of CSA causing 

improvement in cognition. This should be possible to account for using standard regression 

analysis. However, difficulty may still arise if the direct effect of 𝐴𝑡 not mediated by future 

treatment is of interest. This analysis would need to be conditioned on 𝐴𝑡+1 which is a collider 

on the path 𝐴𝑡 → 𝐴𝑡+1 ← 𝐿𝑡 → 𝑌. So adjusting for 𝐴𝑡+1 would inadvertently induce a conditional 

association between 𝐴𝑡 and 𝐿𝑡 and, therefore, between 𝐴𝑡 and 𝑌 even if no true causal 

association exists.(Daniel et al., 2013) As such the effect of 𝐴𝑡 may be estimated incorrectly. 

In figure 3.1c, CSA affects cognition which in turn affects the probability of future CSA, all of 

which affect the risk of cognitive impairment or dementia 𝑌. This is time varying confounding 

which is affected by past treatment. We now wish to condition on 𝐿𝑡+1 because it is a 

confounder of 𝐴𝑡+2 and 𝑌. However, doing so also blocks the indirect effect of 𝐴𝑡 mediated via 

𝐿𝑡+1 and its descendants, meaning the estimate of the effect of 𝐴𝑡 is likely to biased. If both 𝐴𝑡 

and 𝐴𝑡+1 have paths to 𝐿𝑡+2 and 𝑌 then there is a backdoor path 𝐴𝑡+1𝐿𝑡+2 𝐴𝑡 𝑌. 

Conditioning on 𝐿𝑡+2 may then introduce collider stratification bias for the association between 

𝐴𝑡+1 and 𝑌. Lastly, if there is an unobserved confounder not of 𝐴𝑡 and 𝑌 but 𝐿𝑡+1 and 𝑌 then 

conditioning on 𝐿𝑡+1 will also create collider stratification bias along the path 𝐴𝑡1𝐿𝑡+1 𝑈𝑡 𝑌 

(Daniel et al., 2013). So if using a standard regression, one must therefore assume that 

confounders are not affected by prior treatment. In the case of CSA and cognitive function this 

seems a very strong assumption to make.  

Inverse probability of treatment weighting is an alternative means of estimation which avoids 

having to make this assumption. Before describing this further we will briefly describe the 

conventional notation as applied to our specific MSM.(Robins et al., 2000) In ELSA wave 7 a 

telephone interview for cognitive status was used to diagnose probable dementia or cognitive 

impairment. Prior to this, 6 waves of data were collected on self-reported participation in a range 

of CSA and cognitive function was measured using episodic memory and verbal fluency. This 

allows the estimation of the effect of CSA from earlier waves on risk of dementia or cognitive 

impairment whilst being able to account for the effect of earlier cognitive function on exposure to 

CSA.    
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Let 𝐴2, … . , 𝐴6 now represent observed CSA exposure at of the corresponding waves of ELSA. 

𝐴2 to 𝐴6 can take the values of 0 for not exposed or 1 for exposed. The confounding effect of L 

on A is lagged in our model. From this point forward we will be using 𝑉1 to represent CSA 

exposure at wave 1. This is included as a baseline confounder rather than an exposure in order 

to account for unmeasured confounding at baseline mediated via baseline exposure by blocking 

the path 𝑈0 → 𝑉1 → 𝐴2 𝑌. Let 𝐴̅ = (𝐴2, … . , 𝐴6) and 𝐿̅ = (𝐿1, … . , 𝐿5). Then let 𝑎̅ = (𝑎2, … . , 𝑎6), 

denote all the possible combinations of exposure which the participants could have been 

exposed to. Let 𝑌𝐴̅ be the observed outcome for exposure history 𝐴̅ . There will be one exposure 

history for each individual where 𝑌𝐴̅ = 𝑌𝑎̅ and others where 𝑌𝐴̅ ≠ 𝑌𝑎̅. These 𝑌𝑎̅, the expected 

outcome given an exposure history of 𝑎̅, represent a counterfactual quantity, the outcome that 

would have observed if a hypothetical intervention had set CSA exposure to any given 

𝑎2, … . , 𝑎6. In my model, the association between CSA and covariates is always lagged though 

this need not always be the case. 

Given that we are using Poisson regression where 𝐸(𝑌𝑎̅) = 𝜆𝑎̅ and the use of a natural log link 

function the MSM takes the form: 

13. log(𝜆𝑎̅ ) = 𝛽0 + 𝛽2𝑎2 + 𝛽3𝑎3 + 𝛽4𝑎4 + 𝛽5𝑎5 + 𝛽6𝑎6 

It is not possible to directly estimate this MSM precisely because all 𝑎̅ are not observed. 

However, we are able to estimate  

14. log(𝜆𝑎̅ |  𝐴̅ = 𝑎̅) = 𝛽0
′ + 𝛽2

′ 𝑎2 + 𝛽3
′ 𝑎3 + 𝛽4

′𝑎4 + 𝛽5
′ 𝑎5 + 𝛽6

′ 𝑎6 

Whereas equation 13 describes the outcome under a hypothetical intervention to set the value 

of 𝑎̅, equation 14 describes the relative risk of those with an observed history of 𝑎̅. Assuming 

that all confounders are observed in 𝐿1 to 𝐿5 then we are able to unbiasedly estimate 𝛽0 with 𝛽0
′ , 

𝛽2 with 𝛽2
′  and so on.(Bodnar et al., 2004; Robins et al., 2000) 𝐿1 contains both a subset of time-

invariant confounders and the first measurement of time-varying confounders. To this model we 

add a term for baseline confounders 𝛽7𝑙1 and baseline CSA exposures 𝛽1𝑣1. These are required 

for the stabilised weights inverse probability of treatment weights used in the estimation of the 

model: 

15. log(𝜆𝑎̅ | 𝐴̅ = 𝑎̅, 𝐿̅ = 𝐿1, 𝑉̅ = 𝑉1) = 𝛽0 + 𝛽1𝑣1 + 𝛽2𝑎2 + 𝛽3𝑎3 + 𝛽4𝑎4 + 𝛽5𝑎5 + 𝛽6𝑎6 + 𝛽7𝑙1 

Interactions between exposure and either baseline exposure or baseline covariates are 

straightforwardly, but are omitted here for brevity. Interactions with time-varying covariates are 

not possible, but estimates of total effect are unbiased even if these interactions are present 

and not included in the model.    

There are a small number of different techniques for estimating MSMs in the presence of time 

varying confounding. Probably the most commonly used of these is inverse probability of 

treatment and censoring weighting (IPTCW), which is the method I will employ. Instead of 

covariate adjustment in standard regression models, IPTCW accounts for confounding by 

weighting each individual by their probability of receiving their observed CSA exposure  
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Figure 3.1. Causal diagrams for the effect of CSA on probable dementia/cognitive impairment 

showing: (a) indirect effects but no confounding. 

 

(b) time dependent confounding.  

 

(c) time dependent confounding affected by prior treatment.

 

Each line represents a hypothesised causal relationship, the colour has been added to highlight 

the difference between models only. 𝑌 represents probable cognitive impairment or dementia at 

wave 7. A2, A3…. At represents CSA exposure at each time point. 𝑉1 represents CSA at 

baseline. L1, L2…. Lt represent all observed potential confounders. U1, U2…. Ut represent all 

unobserved potential confounders and the dashed lines unobserved potential causal 

relationships. 



78 

 

(hypothetical CSA treatment) estimated by their past CSA exposure and covariate 

history.(Daniel et al., 2013; Robins et al., 2000; VanderWeele et al., 2011)  

The basic principle is that each individual is given a weight 𝑤 inversely proportional to their 

probability of having received the exposure history they actually received conditional upon their 

measured covariate history and history of exposure prior to time 𝑡.(Hernán, Brumback, & 

Robins, 2002; Robins et al., 2000) This weight then effectively creates a ‘pseudo-population’ 

where there are a number of copies of individual 𝑖 equal to the weight they are assigned and 𝐴𝑡 

is no longer confounded by 𝐿𝑡−1.(Robins et al., 2000)  The overall weight is the product of an 

individual’s weight at each time point. This is given by: 

16. 𝑤(𝑡) = ∏ 1/𝑝𝑟(𝐴𝑡|𝐴2 , … , 𝐴(𝑡−1), 𝑉1, 𝐿1, … , 𝐿(𝑡−1))𝑇
𝑡=2  

As these weights tend to have very high variance and may not be normally distributed due to a 

few individuals having very extreme weights, they are then usually stabilised. To produce the 

stabilised weight 𝑠𝑤 the numerator of 1 is exchanged for the probability of the observed 

exposure conditional on past exposure history and, as in our case, a vector of baseline 

covariates can also be included. If stabilised weights are used 𝐸(𝑌𝑎̅) is now estimated within 

levels of the baseline covariates and additional terms must be added to the MSM as seen in 

equation 3 above. The stabilised weights are then given by: 

17. 𝑠𝑤(𝑡) = ∏ 𝑝𝑟(𝐴𝑡|𝐴2 , … , 𝐴(𝑡−1), 𝑉1, 𝐿1) /𝑝𝑟(𝐴𝑡|𝐴2 , … , 𝐴(𝑡−1), 𝑉1, 𝐿1, … , 𝐿(𝑡−1))𝑇
𝑡=2  

This may alternatively be annotated in counterfactual form as: 

18. 𝑠𝑤(𝑡) = ∏ 𝑝𝑟(𝐴𝑡 = 𝑎𝑡|𝐴̅𝑡−1 = 𝑎̅𝑡−1 , 𝑉1 = 𝑣1, 𝐿1 = 𝑙1) /𝑝𝑟(𝐴𝑡 = 𝑎𝑡|𝐴̅𝑡−1 = 𝑎̅𝑡−1 , 𝑉1 =𝑇
𝑡=2

𝑣1, 𝐿̅𝑡−1 = 𝑙𝑡̅−1) 

The weight at each time point is calculated for each measurement occasion 𝑡 using a logistic 

regression model for the numerator and denominator.  

 The logistic regression models for the numerators were specified as:  

19. 𝑙𝑜𝑔𝑖𝑡 𝑝𝑟(𝐴𝑡 = 1|𝐴̅𝑡−1 = 𝑎̅𝑡−1, 𝑉1 = 𝑣1, 𝐿̅1 = 𝑙1̅) =   𝛼0 + 𝛼1𝑣1 + 𝛼2𝑎2+, … , + 𝛼𝑡−1𝑎𝑡−1 + 𝛾1𝑙1 

The logistic regression models for the denominators were specified as: 

20. 𝑙𝑜𝑔𝑖𝑡 𝑝𝑟(𝐴𝑡 = 1|𝐴̅𝑡−1 = 𝑎̅𝑡−1, 𝑉1 = 𝑣1, 𝐿̅𝑡−1 = 𝑙𝑡̅−1) =   𝛼0 + 𝛼1𝑣1 + 𝛼2𝑎2+, … , + 𝛼𝑡−1𝑎𝑡−1 +

𝛾1𝑙1+, … , +𝛾𝑡−1𝑙𝑡−1 

These weights were then applied to estimate the MSMs above. Once the estimates have been 

obtained the results need interpreting. As mentioned above MSMs were developed as means of 

formally making causal inferences from observational data. If one is not making causal 

inferences, the assumptions underlying the MSM are the same as standard regression analysis 

with the exception of not having to assume that there are no confounders which are affected by 

past exposure (homoscedasticity, multivariate normality, no multi-collinearity).  
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Typical inference from observational data draws conclusions only regarding association 

between exposure and outcome, whilst theoretically remaining neutral to the issue of causality. 

In cases where prediction of the outcome is the primary concern this presents no real barriers. 

However, in many other contexts there is an implicit causal connection between exposure and 

outcome. Being able to make explicit causal claims using MSM is desirable, but rests on 

additional assumptions.(Cole & Hernán, 2008; Daniel et al., 2013) These are conditional 

exchangeability (no unmeasured confounders), positivity and correct specification of the 

structural (weighted regression) model and the exposure and censoring models. Whilst these 

assumptions are drawn out explicitly in the MSM literature, all of them would also be required to 

draw causal inferences from any analysis of observational data. 

Conditional Exchangeability 

Conditional exchangeability assumes that given the observed history of covariates (𝐿̅𝑡) and past 

exposure (𝐴̅𝑡−1) you would observed the same propensity to dementia (𝑌 = 1) if those who 

were not exposed to CSA were exposed or those who were exposed were not exposed. (Cole & 

Hernán, 2008; Daniel et al., 2013) In other words you could switch who was exposed and who 

wasn’t and it would make no difference to the outcome. More formally, conditional on 𝐿̅𝑡 and 

𝐴̅𝑡−1, treatment received at time 𝑡 is independent of the potential outcomes. This requires all 

predictors of dementia and exposure to CSA to have been measured appropriately and included 

in the exposure model used to calculate the IPTW. This is a very strong assumption in an 

observational study of complex social exposures and the influence on complex processes of 

brain maintenance.  

One measure taken to address this in the MSM used is that wave 1 exposure and cognition are 

modelled as potential confounders and not exposures. A large portion of unmeasured 

confounding from pre-exposure covariates is likely to be mediated via baseline exposure and 

cognition. Pre-morbid IQ is an example of a confounder which is unmeasured in ELSA but 

whose effect is likely to be captured in large part by baseline cognitive function and baseline 

propensity to engage in CSA.  

Using multiple CSA is another means by which there is some measure of testing for unobserved 

confounding. If one CSA exposure is associated with cognitive impairment but another CSA 

which is likely to be caused by similar social processes is not, then this increases the likelihood 

the effect is not due to unmeasured confounding. This is part of the rationale for why each CSA 

will be tested separately, not using a composite score of ‘cognitive enrichment’ as is often seen 

in the literature. Using a composite score also creates a path by which unmeasured 

confounders of every CSA included can bias the effect estimates and these vary between 

individuals with the same score. It is not possible to claim conditional exchangeability between 

the exposed and unexposed when exchangeability even between the exposed is not possible. 

Moreover, the counterfactual approach is based upon the theoretical construct of being able to 

set an individual’s exposure to something other than what they actually experienced. This is 

much more clearly defined for an individual CSA than a composite score where the same level 
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of exposure can include very different activities. The cost of not using composite scores is that it 

is not possible to estimate potential multiplicate effects of exposure to several CSA.  

Positivity  

Positivity is the assumption that everyone could have had the exposure which they did not 

receive. More formally, that there are exposed and unexposed individuals within each strata of 

the confounding variables.(Cole & Hernán, 2008) It is not possible to directly estimate the effect 

of exposure within a certain stratum if everyone in that stratum was not exposed. In a 

randomised experiment this can be guaranteed because individuals are assigned to their 

exposure. For this reason, it is sometimes referred to as the experimental treatment 

assumption. This can occur either when there is a particular reason why a participant has a 0% 

probability of exposure or when empty cells occur because of small sample sizes or large 

numbers of covariates.  

When considering social exposures with complex determinants over an extended follow-up 

period the problem of empty cells is particularly common. Parametric modelling assumptions 

can be made to estimate what would happen in these empty cells. Any inferences draw from the 

model then rely on those parametric assumptions. This is the same situation as with any 

observational data analysis. This generates a trade-off between the number of confounders 

which are included to reduce the chance of unmeasured confounding against the sparseness of 

the data and increasing reliance on parametric modelling assumptions.(Cole & Hernán, 2008)  

 

3.4.2 Marginal Structural Models in cognitive epidemiology 

Marginal structural models (MSMs) were developed by Robins and colleagues to formalise 

causal inference from observational data and account for confounding time dependent 

confounding where the confounder is affected by prior exposure.(Robins et al., 2000) The 

literature on their use in the field of social gerontology, or epidemiology, with dementia or 

cognitive function as their primary outcome was reviewed. This review was conducted in order 

to understand the scope of the current literature and to identify knowledge gaps. The main 

literature review on cognitively stimulating activities (CSA) drew upon recent systematic reviews 

conducted by other groups. It was not possible to know if studies implementing MSMs had been 

excluded from these reviews because of their methodology or other exclusion criteria. This 

meant it was important to identify any papers using MSMs in the study of cognitive function, 

especially those with any relevance to cognitively stimulating activities. With no existing 

systematic reviews to my knowledge regarding the use of MSMs in cognitive epidemiology, a 

rapid review of this literature was conducted which was updated in May 2019. The databases 

Scopus and PubMed were searched using the term marginal structural model with one of 3 

additional keywords. These were cognit*, dementia or Alzheimer*. Documents citing the original 

article by Robins, Hernan and Brumback were searched with the same three keywords. The 

literature was restricted to studies of social exposures or social interventions where marginal 

structural models were used to estimate the effect of the exposure on cognitive function or risk 
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of dementia. This was a somewhat subjective inclusion criterion. Examples of exposures 

excluded include medications, exercise and cardiovascular diseases.   

The searches by keyword and marginal structural model returned a total of 64 articles (including 

duplicates). After review of the title and abstracts, 2 appeared to be of relevance.(Barnes et al., 

2010; Hikichi, Kondo, Takeda, & Kawachi, 2017) A third study regarding depressive symptoms 

and cognitive function was also included due to the complex interaction between depression 

and social factors as well as its methodological relevance.(Yao & Meng, 2015) Keyword search 

documents which cite the Robins et al article returned 407 articles (including duplicates). After 

review of titles and abstracts a further document was included.(Marden, Tchetgen Tchetgen, 

Kawachi, & Glymour, 2017)   

Barnes and colleagues studied second hand smoke exposure in 970 adults aged 65 or older in 

the Cardiovascular Health Cognition Survey.(Barnes et al., 2010) Their outcome was incident 

physician diagnosed dementia over 6 years of follow-up. They used inverse probability of 

treatment weighted (IPTW) Cox proportional hazard model to estimated their MSM. Their focus 

in using the MSM was not on accounting for time-varying confounding affected by prior 

exposure but on causal mediation analysis. Specifically, to what extent the effect of second 

hand smoke on dementia risk was mediated or moderated by macrovascular disease. This 

study is an important contribution to understanding preventable risk factors for dementia but 

does not directly relate to either the substantive or methodological concerns of this thesis.   

Yao and Meng studied the association between depressive symptoms and cognitive function in 

3050 Mexican Americans aged 65 or older from the Hispanic established populations for 

epidemiologic studies of the elderly cohort.(Yao & Meng, 2015) The implemented their MSM 

using a IPTW linear regression testing the effect of 3 waves of depression scores on mini-

mental state exam score on a 4th measurement occasion. They contrasted a standard linear 

regression with covariate adjustment to the MSM and found that the effect of depression on the 

3rd occasion was larger in the MSM. This suggests that there may have been some time-varying 

confounding affected by prior exposure which was biasing the estimates towards the null. The 

MSM employed here is very similar in structure to that which will be used in this thesis and 

demonstrates the feasibility of the approach.  

Hikichi and colleagues used an MSM to estimate the effect of visiting ‘salons’ on risk of 

cognitive functional impairment in Japanese adults aged over 65.(Hikichi et al., 2017) The used 

data from the Aichi Gerontological Evaluation Survey over 8 years. Over this time period public 

policy introduced into the area ‘salons’ which elders could attend a participate in a range of both 

intellectual (for example poetry or calligraphy) and physical (for example dance classes) 

activities. Estimating the effect of these salons raises similar difficulties to those for the 

cognitively stimulating activity participation of interest in this thesis. That is to say that cognitive 

function predicts participation and that participation may in turn improve cognition, creating 

complex bi-directional causality. They found that higher levels of salon attendance was 

associated with a modest reduction in the odds of cognitive disability.  
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These three studies have focussed on exposures in later life. An alternative life-course 

approach was taken by Marden and colleagues examining the effect of early life 

exposures.(Marden et al., 2017) Using data from the health and retirement survey on 10781 

American adults aged 50 or more, they examined the effect of life-course socio-economic status 

(SES) on memory function and rate of decline. They took a critical periods approach with early 

life (parental), early adulthood (educational attainment) and later life (income, wealth and 

occupation immediately prior to the cognitive outcome) SES as the exposures of interest. 

Episodic memory was assessed using a marginal means regression model over the period 

2002-2012. The IPTW were generated for SES at each point in the life-course account for prior 

exposure. The models were combined by including the measures of life-course SES as baseline 

exposures (plus interaction terms) in the regression model which was then estimated using 

IPTW. They found that higher SES in earlier life was more strongly associated with improved 

baseline performance and higher SES in late life with slower decline. This model estimated the 

total effects of SES and did not seek to account for any particular mediating pathways between 

SES and cognitive function. This is similar to the approach actually taken in the growth mixture 

modelling paper in this thesis.  

These papers demonstrate that little use has yet been made of the potential for MSMs to 

advance our understanding of social factors related to cognitive maintenance and risk of 

cognitive impairment or dementia. One of the major limitations of the literature on cognitively 

stimulating activities as a whole is the potential for reserve causation to explain the 

findings.(Sajeev et al., 2016) MSMs have the potential to account some mechanisms by which 

reverse causation occurs. In doing so it will provide a greater degree of certainty that it is CSA 

which are improving cognitive maintenance and not that cognitive maintenance is causing 

greater exposure to CSA.  
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4. Data 

This chapter will describe the English Longitudinal Study of Ageing, which is the source of the 

data used in this thesis, and key variables from it. Section 4.1 will provide a general overview of 

the study and participant recruitment. Section 4.2 will describe the measures of cognitive 

function used in this thesis. Section 4.3 will describe the main explanatory variables of interest, 

education and cognitively stimulating activities. Section 4.4 will describe the covariates and 

confounders considered.  

 

4.1 The English Longitudinal Study of Ageing. 

The English Longitudinal Study of Ageing (ELSA) is a nationally representative multidisciplinary 

cohort study of adults living in England aged 50 or more at recruitment in 2002/3.(Steptoe et al., 

2013) ELSA has been described extensively in study reports and a journal published cohort 

profile, from which the information in this section is drawn.(Bridges, Hussey, & Blake, 2015; 

Littleford, Hussey, Begum, & Oskala, 2016; Steel et al., 2004; Steptoe et al., 2013) 

The study sample was drawn from participants in Health Survey for England (HSE) years 1998, 

1999 and 2001 who were born before 1st March 1952 and living in a private household. These 

are the core sample members.(Littleford et al., 2016) Those in their households who were new 

partners since HSE or ≤50 were also included as non-core members. This initial sample was 

nationally representative of the age specific English population. The initial HSE sample was 

drawn in a 2 step process.(Littleford et al., 2016) First, postcode sectors were randomly 

selected from the Postcode Address File. The postcodes were stratified by health authority and 

the proportion of households with non-manual occupation. Next, addresses were selected from 

within postcode sector. Within households up to 10 adults were eligible to be respondents. The 

ELSA sample was recruited only from those who responded to the HSE.  

Additional recruitment was undertaken in waves 3, 4, 6 and 7 again from individuals who had 

previously participated in HSE. The wave 3, 6 and 7 refreshment samples were designed to 

maintain sample representativeness in the 50-55 age range, whilst the wave 4 refreshment 

sample recruited individuals aged 50-74 to replace losses from attrition.  

Data was collected in biennial sweeps (wave 1 in 2002-2003, wave 2 in 2004–05, wave 3 in 

2006–07, wave 4 in 2008–09, wave 5 in 2010–11, wave 6 in 2012–13 and wave 7 in 2014–

15).(Littleford et al., 2016) Computer assisted interviews in the participant’s homes were the 

primary source of data collection. Additional data was collected using self-report surveys which 

were left with participants following the interviews. In every other wave an additional visit was 

made by a research nurse who obtained measurements and blood samples.  

The cross sectional response rates of eligible wave 1 participants invited to participate in each 

wave were 70% at wave 1, 82% at wave 2, 83% at wave 3, 77% at wave 4, 80% in wave 5, 

86% in wave 6 and 83% in wave 7.(Bridges et al., 2015; Littleford et al., 2016) Longitudinal 

response rates, ‘the proportion of remaining eligible wave 1 core members who gave an 
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interview in every wave up to and including the current wave’ (Bridges et al., 2015), were 82% 

in wave 2, 71% at wave 3, 63% in wave 4, 59% in wave 5, 56% in wave 6 and 51.2% in wave 

7.(Littleford et al., 2016) In wave 1 there were 12099 productive interviews carried out and of 

these 11391 were core members, 636 younger partners and 72 new partners. By the 7th wave 

4894 of the original 11391 core participants responded. Of the missing core members in the 7th 

wave 3196 had died, 3132 did not respond to invitations to participate and 169 had moved out 

of Britain. Waves 1 to 5 are used for the first three papers presented in this thesis and waves 1 

to 7 for the 4th paper. The specific sample sizes used for each analysis are presented with each 

paper. The sample size varied between papers depending on the exact waves used, whether or 

not the refreshment samples were included, completeness of data on specific variables, and 

whether outliers needed to be excluded for that analysis.  

Ethical approval for ELSA was granted by the South Central Berkshire Research Ethics 

Committee (REC) through an application to the National Research Ethics Service 

(NRES).(Bridges et al., 2015) The current study was subject to the University of Manchester 

internal review process and no additional approval deemed necessary.  

 

4.2 Measures of cognitive function. 

ELSA contained a core battery of cognitive tests for the first 5 waves. This was modified in wave 

6. This is why the first 3 papers presented used data from waves 1 to 5. A new set of tests was 

added in wave 7 which was based upon the telephone interview for cognitive status 

(TICS).(Crimmins, Kim, Langa, & Weir, 2011; Langa et al., 2017) This was used as the primary 

outcome for the 4th research question.  

The cognitive tests were performed as part of the computer assisted interview.(Steel et al., 

2004) The tests were orientation to time, immediate and delayed recall, prospective memory, 

verbal (semantic) fluency, and a letter cancelation task. Orientation to time was assessed by 

asking the participant to name the day, year, month and date. To assess immediate and 

delayed verbal recall a randomly assigned list of 10 common words was played from a 

standardised recording to participants. Delayed recall of the word list was tested after the other 

cognitive tests were undertaken to provide a distraction. The prospective memory task required 

participants to remember to write their initials in the top corner of a page they were handed. 

Participants were prompted if they did not complete the actions spontaneously. I treated this as 

binary with a correct response counting whether it was prompted or not. Semantic fluency was 

assessed by asking participants to name as many animals as they could in 1 minute. For the 

letter cancelation task participants were handed a clipboard with random letters in rows and 

columns. They were asked to cross out as many of the two target letters as possible in one 

minute. Participants were asked to complete the task by scanning from left to right as if reading. 

A memory index was calculated from the scores of the orientation, prospective memory and 

recall tasks.(Steel et al., 2004) The executive function index was calculated from score on 
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verbal fluency and letter cancellation. Both indices were scored out of 30. A global cognitive 

performance index combined these two into a total score ranging from 0 to 60.   

The version of TICS which will be used in the 4th paper presented in this thesis is a 27-point 

scale. A higher score indicates better cognitive function. The score is calculated from a 

combined score on immediate and delayed 10-word free recall, backwards counting from 20 

and serial 7 subtraction. This scoring system has previously been validated in the Ageing, 

Demographics and Memory sub-study of the Health and Retirement Survey.(Langa, Kabeto, & 

Weir, 2010) Scores of 0-6 are classified as probable dementia, 7-11 cognitive impairment no-

dementia and 12-27 as normal.(G. Tampubolon et al., 2017) 

 

4.3 Explanatory variables. 

Educational attainment was recorded as no formal qualifications (this is the reference category 

in all analyses), high school completion (O-levels or equivalent), 6th form completion (A-levels 

of equivalent), non-degree level higher education and undergraduate degree or above. The first 

non-missing value was used. ELSA also contains data on the age of school leaving, rather than 

highest qualifications attained which was used in some analyses. Education was treated as 

time-invariant throughout all analyses.  

I chose 6 CSA’s from the range of activities reported by ELSA participants to represent variation 

in older adult’s lifestyles and the type of cognitive challenge presented by the task. I also 

considered how clearly an intervention might be designed to alter an individual’s exposure. This 

is important because of the counterfactual approach to causality used in marginal structural 

models. This is described in section 3.4. As an example, membership of a social club was 

chosen in preference to a measure of loneliness or social connectedness. It is possible to run a 

statistical model in which you estimate the effect of a hypothetical intervention setting a 

participant to 1 unit less of loneliness on a loneliness scale. However, setting someone to 

hypothetically be a member of a social club or not makes for comparatively unambiguous 

interpretation and clearer policy implications.  

More general issues of measurement and interpretation were also considered in the selection of 

CSA. In particular, during earlier phases of analysis for the 4th paper gym class membership and 

having undertaken training in the past month were analysed as a potential CSA’s. On closer 

inspection training was significantly under powered with less than 2% of participants above 

retirement age reporting participation. This was therefore dropped after initial inclusion.  Gym 

membership was found to be associated with a reduced risk of cognitive impairment. However, 

when reflecting on the interpretation of the findings from this analysis the ability to interpret this 

finding was significantly limited. The crux of the problem was whether the observed effect was 

due to an additive effect of gym classes over and above self-reported exercise or whether gym 

membership simply correcting for measurement error in the self-report of exercise. I ultimately 

felt that this sufficiently undermined the findings to drop this exposure from the analysis as 

presented.  
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The CSA’s chosen were working, volunteering, regular newspaper reading, attending 

arts/music/evening classes (hereafter ‘evening classes’), internet or email use and attending a 

social club. All of these activities have been previously found to have an association with 

cognitive function. The past literature exploring the links between these activities and cognitive 

maintenance has been presented in section 2.2.3 

For working and volunteering participants were asked in the main ELSA interview ‘Did you do 

any of these activities in the last month?’. Participants attending evening classes and social 

clubs were asked in the self-completion questionnaire ‘Are you a member of any of these 

organisations, clubs or societies?’. ‘I read a daily newspaper’ and ‘I use the internet and/or 

email’ were response options for the question ‘Which of these statements apply to you?’ which 

was also in the self-completion questionnaire. 

 

4.4 Covariates. 

A different set of covariates was used for each analysis and is specified in each paper. Age at 

baseline was centred for all analyses and wave of study was used as the metric of time. 

Whether or not the individual was at or above state retirement age was used as a separate 

time-varying variable. Gender and ethnicity (white and non-white) are treated as binary. 

Employment status was divided into retired (reference group), working, unemployed, long term 

illness and homemaker. For social class, the 5 category National Statistics Socio-Economic 

Classification (NSSEC-5) was used. Household wealth was grouped into quintiles. Household 

income was also grouped into quintiles. For some analyses income and wealth were divided 

into a binary variable with 60% lower and 40% higher categories. Marital status was classified 

as married or civil partnership (reference group), remarried, single, divorced/separated or 

widowed. For some analyses this was collapsed into married and non-married. Hypertension, 

angina, myocardial infarction, congestive cardiac failure (CCF), diabetes, stroke, COPD, 

asthma, osteoarthritis, osteoporosis, any psychiatric illness and Parkinson’s disease diagnoses 

were all self-reported at each wave. Each condition was treated as irreversible. Self-reported 

usual cigarette consumption was divided into 0 per day (reference category), 1-9 per day, 10-19 

per day and 20 or more per day. Frequency of alcohol consumption was given as less than 

monthly (reference group), monthly, weekly or daily or almost daily consumption. Depression 

was determined using the abbreviated 8 point version of the Centre for Epidemiologic Studies 

Depression scale (CES-D) which was dichotomised into less than or equal to 3 as non-

depressed or 4 or more as (probable) depression.(Steffick, 2000) Parental smoking was 

comprised of two binary variables (smoker/non-smoker) for mother and father separately. 

Family structure in childhood was divided into being raised by two parents, being raised by a 

single mother or other family structures. Childhood social status was measured by father or 

main carers occupation divided into categories of unemployed, semi-skilled or manual, skilled 

manual, non-manual, managerial or professional and other (for example military service). 

Participation in other activities (including religious participation, charitable activities, daytrips, 

mobile phone use, holidays, voting, having a hobby and other class or society memberships) 
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were all based on self-report and binary. Self-rated health, hearing and eyesight were reported 

on a 5-point scale and treated as continuous when used. Participation in vigorous, moderate 

and light exercise was self-reported as a set of 3 binary variables. 
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Chapter 5. Differences Between Factor Analysis and Additive Scales in Population Studies of 

Ageing. Modelling Cognitive Function in The English Longitudinal Study of Ageing. 

This paper presents the first paper which addresses the first research question of this thesis: 

whether using a sum score or factor score leads to different substantive conclusions about 

which variables are associated with cognitive maintenance. This question is divided into two 

main sections. The first is to establish the factor structure of the cognitive battery in the first 5 

waves of data from the English Longitudinal Study of Ageing (ELSA). The second section is to 

compare the factor scores and sum scores (called index scores in the ELSA documentation). 

This was done through a qualitative comparison of the structure of the scores and through the 

results of a longitudinal multi-level model using either factor scores or index scores as the 

outcome.  

This paper presents an example of the difference which can be made by using data driven 

factor scores rather than pre-defined sum scores in a real, rather than simulated, dataset. It was 

also an important step in the thesis as a whole. It was an important part of the development of 

the analysis, directly laying the foundations for the second and third papers. In presenting the 

results of my factor analysis it also makes this available for use by other researchers who may 

wish to use the cognitive tests in ELSA to answer their own substantive questions.   

I conducted the analysis, drafted and revised the paper. My supervisors Prof. Chandola and 

Prof. Pendleton provided guidance on the analytic strategy and reviewed the drafts. Prof Gindo 

Tampubolon provided additional comments on a draft manuscript as part of an annual review. 

This paper has not been published and is not under review at the time of submission. 
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Abstract 

Objectives 

I firstly aimed to establish the factor structure of the cognitive function tasks in the English 

Longitudinal Study of Ageing (ELSA). I then compared the number and importance of 

differences in estimates of the association between cognitive function and common predictors 

when using factor scores or pre-specified sum scores (indices). 

Method 

I used data from ELSA, a large population-based ageing survey representative of the population 

of England aged ≥50, waves 1-5 (2002-2010). Exploratory factor analysis established the 

number of factors related to the cognitive function tests in different waves and confirmatory 

factor analysis was used to derive factors scores. Multilevel modelling was used to predict 

cognitive function factor scores or index scores (global, memory or executive function) using a 

number of common predictors of cognitive function and the differences in these associations 

were compared.  

Results 

A 3-factor solution was the best fit to the data, corresponding to attention (orientation to time), 

memory and visual scanning. The memory factor and index were closely correlated (0.95) and 

showed similar relationships with predictor variables, the global index demonstrated a lack of 

specificity, attention was moderately similar to memory and executive function indices whilst 

visual scanning did not correspond closely to any of the index scores.  

Conclusion 

In ELSA there was a loss of specificity resulting from the simple summation of different cognitive 

function tests into index score. Additive scales provide consistency across studies but I show 

that they can be misleading when compared to even simple factor models.  
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5.1 Introduction 

Cognitive function is not directly measurable and must be estimated indirectly from single tests 

or their combination. The use of sum or mean scores combining multiple tests remains a 

commonplace approach in studies of cognitive maintenance. For example, in two systematic 

reviews on the association between education and cognition of the 26 research papers they 

included  21 used a summed or mean global cognitive function score as their primary outcome 

measure.(Beydoun et al., 2014; Plassman et al., 2010) This approach may be problematic for 

several reasons. It has previously been demonstrated to generate an unknown degree of error 

by, in effect, applying an arbitrary weight (or loading in factor analytic terms) to each individual 

cognitive test.(Jefferson et al., 2002; McGrory, Doherty, Austin, Starr, & Shenkin, 2014; 

Moafmashhadi & Koski, 2013) Moreover, the latent structure underlying test items may be either 

unexpected or overly general, leading to measures being combined in a manner which does not 

fit the observed data. For example, in their highly cited paper Miyake and colleagues 

demonstrated that cognitive tests commonly combined together as a measures of executive 

function in fact formed three separate factors.(Miyake et al., 2000)  

Even in the mini-mental state exam (MMSE), probably the most commonly used measure for 

global cognition, studies in different populations have identified different factor structures 

underlying the test results.(Brugnolo et al., 2009; Shigemori, Ohgi, Okuyama, Shimura, & 

Schneider, 2010) Other studies have examined MMSE scores using item response theory 

methods and found substantial differences between the usual scoring system and the true 

weights responses should be given.(Ashford, Kolm, Colliver, Bekian, & Hsu, 1989; Gibbons et 

al., 2002; McGrory et al., 2014; Mungas & Reed, 2000) Whilst these studies have demonstrated 

some of the measurement problems with additive scales, they rarely explore what effect it has 

on the association of test score with either explanatory variables or change over time. 

For example, by using global scores instead of using factors the specificity of patterns of cross-

sectional and longitudinal association can be lost.(Salthouse, 2004) A global score could 

conflate decline in an age and pathology sensitive domain (such as working memory) and 

relative stability in another domain (such as verbal abilities).(Brugnolo et al., 2009; Shigemori et 

al., 2010) This would equate to a moderate decline in total score which would not accurately 

represent cognitive maintenance for either domain. Likewise, associations with exposures 

related to a specific cognitive factor could missed and the results interpreted as a moderate or 

non-association with global function. Population based or clinical studies analysed using sum or 

mean global scores form a considerable portion of the evidence on cognitive function.(Birks, 

2006; Folstein, Folstein, & McHugh, 1975; Small, Rosnick, Fratiglioni, & Backman, 2004) It is 

therefore important to understand what effect, if any, these potential difficulties may have had 

on the estimates of the association between cognitive function and important 

sociodemographic, lifestyle and disease exposures.  

 

5.1.1 Cognitive Tasks in ELSA 
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The English Longitudinal Study of Ageing (ELSA) which was chosen for this study has a set of 

pre-specified additive scores (termed index scores) divided into memory, executive function and 

global (which is the sum of the first two).(Huppert, Gardener, & McWilliams, 2006) The tasks in 

the memory index are self-reported memory, orientation in time, verbal recall and a prospective 

memory task. The executive function index includes category (semantic) fluency and a letter 

cancelation task.(Casey E. Krueger; Joel H. Kramer, 2010; Huppert et al., 2006) This 

formulation, whilst attractive in its simplicity, may not accurately reflect the underlying cognitive 

processes.  

Considering the functional, anatomic and potential pathological processes which influence each 

of the individual cognitive tests undertaken one can see how this structure may struggle to 

represent the data. In ELSA, the first cognitive test is orientation to time. Orientation to time has 

been demonstrated to be the single most important indicator of current cognitive impairment 

and future prognosis out of those measures in the MMSE.(Folstein et al., 1975; Guerrero-

Berroa et al., 2009; O’Keeffe, Mukhtar, & O’Keeffe, 2011; Tractenberg, Weiner, Aisen, Kaye, & 

Fuh, 2007) It has frequently been considered a measure of attention and it is also relatively 

strongly related to memory making it comparatively sensitive to changes related to Alzheimer’s 

Disease (AD).(Chow, Hynan, & Lipton, 2006; Cossa, Sala, & Spinnler, 1995; Mioshi, Dawson, 

Mitchell, Arnold, & Hodges, 2006; Ryan, Glass, Bartels, Bergner, & Paolo, 2009) 

Post mortem and in-vivo studies have found that disorientation in time is associated closely with 

pathology in the posterior cingulate gyrus and superior parietal lobe.(Giannakopoulos, Gold, 

Duc, & Patrick, 2000)(Hirono et al., 1998; Yamashita, Taniwaki, Utsunomiya, & Taniwaki, 2014) 

The superior parietal lobe is also part of the fronto-parietal network responsible for working 

memory tested in ELSA using a verbal immediate and delayed recall task.(Rottschy et al., 2012) 

Frontal regions used for working memory are also involved in the executive aspects of the 

categorical (semantic) fluency task.(Catheline et al., 2015; Jurado & Rosselli, 2007; Reverberi, 

Cherubini, Baldinelli, & Luzzi, 2014) However, semantic fluency also relies on lexical knowledge 

or the use of autobiographical memories, particularly in the later stages of the task which 

additionally utilise temporal lobe structures.(Henry & Crawford, 2004; Hirni, Kivisaari, Monsch, & 

Taylor, 2013; Sheldon & Moscovitch, 2012; Venneri et al., 2011) Thus semantic fluency may be 

strongly correlated with tests of both memory and executive function rather than executive 

functions alone.  

The remaining tasks, prospective memory (PM) and letter cancelation (a test of visual scanning 

ability) also utilise multiple functional networks and discrete anatomical regions.(Cona, 

Scarpazza, Sartori, Moscovitch, & Bisiacchi, 2015; Leonards, Sunaert, Van Hecke, & Orban, 

2000; McDaniel & Einstein, 2011; Squire, Noudoost, Schafer, & Moore, 2013; Todd & Marois, 

2005; Uttl & Pilkenton-Taylor, 2001a) These examples show how complex the physiological and 

functional structures underlying maintenance of the different cognitive tests in ELSA are. As a 

well-known high quality multi-disciplinary ageing study it is important to explore the factor 

structure of the cognitive tests in ELSA because of the potential for error to be introduced by the 

inappropriate calculation of global function scores.(Steptoe et al., 2013) At the time of writing 21 
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studies using the cognitive function battery are listed on the ELSA publication database.(The 

Institute for Fiscal Studies, 2015) The majority of these have used the pre-specified cognitive 

function indices or their own sum/mean score. Moreover, the original ELSA investigators have 

proposed a unique set of summed scores using a limited battery of cognitive tests and as such 

this is relevant to many interdisciplinary studies not specifically examining cognitive function 

scores.(Steel et al., 2004).  

To the author’s knowledge, the factor structure of the data in ELSA has not been formally 

assessed in prior published work. Furthermore, the degree to which the different methods of 

combining the cognitive indices might bias associations has not been explored. Doing so will 

enable more informed appraisal of the reliability of existing work using similar scoring systems 

and inform future work on cognitive ageing in general and ELSA in particular.  

Our research questions were: 

1) When analysing variables associated with cognitive maintenance does analysing 

growth with a sum score or factor score lead to different substantive conclusions? 

a. What is the factor structure of the cognitive tests in the English Longitudinal 

Study of Ageing? 

b. How does this factor structure compare to the pre-specified cognitive index 

scores? 

 

5.2 Methods 

 

5.2.1 Participants 

ELSA has been described in detail elsewhere.(Steptoe et al., 2013) In brief, the study sample 

was drawn from participants in Health Survey for England (HSE) years 1998, 1999 and 2001 

who were born before 1st March 1952 and living in a private household or those in their 

households who were new partners or ≤50.  This initial sample was nationally representative of 

the age specific English population. Additional recruitment was undertaken in waves 3 and 4, 

also from individuals who had previously participated in HSE. The wave 3 refreshment sample 

was designed to maintain sample representativeness in the 50-53 age range, whilst the wave 4 

refreshment sample recruited individuals aged 50-74 to replace attritional losses. Data are 

collected in biennial sweeps by interview in the participant’s homes.  For this analysis data from 

waves 1 (2002) to 5 (2010) were utilised because the core cognitive battery was consistent 

through this time. 

Response rates at each wave were 70% at wave 1, 82% at wave 2, 73% at wave 3, 74% at 

wave 4 and 80% in wave 5.(Steptoe et al., 2013)  This resulted in final sample sizes of n=12009 
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in wave 1, n=9432 in wave 2, n=9971 in wave 3, n=11050 in wave 4 and n=10317 in wave 5 

with the refreshment samples included. 

 

5.2.2 Cognitive Measures 

The cognitive tests were performed by computer assisted interview. Orientation to time was 

assessed by asking the participant to name the day, year, month and date. To assess 

immediate and delayed verbal recall a randomly assigned list of 10 common words was played 

from a standardised recording to participants. Delayed recall of the word list was tested after the 

other cognitive tests were undertaken to provide a distraction. The prospective memory task 

required participants to remember to write their initials in the top corner of a page they were 

handed. Participants were prompted if they did not complete the actions spontaneously which 

was included in the analysis as a correct response.  

Semantic fluency was assessed by asking participants to name as many animals as they can in 

1 minute. For the letter cancelation task participants were handed a clipboard with random 

letters in rows and columns. The aim was to cross out as many of the two target letters as 

possible in one minute. Participants were asked to complete the task by scanning from left to 

right as if reading. The number of the last letter reached was used as a measure of processing 

speed. All the non-binary variables were transformed to z-scores for the purpose of inclusion in 

the factor structure. The cognitive indices provided with the ELSA data release were used. The 

derivation of these indices is described in the wave 1 report.(Steel et al., 2004)  

 

5.2.3 Covariates for Regression Analyses 

Covariates were selected to encompass a range of potential predictors of cognitive function 

among older adults.(Plassman et al., 2010) Age was centred for the analysis and used as the 

metric of time in the multilevel model. Ethnicity was defined as white or non-white. Highest 

qualification was self-reported - no formal qualifications was used as the reference group. Age 

of completion of school education was included as a separate covariate as it may have an effect 

independent of qualification level.(Lenehan et al., 2015) Employment status was divided into 

retired (reference group), working, unemployed, long term illness and homemaker. For social 

class, the 5 category National Statistics Socio-Economic Classification (NSSEC-5) was used. 

Household wealth was grouped into quintiles. Marital status was classified as married or civil 

partnership (reference group), remarried, single, divorced/separated or widowed. Hypertension, 

angina, myocardial infarction, congestive cardiac failure (CCF), diabetes, stroke, COPD, 

asthma, osteoarthritis, osteoporosis and Parkinson’s disease diagnoses were all self-reported at 

each wave. Self-reported usual cigarette consumption and divided into 0 per day (reference 

category), 1-9 per day, 10-19 per day and 20 or more per day. Frequency of alcohol 

consumption was given as less than monthly (reference group), monthly, weekly or daily or 

almost daily consumption. Depression was determined using the abbreviated 8 point version of 
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the Centre for Epidemiologic Studies Depression scale (CES-D) dichotomised into less than or 

equal to 3 as non-depressed or 4 or more as (probable) depression.(Steffick, 2000) 

 

5.2.4 Statistical Analysis 

The initial analysis focussed on establishing the factor structure observed in the data. The 

analysis was conducted in two stages. First, exploratory factor analysis (EFA) was conducted 

using each wave individually to identify the number of factors. Secondly, the structure of 

individual factors was established using confirmatory factor analysis (CFA).  

The EFA was conducted using the weighted least squares means and variance adjusted 

estimator (WLSMV).(Barendse, Oort, & Timmerman, 2014; Beauducel & Herzberg, 2006)  

Geomin rotated factor loadings were used to permit correlation between factors and solutions 

with up to 4 latent factors were tested. The sampling weights provided with the ELSA dataset 

were used for the analysis. Comparative model fit was assessed using chi-squared test, root-

mean square error of approximation (RMSEA), comparative fit index (CFI) and Tucker-Lewis fit 

index (TLI). Consideration was also given to substantive interpretability. 

Following the EFA, the fit to the data of the most probable factor structure was confirmed using 

CFA in each wave, also using the sampling weights. The WLSMV estimator and the same fit 

indices were used. Due to the large sample size, greater importance was attached to the 

RMSEA, CFI and TLI than chi-squared test (Hu & Bentler, 1999). Factor scores were then 

generated using multilevel CFA in order to account for the clustering of scores within 

individuals. In order to provide comparability with the index scores invariance was assumed 

across time and socio-demographic groups and practice effects were not modelled separately 

to the effect of time.  

To compare the indices or factor scores in relation to exposures the association of the variables 

listed above with the summed indices or factor scores was analysed. Multilevel models (level 1= 

waves of ELSA, level 2= individuals) were constructed for each of the factor scores and indices 

in turn. Computed factor scores were use in preference to multiple indicator multiple causes 

modelling as there is no comparable means of simultaneously performing the regression and 

accounting for measurement error when using index scores. This was because the aim of this 

paper is to focus principally on comparing the a priori factor structure and loadings implicit in 

using summed scores with data driven factor structure and loadings and no other aspects of 

SEM modelling. The factor scores and indices were standardized to permit comparability. 

Random effects at the individual level were included for age and gender. The non-response 

weights included in the dataset were used in order to weight results to be representative of the 

English population aged 50 or older.  

The coefficients obtained from the regression analyses for the factors scores and indices were 

compared in 2 ways. Firstly, for each predictor variable the confidence interval for the 

regression coefficient was compared between each factor and each index. The total number of 
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differences between each factor and each index shows whether the magnitude of the 

associations is similar between the approaches. Secondly, the significance of the p-values for 

each coefficient was compared for each of the factors with each of the index scores and the 

total number of differences calculated. This gives an indication of what the differences in 

inferences about statistically significant predictors might be from the analysis. We compared the 

total number of differences in coverage and inferences between each factor and the index in 

both the extent they differed and how systematic the differences were.  

The EFA and CFA were run using MPlus version 7.0 and the multilevel models run using MLwiN 

version 2.3 from Stata version 13.0 using the runmlwin command.(Leckie & Charlton, 2013; L. 

K. Muthén & Muthén, 2014; Rasbash, Charlton, Browne, Healy, & Cameron, 2016; StataCorp, 

2013) 

 

 

5.3 Results 

 

5.3.1 Descriptive Statistics 

The participant demographics are displayed in table 5.1. The gender, ethnic and marital 

composition of the sample was relatively stable at each wave with 55.4-56.2% female, 2.3-3.3% 

non-white and 54.9-56.3% married, 11-12.6% remarried, 5.2-6.1% widowed, 10.4-11.1% 

divorced or separated and 14.8-17.7% single. The proportion of participants with no formal 

qualifications decreased from 41.5% in wave 1 to 26.2% in wave 5. All other categories of 

qualification, except foreign qualifications, increased over the study period. In particular, the 

number of participants with a university degree rose from 11.5% in wave 1 to 19.6% in wave 5. 

Correspondingly, the number completing school at age 14 or failing to finish school decreased 

from 23.3% to 12.1% and the number completing full time education at age 19 or older 

increased from 12.4% to 19.6%. Membership of NSSEC class 5 (semi-routine and routine 

occupations) decreased from 35% to 30% whilst membership of class 1 (managerial, 

administrative and professional occupations) increased from 29.6% to 34.6%. The number of 

participants who smoked decreased from 17.0% to 11.7%. 

Trends in the cognitive function measures can be seen in table 5.2. A general trend of modestly 

improving mean performance across waves, probably representing a combination of practice 

effects and selective dropout. From wave 1 to wave 5, the mean verbal fluency score increased 

from 19.3 to 20.8 animals named (standard deviation (S.D) increasing from 6.4 to 6.9). The 

mean immediate recall increased from 5.5 to 5.9 words recalled (S.D stable at 1.8) and the 

mean delayed recall increased from 4.0 to 4.6 words (S.D increasing from 2.1 to 2.2). The mean 

number of correct letters cancelled increased from 18.7 to 18.9 (S.D reducing from 6.0 to 5.5) 

and the number of letters missed decreased from 5.5 to 4.6 (S.D reducing from 5.0 to 4.0). The 

mean number of letters completed decreased from 307.2 to 301.7 (S.D decreasing from 96 to 
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86). Of the orientation tasks, naming the correct date was consistently the most difficult with 

19.2% giving the incorrect date in wave 1, decreasing to 16.7% in wave 5. Similarly, the 

proportion of participants who gave the incorrect year, month or day of the week decreased 

from waves 1 to 5.  

The correlation matrix of cognition function tests for all waves combined (appendix 5.1) shows 

that verbal fluency and prospective memory correlated moderately with all other variables 

except orientation to date and the letter cancelation tests. Immediate and delayed verbal recall 

correlated to a high degree (0.729) but also had weak to moderate correlation with orientation, 

prospective memory, verbal fluency and letter cancelation. The number of correct and missed 

letters correlated highly (-0.888) and correlated poorly with all of the other variables. The 

number of letters completed correlated weakly with all other variables- its strongest correlation 

was with the number of letters correct at -0.281. This suggests that separating letter reached 

from correctly cancelled and missed letters may have been relatively successful in 

disaggregating processing speed and executive control, which is a common difficulty in testing 

these specific cognitive domains.(Cepeda, Blackwell, & Munakata, 2013)  

 

5.3.2 Factor Analysis 

The model fits for the EFA showed that models with 1 or 2 factors fit poorly in all waves. Using 

the RMSEA, TLI and CFI criteria, the 3-factor solution was deemed to be an adequate fit to the 

data (RMSEA probability of a value <0.05 =1, TLI >0.95 and CFI >0.97 in all waves). The Χ2 test 

of model miss-specification remained statistically significant for both the 3 and 4 factor solution 

in all waves. Given the fit to the data, interpretability and parsimony the 3-factor solution this 

was preferred to the 4-factor solution.  

The 3-factor solution identified by EFA for each wave can be seen in appendix 5.3.2. The first 

factor was predominantly comprised of the orientation questions (Date 0.601 to 0.681; Month 

0.883 to 0.994; Year 0.834 to 0.931; Day 0.698 to 0.826) with small loadings from prospective 

memory (0.267 to 0.403), verbal fluency (0.187 to 0.282) and processing speed (0.202-0.285). 

The second factor was comprised principally of immediate (0.831-0.891) and delayed (0.757-

0.820) recall as well as verbal fluency (0.396-0.488) and prospective memory (0.204-0.341). 

The third factor was comprised of the letter cancelation task with the rate of correct (-0.971 to -

1.026) and missed (0.829 to 0.897) letters as well as letter completed (0.365 to 0.398). From 

this point forward, these factors will be called attention (orientation to time), memory and visual 

scanning respectively.  

This factor structure was then checked using CFA. This found good fit to the data in all waves 

using RMSEA (all <0.033), TLI (all >0.97) and CFI (all >0.98). The factor structure identified 

across waves using multilevel analysis can be seen in figure 5.1. The loadings on the 

orientation factor were fixed at 1 for year and estimated as 0.334 (S.E 0.019) for date, 0.712 

(S.E 0.043) for month and 0.548 (S.E 0.032) for day of the week. Loadings were <0.3 in the 

EFA were not included in the CFA model. The loadings on the memory factor were fixed at 1 for  
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Table 5.1 ELSA Participant Demographics by Wave 

Variable Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 

  n 12095 9425 9760 11035 10260 
              

    Mean         

Age   64.2 (s.d 11.1) 65.8 (s.d 10.7)  64.6 (s.d 11.4)  65.3 (s.d 10.5)  65.1 (s.d 13.3)  
              

    Proportion         

Gender 
Male 5334 (44.1%) 4124 (43.8%) 4292 (44.0%) 4922 (44.6%) 4566 (44.5%) 

Female 6761 (55.9%) 5301 (56.2%) 5468 (56.0%) 6113 (55.4%) 5694 (55.5%) 

Ethnicity 
White 11658 (96.3%) 8988 (97.7%) 9203 (97.0%) 10302 (96.8%) 9513 (96.7%) 

Non-white 360 (3.0%) 208 (2.3%) 285 (3.0%) 342 (3.2%) 325 (3.3%) 

Marital 
Status 

1st Marriage 6811 (56.3%) 5231 (55.5%) 5355 (54.9%) 6107 (55.4%) 5730 (55.9%) 

Remarried 1349 (11.2%) 1036 (11.0%) 1182 (12.1%) 1395 (12.6%) 1190 (11.6%) 

Widowed 669 (5.5%) 491 (5.2%) 568 (5.8%) 670 (6.1%) 592 (5.8%) 

Divorced or 
separated 1260 (10.4%) 997 (10.6%) 1082 (11.1%) 1229 (11.1%) 1156 (11.3%) 

Single 2003 (16.6%) 1669 (17.7%) 1572 (16.1%) 1632 (14.8%) 1586 (15.5%) 

Qualifications 

No Qualifications 5007 (41.5%) 3561 (37.9%) 2815 (29.0%) 2979 (27.9%) 2664 (26.2%) 

High School 2555 (21.2%) 2064 (21.9%) 2232 (23.00%) 2465 (23.1%) 2364 (23.2%) 

6th Form 763 (6.3%) 649 (6.9%) 780 (8.0%) 888 (8.3%) 868 (8.5%) 
Obtained Higher Education 1332 (11.0%) 1131 (12.0%) 1448 (14.9%) 1595 (15.0%) 1568 (15.4%) 

Degree 1388 (11.5%) 1188 (12.6%) 1699 (17.5%) 1975 (18.5%) 1990 (19.6%) 
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Foreign 
Qualifications 1015 (8.4%) 815 (8.7%) 744 (7.7%) 764 (7.2%) 727 (7.1%) 

Age of 
leaving 

14 or never 2754 (23.3%) 1898 (21.0%) 1592 (17.0%) 1424 (13.4%) 1181 (12.1%) 

15 or 16 6121 (51.9%) 4735 (52.3%) 4962 (52.9%) 5743 (54.2%) 5314 (54.5%) 
FT education 17 or 18 1464 (12.4%) 1192 (13.2%) 1341 (14.3%) 1603 (15.1%) 1494 (15.3%) 

19 or over 1464 (12.4%) 1223 (13.5%) 1478 (15.8%) 1834 (17.3%) 1761 (18.1%) 

NSSEC class 

1 3526 (29.6%) 2869 (31.2%) 3103 (32.6%) 3567 (34.1%) 3423 (34.6%) 

2 1607 (13.6%) 1303 (14.2%) 1339 (14.1%) 1437 (13.7%) 1377 (13.9%) 

3 1236 (10.4%) 981 (10.7%) 1078 (11.3%) 1230 (11.8%) 1164 (11.8%) 

4 1329 (11.2%) 995 (10.8%) 1012 (10.6%) 1025 (9.8%) 960 (9.7%) 

5 4151 (35.0%) 3061 (33.2%) 2988 (31.4%) 3212 (30.7%) 2972 (30.0%) 

Cigarette 
Consumption 

0 10042 (83.0%) 8045 (85.4%) 8344 (85.5%) 9596 (87.0%) 9058 (88.3%) 

1-9 446 (3.7%) 331 (3.5%) 360 (3.7%) 349 (3.2%) 307 (3.0%) 

10-19 800 (6.6%) 527 (5.6%) 531 (5.4%) 571 (5.2%) 482 (4.7%) 

  20+ 807 (6.7%) 518 (5.5%) 525 (5.4%) 519 (4.7%) 413 (4.0%) 
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immediate recall, and estimated as 1.023 (S.E 0.007) for delayed recall, 0.693 (S.E 0.008) for 

verbal fluency and1.165 (S.E 0.023) for prospective memory. The loadings on the visual search 

factor were fixed at -1 for missed letters and was estimated as 0.978 (S.E 0.024) for correct 

letters and -0.259 (0.018) for letters completed. Despite the loading being <0.3 the latter was 

retained in order to ensure there were 3 indicators of the visual scanning factor. All loadings 

were statistically significant with p values <0.001. 

The correlations between factors were 0.826 between attention and memory, 0.369 with 

attention and visual scanning and 0.354 between memory and visual scanning (appendix 5.3.3). 

The correlations between the attention factor and the three index scores were 0.798 for the 

global index, 0.824 for the memory index and 0.531 for executive function. The memory factor 

had correlations of 0.913 with global function, 0.949 for the memory index and 0.599 for the 

executive function index. In contrast, the visual scanning factor was only moderately correlated 

with the index scores, with correlations of 0.426 with the global index, 0.294 with the memory 

index and 0.464 with the executive function index. 

Table 5.2 Cognitive Function Test Results by Wave 

  Wave 

  1 2 3 4 5 

n 12095 9272 9483 10559 9667 

  mean1         

Verbal Fluency 19.3 (6.4) 19.8 (6.7) 20.2 (6.9) 20.7 (6.9) 20.8 (6.9) 

Immediate  5.5 (1.8) 5.7 (1.8) 5.8 (1.8) 5.8 (1.8) 5.9 (1.8) 

Delayed 4.0 (2.1) 4.3 (2.1) 4.5 (2.1) 4.6 (2.1) 4.6 (2.2) 

Letters Correct 18.7 (6.0) 18.5 (5.9) 19.0 (5.8) 19.1 (5.5) 18.9 (5.5) 

Letters Missed 5.5 (5.0) 5.0 (4.5) 4.7 (4.2) 4.5 (4.1) 4.6 (4.1) 

Letters 
Completed 

307.2 
(96.0) 

297.6 
(93.5) 

301.4 
(90.2) 

301.1 
(87.0) 

301.7 
(86.1) 

          

  
Proportion 
incorrect2 

        

Date 
2262 

(19.2%) 
1708 

(18.5%) 
1719 

(18.1%) 
1871 

(17.8%) 
1615 

(16.7%) 

Month 
301 

(2.6%) 
221 

(2.4%) 
249 

(2.6%) 
235 

(2.2%) 
202 

(2.1%) 

Year 
324 

(2.8%) 
194 

(2.1%) 
220 

(2.3%) 
229 

(2.2%) 
215 

(2.2%) 

Day 
242 

(2.1%) 
200 

(2.2%) 
205 

(2.2%) 
200 

(1.9%) 
198 

(2.1%) 

Prospective 
2364 

(20.3%) 
1724 

(18.6%) 
1550 

(16.6%) 
1551 

(15.0%) 
1297 

(13.7%) 

 

1 Data displayed as mean (standard deviation) 

2 Data Displayed as number giving incorrect answer (percentage giving incorrect answer) 
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Figure 5.1 CFA Factor Structure for Cognitive Function in the English Longitudinal Study of Ageing. 
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Table 5.3 Results of the multilevel models (time invariant covariates): cognitive measures regressed on covariates. 

    Attention Factor Memory Factor 
Visual Search 
Factor Global Index Memory Index Executive Index 

Intercept 
-0.391 (-0.442 to 

-0.339) 
-0.496 (-0.546 to 

-0.447) 
-0.253 (-0.309 to 

-0.198) 
-0.744 (-0.793 to 

-0.695) 
-0.577 (-0.627 to 

-0.527) 
-0.676 (-0.728 to 

-0.625) 

Gender (female) 
0.228 (0.203 to 

0.252) 
0.246 (0.220 to 

0.272) 
0.048 (0.021 to 

0.075) 
0.249 (0.223 to 

0.275) 
0.246 (0.221 to 

0.271) 
0.171 (0.143 to 

0.199) 

Ethicity (non-white) 
-0.486 (-0.561 to 

-0.411) 
-0.622 (-0.704 to 

-0.540) 
-0.616 (-0.712 to 

-0.519) 
-0.765 (-0.848 to 

-0.681) 
-0.574 (-0.655 to 

-0.492) 
-0.770 (-0.857 to 

-0.684) 

Education 

Highschool 
0.271 (0.239 to 

0.304) 
0.323 (0.289 to 

0.357) 
0.179 (0.143 to 

0.215) 
0.351 (0.316 to 

0.385) 
0.279 (0.245 to 

0.312) 
0.306 (0.268 to 

0.343) 

Sixth Form 
0.328 (0.279 to 

0.377) 
0.422 (0.370 to 

0.474) 
0.191 (0.138 to 

0.245) 
0.472 (0.420 to 

0.523) 
0.362 (0.312 to 

0.412) 
0.428 (0.372 to 

0.485) 
Non-
degree 

0.278 (0.237 to 
0.320) 

0.379 (0.335 to 
0.422) 

0.108 (0.063 to 
0.153) 

0.408 (0.364 to 
0.452) 

0.312 (0.270 to 
0.355) 

0.373 (0.325 to 
0.421) 

Degree 
0.400 (0.353 to 

0.447) 
0.545 (0.493 to 

0.597) 
0.177 (0.126 to 

0.229) 
0.589 (0.538 to 

0.640) 
0.453 (0.404 to 

0.503) 
0.533 (0.478 to 

0.589) 

Foreign 
0.189 (0.146 to 

0.232) 
0.210 (0.163 to 

0.256) 
0.149 (0.100 to 

0.197) 
0.215 (0.169 to 

0.262) 
0.204 (0.158 to 

0.249) 
0.155 (0.105 to 

0.205) 

School 
Leaving Age 

15 
0.147 (0.108 to 

0.185) 
0.215 (0.177 to 

0.253) 
0.199 (0.157 to 

0.241) 
0.253 (0.215 to 

0.291) 
0.142 (0.104 to 

0.180) 
0.285 (0.246 to 

0.325) 

17 
0.245 (0.197 to 

0.293) 
0.314 (0.264 to 

0.364) 
0.232 (0.179 to 

0.286) 
0.350 (0.300 to 

0.401) 
0.225 (0.176 to 

0.274) 
0.371 (0.317 to 

0.425) 

19 
0.327 (0.275 to 

0.380) 
0.426 (0.370 to 

0.482) 
0.260 (0.203 to 

0.318) 
0.475 (0.419 to 

0.530) 
0.323 (0.269 to 

0.377) 
0.487 (0.427 to 

0.546) 

Social Class 
1 

(highest) 
0.176 (0.145 to 

0.207) 
0.196 (0.164 to 

0.228) 
0.093 (0.059 to 

0.127) 
0.196 (0.164 to 

0.227) 
0.211 (0.179 to 

0.243) 
0.133 (0.098 to 

0.169) 

  2 
0.187 (0.153 to 

0.220) 
0.195 (0.159 to 

0.231) 
0.142 (0.104 to 

0.180) 
0.186 (0.150 to 

0.223) 
0.198 (0.162 to 

0.233) 
0.129 (0.089 to 

0.169) 

  3 
0.090 (0.047 to 

0.133) 
0.151 (0.108 to 

0.194) 
0.039 (-0.007 to 

0.086) 
0.154 (0.111 to 

0.196) 
0.151 (0.109 to 

0.194) 
0.114 (0.069 to 

0.160) 

  4 
0.070 (0.031 to 

0.108) 
0.088 (0.049 to 

0.126) 
0.037 (-0.006 to 

0.079) 
0.061 (0.022 to 

0.099) 
0.081 (0.043 to 

0.119) 
0.033 (-0.009 to 

0.076) 

Wealth Quintile 2 
0.018 (-0.010 to 

0.046) 
0.016 (-0.009 to 

0.041) 
0.013 (-0.017 to 

0.043) 
0.013 (-0.011 to 

0.036) 
0.018 (-0.008 to 

0.044) 
0.006 (-0.021 to 

0.032) 
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  3 
0.020 (-0.009 to 

0.048) 
0.025 (-0.001 to 

0.051) 
0.021 (-0.010 to 

0.051) 
0.017 (-0.007 to 

0.041) 
0.032 (0.006 to 

0.059) 
0.003 (-0.024 to 

0.031) 

  4 
0.058 (0.029 to 

0.087) 
0.044 (0.017 to 

0.071) 
0.025 (-0.006 to 

0.056) 
0.047 (0.022 to 

0.072) 
0.056 (0.028 to 

0.083) 
0.040 (0.011 to 

0.069) 

  
5 

(highest) 
0.062 (0.031 to 

0.093) 
0.053 (0.024 to 

0.083) 
0.034 (0.001 to 

0.066) 
0.054 (0.027 to 

0.082) 
0.067 (0.037 to 

0.096) 
0.036 (0.004 to 

0.067) 
               

VPC 0.349 0.458 0.388 0.551 0.700 0.500 
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Table 5.4 Results of the multilevel models (time varying covariates): cognitive measures regressed on covariates. 

 

    Attention Factor Memory Factor 
Visual Search 
Factor Global Index Memory Index Executive Index 

Age (centred) 
-0.021 (-0.022 to -

0.019) 
-0.023 (-0.024 to -

0.021) 
-0.011 (-0.013 to -

0.009) 
-0.021 (-0.022 to -

0.019) 
-0.026 (-0.027 to -

0.024) 
-0.010 (-0.012 to -

0.009) 

Age^2 (centred) 
-0.001 (-0.001 to -

0.001) 
-0.001 (-0.001 to -

0.001) 
-0.000 (-0.000 to -

0.000) 
-0.001 (-0.001 to -

0.001) 
-0.001 (-0.001 to -

0.001) 
-0.001 (-0.001 to -

0.001) 

Employment  
Status 
  
  
  

Working 
0.070 (0.044 to 

0.097) 
0.022 (-0.004 to 

0.049) 
0.029 (0.000 to 

0.057) 
0.053 (0.029 to 

0.077) 
0.014 (-0.011 to 

0.040) 
0.074 (0.047 to 

0.102) 

Unemployed 
0.056 (0.011 to 

0.101) 
0.043 (-0.002 to 

0.088) 
0.023 (-0.024 to 

0.071) 
0.048 (0.006 to 

0.089) 
0.031 (-0.013 to 

0.075) 
0.052 (0.006 to 

0.099) 

Long term sick 
0.044 (-0.038 to 

0.125) 
0.051 (-0.027 to 

0.129) 
0.057 (-0.031 to 

0.145) 
0.039 (0.000 to 

0.109) 
0.049 (0.000 to 

0.123) 
0.016 (0.000 to 

0.100) 

Homemaker 
-0.142 (-0.191 to -

0.092) 
-0.102 (-0.145 to -

0.058) 
-0.030 (-0.081 to 

0.022) 
-0.073 (-0.115 to -

0.031) 
-0.111 (-0.156 to -

0.066) 
-0.050 (-0.096 to -

0.003) 

Marital Status 
  
  
  

Remarried 
0.029 (-0.002 to 

0.060) 
0.028 (-0.005 to 

0.060) 
0.003 (-0.031 to 

0.038) 
0.036 (0.005 to 

0.067) 
0.023 (-0.009 to 

0.055) 
0.039 (0.003 to 

0.075) 

Single 
-0.026 (-0.073 to 

0.020) 
-0.075 (-0.125 to -

0.024) 
-0.108 (-0.164 to 

0.053) 
-0.103 (-0.153 to - 

0.054) 
-0.075 (-0.125 to -

0.026) 
-0.118 (-0.171 to -

0.065) 

Divorced 
0.038 (0.005 to 

0.070) 
0.013 (-0.022 to 

0.048) 
-0.033 (-0.072 to 

0.006) 
0.027 (-0.007 to 

0.061) 
0.017 (-0.017 to 

0.051) 
0.041 (0.003 to 

0.078) 

Widowed 
0.024 (-0.010 to 

0.057) 
0.015 (-0.018 to 

0.049) 
-0.036 (-0.073 to 

0.001) 
-0.016 (-0.048 to 

0.017) 
0.013 (-0.021 to 

0.046) 
-0.034 (-0.068 to 

0.001) 
Chronic  
Disease 
  
  
  
  
  
  
  
  

Hypertension 
-0.014 (-0.034 to 

0.005) 
-0.023 (-0.043 to -

0.004) 
-0.011 (-0.033 to 

0.011) 
-0.022 (-0.040 to -

0.004) 
0.000 (-0.020 to 

0.019) 
-0.048 (-0.068 to -

0.028) 

Angina 
-0.049 (-0.091 to -

0.008) 
-0.059 (-0.096 to -

0.022) 
-0.045 (-0.089 to -

0.001) 
-0.069 (-0.105 to -

0.033) 
-0.027 (-0.065 to 

0.012) 
-0.104 (-0.144 to -

0.064) 

MI 
-0.026 (-0.076 to 

0.024) 
-0.032 (-0.078 to 

0.013) 
0.017 (-0.036 to 

0.070) 
-0.048 (-0.093 to -

0.004) 
-0.039 (-0.085 to 

0.008) 
-0.021 (-0.068 to 

0.026) 

CCF 
-0.099 (-0.246 to 

0.049) 
-0.033 (-0.162 to 

0.095) 
0.004 (-0.135 to 

0.143) 
-0.047 (-0.163 to 

0.070) 
-0.017 (-0.142 to 

0.108) 
-0.073 (-0.191 to -

0.045) 
Type 2 Diabetes 
M. 

-0.043 (-0.081 to -
0.006) 

-0.052 (-0.088 to -
0.015) 

-0.013 (-0.052 to 
0.027) 

-0.041 (-0.076 to -
0.006) 

-0.080 (-0.117 to -
0.044) 

0.010 (-0.027 to 
0.047) 
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  Stroke 

-0.221 (-0.288 to -
0.154) 

-0.197 (-0.254 to -
0.139) 

-0.033 (-0.096 to 
0.029) 

-0.226 (-0.285 to -
0.167) 

-0.209 (-0.269 to -
0.150) 

-0.179 (-0.238 to -
0.120) 

COPD 
-0.032 (-0.077 to 

0.013) 
-0.003 (-0.045 to 

0.040) 
-0.035 (-0.083 to 

0.013) 
-0.017 (-0.058 to 

0.024) 
0.013 (-0.029 to 

0.055) 
-0.058 (-0.101 to -

0.014) 

Asthma 
-0.015 (-0.047 to 

0.018) 
-0.002 (-0.034 to 

0.030) 
-0.018 (-0.053 to 

0.017) 
-0.021 (-0.052 to 

0.010)  
-0.005 (-0.037 to 

0.026) 
-0.035 (-0.070 to 

0.001) 

Osteoarthritis 
0.036 (0.015 to 

0.057) 
0.029 (0.008 to 

0.050) 
0.043 (0.020 to 

0.066) 
0.033 (0.013 to 

0.053) 
0.020 (-0.002 to 

0.041) 
0.044 (0.022 to 

0.067) 

Osteoporosis 
0.004 (-0.038 to 

0.046) 
0.003 (-0.038 to 

0.044) 
-0.008 (-0.053 to 

0.038) 
-0.007 (-0.047 to 

0.032) 
-0.015 (-0.058 to 

0.027) 
0.006 (-0.037 to 

0.048) 
Parkinson’s 
Disease 

-0.273 (-0.437 to -
0.109) 

-0.256 (-0.390 to -
0.122) 

0.051 (-0.089 to 
0.191) 

-0.246 (-0.372 to -
0.121) 

-0.240 (-0.387 to -
0.093) 

-0.304 (-0.417 to -
0.192) 

Cigarette  
Consumption 
  
  

1-9 
-0.059 (-0.110 to -

0.007) 
-0.039 (-0.086 to 

0.008) 
-0.001 (-0.055 to 

0.053) 
-0.073 (-0.118 to -

0.028) 
-0.043 (-0.091 to 

0.005) 
-0.106 (-0.155 to -

0.057) 

10-19 
-0.061 (-0.103 to - 

0.020) 
-0.044 (-0.085 to -

0.003) 
-0.031 (-0.076 to 

0.015) 
-0.063 (-0.100 to -

0.025) 
-0.030 (-0.070 to 

0.010) 
-0.099 (-0.141 to -

0.057) 

>20 
-0.033 (-0.076 -to 

0.009) 
-0.041 (-0.083 to 

0.001) 
-0.021 (-0.067 to 

0.024) 
-0.054 (-0.094 to -

0.014) 
-0.031 (-0.074 to 

0.012) 
-0.082 (-0.128 to -

0.037) 

Alcohol  
Consumption 
  
  

Monthly 
0.056 (0.027 to 

0.085) 
0.050 (0.022 to 

0.077) 
0.037 (0.005 to 

0.068) 
0.040 (0.015 to 

0.066) 
0.036 (0.009 to 

0.064) 
0.045 (0.016 to 

0.074) 

Weekly 
0.033 (0.007 to 

0.060) 
0.047 (0.022 to 

0.073) 
0.034 (0.006 to 

0.062) 
0.038 (0.014 to 

0.062) 
0.047 (0.022 to 

0.073) 
0.021 (-0.006 to 

0.048) 

Daily 
0.087 (0.060 to 

0.114) 
0.111 (0.084 to 

0.137) 
0.052 (0.022 to 

0.081) 
0.111 (0.086 to 

0.137) 
0.098 (0.072 to 

0.124) 
0.102 (0.073 to 

0.131) 

Depression 
-0.104 (-0.130 to -

0.078) 
-0.096 (-0.120 to -

0.72) 
-0.025 (-0.052 to 

0.002) 
-0.075 (-0.097 to -

0.053) 
-0.087 (-0.111 to -

0.063) 
-0.069 (-0.094 to -

0.045) 
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5.3.4 Regression Analyses 

Substantial differences between the predictors of the factor and index scores were found in the 

multilevel models (table 5.3). The variance partition coefficients (VPC) for the random slope 

models assuming mean age and male gender were 0.349 for the attention factor, 0.458 for the 

memory factor, 0.388 for the letter cancelation factor, 0.551 for the global index, 0.700 for the 

memory index and 0.500 for the executive function index. In general, this finds that the 

proportion of variance at the individual level is estimated to be substantially higher when using 

indices. Conversely, there is much greater within individual change in cognitive factor scores. 

The index scores may represent an underestimation of the degree of intra-individual variability 

over time.  

The full regression coefficients for the explanatory variables in the multilevel models are 

presented in table 5.3 for time invariant covariates or table 5.4 for time variant covariates and 

the summary of differences in coverage and p-value based inferences for the 47 regression 

coefficients can be seen in table 5.5. These show that inferences about the memory factor are 

very similar to those made using the index for memory, with only 1 parameter estimate having 

non-overlapping confidence intervals and only 6 parameters with different p values. The 

differences between the memory factor and the global and executive function indices were 1 

and 3 differences in coverage and 6 and 10 differences in inferences respectively. The attention 

factor differs substantially more in terms of both coverage and inferences in relation to global 

function, memory and executive function indices (9, 2 and 9 differences in coverage and 6, 10 

and 8 in inferences respectively). The visual scanning factor was very unlike any of the scores 

for the global, memory and executive indexes (15, 12 and 14 for coverage; 16, 13 and 16 for 

inferences).   

This means that the difference between memory and all index scores is only what one would 

expect by chance in terms of the coverage of parameter estimates. The parameter estimates for 

attention are also most similar to the memory index with moderate differences to the global 

index and executive function index. Both the memory and attention factors show a moderate 

number of differences in the number of significant p-values when compared with all of the index 

scores. The visual scanning factor shows far more differences both in terms of the parameter 

estimates themselves and the number of those estimates found to be statistically significant. 

This suggests that, in an applied research setting, using index scores would fail to reflect the 

inclusion of the visual scanning aspect of the cognitive tasks in ELSA and its unique pattern of 

association with predictor variables.    

Some of the key coefficients which illustrate the ways the coverage and inferences differ include 

that the association of the visual scanning factor with gender (being female) is substantially 

smaller in magnitude (0.021 to 0.075) than for the index scores (global index 0.223 to 0.275; 

memory index 0.221 to 0.271; executive index 0.143 to 0.199). Likewise, the association of the 

visual scanning factor with depression is substantially smaller and non-significant (-0.052 to 

0.002) when compared to the index scores (global index -0.097 to -0.053; memory index -0.087 

to -0.063; executive index -0.094 to -0.045). On the other hand, the associations with the 
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attention (-0.130 to -0.078) and memory factors (-0.120 to -0.072) are in line with those of the 

index scores. This demonstrates a risk of using the index scores that include visual scanning 

tasks which are not associated with depression or gender- including visual scanning in an 

overall index score reduces the association of the latter with gender and depression.  

 

Table 5.5 Summary of Differences in Coverage and Inferences between factor and index scores 

  Coverage Differences 

    Index Scores 

    Global Memory Executive Total 

Factor 

Attention 9 2 9 20 

Memory 1 1 3 5 

Scores Visual 15 12 14 41 

Total 25 15 26 66 

  Inference Differences 

    Global Memory Executive Total 

Factor 

Attention 6 10 8 24 

Memory 6 6 10 22 

Scores Visual 16 13 16 45 

Total 28 29 34 91 

 

 

5.4 Discussion and Conclusions 

These results demonstrate the grouping of test scores into memory and executive function 

indices are not an accurate representation of the data structure in ELSA. Indeed, no 2-factor 

model is found to adequately fit the observed data. A 3-factor model of attention, working 

memory and visual scanning factors fits the observed data well. However, even within this 3-

factor structure the variables which are grouped together do not match those of the indices.  

In particular, the verbal fluency task is summed with the letter cancelation task to create the 

executive function index. It is in fact closer to verbal and prospective memory tasks than the 

letter cancelation task. The letter cancelation task is further complicated by the fact that speed 

on this task is associated with reduced accuracy but better performance in other areas. This is 

noted in the first report on the ELSA cognitive function tests, but is not accounted for in the 

summed index scores where speed and accuracy are summed together.(Steel et al., 2004) 

Indeed, this complex association with the other measures of cognitive function makes the letter 

cancelation task quite problematic when it comes to interpretation of the cognitive data.  

Contrastingly, for inferences about which variables are associated with memory there were 

minimal differences between the factor and index. The memory factor and index are highly 

correlated and have quite similar associations with explanatory variables. The number of 

inferences which would differ was found to be 6 out of 47 when compared with each other. This 
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is likely to be due to the factor loadings being nearly 1 for immediate and delayed recall. This 

nearly equal weighting for those two items is similar to their simple addition in the memory 

index. The global index is associated with the most covariates overall which seems to represent 

a lack of specificity. Using the global index is likely to result in conclusions which are over 

generalised, so claims for an association with global functioning may be made which are 

actually associations with only one of the specific cognitive functions included in the global 

index. The loss of specificity is also present in the executive function index. No overall executive 

function factor of the type envisaged in the index scores is found. Rather visual scanning stands 

alone as a single task, separate from the other variables and significantly associated with fewer 

predictor variables than the executive function index, which is its closest parallel out of the 3 

indices.   

As well as different inferences based on conventional tests of statistical significance, there were 

several important differences in coverage and the substantive interpretation of the regression 

results. In particular, in comparison with the visual scanning factor several substantive 

differences are missed by the executive function index. Visual scanning shows substantially 

less female advantage when using factor scores, which corresponds to reported associations 

between male gender and comparatively high performance in visual tasks in cognitive 

assessment.(Marja J Aartsen, Martin, & Zimprich, 2004; de Azeredo Passos et al., 2015; 

Ferreira, Ferreira Santos-Galduróz, Ferri, & Fernandes Galduróz, 2014; van Hooren et al., 

2007) Moreover, the visual scanning factor was less strongly associated with depression, a 

replication of previous findings in studies of depression and cognition which specifically use a 

letter cancelation task as part of the their cognitive battery.(Channon, Baker, & Robertson, 

1993; Reppermund, Ising, Lucae, & Zihl, 2009; Tarbuck & Paykel, 1995)  An additional 

difference for the visual scanning factor based on the letter cancelation task is that the decline 

was closer to linear, also consistent with previous research on cancellation tasks 

specifically.(Byrd, Touradji, Tang, & Manly, 2004; Uttl & Pilkenton-Taylor, 2001b) 

Although the reduction in bias associated with the different measures was not estimated as 

would be done in a simulation study, this study provides a useful comparison of two common 

methods. In order to do so, I have provided a qualitative description of differences which may 

occur between the CFA method and the summed indices. In order to keep the factor analysis 

and summed scores as comparable as possible, I have assumed longitudinal invariance, which 

is one weakness of the analysis. Furthermore, it must be acknowledged that factor analysis is 

not the only data reduction technique which could have been used to meet the aims of this 

paper. However, it has the distinct advantage of being readily incorporated under the broader 

structural equation modelling framework which is both widely used and highly versatile.   

This study illustrates how methods for combining cognitive scores determined a priori can 

influence the conclusions of a research paper compared with methods such as factor analysis, 

which are data driven. The summed index scores did not accurately reflect the structure of the 

data and thus the factors derived differed substantially from the indices. However, this is 

primarily with regards to visual scanning and executive function, as the memory index appeared 
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quite comparable to the results obtained using CFA. Researchers using summed scores for 

simplicity or comparability should carefully weigh up whether those assumptions are reasonable 

to make and consider checking whether the summed score has at least the same underlying 

structure as that revealed using data reduction methods such as factor analysis.  
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Chapter 6. An application of Bayesian measurement invariance to modelling cognition over time 

in the English Longitudinal Study of Ageing. 

 

This paper presents the second paper which addresses the second research question of this 

thesis: when conventional tests for longitudinal measurement invariance based on the 

comparative fit index provide inconclusive results can Bayesian approximate measurement 

invariance be used as a suitable alternative. The secondary part to this question is whether the 

cognitive function latent factors in ELSA show longitudinal measurement invariance.  

In a similar fashion to the first paper, this paper presents an empirical example of testing 

assumptions about how cognitive function is being measured in the ELSA dataset. In this case 

whether or not two of the factors identified in the first paper have the property of longitudinal 

measurement invariance. A novel use of Bayesian measurement invariance is presented in 

complimenting existing tests of measurement invariance when the results of conventional tests 

are ambiguous. In the context of the thesis as a whole, it builds upon the analysis present in the 

first paper in laying the foundations for the analysis in the third paper.    

I conducted the analysis, drafted and revised the paper. My supervisors Prof. Chandola and 

Prof. Pendleton are co-authors and provided guidance on the analytic strategy and reviewed the 

drafts. Prof Gindo Tampubolon provided additional comments on a draft manuscript as part of 

an annual review for which he has my thanks. 

This paper has been published. The citation is: 

Williams, B. D., Chandola, T., Pendleton, N. An application of Bayesian measurement 

invariance to modelling cognition over time in the English Longitudinal Study of Ageing. 

International Journal of Methods in Psychiatric Research. 27(e1749), 1-8. 

https://doi.org/10.1002/mpr.1749  
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Abstract 

 

Objectives 

Recommended cut-off criteria for testing measurement invariance (MI) using the comparative fit 

index (CFI) vary between -0.002 and -0.01. We compared CFI results with those obtained using 

Bayesian approximate measurement invariance (MI) for cognitive function.  

 

Methods 

We used cognitive function data from waves 1-5 of the English Longitudinal Study of Ageing 

(ELSA; wave 1 n=11951), a nationally representative sample of English adults aged ≥50. We 

tested for longitudinal invariance using CFI and approximate MI (prior for a difference between 

intercepts/loadings ~N(0,0.01)) in an attention factor (orientation to date, day, week and month) 

and a memory factor (immediate and delayed recall, verbal fluency and a prospective memory 

task). 

 

Results 

Conventional CFI criteria found strong invariance for the attention factor (CFI + 0.002) but either 

weak or strong invariance for the memory factor (CFI -0.004). The approximate MI results also 

supported strong measurement invariance for attention but found 9/20 intercepts or thresholds 

were non-invariant for the memory factor. This supports weak rather than strong invariance. 

 

Conclusions 

Within ELSA, the attention factor is suitable for longitudinal analysis but not the memory factor. 

More generally, in situations where the appropriate CFI criteria for invariance are unclear, 

Bayesian approximate MI could alternatively be used.  

 

 

 

Key words/phrases: approximate measurement invariance, statistics, old age, cognitive 

function, ELSA. 
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6.1 Introduction 

Measurement invariance (MI) is an often-underappreciated problem in psychiatric research. 

Whilst some outcomes in psychiatry are discrete and directly observable, many are impossible 

to observe directly. Cognitive function is an example of this and is the focus of this study. Latent 

variable analysis is one common method used to combine multiple measures into a single 

measure of an underlying concept of interest. However, a frequently occurring problem when 

using latent variables longitudinally is that the association between the observed variables and 

the unobserved latent variable changes over time.  

In tests of cognition, performance on the tests will be determined by the individual’s ability in the 

target function (say working memory) but also their ability in a range of other cognitive and 

physical functions (such as attention and hearing). The demands on other functions will differ 

between tests. Each additional function utilized in performing each individual task may be 

differentially affected by ageing, disease or setting (McAvinue et al., 2012; Wiegand et al., 

2014). As well as different rates of change secondary to cognitive or physical processes, the 

size of practice effects may also vary between different tests of the same cognitive function 

(Calamia et al., 2012). Any of these may change the strength of the association between the 

individual cognitive tests and the latent cognitive function over time. In factor analysis, this 

manifests as a change in factor loading or intercept and is known as measurement invariance 

(van de Schoot et al., 2012).  

MI has been discussed extensively elsewhere and has been identified as a problem in 

longitudinal studies of cognitive function since at least the late 1980s and early 1990s (Horn & 

McArdle, 1992; Schaie et al., 1989). With some notable exceptions, population and clinical 

research on cognitive function has had a tendency to overlook this issue with a preference for 

using summed scores, the measurement properties of which are often not examined (Blankson 

& McArdle, 2013; McArdle et al., 2007; Wicherts, 2016). If this issue is ignored it biases 

estimates of change in cognitive function over time towards the direction of the change in latent 

intercept or varying effects for a change in factor loading (Ferrer et al., 2008; Horn & McArdle, 

1992; van de Schoot et al., 2013; Wicherts, 2016; Widaman et al., 2011). For example, practice 

effects would be expected to increase the intercept leading to an over-estimation of cognitive 

ability at follow-up visits and thus underestimation of decrease over time (Wicherts & Dolan, 

2010). Alternatively, a decrease in factor loading due to increased sensory impairment over time 

weakening the association between measurable and latent cognitive function could lead to 

overestimation of cognitive function for low scorers and underestimation for high scorers as time 

progresses (Wicherts, 2016).  

 

6.1.1 Conventional Measurement Invariance 

Underlying a set of k (n=0,…,k) continuous observed variables c that have been measured, 

there is a latent variable η (B. O. Muthén & Asparouhov, 2013; van de Schoot et al., 2013). If 

they are measured in individual i at time t the measurement part is: 
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1) 𝑐𝑖𝑘𝑡 = 𝑣𝑘𝑡 + 𝜆𝑘𝑡𝜂𝑖𝑡 + 𝜀𝑖𝑘𝑡  

Here 𝑐𝑖𝑘𝑡 is the observed value of variable k at time t in individual i, 𝑣𝑘𝑡 is the intercept for 

variable k at time t, 𝜆𝑘𝑡 is the loading for variable k at time t, 𝜂𝑖𝑡 is the value of the latent variable 

at time t for the variable k and 𝜀𝑖𝑘𝑡 is the error for individual i at time t for observed variable k. 

This model assumes independence amongst the c’s conditional on the factor, that the residuals 

are uncorrelated with the factors and the errors are normally distributed with a mean of 0. The 

factor metric is usually set by fixing 𝜆 = 1 for one observed variable. 

A linear growth curve for factor scores (the structural model) is: 

2) 𝜂𝑖𝑡 = 𝜂0𝑖 + 𝑥𝑡𝜂1𝑖 + Ϛ𝑖𝑡  

Here 𝜂0𝑖 is the intercept of the latent variable, 𝜂1𝑖 is the slope growth factor and Ϛ𝑖𝑡 the time and 

individual specific residual. The binary case is a straightforward extension of equation 1 and if a 

probit link function is assumed then the latent variable is assumed to follow a continuous 

distribution and the structural model is unchanged. Otherwise, it should be noted that the 

intercept 𝑣𝑘𝑡 is replaced with the threshold – 𝜏𝑡𝑙 (Muthen, 2004).  

For continuous variables, the specification of MI consists of: i) the same variables load onto the 

same factors at each time point (the same vector of 𝑐𝑖𝑘𝑡 for each  𝜂𝑖𝑡), ii) the factor loadings are 

equal at each time point (𝜆𝑘1 = 𝜆𝑘2 = ⋯ = 𝜆𝑘𝑡) , iii) intercepts are equal at each time point ( 

𝑣𝑘1 = 𝑣𝑘2 = ⋯ = 𝑣𝑘𝑡) and iv) residual variances fixed across time (𝜀𝑖𝑘1 = 𝜀𝑖𝑘2 = ⋯ = 𝜀𝑖𝑘𝑡)(van de 

Schoot et al., 2012; Widaman et al., 2011). If only i holds, this is known as configural invariance, 

i-ii weak invariance, i-iii strong invariance and i-iv strict invariance. In the case of binary 

observed variables the second stage, weak factorial invariance is skipped because the item 

probability curve is influenced simultaneously by loading and intercept (L. K. Muthén & Muthén, 

2014).  

Strong invariance needs to be established in order to compare latent means over time (Ferrer et 

al., 2008; Widaman et al., 2011). If this assumption does not hold, then mean differences over 

time in a latent variable of cognitive function cannot be clearly attributed to change in true 

cognitive function because the scale of the dependent variable has changed. Additionally, tests 

of MI are sensitive to the choice of indicator variable (Shi et al., 2017). This is fixed at 1 for 

every time point and is used to establish the scale of the latent variable, so at least one factor 

loading must be assumed to be invariant. Thus, the choice of a non-invariant reference variable 

can make decisions regarding MI significantly more difficult.     

The standard approach to testing MI is to sequentially compare each level of increasing 

invariance using the chi-squared test of model fit. With large sample sizes this is a strict test and 

strong factorial invariance over time may be rejected even in robust longitudinal studies of 

cognitive ageing (Blankson & McArdle, 2013; B. O. Muthén & Asparouhov, 2013). Therefore 

with large sample sizes alternative fit indices, in particular the comparative fit index (CFI), are 

frequently used instead (Cheung & Rensvold, 2002; Meade & Bauer, 2007). However, 

recommendations for the change in CFI which establishes MI differ between studies and these 
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recommendations vary between 0.01 and 0.002  depending on author and the number of 

factors, indicators of those factors and groups/occasions used.(F. F. Chen, 2007; Cheung & 

Rensvold, 2002; Meade & Bauer, 2007; Meade et al., 2008; Short, 2014). 

Whilst these methods can be used to identify invariance, they are not informative about which 

parameters are invariant. To do this, one can either relax each equality constraint in turn or use 

modification indices, which give a measure of the improvement in model fit which would result 

from relaxing certain modelling assumptions. Relaxing each equality constraint sequentially 

means allowing each loading or intercept at each time point individually to be different to the 

same intercept or loading at all other time points. The change in model fit can then be 

assessed. This is laborious and random variation can lead to different invariance solutions 

being identified depending upon the order in which the constraints are relaxed (R. C. 

MacCallum et al., 1992; Bengt Muthén & Asparouhov, 2012). Modification indices are limited in 

application because they are only validated for two samples or time points (B. O. Muthén & 

Asparouhov, 2013).  

 

6.1.2 Bayesian Measurement Invariance 

Bayesian structural equation modelling (BSEM) has introduced the concept of approximate MI 

to take account of multiple small or moderate non-invariances in loadings, intercepts or 

thresholds. Additionally, it provides a one-step method of identifying which parameters are 

invariant (B. O. Muthén & Asparouhov, 2013; van de Schoot et al., 2013; Verhagen & Fox, 

2013). The basic effect of approximate MI is that instead of requiring that all loadings be exactly 

equal, they are instead ‘tethered’ so that they do not have to be exactly equal but are allowed to 

differ only by a substantively unimportant amount.  

As described above the conventional condition which must be met for strong factorial invariance 

(and therefore the ability to measure change in latent means over time) is that for each of the 

observed variables 𝜆𝑘1 = 𝜆𝑘2 = ⋯ = 𝜆𝑘𝑡 and 𝑣𝑘1 = 𝑣𝑘2 = ⋯ = 𝑣𝑘𝑡. Let ђ be the difference 

between λ’s such that 𝜆𝑘1 − 𝜆𝑘2 = ђ𝑘12 , 𝜆𝑘2 − 𝜆𝑘3 = ђ𝑘23 and 𝜆𝑘1 − 𝜆𝑘3 = ђ𝑘13. Also let be the 

difference between 𝑣’s such that ν𝑘1 − ν𝑘2 = и𝑘12 , ν𝑘2 −  ν𝑘3 = и𝑘23 and ν𝑘1 − ν𝑘3 = и𝑘13. The 

conventional frequentist assumption of strong invariance can then be defined in Bayesian terms 

as the strongly informative priors of ђ𝑘𝑋𝑋~𝑁(0,0) and и𝑘𝑋𝑋~𝑁(0,0) (B. O. Muthén & 

Asparouhov, 2013). 

Given that, from a Bayesian perspective, the factor loadings and intercepts are random 

variables, the assumption of 0 variance is difficult to envisage in this framework. With 

approximate MI this is instead relaxed slightly to a still strong but more plausible informative 

prior with 0 mean and small variance such as ђ𝑘𝑋𝑋~𝑁(0,0.01) and и𝑘𝑋𝑋~𝑁(0,0.01). One reason 

for preferring the Bayesian approach in this situation is that this assumption of exact equality is 

relatively unrealistic in a number of situations due to issues such as random variation across 

many time-points, attrition or practice effects (Blankson & McArdle, 2013; Putnick & Bornstein, 

2016). The researcher can decide a priori how long to make the tether by specifying an 
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appropriate prior for the difference between loadings or intercepts over time. The size of the 

prior variance therefore sets the length of the tether and formalises the degree of invariance 

which is allowable.  

The difference at each time-point is tested to see whether it is statistically significantly different 

from the mean of the loadings at all time-points. This tells you if any of the loadings have broken 

the tether and show a degree of non-invariance beyond that believed to be unimportant by the 

researcher. Additionally, this overcomes the problems in identifying the truly non-invariant 

parameters caused by fixing one indicator’s loadings at 1 for all time-points. Using the Bayesian 

approximate MI approach one need only fix single loading for a single observed indicator at a 

single time-point to 1 (B. O. Muthén & Asparouhov, 2013; Xu & Green, 2015).  

An alternative frequentist approach to testing for MI is running models with and without MI to 

see if the results are conflicting (Widaman et al., 2011). With this approach an, often informal, 

decision is made about the degree of conflict in the results which is acceptable before MI is 

rejected. This decision is made using substantive prior subject knowledge and implicitly includes 

an assumption about the acceptable degree of invariance. The Bayesian approach formalises 

the same substantive knowledge into the prior which can therefore be specifically tested.  

When assessing for longitudinal invariance in the English Longitudinal Study of Ageing we 

encountered several of the aforementioned problems with conventional MI testing. The sample 

size is large, therefore the chi-squared test likely to be overly conservative (F. F. Chen, 2007; 

Cheung & Rensvold, 2002; Steptoe et al., 2013). Additionally, as we will show, different cut-offs 

for the CFI produced different conclusions. Moreover, the kind of invariance we were expecting 

was of multiple small deviations rather than few large deviations from invariance. Given the 

number of variables and time points in use, relaxing each constraint in turn would be both 

laborious and highly prone to the risk of error due to chance. For these reasons, we applied 

Bayesian approximate MI to test whether the conclusions about the level of MI drawn from this 

method differed to those drawn from the chi-squared test and CFI rules. 

Our primary research questions were; firstly, in ELSA’s cognitive function battery is there 

longitudinal measurement invariance for an attention and a memory factor? Secondly, can 

Bayesian approximate measurement invariance be used to identify measurement invariance (or 

the lack thereof) in situations where CFI has an uncertain result?  

 

6.2 Methods 

 

6.2.1 Participants and Procedure 

ELSA has been described in detail elsewhere (Steptoe et al., 2013). The study sample was 

drawn from participants in Health Survey for England (HSE) years 1998, 1999 and 2001 who 

were born before 1st March 1952 and living in a private household or those in their households 



117 

 

who were new partners or ≤50. We used the ELSA core  sample which was nationally 

representative of the age specific English population at the time of recruitment. Data is collected 

in biennial sweeps by interview in the participants homes. For this analysis data from waves 1 

(2002) to 5 (2010) were utilised because the core cognitive battery was consistent through this 

time. 

Response rates at each wave were 70% at wave 1, 82% at wave 2, 73% at wave 3, 74% at 

wave 4 and 80% in wave 5 (Steptoe et al., 2013). After the exclusion of extreme values (see 

below) final sample sizes at each wave were n=11951 in wave 1, n=9313 in wave 2, n=7850 in 

wave 3, n=6911 in wave 4 and n=6535 in wave 5. 

 

6.2.2 Cognitive Measures 

The cognitive tests were performed by computer assisted interview. Orientation to time was 

assessed by asking the participant to name the day, year, month and date. To assess 

immediate and delayed verbal recall 10 common words were played to participants (Steel et al., 

2004). Immediate recall is assessed straight away and delayed recall of the word list was tested 

after the other cognitive tests were undertaken (this also serve as a distraction technique). The 

word lists used were randomly assigned and a standardised recording was used for all 

participants.  

The prospective memory task required participants to remember to write their initials in the top 

corner of a page they were handed. Participants were prompted if they did not complete the 

actions spontaneously. A binary variable was used for remembering the correct action (either 

prompted or spontaneous). Semantic (category) fluency was assessed by asking participants to 

name as many animals as they can in 1 minute. All the non-binary variables were transformed 

to z-scores for the purpose of inclusion in the factor structure. 

 

6.2.3 Statistical Analysis 

Initially, extreme values with regards to the relationship between cognitive variables were 

identified by regressing each cognitive function variables in turn on all the others at each wave. 

The standardised residuals and leverage statistics were then compared and regression re-run 

with the exclusion of influential cases to see if the results were substantively different (Institute 

for Digital Research and Education, 2009). Only for month and year did the exclusion of high 

residual cases appear to make a substantive difference. 

Due to the rarity of giving the incorrect response to year and month, almost all incorrect 

answers were considered extreme values by conventional recommendations. However, 

analysis of those cases with particularly high residual values identified a subset of cases who 

were incorrect on either year or month but achieved average or better results on all other tests. 

These cases were felt likely to represent either errors in recording or single item inattention. In 
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total 97 and 85 measurement occasions were excluded for year and month respectively, 

meaning approximately 35 in total per wave of data collection. Other missing data were 

considered missing at random, which is as a property of the Bayesian estimation (Q. Chen & 

Ibrahim, 2014). Research on how missingness affects longitudinal invariance has only been 

implemented in a single study using full information maximum likelihood and, whilst a topic 

warranting further investigation, is beyond the scope of this analysis (Sterba, 2017).  

Initial EFA and CFA assuming invariance were performed as part of an earlier study currently in 

submission. Two of the factors from this, attention (loaded onto by orientation questions) and 

memory (loaded onto by immediate and delayed recall, prospective memory and verbal fluency) 

were used. The model was specified using CFA with configural invariance and modification 

indices checked to see if there was any need to make additional modifications beyond the basic 

factor structure (L. K. Muthén & Muthén, 2014). This identified that allowing residual covariance 

over time in verbal fluency and within factor covariance’s for immediate and delayed recall 

resulted in substantially improved model fit. This improved model was then tested using the chi-

squared test and CFI for MI.  

Next the Bayesian approximate MI model was specified. A prior variance of N~(0,0.01) for all 

differences between loadings, intercepts and thresholds at each wave with the mean across all 

waves was used. The MPlus default non-informative priors were used for all other model 

parameters (Bengt Muthén & Asparouhov, 2011). The conclusions about the level of MI in the 

data was then compared between frequentist chi-squared test and CFI and Bayesian 

approximate MI.  

The primary analysis was run for all ages in the ELSA data. Sensitivity analyses were run using 

age bands to check for one possible source of longitudinal non-invariance. Though there was 

slightly less non-invariance for older participants, and slightly more for younger participants, the 

overall pattern of results was very similar for all ages. Due to this, they are not presented here.  

The data was edited using Stata version 12 and the structural equation modelling performed 

using MPlus version 7.0 (L. K. Muthén & Muthén, 2014; StataCorp, 2011). MCMC estimation 

was utilised with the MPlus default Gibbs sampler and convergence criterion, 105000 iterations 

(of which the first 55250 are burn-in) and no thinning (Bengt Muthén & Asparouhov, 2011). 

 

6.3 Results 

The participants at wave 1 were 55.7% female, had a mean age of 64.2 and 2.8% of the sample 

were of non-white ethnicity (table 6.1). The large minority of participants were retired (47.7%) 

and the majority of the rest of the sample worked as either employed (28.1%) or self-employed 

(5.7%). Most participants were married (56.2% first marriage; 11.1% remarried). The modal 

educational attainment was no-qualifications (41.7%) with 11.5% having attained a degree. 

There was a bimodal distribution of social class with the largest groups being class 5 (manual  
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Table 6.1 English Longitudinal Study of Ageing participant demographics at wave 1. 

Variable   Total Percentage 

Age    64.2 S.D 11.1 

Female   6676 55.7% 

Non-White 328 2.8% 

Employment Status 
 

  

Retired   5715 47.7% 

Employed   3370 28.1% 

Self Employed 687 5.7% 

Unemployed 123 1.0% 

Permanent Sick 783 6.5% 

Homemaker 1173 9.8% 

Other   131 1.1% 

Marital Status 
 

  

1st Marriage 6741 56.2% 

Remarried 1331 11.1% 

Single   658 5.5% 

Divorced/Separated 1256 10.5% 

Widowed   2003 16.7% 

NS-SEC Social Class 
 

  

1 Professional 3487 29.7% 

2   1596 13.6% 

3   1223 10.4% 

4   1320 11.3% 

5 Manual 4112 35.0% 

Highest Qualification 
 

  

No Qualifications 4986 41.7% 

High School 2522 21.1% 

6th Form   748 6.3% 

Non-degree higher Ed. 1317 11.0% 

Degree   1370 11.5% 

Foreign Qualification 1014 8.5% 

 

and routine occupations; 35.0%) and the second largest class 1 (managerial and professional 

roles; 29.7%).  

Cognitive function data was available for 11630 of 11951 participants at wave 1, 9066 of 9313 

at wave 2, 7659 of 7850 at wave 3, 6656 of 6911 at wave 4 and 6216 of 6535 at wave 5. The 

results showed a slight improvement in the memory factor tasks over time (table 6.2). Mean 

immediate word recall was 5.4 (s.d 1.8) in wave 1 and 5.7 (s.d 1.9) in wave 5. Mean delayed 

recall was 4.0 (s.d 1.8) in wave 1 and 4.4 (s.d 2.2) in wave 5. The number of participants 
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correctly remembering the prospective memory task was 79.3% in wave 1 and 85.8% in wave 5. 

The orientation to time tasks were stable over time. The proportion of participants in wave 1 

correctly identifying the year was 97.4%, date 80.6%, month 97.6% and day 97.9%. This was 

not dissimilar to wave 5 where the proportion of participants correctly identifying the year 97.3%, 

date 81.7%, month 97.8% and day 97.5%. 

The factors structure was modelled based on previous EFA and CFA. The attention factor was 

comprised of orientation to year, date, month and day. The memory factor was comprised of 

immediate and delayed recall, verbal fluency and prospective memory. In the memory factor the 

residual variances of verbal fluency were allowed to correlate over time and the residual 

variances between immediate and delayed recall were allowed to correlate at each time point, 

reflecting the more similar nature of these tasks.  

 

Table 6.2 Mean or proportion of correct responses for each cognitive task in waves 1 to 5 for 

ELSA core participants. 

  Wave 

  1 2 3 4 5 

n 11630 9066 7659 6656 6535 

  mean†         

Immediate  5.4 (1.8) 
5.7 

(1.8) 

5.7 

(1.8) 

5.7 

(1.8) 

5.7 

(1.9) 

Delayed 4.0 (1.8) 
4.3 

(2.1) 

4.4 

(2.2) 

4.4 

(2.2) 

4.4 

(2.2) 

Verbal 

Fluency 
19.3 (6.4) 

19.8 

(6.6) 

19.8 

(6.8) 

20.2 

(7.0) 

20.2 

(7.0) 

          

  
Proportion 

correct 
        

Year 97.4% 98.1% 97.5% 97.4% 97.3% 

Date 80.6% 81.4% 80.8% 80.8% 81.7% 

Month 97.6% 97.7% 97.2% 97.7% 97.8% 

Day 97.9% 97.8% 97.6% 97.7% 97.5% 

Prospective 79.6% 81.3% 82.9% 84.3% 85.8% 

 

† Results displayed as mean (standard deviation). 
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When testing for longitudinal invariance using the χ2 test, all levels of MI were rejected for both 

the attention and memory factor with a p values of <0.001 (table 6.3). We then compared the 

CFI between the models. The model with configural invariance both attention and memory had 

a CFI of 0.976. Setting strong invariance for the attention factor (not weak invariance as all 4 

indicator variables were binary) actually improved the CFI to 0.978. Weak invariance for the 

memory factor also increased the CFI to 0.978 whereas strong invariance reduced it to 0.972. 

Strong invariance for both factors resulted in a CFI of 0.973 showing that the misfit induced by 

strong invariance in the memory factor was not compensated for by the improvement in fit from 

strong invariance in the attention factor.  

 

Table 6.3 Model fit tests for conventional frequentist CFA. 

  χ2 test versus 

χ2 test versus 

less CFI 

CFI Difference 

versus 

  baseline model 

restrictive 

model   

less restrictive 

model 

All configural <0.001 - 0.976 - 

Attention Strong <0.001 0.002 0.978 0.002 

Memory Weak <0.001 <0.001 0.978 0.002 

Memory Strong <0.001 <0.001 0.972 -0.006 

Both Strong <0.001 <0.001 0.973 0.001 or -0.005 

 

Therefore, using the CFI criteria, longitudinal MI was not rejected for the orientation factor by 

any criteria. On the other hand, the decrease in CFI of 0.006 in the change between weak and 

strong invariance for the memory factor falls between different recommendations from different 

studies.  

The approximate MI results found that the there was one parameter in the attention factor which 

showed a minor degree of non-invariance (table 6.4); the 1st wave loading for recall of the day 

(0.326) which is 0.036 less than the mean loading across all waves (0.362); this was a 

statistically significant difference based on the 95% credible interval. This is not likely to have a 

substantively important impact on the results of longitudinal analysis.  

For the memory factor, there is only one non-invariant loading; the wave 4 verbal fluency 

loading (0.927) which is 0.029 greater than the mean across all waves (0.898). However, 9 of 

the 20 intercepts and thresholds are non-invariant. For immediate recall the 2nd (0.052 above 

the mean), 3rd (0.032 above the mean) and 5th (0.057 below the mean) loadings show 

significant non-invariance. For delayed recall the 2nd (0.036 above the mean) and 3rd (0.053 

above the mean) occasions are non-invariant. In verbal fluency the 2nd measurement occasion 

is estimated as being 0.009 above the mean. For prospective memory task the threshold on the 
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1st occasion is 0.069 above the mean and the 5th occasion is 0.054 below the mean for all 

measurement occasions.  

This means that across multiple time points there are different expected values of the indicator 

variables for memory when the mean of the factor is zero. Whilst the individual differences are 

small, the number of non-invariant parameters suggest that the latent mean at one time point is 

not directly comparable with another. It may be better not to use the memory factor for 

longitudinal analysis but to analyse the individual memory tasks separately.  These results 

support the use of the stricter CFI criteria for MI in this case.  

 

6.4 Discussion 

When analysing cognitive function data from ELSA we encountered a situation where different 

recommendations for using the CFI to establish MI led to different conclusions. We sought to 

use approximate MI to provide an alternative method of deciding which level of MI to accept or 

reject. In this case, the approximate MI approach identified small but significant non-invariance 

in the loadings of the memory and attention factors which was not identified by the use of CFI 

(which did not reject weak invariance). However, the degree of invariance in loadings which was 

identified using approximate MI but missed by CFI was relatively trivial. This suggests that the 

assumptions of strong longitudinal MI in the attention factor and weak invariance in the memory 

factor are plausible.  

The main source of longitudinal non-invariance was not in the factor loadings, but the intercepts 

of the memory factor. This led to strong invariance to being rejected by both the stricter CFI 

criteria and approximate MI. This is particularly important because strong invariance is required 

to compare latent means over time and therefore necessary for longitudinal analysis. However, 

using alternative CFI cut-off rules for MI would have led the authors to a different conclusion 

about the presence or absence of strong invariance for the memory factor. Using a cut-off of -

0.01 such as that recommended by Chen (2007) or Cheung and Rensvold (2002) would have 

suggested not rejecting strong MI. By the more stringent recommendations of Meade, Johnson 

and Brady (2008) of -0.002, strong but not weak invariance would have been rejected. 

Moreover, as discussed by Short (2014) the truly suitable cut-off for CFI may be different again 

when using the specific number of time-points and observed variables available. Using 

approximate MI revealed that there was a high proportion of non-invariant intercepts and 

thresholds for the memory factor caused by multiple small deviations from non-invariance. This 

would have been difficult to accurately identify in a step-wise fashion using a frequentist 

estimator.  

If using factor analysis or another data reduction method, including sum scores, then ignoring 

this MI would have resulted in bias in the estimation of the memory factor latent mean (B. O. 

Muthén & Asparouhov, 2013; van de Schoot et al., 2013). In our results, the wave 2 and 3 

memory factor latent means would have been over-estimated due to increases in the immediate 

and delayed recall intercepts. Wave 5 would have been underestimated because of decreases  
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Table 6.4. Factor Loadings using Bayesian Approximate Measurement Invariance for both factors at each time point.  

Item 

  

Approximate Invariance Factor Loadings  

(0.01 prior variance)    
Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Mean 

 Year 1 1.021 1.034 1.029 1.045 1.026 

Orientation  Date 0.278 0.295 0.298 0.264 0.264 0.28 

Factor Month 0.51 0.54 0.555 0.513 0.516 0.527 

 Day 0.326* 0.387 0.35 0.369 0.377 0.362 

 Immediate Recall 1 1.013 1.025 1.021 0.985 1.009 

Memory  Delayed Recall 1.08 1.102 1.101 1.082 1.064 1.086 

Factor Verbal Fluency 0.856 0.897 0.896 0.927* 0.914 0.898 

 Prospective Mem. 0.88 0.934 0.875 0.911 0.855 0.891 

 

  

Approximate Invariance Intercepts† and Thresholds‡   

(0.01 prior variance)  
   Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Mean 

 Year‡ -5.887 -5.9 -5.892 -5.898 -5.89 -5.893 

Orientation  Date‡ -1.095 -1.099 -1.088 -1.040 -1.062 -1.077 

Factor Month‡ -3.483 -3.446 -3.463 -3.457 -3.476 -3.465 

 Day‡ -2.796 -2.853 -2.754 -2.847 -2.811 -2.812 

 Immediate Recall† -0.013 0.053* 0.033* -0.013 -0.055* 0.001 

Memory  Delayed Recall† -0.014* 0.069* 0.086* 0.037 -0.013 0.033 

Factor Verbal Fluency† -0.011 0.009* -0.013 -0.013 -0.063 -0.018 

 Prospective Memory‡ -0.963* -1.013 -1.034 -1.064 -1.086* -1.032 

*Statistically significant using 95% credible interval. 
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in the immediate recall intercept and prospective memory threshold. These effects would result 

in bias in both the estimation of both the rate and shape of the latent growth curve.  

The non-invariance in the memory factor seems to be a combination of several isolated 

deviations and a linked increase in immediate and delayed recall in waves 2 and 3. It is possible 

that the non-invariance seen at wave 2 and 3 for the intercepts of immediate and delayed recall 

represents unequal practice effects in the indicators of this factor. The reduction in waves 4 and 

5 may represent fatiguing practice effects, an initial practice effect followed by more rapid 

decline in performance on those tasks or practice effects for the other indicators catching up 

relative to the recall tasks (Calamia et al., 2012). Whether Bayesian MI could be used to detect 

non-uniform practice effects may be an avenue for further research.      

The present study has the strength of using data from a high-quality multidisciplinary survey 

with a large sample size. This study is relevant to researchers with a wide variety of longitudinal 

research questions relating to phenomena which cannot be directly observed. It is especially 

pertinent for those researching common mental health disorders who wish to utilise the richness 

of multidisciplinary surveys but lack a validated measure (previously demonstrated to be 

invariance over time in the population of interest) of the construct of interest, as with cognition in 

the first 5 waves of ELSA. Here, difficulties due to a large number of small non-invariances are 

particularly likely to occur. Furthermore, the specific number of groups or time-points may not to 

have been covered in previous simulation studies, thus the most appropriate cut-off for the CFI 

or other fit indices not known.  

The large sample size to some extent does cover one of the potential weaknesses of BSEM in 

that it can be highly sensitive to prior specifications (Depaoli, Yang, & Felt, 2017; van Erp, 

Mulder, & Oberski, 2018). Informative priors for one parameter have the property of inducing 

implicit priors for other covariant parameters in a fashion which is difficult to predict and manage 

(Robert C. MacCallum, Edwards, & Cai, 2012). It should be noted that if there is insufficient data 

to generate informative priors, or they are not desired for substantive reasons, then BSEM 

estimates with non-informative priors tend to converge with maximum likelihood estimates 

(Helm, Castro-Schilo, & Oravecz, 2017; S. Y. Lee, Song, & Tang, 2007). Whilst the single step 

identification of non-invariant parameters offers significant theoretical advantages over methods 

such as modification indices, in terms of the reduction of the capitalization of chance in 

inferences, there are few simulation studies to confirm this finding (Robert C. MacCallum et al., 

2012).  

BSEM retains the common practical problems of many types of Bayesians analysis in terms of 

computational intensity, challenges with assessing convergence and unfamiliarity to many 

users. This is particularly the case in comparison to approaches to identifying MI such as 

straightforwardly comparing parameters between models which assume or don’t assume MI. 

Whilst this approach may provide rapid answers in some clear-cut situations, in many cases 

even if an acceptable difference between estimates is pre-specified (for example 5% or 10%) 

the results are borderline (Flora & Curran, 2004). This approach will also be model specific if the 
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target of interest is a predictor of growth or a distal outcome and the additional information 

about invariant parameters will not be obtained, unlike with approximate MI. 

Approximate measurement invariance, whilst not a panacea, is designed to handle multiple 

small invariances and its power to detect non-invariance is not known to be affected by 

changing the number of groups or occasions being compared, which provides substantial 

flexibility. As such it may be useful for future researchers to consider when testing the 

measurement properties of their instruments in longitudinal research. With regards to ELSA 

specifically we find an attention factor which essentially shows strong measurement invariance 

over time but only weak invariance for a memory factor. Whilst the degree of non-invariance 

was relatively small, it was on a large number of parameters and therefore researchers may 

wish to either avoid using the memory factor for longitudinal research or accommodate the non-

invariance using approximate or partial measurement invariance.  
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Chapter 7. Does the association between cognition and education differ between cognitively 

stable and cognitively declining older adults? 

This paper presents the third paper which addresses the third research question of this thesis: 

is education associated with cognitive maintenance and does this association vary by latent 

class of decline?  

This paper presents an analysis using growth mixture modelling to allow the effect of education 

on cognitive function to vary dependent on underlying trajectory. This makes it possible to test 

the hypothesis that different mechanisms of cognitive reserve are active in different states. 

Simultaneously included in the structural equation model is a class dependent informative 

missingness model which is implemented in a way not used in studies of cognitive ageing 

previously. 

In the context of the thesis as a whole this analysis builds upon the previous two papers efforts 

to understanding the structure underlying the cognitive tests in the English Longitudinal Study of 

Ageing. It is because of the results of the previous two papers that individual tests, rather than 

simple combinations or factor scores, were used in this analysis. It leads into the fourth paper 

by examining the effects of social exposures on cognitive maintenance, whilst making use of 

newer analytical methods which can overcome certain limitations in the existing literature.  

I conducted the analysis, drafted and revised the paper. My supervisors Prof. Chandola and 

Prof. Pendleton provided guidance on the analytic strategy and reviewed the drafts. Prof Gindo 

Tampubolon provided additional comments on a draft manuscript as part of an annual review. 

This paper has not been published and is not under review at the time of submission. 
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Abstract 

Objectives 

Education is associated with baseline cognitive performance in older adults, but it’s association 

with maintenance of cognitive function is less clear. I hypothesised that education is associated 

with different types of active cognitive reserve in later life depending on whether an individual is 

cognitively stable or declining, which may explain conflicting previous results.  

Methods 

I used data on n=5642 adults aged >60 from the English Longitudinal Study of Ageing (ELSA) 

over 5 waves (8 years). Verbal fluency and immediate recall were used as the observed 

measures of cognitive function. I used a Bayesian growth mixture model for each outcome 

which including a model for informative missingness. The effect of education on rate of change 

was allowed to vary by latent class in order to test whether latent class moderated the 

association between education and cognitive maintenance.  

Results 

For recall, 91.5% (n=5164) of ELSA participants were in a stable class and 8.5% (n=478) in a 

declining class. For fluency 90.0% (n=4907) were in a stable class and 10.0% (n=561) were in a 

declining class. Educational attainment was associated with improved baseline performance for 

both verbal fluency and recall. In the declining classes, educational attainment was not 

associated with rate of change for either verbal fluency or immediate recall. In the stable 

classes, the only significant association with rate of change was for verbal fluency amongst 

those with higher (an extra 0.05 to 0.38 words per 2 years) or degree level education (an extra 

0.04 to 0.42 words per 2 years) compared to those with no formal qualifications.  

Conclusions 

Educational attainment had a strong effect on baseline performance, but little effect on cognitive 

maintenance overall. There was some evidence of active cognitive reserve for verbal fluency in 

the most highly educated individuals. 
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7.1 Introduction 

Education in childhood and early adulthood (for simplicity referred to throughout as ‘education’) 

is thought to be one of the most important sources of cognitive reserve, defined here as the 

degree of disease or age related change which can be tolerated by the brain before impairment 

becomes apparent.(Barulli & Stern, 2013) This is demonstrated by the consistent finding that 

educational attainment is associated with a reduced risk of a clinical diagnosis of 

dementia.(Beydoun et al., 2014; X. Meng & D’Arcy, 2012) However, the exact nature of this 

relationship, and more specifically the relationship between education as a source of cognitive 

reserve and cognitive maintenance over time, has been more contested. Several theoretical 

concepts of reserve have been developed, each leading to contrasting hypotheses about the 

relationship which would be observed between education and cognitive maintenance.  

Stern proposes that, broadly speaking theories, about reserve can be divided into brain reserve 

and cognitive reserve.(Stern, 2012) Cognitive reserve has also been divided into active and 

passive reserve depending on whether moderation of cognitive decline is seen or not.(Stern, 

2002) The brain reserve hypothesis, which is largely synonymous with passive reserve, sees 

reserve principally as the degree of pathology that can accumulate before clinical expression of 

impairment.(Barulli & Stern, 2013; Stern, 2002) The amount of brain reserve is quantified 

principally in structural and anatomical terms such as brain volume, synaptic density or white 

matter tract integrity.(Arnold et al., 2013; Negash et al., 2013; Teipel et al., 2009) Under this 

hypothesis higher levels of education would lead to improved baseline performance but no 

change in cognitive maintenance.(Stern, 2002)  

On the other hand, cognitive reserve is hypothesised to moderate decline over time. It can be 

sub-divided into the concepts of neural cognitive reserve and neural compensation reserve. 

These generate opposing predictions about the effect of reserve of cognitive maintenance. The 

former broadly overlaps with the theory of active reserve. It predicts that, as individuals with 

higher levels of education have greater network capacity and efficiency, cognitive decline in 

those individuals will be slower.(Boller, Mellah, Ducharme-Laliberté, & Belleville, 2017) 

Contrastingly, in the compensation hypothesis secondary networks are recruited as primary 

networks fail, but then as the secondary networks also fail decline rapidly accelerates.(Barulli & 

Stern, 2013) This hypothesis predicts that individuals with high levels of education should 

experience more rapid cognitive decline once a certain threshold in the severity and extent of 

brain pathology is reached.  

Earlier studies and the systematic reviews based on those studies largely found evidence that 

education improved cognitive maintenance which supports the neural cognitive reserve 

hypothesis.(Valenzuela & Sachdev, 2006) More recently, Lenehan and colleagues questioned 

the findings of these studies on the basis of methodological limitations present in those 

studies.(Lenehan et al., 2015) These included the frequent use of only two time-points, the 

practice of regressing on baseline function and the use of simpler statistical methods less robust 

to missing data or uneven spacing of measurement occasions such as repeated measures 

ANOVA and simple linear regression.(Lenehan et al., 2015) They found that, in later analyses of 
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cohort studies with three or more measurement occasions, there was typically no association 

between education and rate of decline and therefore little evidence to support the idea that 

education contributes to cognitive maintenance.  

Other authors have found that, especially in individuals affected by dementia rather than those 

with age-related cognitive decline, education is associated with more rapid cognitive 

decline.(Barulli & Stern, 2013; X. Meng & D’Arcy, 2012) This may be due to a common end 

point where pathology overwhelms compensatory reserve. This difference between healthy old 

age and dementia found in epidemiological or clinical studies is supported by evidence from 

functional magnetic resonance imaging studies. These have shown that different mechanisms 

of compensation appear to be utilised depending on disease status.(Colangeli et al., 2016) It is 

not known whether this effect would also be seen in those with pre-clinical dementia pathology.  

This leads to one limitation of many of the major analyses of education’s association with 

cognition in the general population of older adults. This is that they have implicitly made the 

assumption that all the individuals in that sample are from the same population and therefore 

share the same underlying trajectory (or random effects around this). This would include 

examples such as the Victoria Longitudinal Study, the ARIC Neurocognitive study or the 

ACTIVE study.(Gottesman et al., 2014; Tucker-Drob, Johnson, & Jones, 2009; Zahodne et al., 

2011a) However, it is likely that, even in these ostensibly health samples, individuals were 

actually drawn from at least two populations. Those with a pre-clinical dementia pathology (a 

high burden of tau, amyloid and/or vascular pathology in the absence of functional impairment) 

and those without.(Braak & Del Tredici, 2015; Riley et al., 2011) Of course there are a great 

number of diseases which lead to cognitive impairment, but most are too rare to identify as 

separate subgroups using statistical means. They will be considered as a single group here.  

The presence of this sub-population creates both problems and opportunities for understanding 

the relationship between cognitive reserve and education. In analyses which assume a single 

homogenous population when there are two or more sub-populations, the estimated longitudinal 

change will be biased away from both true trajectories. In particular, it is possible that in these 

samples an association between longitudinal change and education has been obscured for 

those with a declining trajectory suggestive of pre-clinical dementia pathology, as suggested by 

imaging studies of people with dementia. However, if one can identify a latent sub-population 

with more rapid decline in cognitive function from a population sample then this gives the 

opportunity to examine the influence of social and environmental factors on cognitive 

maintenance in earlier stages of disease than clinical samples. In this case, to see if the more 

rapid rate of decline in cognitive function seen in highly education persons with diagnosed 

dementia is also seen in those with probable pre-clinical dementia.  

Several studies to date have used growth mixture modelling (GMM) to address the issue of 

rates of change in cognitive function in population samples with latent sub-populations.(Hayden 

et al., 2011; Marioni et al., 2014; Muniz-Terrera et al., 2010; Olaya et al., 2017; Pietrzak et al., 

2014; Royall et al., 2014; Small & Bäckman, 2007) Hayden et al and  Pietrzak et al. combined 

genotypic and clinicopathological data with latent class analysis and found that membership of a 
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rapidly declining latent class was strongly associated with higher relative risk of amyloid beta 

pathology and apolipoprotein ε4 carrier status.(Hayden et al., 2011; Pietrzak et al., 2014) This is 

important because it suggests growth mixture modelling is able to accurately identify those in a 

pre-clinical disease state who have more rapid cognitive decline.(Riley et al., 2011)  

Of the studies which have used GMM specifically to analyse cognitive trajectories and 

education, most have used education as a predictor of class membership.(Hayden et al., 2011; 

Marioni et al., 2014; Pietrzak et al., 2014; Royall et al., 2014; Small & Bäckman, 2007) The 

results of these studies have been conflicting with some finding a strong association between 

class of cognitive trajectory and education, some a weak association and others finding none.  

It is important to note that the, often not explicitly stated, assumption underlying these models is 

that education has a direct influence on the process underlying the latent classes. Whilst there 

is likely to be several sub-classes of cognitive function within healthy ageing, the single most 

important determinant of class in this case must surely be disease. This will include a range of 

pathologies, but in a population study by far the most substantial are tau/amyloid pathology and 

vascular disease which may occur individually or comorbidly.(Santos et al., 2017) If we assume 

that the latent class structure is driven principally by disease status, then these studies 

presuppose that education affects not only observable cognitive and functional status but also 

unobserved (in most population studies) disease status. However, clinicopathological studies 

have in general found that education is not associated with the degree of pathological change 

observed post-mortem.(Brayne et al., 2010; Koepsell et al., 2008; Roe et al., 2007; Serrano-

pozo et al., 2013) In the theoretical model used in this analysis the mechanism underlying the 

latent classes in cognitive function is driven by the presence or absence pathology, the effect of 

which is moderated by education. This approach is more consistent with the findings of the 

clinicopathological studies and the long-acknowledged need to adjust cognitive scores for 

education when diagnosing dementia (see figure 7.1 for a generalized version of my 

model).(Kittner et al., 1986; Uhlmann & Larson, 1991)  

Terrera et al. have previously utilised a similar theoretical model and examined the association 

between education and decline within class using the mini-mental state exam (MMSE).(Folstein 

et al., 1975; Muniz-Terrera et al., 2010) They found 2 sharply declining classes and 1 high 

performance group with very slight decline over time. A lower level of education was associated 

with more rapid decline in the high-performance class but not in either of the two sharp decline 

classes. However, the MMSE is known to have a strong ceiling effect which can conceal 

change in high performance groups.  

I sought to test whether the association between cognitive decline and education was 

moderated by latent class to test the hypothesis that different mechanisms of cognitive reserve 

are utilised in different states. To do this I utilised data from the English Longitudinal Study of 

Ageing (ELSA), a large multi-disciplinary study of ageing, to permit the identification of relatively 

small subgroups, and which includes cognitive measures with relatively minimal ceiling or floor 

effects. 
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7.2 Methods 

 

7.2.1 Participants and Procedure 

ELSA has been described in detail previously.(Steptoe et al., 2013) The study sample was 

drawn from participants in Health Survey for England (HSE) years 1998, 1999 and 2001 who 

were born before 1st March 1952 and living in a private household or those in their households 

who were new partners or ≤50 years old. This initial sample was nationally representative of the 

age specific English population. Additional recruitment was undertaken in waves 3 and 4 but 

these participants were not included in the current analysis due to the informative dropout 

modelling used. Data was collected in biennial sweeps by interview in the participants homes. 

Data from waves 1 (2002) to 5 (2010) were utilised because the core cognitive battery was kept 

consistent through this time. 

I limited the sample to individuals born before 1940, who were therefore aged 61 or above at 

the first wave. This eliminates at least one source of cohort effect (prenatal exposure to World 

War 2 rationing) and restricts the analysis to those more likely to show a greater degree of 

cognitive decline. I also excluded those individuals with foreign qualifications because this is a 

highly heterogenous category from which no meaningful substantive conclusions could be 

drawn about my research question.  

The size of the full sample eligible for analysis was 5643 at wave 1, 103 were dropped due to 

missing data on gender, ethnicity or education. 1256 participants dropped out or died between 

waves 1 and 2, 765 between waves 2 and 3, 634 between waves 3 and 4 and 533 between 

waves 4 and 5.  

For verbal fluency the latent trajectory class structure was initially driven by extreme outliers. 

Therefore, for this analysis I identified outliers by regressing each measurement occasion on 

the previous one. Results with standardised residuals >2.9 or <-2.9 were checked individually. 

They were coded as missing from the analysis if the results were inconsistent with the other 

results for those individuals (for example a 0 despite normal performance on other tests or a 

result far higher or lower than the results both before and after that occasion). This removed 81 

observations at wave 2, 111 observations from wave 3, 99 observations from wave 4 and 91 

observations from wave 5.  

 

7.2.2 Cognitive Measures 

The cognitive tests were performed by computer assisted interview. Of the cognitive measures 

in ELSA orientation to time, delayed recall and prospective memory task were not utilised due to 

strong ceiling or floor effects.(Marmot et al., 2014) Immediate recall and verbal (semantic) 

fluency were utilised because the floor effects were much weaker (appendices 7.1 and 7.2). To 
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assess immediate recall 10 common words were played to participants which they were asked 

to repeat immediately after presentation. The word lists used were randomly assigned and a 

standardised recording was used for all participants. Semantic (category) fluency was assessed 

by asking participants to name as many animals as they could in 1 minute.  

 

7.2.3 Education and Covariates 

Educational attainment was recorded as no formal qualifications (reference category in all 

analyses), high school completion (O-levels or equivalent), 6th form completion (A-levels of 

equivalent), non-degree level higher education and undergraduate degree or above. The first 

non-missing value was used. Age at baseline was centred for the analysis and wave of study 

was used as the metric of time for all analyses. Gender and ethnicity (white and non-white) are 

treated as binary.  

 

7.2.4 Statistical Analysis 

Growth mixture models were estimated for immediate recall and verbal fluency separately using 

Bayesians MCMC estimation. Each model was tested to see if quadratic or cubic curves 

improved model fit. Intercept and slope were allowed to vary by class. The latent intercept and 

slope were regressed on all covariates and the effect of each covariate was allowed to vary by 

class. This tests the principle research question that the association between education and 

cognitive maintenance may vary by latent class.  

Missing data were handled using a not missing at random (NMAR) Beunckens model in which 

missingness at each wave is dependent on observed covariates, the latent variables for the 

outcome (intercept and growth factors) and latent class.(Beunckens, Molenberghs, Verbeke, & 

Mallinckrodt, 2008) Separately modelling dropout and death lead to model under-identification 

and problems with convergence. They were therefore modelled jointly. After assessing model fit 

the immediate recall model utilised only the intercept to predict missingness whereas in the 

verbal fluency model both intercept and slope independently predicted missingness. The effect 

of each variable on missingness was fixed to be equal across all waves. In neither the fluency 

nor the recall model did allowing the regression of missingness on covariates to vary by class 

improve model fit. See figure 7.1 for the generalised representation of the structural equation 

model used.  

The number of latent classes was assessed using Rousseau and Mengersen’s over-fitting 

method.(Nasserinejad, Rosmalen, De Kort, & Lesaffre, 2017; Rousseau & Mengersen, 2011) 

For this 6 classes were initially specified with a pre-specified cut-off for the posterior mode of the 

number of classes larger than 0.05 and the Dirichlet prior for class proportion of (5,3) for fluency 

and (4,3) for recall (half the number of free parameters between classes). In both cases this 

method identified 2 classes meeting the pre-specified cut-off. Model fit for the 2 class models 

was then assessed using the Bayesian posterior predictive p value (PPPV), entropy and 



134 

 

whether the classes were substantively coherent. Weakly informative priors were used for all 

regression coefficients, missingness thresholds and class specific latent intercepts and means. 

An analysis adjusting for potential pre-education confounders (parental smoking, family 

structure in childhood and parental occupation) there was little difference in the substantive 

conclusions drawn from the analysis, therefore these results are not presented. The data were 

edited using Stata version 12 and the structural equation modelling performed using MPlus 

version 7.0.(L. K. Muthén & Muthén, 2014; StataCorp, 2011) MCMC estimation was utilised with 

the MPlus default Gibbs sampler and convergence criterion, 120000 and 200000 iterations were 

used for fluency and recall respectively of which the first 50% are treated as burn-in with no 

thinning.(Bengt Muthén & Asparouhov, 2011)  

Figure 7.1 Generalised structural equation model for the verbal fluency and immediate recall 

growth mixture models including informative missingness modelling and the effect of covariates 

moderated by latent class membership. 

 

 

C = latent class of change over time; X = all time invariant covariates; Y1-y5 = the outcome at 

waves 1 through 5; D1-d4 = whether participants died or dropped out at each wave 2-5; I = 

latent intercept; S = latent linear rate of change; Q = latent quadratic rate of change 

 

 

7.3 Results 

The participant demographics can be seen in table 7.1 separated by when those individuals left 

the study. Across all waves the mean age at baseline was 73.2, 53.7% (n=3028) of participants 

were female and 2.3% (129) were a non-white ethnicity. 58.3% (n=3291) had no formal 

educational qualifications, 19.0% (n=1073) had high school certificates, 4.5% (n=253) had sixth 

form equivalent qualifications, 10.0% (n=566) had non-degree higher educational qualifications 
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and 8.2% (460) had an undergraduate degree or higher. As the study progressed the remaining 

participants were younger, more likely to be female, more likely to be white, and less likely to 

have no formal educational qualifications.  

For a 1 class fluency model the PPPV was 0.078 (-12.8 to 78.5 credible interval for a difference 

between the observed and replicated chi-squared values), for the 2 class model the PPPV was 

0.148 (-28.6 to 93.6) and for a 3-class model 0.041 (-9.3 to 152.5). The entropy for the 2-class 

fluency model was 0.904 and for the 3-class model it was 0.617. For the 1 class immediate 

recall model the PPPV was 0.78 (-12.3 to 78.2), for the 2-class model 0.081 (-18.5 to 108.3) 

and for the 3-class model 0.011 (12.1 to 177.1). Entropy for the 2 class recall model was 0.872 

and 0.826 for the 3-class model. 

 

Table 7.1 Demographics by wave and dropout numbers for ELSA core participants utilised in 

the growth mixture model analysis. 

  

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 

n=5643 n=4387 n=3622 n=2988 n=2455 

Mean Age at 

W1 (s.d) 73.2 (7.2) 

72.3 

(6.8) 

71.8 

(6.5) 

71.2 

(6.1) 

70.6 

(5.7) 

Verbal 

fluency (s.d) 17.5 (6.0) 

18.0 

(6.3) 

17.9 

(6.4) 

18.0 

(6.7) 

17.9 

(6.8) 

Recall (s.d) 4.9 (1.8) 5.1 (1.8) 5.0 (1.8) 5.0 (1.8) 5.0 (1.9) 

Female 

3028 

(53.7%) 

2379 

(54.2%) 

1977 

(54.6%) 

1647 

(55.1%) 

1358 

(55.3%) 

Non-white 

ethnicity 

129 

(2.3%) 

83 

(1.9%) 

65 

(1.8%) 

45  

(1.5%) 

36 

(1.5%) 

No formal 

qualification 

3291 

(58.3%) 

2419 

(55.1%) 

1932 

(53.3%) 

1507 

(50.4%) 

1184 

(48.2%) 

Highschool 

Education 

1073 

(19.0%) 

889 

(20.3%) 

751 

(20.7%) 

656 

(22.0%) 

562 

(22.9%) 

Sixth Form 

Education 

253 

(4.5%) 

210 

(4.8%) 

179 

(4.9%) 

156 

(5.2%) 

129 

(5.3%) 

Non-degree 

Higher Ed. 

566 

(10.0%) 

474 

(10.8%) 

412 

(11.4%) 

364 

(12.2%) 

318 

(13.0%) 

Degree Level 

Education 

460 

(8.2%) 

395 

(9.0%) 

348 

(9.6%) 

305 

(10.2%) 

262 

(10.7%) 

Dropout - 1256 765 634 533 
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The final class proportions based on the estimated posterior probabilities for the fluency model 

were 90.0% (n=4907) of the sample in a stable class and 10.0% (n=561) in a rapid decline 

class. The final class proportions based on the estimated posterior probabilities for the recall 

model were 91.5% (n=5164) of the sample in a stable class and 8.5% (n=478) in a declining 

class.  

The coefficients from the GMMs are shown in table 7.2 for verbal fluency and 7.3 for recall. In 

the analysis of verbal fluency in the first (stable or probable healthy cognitive ageing) latent 

class the latent intercept in number of animals named per minute was 16.59 (95% Credible 

Interval 16.17 to 16.93). The linear rate of change was -0.21 (95% CI -0.39 - -0.05) with a 

quadratic rate of change of -0.12 (95% CI -0.16 to -0.09), indicating gradual decline in fluency 

over time which accelerates slightly.  In the second (rapid decline or probable disease) latent 

class the latent intercept in number of animals named per minute was 14.75 (95% CI 13.01 to 

18.03). This shows a wider confidence interval due to the smaller number of participants in this 

class, but with the lower point estimate suggesting some decline prior to initial data collection as 

one would expect. The linear rate of change was -2.20 (95% CI -3.36 to -1.21) with a quadratic 

rate of change of -0.59 (95% CI -0.87 to -0.31). This latent class is estimated to decline in 

fluency at an initial rate around 10 times as fast as the healthy ageing class, and this decline 

also accelerates more rapidly. 

Increasing age at baseline was associated with decreased baseline fluency score in both 

classes (Class 1 -0.24 - -0.1; class 2 -0.53 - -0.19), but with linear decline only in class 1 (class 

1 -0.06 - -0.05; class 2 -0.01 – 0.02). In neither class was female gender associated with either 

intercept (class 1 -0.64 – 0.08; class 2 -1.91 – 2.42) or rate of change (class 1 -0.04 – 0.18; 

class 2 -1.44 – 0.69). Non-white ethnicity was associated with a decreased baseline score in 

class 1 but not class 2 (class 1 -7.38 - -5.41; class 2 -4.70 – 1.31), however the number of 

individuals with non-white ethnicity in class 2 was only 2.3% (n=13; table 7.4). In neither class 

was non-white ethnicity associated with rate of decline (class 1 -0.62 – 0.13; class 2 -2.74 – 

2.16).  

The association of education with latent intercept in the stable fluency class showed essentially 

a dose response relationship with greater education associated with higher baseline fluency 

scores (high school 1.75 – 2.62; Sixth Form 2.17 – 3.62; Higher Education 3.56 – 4.09; Degree 

3.93 – 5.12). In the stable fluency class lower levels of educational attainment were associated 

with no difference in change over time (high school -0.10 – 0.13; Sixth form -0.06 – 0.41) but 

higher levels of education attainment were associated with a modest decrease in rate of decline 

(higher education 0.05 – 0.38; degree 0.04-0.42). The difference in rate of decline was 

approximately equivalent to being 4 years younger for both higher education and degree 

education.  

In the rapid decline fluency class level of education was significantly associated with intercept 

only with high school education but not sixth form, non-degree higher or degree level 

educational attainment (high school 0.28 – 4.95; Sixth Form -1.62 – 3.64; Higher Education -

0.50 – 3.90; Degree -1.48 – 5.59). Although mostly non-significant, the point estimates showed 
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a similar dose-response pattern to that seen in the stable function class. In the rapid decline 

fluency class no level of educational attainment was associated with rate of decline (high school 

-1.71 – 0.96; Sixth Form -1.07 – 1.98; Higher Education -1.65 – 0.63; Degree -0.19 – 0.53). 

 

Table 7.2.  Estimates of verbal fluency latent class specific parameters for baseline score and 

rates of change, with the effect of covariates on these. 

  Class 1 - Stable Class 2 - Decline 

  
 

95% Credible 
Interval   

95% Credible 
Interval 

  Coeff. Lower Upper Coeff. Lower Upper 

Baseline Score 16.619 16.244 16.992 14.99 12.986 18.312 

Linear Rate of Change -0.189 -0.347 -0.023 -1.539 -2.499 -0.654 

Quadratic Rate of Change -0.098 -0.134 -0.066 -0.717 -0.956 -0.431 

Date of birth 
   

  
 

  

Baseline Score 0.209 0.181 0.233 0.334 0.167 0.452 

Rate of Decline 0.045 0.036 0.053 -0.08 -0.216 0.005 

Female Gender 
   

  
 

  

Baseline Score -0.255 -0.589 0.09 0.878 -1.48 2.887 

Rate of Decline 0.062 -0.047 0.162 -0.456 -1.822 0.237 

Non-white ethnicity 
   

  
 

  

Baseline Score -6.371 -7.328 -5.427 -1.987 -4.995 1.272 

Rate of Decline -0.093 -0.446 0.263 -0.67 -3.103 1.952 

Highschool Education† 
   

  
 

  

Baseline Score 2.137 1.72 2.545 3.182 0.956 5.426 

Rate of Decline 0.05 -0.075 0.177 -0.105 -1.102 0.949 

Sixth Form Education† 
   

  
 

  

Baseline Score 2.946 2.252 3.636 0.695 -2.223 3.271 

Rate of Decline 0.118 -0.101 0.344 0.496 -0.77 1.674 

Higher Non-degree 
Education† 

   
  

 
  

Baseline Score 3.404 2.873 3.929 2.077 -0.379 4.55 

Rate of Decline 0.221 0.062 0.382 0.011 -1.215 0.82 

Degree Level 
Education† 

   
  

 
  

Baseline Score 4.564 3.979 5.117 1.793 -1.428 5.099 

Rate of Decline 0.172 0.002 0.344 -0.104 -1.776 1.09 

†Baseline no formal educational qualifications 
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The model for immediate recall in the healthy cognitive ageing latent class estimated a latent 

intercept in number of words correctly recalled of 4.27 (95% CI 4.19 – 4.36). The linear rate of 

change was 0.16 (95% CI 0.03 – 0.29), the quadratic rate of change was -0.19 (95% CI -0.28 - -

0.11) and the cubic rate of change was 0.03 (95% CI 0.02 – 0.05). As can be seen in figure 7.2 

this results in very slight mean decline of around 0.3 words over the 8 years of follow-up. In the 

rapid decline or probable disease latent class the latent intercept was 4.09 (95% CI 3.67 – 4.50) 

words recalled correctly. The linear rate of change was 0.35 (95% CI 0.08 – 0.60), the quadratic 

rate of change was -0.13 (95% CI -0.05 – 0.33) and the cubic rate of change was -0.10 (95% CI 

-0.14 - -0.06). As can be seen in figure 7.2 this results in a decline which is only minimally 

evident during the first couple of waves but then declines very sharply in later waves. Compared 

to the more gradual decline throughout follow-up for verbal fluency this may be evidence either 

of reduced sensitivity to change or a greater practice effect masking initial declines.  

Increasing age at baseline was associated with decreased immediate recall intercept in class 1 

but not class 2 (class 1 -0.09 - -0.08; class 2 -0.04 – 0.03), although the association in real 

terms is extremely small even in class 1. Age at baseline was associated with linear decline in 

recall in both classes (class 1 -0.01 - -0.00; class 2 -0.03 – 0.00), though again the magnitude of 

the association is very slight. Female gender was associated with intercept in class 1 only (class 

1 0.33 – 0.51; class 2 -0.02 – 0.90) though the confidence intervals overlap for both estimates. 

Female gender was associated with rate of change in class 2 only (class 1 -0.02 – 0.04; class 2 

-0.27 – -0.13). As with verbal fluency, non-white ethnicity was associated with a decreased 

baseline recall score in class 1 but not class 2 (class 1 -1.17 - -0.50; class 2 -3.33 – 0.76). In 

neither class was non-white ethnicity associated with rate of decline (class 1 -0.24 – 0.02; class 

2 -0.42 – 0.13).  

The association with education for the latent intercept of recall in the stable class showed a 

dose response relationship, similar to fluency, with greater education associated with higher 

baseline fluency scores (high school 0.56 – 0.80; Sixth Form 0.62 – 1.03; Higher Education 0.86 

– 1.16; Degree 1.29 – 1.61). In the stable class no level of educational attainment was 

associated with change over time (high school -0.02 – 0.06; Sixth form -0.05 – 0.09; higher 

education -0.07 – 0.02; degree -0.09 -0.01). In the rapid decline class level of education was 

associated with intercept for sixth form and degree level attainment but not high school or non-

degree higher education (High school -0.21 – 0.95; Sixth Form 0.26 – 2.26; Higher Education -

0.76 – 0.85; Degree 0.73 – 2.27). In the rapid decline class, no level of educational attainment 

was associated with rate of decline (High school -0.10 – 0.25; Sixth Form -0.34 – 0.43; Higher 

Education -0.31 – 0.22; Degree -0.50 – 0.12). 
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Table 7.3.  Estimates of immediate recall latent class specific parameters for baseline score and 

rates of change, with the effect of covariates on these. 

  Class 1 - Stable Class 2 - Decline 

  
 

95% Credible 
Interval   

95% Credible 
Interval 

  Coeff. Lower Upper Coeff. Lower Upper 

Baseline Score 4.305 4.235 4.398 4.094 3.674 4.502 

Linear Rate of Change 0.168 0.083 0.256 0.346 0.077 0.601 

Quadratic Rate of 
Change -0.189 -0.249 -0.136 0.134 -0.049 0.334 

Cubic Rate of Change 0.033 0.023 0.043 -0.101 -0.143 -0.063 

Date of birth 
   

  
 

  

Baseline Score 0.083 0.077 0.089 -0.006 -0.038 0.027 

Rate of Decline 0.006 0.003 0.008 0.02 0.009 0.03 

Female Gender 
   

  
 

  

Baseline Score 0.421 0.335 0.509 0.517 0.063 0.979 

Rate of Decline 0.013 -0.017 0.043 -0.288 -0.443 -0.14 

Non-white ethnicity 
   

  
 

  

Baseline Score -0.838 -1.155 -0.53 -1.001 -3.056 0.899 

Rate of Decline -0.087 -0.2 0.031 0.103 -0.679 1.049 

Highschool 
Education† 

   
  

 
  

Baseline Score 0.666 0.555 0.781 0.417 -0.18 0.989 

Rate of Decline 0.016 -0.022 0.054 0.076 -0.104 0.26 

Sixth Form 
Education† 

   
  

 
  

Baseline Score 0.831 0.635 1.02 1.09 0.182 1.996 

Rate of Decline 0.013 -0.052 0.08 -0.1 -0.433 0.192 

Higher Non-degree 
Education† 

   
  

 
  

Baseline Score 1.017 0.87 1.158 -0.062 -0.836 0.777 

Rate of Decline -0.027 -0.073 0.021 -0.013 -0.279 0.225 

Degree Level 
Education† 

   
  

 
  

Baseline Score 1.43 1.283 1.579 1.585 0.842 2.313 

Rate of Decline -0.04 -0.089 0.01 -0.26 -0.556 0.032 

†Baseline no formal educational qualifications  
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Table 7.4 Descriptive statistics by latent class for verbal fluency and recall. 

    Verbal Fluency   Recall 

    
1. 
Stable 

2. 
Decline   

1. 
Stable 

2. 
Decline 

  Gender 53.6% 54.0%  53.5% 54.9% 

  Non-white 2.4% 2.3%  2.3% 2.3% 

Education 

No formal qual. 58.4% 60.4%  58.1% 60.0% 

High school 19.2% 17.4%  19.1% 19.3% 

Sixth Form 4.5% 4.6%  4.5% 4.2% 

Higher non-degree 9.8% 10.2%  10.1% 9.2% 

Degree 8.1% 7.4%  8.2% 7.3% 

Age 0.07 -0.74  0.027 -0.3 

Mean 
Cognitive 

Score (animals 
named or 

words 
recalled) 

Wave 1 17.6 15.7  4.9 4.6 

Wave 2 18.2 14.2  5.1 5 

Wave 3 18.2 11.3  5 5.2 

Wave 4 18.3 7.4  5 4.6 

Wave 5 18.2 4.3   5.2 2.2 

 

7.4 Discussion  

For both cognitive measures, educational attainment was not associated with rate of decline in 

cognitive function amongst the decline/disease class. The somewhat higher number of 

individuals classified as decliners/disease in the fluency model is likely to indicate a greater 

degree of sensitivity to change for this measure. Nonetheless the numbers classified as 

decliners is close enough between the fluency and recall models to support the idea that they 

are identifying the same class. Previous studies using GMM have demonstrated that this is 

likely to represent a class with pre-clinical dementia.(Hayden et al., 2011; Pietrzak et al., 2014)  

In the stable function class there was a suggestion that those with the highest levels of 

education did have a slightly slower rate of decline for verbal fluency only. However, this 

association was not seen for immediate recall and the magnitude of the association was small. 

It is possible that the finer level of differentiation possible with verbal fluency makes it more 

sensitive to small effects such as this or alternatively that education has an effect one of the 

cognitive processes involved in verbal fluency but not recall. Therefore my results in general 

provide support for the brain or passive reserve hypothesis in both health and early disease, 

with suggestion of a degree of neural compensation reserve for cognitively health older adults 

with the highest levels of educational attainment.(Lenehan et al., 2015) Incidentally, the non-

linear decline observed in the decline/disease class supports the explanation that observation of 

faster decline in more highly educated individuals with dementia is likely to be due to being at a 

more advanced disease state by the time they reach the threshold for diagnosis.(X. Meng & 

D’Arcy, 2012)  
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Figure 7.2 Estimated mean curves of the two latent classes for verbal fluency and immediate recall comparing the effect of no formal qualifications (baseline) and 

degree level education.  
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My findings have both agreement and contrast with those of Muniz-Terrera et al. who used a 

very similar statistical methodology.(Muniz-Terrera et al., 2010) They found that lowers levels of 

education predicted faster decline in their high performance class. Due to the strong ceiling 

effect of the MMSE, it was possible that it may not to detected decline in those with higher 

levels of education. This would artificially make it appear that those with lower levels of 

education declined more rapidly. However, in my analysis using verbal fluency, which does not 

have a ceiling effect, I observed a broadly similar pattern. Those with higher or degree level 

education showed slightly better cognitive maintenance than those with no formal qualifications 

or secondary school level educational attainment. This is consistent with education providing a 

degree of neural reserve in older adults with stable, likely healthy, cognition. It makes it unlikely 

that the previous finding was due to the ceiling effect alone. However, the effect size is very 

small and likely to be of limited practical importance. The contrast with the analysis of Muniz-

Terrera et al. is that I did not observe the same effect for immediate recall of a 10 word list. This 

difference stems from the choice of using specific cognitive tests rather than a measure of 

global cognitive function. My analysis suggests that the association between education and 

cognitive maintenance is domain specific. It is quite plausible that educational attainment would 

be more closely associated with verbal skills than memory alone.(McDaniel & Einstein, 2011)  

The finding of 2 latent classes contrasts with several previous studies of latent classes of 

cognitive function not using the MMSE, including previous analysis of ELSA data, which have 

found 3 or 4 classes.(Hayden et al., 2011; Olaya et al., 2017) However, not all previous studies 

have found more classes. Of those studies with 3 or 4 classes the pattern is frequently of 2-3 

essentially ordinal classes and 1 qualitatively different class (for example the 3 stable classes 

with differing baseline performance and 1 declining class as seen in Olaya et al.).(Olaya et al., 

2017; Royall et al., 2014) Allowing the effects of education and age to vary within class rather 

than predict class in my model is likely to have resulted in the loss of the ordinal classes (whose 

differences in baseline performance are instead modelled as a function of education within 

class) and the preservation of the qualitatively different trajectories.  

Though a limited range of measures was available, the relative lack of ceiling and floor effects in 

the measures used is an important strength of this analysis. Another important strength of this 

study is the fact that education is used to predict change and not class which, for the reasons 

described in the introduction, I feel more accurately translates the results of post-mortem 

studies into a population setting. Additionally, there are many strengths of the ELSA dataset in 

general including, but far from limited to, the large sample size, a representative general 

population sample and good duration of follow-up.(Steptoe et al., 2013) The large number of 

individuals with lower levels of educational attainment is of special relevance to this study. This 

is important not only for statistical power but also reduces the chances of results being related 

to sampling bias. The inclusion of an informative missingness model is also an important 

strength of the analysis as it relaxes the missing at random assumption for at least one 

missingness process.  
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That said, one weakness in this analysis is that the classes identified are both classes of 

cognitive decline and missingness pattern.(Muthen et al., 2011) Whilst these processes are 

closely linked it would be preferable to model them separately. Unfortunately, Bayesian 

estimation using multiple-membership latent classes are not yet implementable within available 

software. The use of Bayesian estimation could been seen as a weakness as Bayesian mixture 

modelling in general can be sensitive to prior specification, although they tend to converge with 

frequentist estimation with less informative priors.(Depaoli et al., 2017; Helm et al., 2017)   

It seems relatively unlikely that my results have been unduly influenced by unmeasured 

confounding. What early life measures preceding education I had did not alter the principle 

finding of no association between educational attainment and rate of decline for most 

participants. Other unmeasured confounders would be anticipated to bias results away from, 

rather than towards, the null hypothesis. However, my method does not account for the various 

post-education pathways to cognitive decline. This being the case my results cannot say how 

much of the observed association is caused by mediating pathways rather than being the direct 

effect of education itself. I considered the inclusion of a range of post-education variables such 

as adult social status or occupational complexity. However, their inclusion would introduce a 

large number of additional modelling assumptions which are not necessarily sustainable. 

Ultimately, my research question was about estimating whether there is a total effect, not the 

many possible pathways this might take. It is also worth noting that it was not possible to 

elucidate cohort effects because of using both time and age in the model.(Bell & Jones, 2013)  

In conclusion I identified two latent classes of cognition in a representative sample of the 

English older adult population, one of very stable function with minimal decline and another with 

rapid decline likely to represent a population with mostly pre-clinical dementia. In my analysis of 

change, after relaxing the assumptions of population heterogeneity and MAR, there was no 

evidence to support the hypothesis the cognitive reserve from early life education moderates 

longitudinal cognitive decline in those in the declining group. In the cognitively health older adult 

group there was evidence of a small degree of active or neural compensation reserve in verbal 

fluency for those with the highest levels of education, but no association was seen for recall.  
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Chapter 8. Cognitively stimulating activities and risk of probable dementia or cognitive impairment 

in the English Longitudinal Study of Ageing.  

 This paper presents the fourth paper which addresses the fourth research question of this thesis: 

does exposure to cognitively stimulating activities in later life reduce risk of dementia or cognitive 

impairment once time-varying confounding affected by past exposure is accounted for? As a 

secondary outcome cognitive function as a continuous score, rather than a set-cut off point will be 

used.  

This paper presents the first use of marginal structural models to estimate the association between 

cognitively stimulating activities in later life and cognitive maintenance. This builds on previous 

research by using a method which can account for time-varying confounding affected by past 

exposure. The inability to exclude this as a cause of reverse causation is an important limitation in 

the current literature.  

In the context of the thesis as a whole this analysis moves from cognitive stimulation in earlier life 

to later life. In doing so, it builds upon the approach which aims to faithfully represent an aspect of 

the underlying causal pathways in a way not previously done.  

I conducted the analysis, drafted and revised the paper. My supervisors Prof. Chandola and Prof. 

Pendleton provided guidance on the analytic strategy and reviewed the drafts. Prof Gindo 

Tampubolon provided additional comments on a draft manuscript as part of an annual review. 

This paper has not been published and is not under review at the time of submission. 
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Abstract 

Objectives  

Cognitive stimulating activities (CSA) are an important potential preventative factor for cognitive 

impairment and dementia, but this association may be due to reverse causation. We aimed to 

estimate CSA’s effect on risk of cognitive impairment whilst accounting for time-varying 

confounding affected by past exposure, one source of reverse causation. 

Methods 

We analysed data from n=11992 participants of the English Longitudinal Study of Ageing waves 1 

(2002) to 7 (2014), a nationally representative prospective cohort of adults in England aged ≥50 

(UK Data Service SN5050 https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=5050). 

Self-reported participation in internet use, employment, volunteering, evening classes, social clubs 

and newspaper reading was measured from waves 2 (2004) to 6 (2012). The primary outcome was 

wave 7 probable cognitive impairment or dementia (≤11/27 on the Telephone Interview for 

Cognitive Status). Inverse probability of treatment and censoring weighted repeated measures 

Poisson regressions were used. 

Results 

Volunteering was associated with reduced risk of cognitive impairment at wave 3 RR=0.633 (0.407 

to 0.984), wave 4 RR=0.626 (0.401 to 0.977), wave 5 RR=0.516 (0.302 to 0.881) and wave 6 

RR=0.564 (0.340 to 0.935). Internet use was associated with reduced risk of cognitive impairment 

at wave 2 RR=0.659 (0.518 to 0.839), wave 3 RR=0.652 (0.523 to 0.814), wave 4 RR=0.620 (0.502 

to 0.767), wave 5 RR=0.666 (0.540 to 0.821) and wave 6 RR=0.691 (0.562 to 0.848). There was 

no significant association with employment, social clubs, evening classes or newspaper reading.  

Conclusion 

We found that volunteering and internet use was associated with reduced risk of cognitive 

impairment or dementia. 
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8.1 Introduction 

Dementia and cognitive impairment are now established global health problems. Cognitively 

stimulating activities (CSA) are an important potential modifiable factor affecting cognitive decline 

and dementia.(Sajeev et al., 2016) CSA have been defined as ‘mentally engaging activities or 

exercises that challenge a person’s ability to think’.(Global Council On Brain Health, 2017) An 

effect of targeted interventions, particularly computerised cognitive training, has been found in 

healthy old age, mild cognitive impairment and dementia.(García-Casal et al., 2017; Hill et al., 

2017) However, a major systematic review found ‘moderate-strength evidence shows cognitive 

training in adults with presumed normal cognition improves performance in the cognitive domain 

trained…, but not transfer of benefits to other cognitive areas and little evidence for benefit beyond 

2 years’.(Kane et al., 2017) This limitation stresses the importance of understanding the effect of 

cognitive activities which older adults already engage in. Mental activity is the dementia prevention 

strategy most commonly identified by adults in Western countries.(Friedman et al., 2015) 

Accordingly, it is common for older adults to engage in CSA with the intention of reducing their risk 

of dementia.(Hosking, Sargent-Cox, & Anstey, 2015) It is therefore important to understand 

whether these activities are effective to inform both public health interventions and individual 

choice.  

In general, the popular view that CSA are beneficial agrees with recent systematic reviews and 

recommendations.(Global Council On Brain Health, 2017; Sajeev et al., 2016) However, it is 

possible that this association may be due to reverse causation, that is to say, it is better cognitive 

performance which predicts CSA.(Gow et al., 2012; Sajeev et al., 2016) If present, reverse 

causation could be time invariant, as in the case of childhood intelligence or time-varying but not 

affected by prior exposure.(Gow et al., 2012; Robins et al., 2000) However, there may also be time-

varying confounding present which has been influenced by exposure at a prior time point.(Robins 

et al., 2000) Those with declining cognition are less likely to continue engagement in CSA, 

meaning cognition at one time may confound the relationship between future CSA and 

cognition.(M. J. Aartsen et al., 2002) This type of confounding cannot be accounted for using 

standard regression methods, but can be adjusted for using marginal structural models 

(MSMs).(Robins et al., 2000)  

Marginal structural models, estimated with inverse probability of treatment weights (IPTW), are a 

means of, making causal inferences from observational data under strict assumptions.(Robins et 

al., 2000) They are especially valuable when time-varying confounding affect by prior exposure is 

highly probable, but conducting high quality randomised controlled trials (RCTs) is extremely 

difficult. Even in the absence of complete adherence to the assumptions required for causality, 

MSMs still relax the assumption that there is no time varying confounding affected by prior 

exposure implicitly present in other longitudinal models. Whilst gaining broad use across 

epidemiology in general, they have seen relatively limited application in cognitive 
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epidemiology.(Marden et al., 2017) We hypothesise that the association between CSA and 

cognitive function or dementia is affected by time-varying confounding influenced by prior 

exposure. Therefore, that exposure to CSA will be associated with risk of dementia or cognitive 

impairment using standard regression but that this association will be attenuated or not observed in 

inverse probability of treatment weighted marginal structural models.  

 

8.2 Methods 

 

8.2.1 Participants and Procedure 

ELSA has been described in detail previously.(James Banks et al., 2016; Steptoe et al., 2013) 

Participants were drawn from a nationally representative multistage probability sample of adults 

aged 50 or more living England in 2002. Data from core sample participants was collected in 

biennial sweeps by interview in the participants homes. For this analysis data from waves 1 (2002) 

was used as baseline. Waves 2 to 6 (2004-2012) were used for exposure to CSA, the outcome 

from wave 7 (2014) and analysis conducted in 2018.  

The size of the initial sample at wave 1 was 11992, falling to 4062 by wave 7. Data was used from 

all participants available in each wave for the creation of the treatment and non-response weights. 

Only data from participants present in all waves with full exposure data were utilised in the final 

analysis resulting in final sample sizes between n=3937 and n=2530 being included in the final 

analysis for each CSA.  

Ethical approval for ELSA was granted by the South Central Berkshire Research Ethics Committee 

and the current study was subject to the University of Manchester internal review process.(James 

Banks et al., 2016) Written informed consent was obtained from all participants.  

8.2.2 Outcome measures 

The primary outcome was probable dementia or cognitive impairment at wave 7. This was  

diagnosed using questions from a modified telephone interview for cognitive status (TICS), is a 27 

point scale using immediate and delayed 10 word free recall, backwards counting from 20 and 

serial 7 subtraction.(Langa et al., 2017) We used a binary outcome of non-impaired (12-27) and 

probable dementia or cognitive impairment (0-11; of which 0-6 is dementia and 7-11 cognitive 

impairment).(P. J. Clarke et al., 2012) Our secondary outcome was the continuous TICS-27 score 

(a higher score indicates better cognition). 

8.2.3 Cognitive Stimulating Activities 



 

 

149 
 

We chose 6 CSA’s from the range of activities in ELSA to represent variety in older adult’s lifestyles 

and the type of cognitive challenge presented. We chose CSA where it is relatively clear how an 

intervention might be designed to alter an individual’s exposure. The CSA’s chosen were working, 

volunteering, regular newspaper reading, attending arts/music/evening classes (hereafter ‘evening 

classes’), internet or email use and social club membership. All of these activities have been 

previously found to have an association with cognitive function, including some in other analyses of 

ELSA data using standard regression methods.(d’Orsi et al., 2017; Guiney & Machado, 2018; 

Hikichi et al., 2017; Liapis & Harding, 2017; A. Meng et al., 2017; Sajeev et al., 2016)  

For working and volunteering participants were asked in the main ELSA interview ‘Did you do any 

of these activities in the last month?’. Participants attending evening classes and social clubs were 

asked in a separate self-completion questionnaire ‘Are you a member of any of these 

organisations, clubs or societies?’. ‘I read a daily newspaper’ and ‘I use the internet and/or email’ 

were response options for the question ‘Which of these statements apply to you?’, also in the self-

completion questionnaire. Exposure at wave 1 was treated as a baseline variable and waves 2-6 

were used to measure time-varying exposure.  

8.2.4 Covariates 

Due to the large number of exposures, a wide range of potential covariates were considered that 

might plausibly confound the association between exposure and outcome. Across all exposures the 

time invariant covariates used were gender, age at recruitment, highest educational qualification, 

income quartile, ethnicity (white or non-white), and parental smoking. The time varying covariates 

were being above retirement age, other activities (including religious participation, charitable 

activities, daytrips, mobile phone use, holidays, voting, having a hobby and other class or society 

memberships), caring, homemaking, self-rated health, self-rated hearing, self-rated eyesight, 

marital status, psychiatric illness, depression score, number of cigarettes smoked per day (0, 1-10, 

11-19 or 20), vigorous, moderate and light exercise and cognitive function. Verbal fluency (number 

of animals named in one minute) and episodic memory (sum score of immediate and delay recall of 

a 10-word list) were used as longitudinal measures of cognitive function.   

8.2.5 Statistical Analysis 

A marginal structural model was constructed for the effect of exposure to each individual CSA from 

waves 2 to 6 on risk of dementia or cognitive impairment at wave 7. Further detail on the rationale 

for and calculation of marginal structural models are presented in appendix 1. In brief our core 

MSM is specified as: 

1. log(𝜆𝑎̅ | 𝐴̅ = 𝑎̅, 𝐿̅ = 𝐿1, 𝑉̅ = 𝑉1) = 𝛽0 + 𝛽1𝑣1 + 𝛽2𝑎2 + 𝛽3𝑎3 + 𝛽4𝑎4 + 𝛽5𝑎5 + 𝛽6𝑎6 + 𝛽7𝑙1 

This estimates the expected risk of cognitive impairment or dementia had it hypothetically been 

possible to intervene and set each individuals exposure to CSA at each wave to a pre-specified 



 

 

150 
 

value. 𝐴̅ represents the observed history of exposure to CSA (𝐴2, … . , 𝐴6) and 𝑎̅ all possible 

exposure histories which could have been observed. 𝜆𝑎̅ = 𝐸(𝑌𝑎̅) where 𝑌𝑎̅ is the potential outcome 

given an exposure history of 𝑎̅. Each of the terms 𝛽2𝑎2 … 𝛽6𝑎6 are the effect of intervening to set the 

exposure to the CSA for each of waves 2 to 6. Also included are baseline confounders 𝛽7𝑙1 and 

baseline CSA exposure 𝛽1𝑣1which are included because the weights are stabilised. Interactions 

between exposure in waves 2-6 and baseline covariates were tested but not significant for any of 

the CSA and therefore not included above. Interactions with time-varying covariates are not 

possible but estimates of total effect are unbiased even if these interactions are present.    

A forward selection process was used to identify a unique set of covariates which predicted future 

exposure to each CSA. This was used to form a single model predicting CSA across all waves 

(appendix 8.1). The odds of exposure were calculated for each time point using logistic 

regression.(Robins et al., 2000) Stabilised inverse probability of treatment weights were calculated 

as the odds of exposure dependent on past exposure to CSA and baseline covariates only divided 

by odds of exposure dependent on full covariate and exposure history for each wave.(Fewell et al., 

2004; Robins et al., 2000) Each wave specific exposure weight for waves 2-6 was multiplied to give 

the overall IPTW for each CSA. 

The ELSA study dataset provides longitudinal inverse probability of censoring weights (wave-

IPCW) for core members participating in each ELSA wave from wave 1 onwards.(James Banks et 

al., 2016; Fewell et al., 2004) Dropout was treated as monotone. Additional weights are given for 

non-response to the self-completion questionnaire (self-completion-IPCW). The final inverse 

probability of treatment and censoring weights (IPTCW) were given by the product of the IPTW with 

the wave-IPCW only for employment and volunteering, and both wave-IPCW and self-completion-

IPCW for the remaining CSA. To estimate the MSM for the primary outcome of risk of probable 

cognitive impairment the IPTCW was applied to a Poisson regression with robust error variance.(G. 

Y. Zou, 2009) Results were compared with the same modified Poisson regression using standard 

regression adjustment for cumulative covariate time-varying exposure and weighted only for non-

response. We used Poisson regression to directly estimate relative risks, in preference to odds 

ratios from logistic regression, to aid interpretability. Additionally, we present statistically significant 

results as adjusted absolute risk difference (AARD) and number needed to expose (NNE). For the 

secondary outcome of TICS-27 score the models were run in the same fashion (IPTCW vs 

regression adjustment) using a linear regression. 

The data was analysed using Stata version 13.0.(StataCorp, 2013) For the references on which 

this was based we refer the reader to Fewell and colleagues for the Stata code for calculating 

IPTCW and to Bodnar and colleagues for the weighted repeated measures regression.(Bodnar et 

al., 2004; Fewell et al., 2004)  
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8.3 Results 

The mean TICS-27 score was 15.0 (S.D 5.4). The proportion of participants classified as having 

probable cognitive impairment or dementia in wave 7 was 21.3% (n=867). Demographics are 

presented in table 8.1. When compared with the core sample present at wave 1, respondents for 

wave 7 were more likely to be female, to have degree level education, to be white and to have had 

parents who smoked. Missingness of each exposure is presented in appendix 8.2 and further detail 

is in the ELSA wave 7 study report (James Banks et al., 2016). CSA exposure over time is 

presented in table 8.2. Over the study period employment reduced, volunteering increased slightly, 

there was a strong trend towards increasing internet use, social club membership fell slightly, 

evening class attendance was stable and newspaper reading fell substantially, but remained the 

majority of participants.  

In standard regression models volunteering was significantly associated with reduced relative risk 

(RR) of cognitive impairment at wave 4 (RR 0.801; 95% CI 0.656 to 0.977), wave 5 (RR 0.731; 

95% CI 0.588 to 0.909) and wave 6 (RR 0.683; 95% CI 0.547 to 0.853; figure 8.1 and appendix 

8.3). In the standard regression models for TICS-27 score, we see a similar pattern with an 

increase in score for wave for wave 3 (0.432; 95% CI 0.137 to 0.727), wave 4 (0.348; 95% CI 0.047 

to 0.649), wave 5 (0.433; 95% CI 0.119 to 0.747) and wave 6 (0.530; 95% CI 0.224 to 0.836; figure 

8.2 and appendix 8.4). 

After adjustment with IPTCW volunteering was more strongly associated with reduced risk of 

cognitive impairment than estimated in the standard regression models (figure 8.1). The RRs were 

0.649 (95% CI 0.417 to 1.009) for wave 2, 0.633 (95% CI 0.407 to 0.984) for wave 3, 0.626 (95% 

CI 0.401 to 0.977) for wave 4, 0.516 (95% CI 0.302 to 0.881) for wave 5 and 0.564 (95% CI 0.340 

to 0.935) for wave 6. The AARD between individuals who volunteered for all 5 waves, 

approximately 10 years exposure, and those who did not volunteer at any time was 17.2% (95% CI 

2.9% to 19.2%). The NNE to prevent one case of cognitive impairment or dementia for individuals 

who volunteered for all 5 waves compared to those who did not volunteer at any time was 5.8 (95% 

CI 5.2 – 34.5). As an example of a single wave, approximating a 2-year period of volunteering, the 

AARD for wave 6 was 7.6% (95% CI 13% to 11.7%) and NNE 13.2 (95% CI 8.5 to 78.0).   

Contrasting with these results, volunteering at any wave was not significantly associated with TICS-

27 (figure 8.2). To explore this finding the analysis was restricted to only those participants in the 

bottom 50% of the TICS-27 distribution. In this subset volunteering was associated with TICS-27 at 

wave 2 (0.821; 95% CI 0.243 to 1.399), wave 3 (0.732; 95% CI 0.010 to 1.365), wave 4 (0.792; 

95% CI 0.212 to 1.372) and wave 6 (0.624; 95% CI 0.004 to 1.245) but not quite significant at wave 

5 (0.637; 95% CI -0.038 to 1.313).  
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Table 8.1. ELSA core sample demographics showing the time-invariant covariates used in this 

analysis at waves 1 and 7. 

    Wave 1 (2002/3) Wave 7 (2014/15) 

 n 11992 4062 

Female (%) 6676 (55.7%) 2291 (56.4%) 

Age at recruitment (S.D) 64.7 (10.7) 61.7 (7.9) 

Educational 

Attainment (%) No formal qualification 4986 (41.7%) 1197 (29.5%) 

  High School 2522 (21.1%) 979 (24.1%) 

  6th Form 748 (6.3%) 301 (7.4%) 

  Some higher education 1317 (11.0%) 603 (14.9%) 

  Degree or higher 1370 (11.5%) 638 (15.7%) 

  Foreign Qualification 1014 (8.5%) 343 (8.5%) 

Non-white Ethnicity (%) 328 (2.8%) 66 (1.6%) 

Parental 

Smoking 

 

Paternal 9099 (79.7%) 3153 (80.4%) 

Maternal 3923 (33.7%) 1544 (38.6%) 

TICS† score  15.0 (S.D 5.4) 

Cognitive 

Status 

Non-impaired  3195 (78.7%) 

Cognitive Impairment  549 (13.5%) 

Dementia  318 (7.8%) 

†TICS, Telephone Interview for Cognitive Status 
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Table 8.2 Proportion of ELSA core sample participating in the cognitively stimulating activities by cognitive status. 

Study Wave Wave 1 (2002/3) Wave 2 (2004/5) Wave 3 (2006/7) Wave 4 (2008/9) Wave 5 (2010/11) Wave 6 (2012/13) 

Year  TICS≥12 TICS≤11 TICS≥12 TICS≤11 TICS≥12 TICS≤11 TICS≥12 TICS≤11 TICS≥12 TICS≤11 TICS≥12 TICS≤11 

Employment 

 

1722 

(53.9%) 

226 

(26.1%) 1479 

(46.3%) 

187 

(21.6%) 1332 

(41.7%) 

153 

(17.7%) 1102 

(34.5%) 

123 

(14.2%) 860 

(26.9%) 

92 

(10.6%) 628 

(19.7%) 

75  

(8.7%) 

Volunteering 

 

572 

(17.9%) 

107 

(12.4%) 621 

(19.4%) 

113 

(13.0%) 648 

(20.3%) 

109 

(12.6%) 641 

(20.1%) 

97 

(11.2%) 664 

(20.8%) 

90 

(10.4%) 675 

(21.1%) 

81  

(9.3%) 

Internet/Email 

 

1417 

(45.8%) 

176 

(21.8%) 1584 

(53.0%) 

195 

(25.9%) 1665 

(57.1%) 

195 

(25.9%) 1779 

(60.5%) 

197 

(26.84) 1972 

(65.2%) 

214 

(28.5%) 2060 

(68.6%) 

223 

(33.0%) 

Social Club 
620 

(20.3%) 

185 

(24.2%) 

574 

(19.8%) 

162 

(23.5%) 

552 

(19.3%) 

159 

(23.0%) 

579 

(20.2%) 

142 

(20.8%) 

605 

(20.4%) 

134 

(19.4%) 

581 

(19.7%) 

115 

(18.1%) 

Newspaper 
2092 

(67.7%) 

545 

(67.5%) 

1967 

(65.8%) 

479 

(63.6%) 

1951 

(66.9%) 

480 

(63.8%) 

1902 

(64.7%) 

436 

(59.4%) 

1919 

(63.4%) 

464 

(61.9%) 

1829 

(60.4%) 

408 

(58.2%) 

Evening 

Classes 
591 

(19.4%) 

95 

(12.4%) 516 

(17.8%) 

80 

(11.6%) 482 

(46.9%) 

62  

(9.0%) 

441 

(15.4%) 

53  

(7.8%) 

472 

(15.9%) 

61  

(8.8%) 

490 

(16.6%) 

42  

(6.6%) 
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Figure 8.1 IPTW vs standard regression models for CSA predicting risk of probable cognitive 

impairment in 2014 (wave 7). 
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Figure 8.2 IPTW vs standard regression models for CSA predicting TICS-27 score in 2014 

(wave 7). 
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In the standard regression model internet/email use at any wave was associated with lower risk 

of cognitive impairment. The RRs were 0.737 (5% CI: 0.611 to 0.889) at wave 2, 0.780 (95% CI 

0.647 to 0.940) at wave 3, 0.720 (95% CI 0.601 to 0.862) at wave 4, 0.642 (95% CI 0.538 to 

0.765) at wave 5 and 0.664 (95% CI 0.562 to 0.785) at wave 6. The IPTCW models estimated 

similar RR to the standard models with estimates of 0.659 (95% CI 0.518 to 0.839) at wave 2, 

0.652 (95% CI 0.523 to 0.814) at wave 3, 0.620 (95% CI 0.502 to 0.767) at wave 4, 0.666 (95% 

CI 0.540 to 0.821) at wave 5 and 0.691 (95% CI 0.562 to 0.848) at wave 6. The AARD between 

individuals reporting internet use for all 5 waves and those who did not at any time was 18.2% 

(95% CI 13.2% – 19.9%). The NNE to prevent one case of cognitive impairment or dementia for 

individuals who reported internet use for all 5 waves compared to those who did not at any time 

was 5.5 (95% CI 5.0 to 7.6). As an example of a single wave, approximating a 2-year period of 

internet/email use, the AARD for wave 6 was 6.4% (95% CI 3.2% to 9.0%) and NNE 15.6 (95% 

CI 11.1 to 31.7).  Estimates of change in TICS-27 score were very similar in all waves (all 

p<0.001) for both standard and IPTCW models (figure 8.2). 

Social club membership was associated with reduced risk of cognitive impairment at wave 6 

(RR 0.678, 95% CI 0.535 to 0.859) in the standard model. Social club membership at wave 3 

was associated with worse TICS-27 (-0.502; 95% CI -0.953 to -0.052) and at wave 6 with 

improved TICS-27 (0.546; 95% CI 0.067 to 1.026). In the IPTCW models social club 

membership at any wave was not associated with either risk of cognitive impairment or TICS-27 

score.  

In the neither the standard or IPTCW models were evening classes associated with risk of 

cognitive impairment. They were associated with higher TICS-27 at wave 2 (0.564; 95% CI 

0.116 to 1.011) and 3 (0.473; 95% CI 0.025 to 0.922) in standard but not IPTCW models. Daily 

newspaper reading was associated with reduced risk of cognitive impairment at wave 6 (RR 

0.855; 95% CI 0.741 to 0.988) in the standard model but not the IPTCW. Employment was not 

associated with risk of cognitive impairment or TICS-27 score in any model. 

 

8.4 Discussion 

Contrary to our hypothesis, we found in the IPTCW models the association between 

volunteering or internet/email use and risk of cognitive impairment was not substantially 

different. This implies that their association with cognitive impairment is not due to time-varying 

confounding affected by prior exposure, at least not from the potential confounders we 

accounted for. Employment, evening classes, newspaper reading and social clubs were not 

associated with improved cognitive function. Of these, the results for newspaper reading and 

social clubs were consistent with our hypothesis, with some associations becoming non-



 

 

157 
 

significant using IPTCW. The effect of volunteering and internet use persisted over several 

years and, for volunteering, appeared limited to those with poorer cognitive function. That the 

association between cognitive impairment and social club membership reduced when IPTCW 

was used, supports the suggestion that the association between social activity and cognitive 

impairment or dementia may be due to reverse causation. It is consistent with prior research 

showing that neuropsychiatric manifestations such as apathy, depression and social withdrawal 

can precede the onset of measurable cognitive impairment.(Cortés, Andrade, & Maccioni, 2018; 

Sajeev et al., 2016)  

 

8.4.1 Strengths and Limitations 

ELSA is a large, nationally representative prospective cohort study with data on many 

covariates over a long follow-up period. However, the measures of CSA are self-reported, 

binary measures taken every 2 years. Whilst the long study duration provides good information 

on participation over time, there is little information on CSA ‘dose’ received. Additionally, we did 

not draw other distinctions such as between those in employment due to being unable to 

work/retire versus preferring not to. We used IPCW to account for dropout, which is a standard 

approach to missingness at random that is readily integrated into IPTW.(Fewell et al., 2004) 

However, it does not account for different missingness mechanisms. 

The use of MSMs is the main development of the current study on previous research. Having 

used MSMs it is possible to draw tentative causal conclusions from our analysis, but this is 

conditional on the strong assumption of no unmeasured confounding.(Robins et al., 2000) The 

use of baseline CSA at wave 1 to predict subsequent exposure should reduce the effect of 

confounders which are unobserved because of left censoring, as this is likely to be substantially 

mediated by baseline CSA. There may be unobserved social stratification or social cognitive 

deficit which is inadvertently measured by one’s propensity to volunteer or take up internet use. 

However, one might expect such confounders to affect other CSAs similarly, particularly 

evening classes. The fact it did not gives a degree of support to the no unmeasured 

confounders assumption.  

 

8.4.2 Relation to other studies 

Consistent with our findings, the effect of volunteering seen in the Experience Corps studies 

seems to be more pronounced in those with poorer cognitive function.(Proulx et al., 2018) Data 

from other RCTs so far are somewhat conflicting but, considering the lead time and prevalence 

of neurodegenerative disease, they have been short term or small.(Sakurai et al., 2018) Modest 

gains in hippocampal size may be the neural substrate of improved cognitive function amongst 

volunteers in these studies.(Michelle C. Carlson et al., 2015; Sakurai et al., 2018) Volunteering 

has also been associated with better cognitive function in several cohort studies.(Guiney & 
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Machado, 2018; Jenkinson et al., 2013; Proulx et al., 2018) According to Guiney and Machado’s 

theoretical framework, volunteering exerts its beneficial effects on cognitive functioning via 

increased cognitive, social and physical activity leading to improved neurological and mental 

health which, in turn, improve cognitive functioning.(Michelle C. Carlson et al., 2015; Guiney & 

Machado, 2018)  Should these findings be robustly replicated then this would suggest that 

volunteering could be promoted as an intervention for those with poorer cognitive function or at 

risk of dementia.(Jenkinson et al., 2013) Given that this analysis used a nationally 

representative sample of older adults living in England, this finding may be generalisable to 

older adults in the rest of Britain as well as comparable western industrialised nations.  

General internet use has been associated with improved cognitive function and reduced risk of 

dementia in several previous observational studies, including in previous analyses of 

ELSA.(d’Orsi et al., 2017; Liapis & Harding, 2017) This similarity is unsurprising given that our 

IPTW estimates were similar to the standard regression estimates. It is difficult to contrast our 

results regarding general internet use with RCTs because they use software designed 

specifically to target cognitive function.(Liapis & Harding, 2017) Higher levels of internet use are 

associated with improved access to preventative and treatment health services.(C. S. Clarke et 

al., 2017) Other mechanisms for a causal association with general computer use have had little 

specific investigation. It is possible that the exposure being measured is not computer use itself, 

but acquiring and routinely using a new skill in later life. If this is the case, this finding may be 

generalisable across similar age cohorts but is unlikely to be generalisable to future cohorts.  

Our finding that the specific type of activity is important contrasts with the conclusion from some 

of the prior research regarding holistically cognitively enriched lifestyles.(Sajeev et al., 2016) 

These differences may have arisen simply because we chose to model activities individually or 

our use of IPTCW. Studies generally are highly heterogeneous in their conceptualisation of both 

CSA and cognitive functioning which makes direct comparison across studies challenging.  

There remains a large number of unanswered questions in the area of CSA and cognitive 

function. The type, duration and intensity of CSA required to produce benefits in cognitive 

functioning remains to be characterised more fully. Whether all older adults could anticipate 

cognitive benefits or if the effects are indeed limited to those with poorer overall cognitive 

functioning requires further replication. Whilst application of methods for casual analysis of 

observational data, such as MSMs used in this study, can advance knowledge and identify the 

CSA most likely to produce benefits, there is still no replacement for well conducted RCTs for 

robust causal inference.
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9. Discussion and Conclusions 

This chapter reflects on the main findings from the analysis and discusses the contributions, 

limitations, theoretical and policy implications of this study and implications for future research. 

 

9.1 Research Questions and new evidence 

In this thesis, four main research questions have been examined. These were: (1) When 

analysing predictors of cognitive maintenance in later life, do cognitive function factor scores 

lead to different substantive conclusions than sum-scores?  (2) Are Bayesian approximate 

measurement invariance models of cognitive ageing a suitable alternative to conventional 

longitudinal measurement invariance models? (3) Is higher education associated with brain, 

neural or neural cognitive reserve, and does this association vary by latent class of cognitive 

decline in later life? (4) Does exposure to cognitively stimulating activities in later life reduce the 

risk of dementia or cognitive impairment once time-varying confounding affected by past 

exposure is accounted for? 

 

9.1.1 Research Question 1 

Factor analysis is a commonly used technique for data reduction and estimation of quantities 

which are not directly observable, such as cognitive function. This technique can test 

hypotheses about the structure of a measurement instrument to ensure it represents the data, 

can handle measurement error present in the individual tests and is readily expanded into the 

flexible structural equation modelling framework. However, it also adds several stages to any 

analyses done on the data, can appear to complicate comparability across studies and reduce 

interpretation by generalist researchers when compared to the standardised sum scores 

commonly used in studies of cognitive ageing. I sought to compare using factor analysis with 

the standard cognitive scores from the English Longitudinal Study of Ageing (ELSA) to see if 

there were meaningful differences in results. These scores, called indices in the ELSA 

documentation, were derived by simply adding the scores from different tests in the domains of 

memory and executive function, with a global score from adding those together.  

I qualitatively compared the results of an exploratory factor analysis with the structure of the 

indices. I found that the memory index and a memory factor were similar in structure, however 

the executive function index appeared to combine two separate factors for attention and a visual 

task. The global index did not represent the data well and no single factor encompassed all the 

individual cognitive tests. After using a confirmatory factor analysis to estimate factor scores, I 

then regressed both standardised factor scores and standardised index scores on a range of 

common predictors of cognitive function. The memory factor and index showed very similar 

relationships with predictor variables, with only 1 out of 47 parameters being significantly 

different. The executive function index and the corresponding factors for attention (9 differences 

in coverage and 8 in inferences) and visual search (14 differences in coverage and 16 
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differences in inferences) showed substantial differences in the relationship to predictor 

variables. For example, the visual search factor was not associated with Parkinson’s disease, 

cigarette consumption or depression. All of these had substantial negative effects on the 

executive function index despite the visual search task being one of the main tasks used to 

calculate the executive function index.  

This paper presents a factor analysis of the cognitive function tests in ELSA which may prove 

useful to future researchers wishing to use this dataset. It demonstrates how using factor scores 

in ELSA can lead to quite different substantive conclusions to sum scores which have been 

used frequently in study reports and secondary analyses of ELSA.(Huppert et al., 2006; Lang, 

Wallace, Huppert, & Melzer, 2007; Langa et al., 2009; Shankar, Hamer, McMunn, & Steptoe, 

2013b) This paper contributes to the literature more generally by demonstrating from a real-

world dataset how pre-defined sum-scores may not reflect underlying data structures well.  

 

9.1.2 Research Question 2  

Each test which measures cognitive function relies on a combination of processes which may 

be variably affected by ageing and disease. This means there is good reason for testing the 

longitudinal measurement invariance of cognitive function in later life rather than assuming it 

exists.(Blankson & McArdle, 2013; McAvinue et al., 2012) In studies with large numbers of 

participants, measurement invariance is typically tested for using alternative fit indices, of which 

the comparative fit index (CFI) is the most common.(Cheung & Rensvold, 2002; Meade & 

Bauer, 2007) However, different fit indices may give conflicting results, one observed variable 

must always be assumed to be invariant and the exact change in CFI which indicates non-

invariance changes for any given combination of observed variables and measurement 

occasions..  

When testing for measurement invariance of two factors in ELSA, I found that for a memory 

factor, the test results fell in between different CFI recommendations from different authors. In 

order to move forward in the research, I needed to know whether or not the memory factor did 

possess longitudinal measurement invariance. I identified that Bayesian approximate 

measurement invariance may provide a viable alternative to testing with the CFI.(van de Schoot 

et al., 2013) Instead of testing global model fit at different levels of invariance like CFI, 

approximate measurement invariance allowed me to test for a pre-specified acceptable amount 

of variation for the factor loading and intercept of each observed variable.  Having run this 

analysis, I found that there were several intercepts which showed evidence of non-invariance in 

the memory factor. I also confirmed that there was minimal non-invariance in a factor measuring 

attention. I concluded that there was sufficient non-invariance that the memory factor was not 

suitable for longitudinal analysis. Due to this result, the next paper in the thesis focussed on two 

specific memory tests but not an overall memory factor.   
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As well as informing the next step of my research, this analysis develops existing literature on 

Bayesian approximate measurement invariance by demonstrating its use in a new context. 

Previous literature on approximate measurement invariance has focussed on the problem of 

multiple marginally non-invariant parameters resulting in the rejection of measurement 

invariance for valid measurement tools because of overly conservative tests.(Bengt Muthén & 

Asparouhov, 2012; van de Schoot et al., 2013) I develop this by showing that it is not simply a 

case of using conventional or Bayesian tests, but that the Bayesian approach can be used as a 

valid alternative to or as a compliment to conventional tests. This may be needed when 

conventional tests provide equivocal results or where there is no clear cut-off for the number of 

observed indicator variables at the number of times points you are using. Instead of focussing 

on the multiple minor non-invariance problem, I emphasise that because approximate 

measurement invariance tests individual parameters rather than global fit, the Bayesian 

approach can provide additional diagnostic information about the invariance of a given factor 

structure.  

 

9.1.3 Research Question 3 

Higher levels of education are well known to be associated with reduced risk of developing the 

clinical syndromes of mild cognitive impairment or dementia.(Beydoun et al., 2014; Livingston et 

al., 2017) However, higher levels of education are associated with more rapid cognitive decline 

in dementia, and clinicopathological studies have found that education does not seem to be 

associated with the burden of Alzheimer’s disease pathology.(Brayne et al., 2010; X. Meng & 

D’Arcy, 2012; Serrano-pozo et al., 2013) There has been disagreement in the research 

literature regarding whether these effects are due to greater education simply increasing 

baseline cognitive performance or whether it affects cognitive maintenance 

longitudinally.(Plassman et al., 2010) Furthermore, nearly all studies have either analysed their 

data using a single overall trajectory of cognitive maintenance or used education to predict odds 

of belonging to a particular trajectory. This leaves open the question of whether an association 

between cognitive maintenance over time and education may be moderated by class of latent 

trajectory. The theories of brain, neural and neural compensation reserve each lead to different 

predictions about the effect of education on cognitive reserve and each have evidence to 

support them.(M. Tucker & Stern, 2011; Stern, 2012) It may be that they are not mutually 

exclusive but that different types of reserve are predominant in different states, especially in 

health vs disease. As the progression of disease can precede clinical diagnosis by many years, 

classifying individuals with declining or stable cognitive trajectories from a population sample 

allows the hypothesis that education will be associated with different forms of cognitive reserve 

in different states to be tested.  

I used two cognitive tests in ELSA, immediate recall of a 10-word list and the number of animals 

named in one minute. I estimated their association with educational attainment over 5 waves (8 

years) of follow-up using a growth mixture model. 2 latent classes of cognitive trajectory were 
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identified for both tests, which I termed stable and declining. In the declining class educational 

attainment was associated with baseline performance but not rate of change. In the stable class 

degree level education was associated with a slight improvement in maintenance of verbal 

fluency. However, this is of minimal substantive importance.  

This analysis builds on prior research by demonstrating that greater education contributes 

primarily to passive cognitive reserve with only a slight contribution to neural compensation 

reserve in cognitively stable individuals. It does this by relaxing the assumption that there is only 

a single trajectory within the population, and allowing the effect of education to vary by class 

rather than predict class membership. With the exception of Terrera, Brayne and Matthews 

(2010), prior estimation of the association between education and cognitive maintenance within 

class had not been tested. It develops their analysis specifically by using different cognitive 

measures tests without strong floor or ceiling effects, by using a dataset representative of the 

whole of England and with a larger sample size. It also implements a method of accounting for 

informative dropout within class using pattern mixture modelling which has not previously been 

applied in analyses of cognitive maintenance.(Beunckens et al., 2008)   

 

9.1.4 Research Question 4 

Cognitively stimulating activities (CSA) are a promising potentially modifiable factor which may 

improve cognitive maintenance and prevent dementia or mild cognitive impairment.(Sajeev et 

al., 2016) Whilst greater exposure to CSA has been found to be associated with reduced risk of 

dementia or cognitive impairment, reverse causation from time-varying confounding affected by 

past exposure may explain this association.(Sajeev et al., 2016) This is where past CSA (A1), 

such as volunteering, affects cognitive function (C1) which then affects the probability of future 

volunteering (A2).(Jenkinson et al., 2013; Shen, 2017) With conventional regression you cannot 

unbiasedly estimate the effects of both A1 and A2 on the risk of dementia (Y). If you condition 

on C1 you block the effect of A1 on Y mediated via C1 (including via A2) and if you don’t 

condition on C1 then C1 confounds the association between C2 and Y. Population studies to 

date have not used methods to address this and the experimental literature is limited by a small 

number of studies, with small sample sizes and short follow-up periods.(Iizuka et al., 2019; 

Sajeev et al., 2016)  

I estimated the association between risk of cognitive impairment or dementia and 5 waves (8 

years) of exposure to working, volunteering, evening classes, social clubs, newspaper reading 

and internet use using marginal structural models (MSMs).(Robins et al., 2000) To do this, I first 

calculated stabilised inverse probability of treatment and censoring weights (IPTCW). These 

weights were applied to a separate repeated-measures modified Poisson regression for each 

CSA.(Bodnar et al., 2004; G. Y. Zou, 2009) This estimated the association of exposure at each 

time-point with risk of dementia or cognitive impairment at the end of the follow-up. I contrasted 

these results to those found using conventional regression adjustment with weighting only used 
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to account for non-response. I found that volunteering and internet use were associated with 

reduced risk in both standard and IPTCW models. Social club membership was associated with 

reduced risk in standard models but not IPTCW models. Working, newspaper reading and 

evening classes were not associated with risk in either standard or MSM models.  

This paper is the first to present an analysis of a range of CSA using marginal structural models 

to account for potential reverse causation. This contributes to the evidence from ELSA and 

elsewhere that internet use and volunteering are associated with reduced risk of cognitive 

impairment.(d’Orsi et al., 2017; Guiney & Machado, 2018; Liapis & Harding, 2017; André J. 

Xavier et al., 2014) More specifically, my findings contribute to the existing literature by 

demonstrating that this association is unlikely to be due to time-varying confounding affected by 

prior exposure. The inability to account for this form of confounding was a key limitation in the 

existing literature. Alongside unobserved confounding, reverse causation is one of the major 

weaknesses of standard regression approaches which prevent causal inferences from being 

drawn from observational data. The association between social club membership and risk of 

cognitive impairment found in the standard regression was not seen in the MSM. This suggests 

this association was due to reverse causation and demonstrates why adjusting for time-varying 

confounding affected by prior exposure is important. The lack of association between social club 

membership and cognitive impairment using an IPTCW MSM contributes to the literature 

suggesting that the social withdrawal seen prior to dementia diagnosis is likely to be an early 

symptom rather than a cause of the condition.(Ismail et al., 2016; Singh-Manoux et al., 2017)  

 

9.2 Strengths and Limitations 

The general strength of the analytic approach taken in this thesis was using structural equation 

modelling and marginal structural modelling to relax the constraints implicit in more common 

random effects and growth curve models. This confers specific strengths to each of the 

individual papers. Through the thesis as a whole this is done in a progressive fashion. By 

sequentially testing important modelling assumptions in measures of cognitive ageing, and 

demonstrating the influence of not doing so, the thesis builds its substantive arguments based 

on rigorous methodological foundations. The ELSA dataset itself confers several strengths to 

the analyses presented in this thesis. It is a large and nationally representative cohort study with 

a wide range of covariates and long follow-up period.(Littleford et al., 2016) The representative 

sample provides a good basis for generalisability to the general British population and to other 

westernised industrialised nations. The range of covariates reduces the chances of the findings 

being due to unmeasured confounding. The follow-up period of 8-12 years is a suitable window 

for analysing cognitive maintenance.(Cavedo, Odile, & Lamari, 2017)  

The use of education as a predictor of cognitive maintenance and a proxy for cognitive reserve 

has well known limitations. Early life education is determined by other factors such as general 

intelligence and early life social circumstances.(Gow et al., 2012; Stern, 2012) Although 



 

 

164 
 

including early life socio-economic variables made little difference to the substantive 

conclusions drawn, intelligence, genetic effects and other unobserved early life exposures may 

confound the association observed between education and cognition.(Marden et al., 2017)  

The lack of direct measurement of brain anatomy and function, is another limitation of this 

research.(Perneczky, Kempermann, Korczyn, Matthews, & Ikram, 2019) More direct measures 

of brain and cognitive reserve are now becoming available in some cohort studies. This will 

enable future work to disentangle the causal pathways and neuroanatomical substrates of 

cognitive maintenance in greater detail.(Cabeza et al., 2018; Stern et al., 2018; Weiler et al., 

2018)  This will also enable additional variables to be used to assist with the definition of latent 

classes.(Zahodne, Wall, et al., 2015)  

The ELSA cohort grew up in a period where higher education was achieved only by a small 

minority. Methods of teaching and learning as well as physical school environments were very 

different to modern education in Britain or elsewhere. This means that generalisation of the 

findings of this research to future generations or across populations relies on the assumption of 

a broad equivalence in the education experienced at each level.(Gindo Tampubolon, 2015) This 

problem of cross-cohort generalisation is also present for the later life CSA. This is most 

apparent in the case of internet use. Internet use expanded rapidly across the population, 

including amongst older adults during the period of ELSA data collection.(Matthews, Nazroo, & 

Marshall, 2019) The analysis in this thesis is unable to say whether the reduction in risk of 

dementia or cognitive impairment is because of the direct or indirect effects of internet use itself. 

It seems plausible that a better ability to access information, preventative health services and 

social interaction may lead to an improvement in cognitive maintenance and a reduction in the 

risk of cognitive impairment.(C. S. Clarke et al., 2017; Andre Junqueira Xavier et al., 2013) It is 

also plausible that the combination of visual, attention and motor skills employed in using the 

internet provides an effective combination to stimulate neuroprotective mechanisms and 

maintain functional brain networks.(Liapis & Harding, 2017; Silbert et al., 2016; Steffener & 

Stern, 2012) If these are the causal mechanisms involved then the finding of a protective effect 

for internet use will generalise to future cohorts. However, it is also possible that internet use 

amongst this cohort of older adults over this specific historical period represents the acquisition 

and, importantly, routine use of a new skill in later life. This could mean that a protective effect 

of internet use may not be present in future generations because they have acquired this skill 

earlier in life. As internet use is likely to be almost ubiquitous in future western cohorts, it will be 

very difficult to establish a protective effect even if it is present. However, similar contrasts could 

be adopters and non-adopters of future technological innovations which require skill acquisition 

and use.  

A challenge across the thesis as a whole was that a Bayesian or frequentist approach to 

estimation was not consistently taken throughout the thesis. However, neither of the two papers 

presented using Bayesian estimation are fully Bayesian. By fully Bayesian I mean in the sense 

that conventional informative priors are used. Instead, I have taken a ‘calibrated Bayesian’ 
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approach to the analysis. This approach seeks to combine Bayesian estimation and model 

assessment with good frequentist properties and ideas.(Little, 2006) In the second paper 

presented the priors are strongly informative of the difference between factor loadings and 

thresholds. No prior was specified for the value of the factor loadings and thresholds as would 

be typical in Bayesian factor analysis.(Robert C. MacCallum et al., 2012) The fourth paper 

presented marginal structural models and uses frequentist estimation. MSMs have been 

implemented using Bayesian estimation.(Saarela, Moodie, & Stephens, 2015) However, there 

are several difficulties with this. The inverse probability of treatment and censoring weights used 

to estimate the MSM in the fourth paper are a form of high dimensional propensity scores.  They 

have very poor frequentist properties with fully Bayesian estimation because it becomes 

progressively less likely that the prior will be correctly specified as more covariates are 

added.(Robins, Hernán, & Wasserman, 2015) More fundamentally, in combining prior and 

observed likelihood to estimate a posterior distribution there is no place in standard Bayesian 

logic for a propensity score.(Robins et al., 2015) Resolving this tension was beyond the scope 

of the thesis and therefore a frequentist estimator was used to estimate the MSM.     

 

9.3 Theoretical Implications 

This thesis is informed by, and contributes to theories, regarding the measurement of cognitive 

function using structural equation modelling, the type of cognitive reserve provided by education 

and counterfactual models of causation as applied to the effect of CSAs on risk of cognitive 

impairment. These share the unifying theoretical concern of how I can translate beliefs about 

complex underlying causal structures into my analysis. The first two main research questions 

examined in this thesis have primarily theoretical implications regarding how cognitive function 

is measured. In the process of the thesis as a whole, they were important for rigorously 

conducting the later longitudinal analysis of cognitive maintenance in ELSA.  

The first paper relates to the basic principles of factor analysis. That it is a means of estimating 

the shared variance of observed variables in order to estimate an underlying latent variable 

whilst separating out non-shared variance as measurement error.(Meredith & Teresi, 2006)The 

essence of the first question is to what extent cognitive sum scores and cognitive factors lead to 

substantively different conclusions about the variables which predict cognitive function.  The 

specific application of the factor analysis in this thesis provides a point of departure for future 

research using the ELSA data or other studies with a similar combination of cognitive tests. It 

was surprising to me when I started work on the thesis that no one seemed to have previously 

published tests the measurement properties of the cognitive battery in ELSA. I feel that this 

paper demonstrates the importance of this step in an analysis of cognitive function, despite the 

additional burden placed on researchers in doing so. The executive function index provided with 

ELSA had quite different measurement structure to that revealed by factor analysis. There were 

a large number of dissimilar associations with predictor variables suggesting incorrect 

inferences are likely if using the standard executive function index. The unpredictability of this 
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effect is demonstrated by the fact the ELSA memory index was actually very similar to the 

memory factor in this case. This builds upon past research showing through real world 

examples of how commonly used scoring systems for cognitive function may be a poor fit to the 

data being used.(Ashford et al., 1989; Brugnolo et al., 2009; Gibbons et al., 2002; McGrory et 

al., 2014; Mungas & Reed, 2000; Shigemori et al., 2010) 

Using a standardised sum score for a battery of cognitive tests saves time for the researcher, 

but another important reason they might be preferred is that at face value it appears to provide 

the reassurance of consistency across studies. However, if the measurement properties for a 

given sample cannot be shown to actually be similar to those found in previous analyses then 

this is a false reassurance. Past research has demonstrated that the fact that you are using the 

same cognitive scoring system as another study, for example the mini-mental state exam, does 

not make it automatically comparable to other analyses using the same scoring 

system.(Brugnolo et al., 2009; Shigemori et al., 2010) This means that the reassurance from 

using the standardised score could be false reassurance, unless researchers publish on the 

measurement properties of the instrument they are using in their sample. Fortunately, with the 

expansion of publishing options and online appendices, this should be much easier to do in 

future.  

 If researchers wish to utilise previous evidence of the factor structure for a specific cognitive 

battery then it is possible to fix factor loadings to be the same as found previously and test to 

see if they fit their sample. Alternatively, in Bayesian structural equation modelling, evidence 

from previous analysis of a cognitive battery could be included in subsequent factor analyses by 

using informative priors.(Bengt Muthén & Asparouhov, 2012) As I was not aware of any prior 

factor analysis performed on the specific cognitive battery used in ELSA (which was derived 

from but not identical to test batteries used in previous studies) neither of these options were 

possible in this thesis. 

As with the first paper presented, the second demonstrates the importance of taking the 

additional analytic steps to test the measurement properties of batteries of cognitive tests and 

addresses the problem of testing for longitudinal measurement invariance. I advanced the idea 

that Bayesian approximate measurement invariance can be used when commonly used criteria 

for alternative fit indices do not provide a definitive answer. This approach provided additional 

information to the standard tests and enabled a more informed decision to be made about 

whether to proceed with longitudinal analysis using the factors.(Bengt Muthén & Asparouhov, 

2012; van de Schoot et al., 2013) Previous literature using approximate measurement 

invariance has focussed primarily on its application to accommodating multiple small non-

invariances.(Bengt Muthén & Asparouhov, 2012; van de Schoot et al., 2013) To my knowledge 

this is the first paper to explicitly propose and demonstrate using approximate measurement 

invariance for this particular purpose. 

Having established the measurement properties of the cognitive factors in ELSA and decided to 

use single tests I then moved on to longitudinal analysis of cognitive maintenance itself. I was 
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anticipating more difference between classes in the association of education and cognitive 

maintenance. The most similar previous analysis to my own by Muniz-Terrera et al. found a 

larger difference between classes than I did despite a similar modelling approach.(Muniz-

Terrera et al., 2010) Clinical, as opposed to population based, research has tended to find that 

greater education is associated with more rapid decline following dementia diagnosis.(X. Meng 

& D’Arcy, 2012; Stern, Albert, Tang, & Tsai, 1999) Greater education has been associated with 

different patterns of neuronal activation in health and disease.(Colangeli et al., 2016) In healthy 

old age adults with higher cognitive reserve show activation of a complex bilateral frontoparietal 

network whereas in disease this has been found to be restricted to the left anterior 

cingulate.(Colangeli et al., 2016) This is thought to represent evidence for neural compensation 

reserve.(Cabeza et al., 2018; Colangeli et al., 2016; Stern et al., 2018) Under the predictions of 

neural compensation reserve the difference between individuals with more or less education 

should diminish as pathology advances. With only age-related changes present more educated 

individuals are able to draw upon this complex bilateral frontoparietal network. As pathology 

related changes progress this network is lost and only the anterior cingulate remains accessible. 

According to the neural compensation theory, as these secondary networks fail decline 

accelerates more rapidly in individuals with more education. This results in cognitive function 

converging towards those with less education who had started with poor baseline function but 

decline less rapidly. Without the loss of secondary networks to pathological change, neural 

compensation predicts little difference in cognitive maintenance between those with more or 

less education.  

I was therefore anticipating more rapid decline in individuals with greater education in the 

declining class and little to no difference in the stable class. What I found was a small and 

statistically significant protective effect in the stable cognitive function class for verbal fluency, 

but no effect in the cognitively declining class or for recall. This provides only limited support for 

differing forms of cognitive reserve being present with different underlying trajectories. The main 

effect of education was on brain/passive reserve, with a substantial increase in baseline 

performance. This does not necessarily mean I have found evidence against education 

contributing to neural compensation or neural cognitive reserve. Given that both models have 

empirical support but generate opposing predictions, it is possible both mechanisms are 

operating with a net result of minimal differences in cognitive maintenance by education.(Stern, 

2012) My findings support the overall conclusion that educational attainment has little 

substantively important association with cognitive maintenance.(Lenehan et al., 2015) This is 

consistent with a large number of studies in older adults from a wide range of studies showing 

small or no different in change in cognition by education level.(Lenehan et al., 2015) This 

includes analysis of the AHEAD study, Victoria Longitudinal Study, ARIC neurocognitive study 

and others.(H Christensen & Hofer, 2001; Gottesman et al., 2014; Karlamangla et al., 2009; 

Tucker-Drob et al., 2009; Zahodne et al., 2011b) Large co-ordinated multi-cohort analyses have 

also found that education is associated with improved baseline scores, but has little effect on 

cognitive maintenance.(Lipnicki et al., 2019; Piccinin et al., 2013)  My analysis extends this 
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literature by demonstrating this applies whether the underlying trajectory is stable or declining. 

This was done by relaxing the assumption of population heterogeneity and allowing latent class 

to moderate the effect of education. 

That is not to say there is not also a body of research which has found that education is 

associated with improved cognitive maintenance.(Beydoun et al., 2014) There could be several 

reasons for the discrepancy. Lenehan and colleagues point to the influence of earlier studies 

with fewer measurement occasions being more likely to find that education affects cognition 

over time.(Lenehan et al., 2015) An alternative explanation was proposed by Foverskov and 

colleagues from their analysis linking cohort study data to Danish national registry 

data.(Foverskov, Glymour, Mortensen, Holm, & Lange, 2018) They found education to be 

associated with slower cognitive decline and suggest that measurement error in self-reported 

education may lead to underestimation of the effect of education on cognitive maintenance. 

Zahodne et al. in their 2015 analysis used multiple indicator growth mixture modelling and found 

that more education was associated with improved cognitive maintenance.(Zahodne, Stern, & 

Manly, 2015) They suggest that the ability of confirmatory factor analysis to handle 

measurement error in cognitive function and provide more precise estimates may explain the 

difference in their results from the majority of recent studies. Nonetheless, the need for 

increased precision to identify a statistically significant effect from a cohort of several thousand 

participants demonstrates that the effect itself is small and of unclear substantive importance.    

Multiple indicator growth as used by Zahodne, Stern and Manly was the approach I would have 

used, had it not been for the measurement non-invariance I identified.(Zahodne, Stern, et al., 

2015) This statistical approach was born out of the desire to build a model which, although 

observational, still sought to represent the most likely causal structure underlying the data. This 

same motivation was developed into the fourth paper, however quite different methods were 

needed to examine the role of cognitively stimulating activities (CSA) in later life compared to 

the cognitive stimulation of education in earlier life. The application of my causal model led to 

two relatively distinctive features of the analysis. The first difference being the use of marginal 

structural models. That the association with social club membership and cognitive impairment 

which was lost in the IPTCW MSM demonstrates that time varying confounding affected by past 

exposure is a theoretical concern with real consequences in the study of social exposures and 

cognitive maintenance.  

The second difference was the testing of individual CSA rather than a composite score which 

has been used in much of observational research to date.(Sajeev et al., 2016; Yates et al., 

2016) This has potential theoretical implications for the understanding of whether general 

cognitive enrichment or specific activities are important for maintaining cognitive function in later 

life. Composites of multiple activities generate significant difficulties for the interpretation of the 

results of those studies. As all exposures are treated equally, it is not possible to know whether 

they are in fact equal or whether specific activities have a stronger association with cognitive 

maintenance than others. In this thesis, I show that some activities are associated with reduced 
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risk of cognitive impairment. Other activities which would usually be viewed as providing 

cognitive enrichment, such as attending evening classes, were not. This suggests that future 

research may wish to focus on specific cognitive activities, or at least to contrast specific 

activities with more general measures of activity.   

 

9.4 Implications for Future Research 

The use of applied examples of measuring cognitive ageing in this thesis could be useful to 

demonstrate why applied researchers might consider the use of factor analysis to increase the 

rigour of their use of complex measurement instruments. The first two papers showed how 

cognitive scores which have been used widely can fail to accurately represent the underlying 

data structure. Similar problems have previously been demonstrated with the mini-mental state 

exam and this may also apply to other commonly used tests. (Ashford et al., 1989; Brugnolo et 

al., 2009; Gibbons et al., 2002; McGrory et al., 2014; Mungas & Reed, 2000; Shigemori et al., 

2010) Future researchers may wish to check cognitive scores from other publicly available 

datasets which have not undergone this scrutiny to date.  

This can be done without adopting a full structural equation modelling (SEM) framework for the 

entirety of the analysis as shown in paper 1. SEM has great strength in its flexibility and 

statistical power. This flexibility comes at the price of increased modelling assumptions as more 

covariates are added.(VanderWeele, 2012) Specifically, structural equation modelling requires 

assumptions to be implicitly made about the relationship between covariates which do not need 

to be made in conventional regression analysis. This is a part of the reason for the number of 

covariates in the analysis in the third paper being kept to the minimum necessary. Whilst I 

wished to utilise the flexibility of SEM to identify latent classes of cognitive trajectory, I also 

wished to avoid making unrealistic assumptions regarding the relationships between my 

covariates or casual pathway from education to cognitive impairment. It is also why I used a 

different set of tools entirely for the fourth paper. In this complex longitudinal setting the number 

of potential mediating pathways would either have had to be unrealistically restricted or be 

unidentified. Marginal structural models only require the model for the exposure and outcome 

relationships to be specified correctly, rather than requiring the full covariance structure to be 

correctly specified.(VanderWeele, 2012) There is potential for a middle ground where factor or 

latent class analysis are integrated with the advantages of counterfactual causal inference.(B 

Muthén & Asparouhov, 2014) Further work is required to determine effective and theoretically 

coherent ways of combining structural equation modelling ability to estimate latent constructs 

with the well-defined inferential properties of marginal structural models. 

In my own work, presented in the second paper, I demonstrated how Bayesian approximate 

measurement invariance can be integrated with frequentist tests using alternative fit indices. A 

natural extension of this would be to undertake simulation studies to identify the relative 

performance of these measures for a range of factor indicators, measurement occasions and 
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levels of measurement which may plausibly be seen in studies of cognitive maintenance. This 

could focus on the unbiased estimation of latent means and cognitive maintenance. It would be 

more challenging, but potentially as important, to simulate some of the other potential benefits 

of the Bayesian approach, such as the reduction in the capitalisation on chance and the effect 

of not having to fix one indicator variable to be invariant, as seen in the conventional frequentist 

approach.(R. C. MacCallum et al., 1992; Robert C. MacCallum et al., 2012) For example, one 

could simulate a scenario with indicator variables for a latent cognitive function and manipulate 

the degree of invariance, number of variables, number of occasions and sample size. It would 

then be possible to determine how often choosing each of the observed variables to be fixed to 

1 leads to an incorrect conclusion about measurement invariance. Bayesian approximate 

measurement invariance could then be applied to the same scenarios and the relative 

performance of the approaches in correctly identifying non-invariance compared. By using 

plausible scenarios for studies of cognitive maintenance such studies could be made more 

directly relevant to informing researchers in this area. However, it would have broader 

implications for the assessment of measurement invariance across disciplines.  

In my analysis of approximate measurement invariance, I also found changes in latent 

intercepts that were suggestive of variable practice effects in some of the individual cognitive 

tests. There are several ways of trying to identify and adjust for practice effects in tests of 

cognitive function, none of which are fully satisfactory.(Goldberg, Harvey, Wesnes, Snyder, & 

Schneider, 2015; Jones, 2015; Racine et al., 2018) It seems worth exploring whether 

approximate measurement invariance could be used as a means of testing for and potentially 

accommodating differential practice effects in longitudinal studies of cognitive functioning. This 

would not be able to identify practice effects occurring equally for all observed variables, but 

could account for variations in the degree of practice effect for different observed variables. 

Whilst not an anticipated outcome of the research questions addressed in this thesis, this could 

add to range of techniques available to researchers to manage problems with re-test effects 

when estimating cognitive maintenance. 

Ultimately, I did not use longitudinal factors in my further analysis of cognitive maintenance in 

the third paper. The most straightforward extension of that work would be to domains other than 

memory. The large majority of studies using growth mixture models to study multiple classes of 

cognitive decline have used the mini-mental state examination or a measure of episodic 

memory, leaving open the possibility education may have a greater effect on the maintenance 

of other cognitive domains.(Baker et al., 2017; Ding et al., 2019; Downer, Chen, Raji, & 

Markides, 2017; Hayden et al., 2011; Hochstetler et al., 2016; Seonjoo Lee et al., 2018; Marioni 

et al., 2014; Min, 2018; Olaya, Bobak, Haro, & Demakakos, 2017; Pietrzak et al., 2014; Royall, 

Palmer, Chiodo, & Polk, 2014; Small & Bäckman, 2007; Terrera, Brayne, & Matthews, 2010; 

Zahodne et al., 2015) The fact my findings support the literature suggesting that education 

primarily contributes to passive brain reserve does not mean that education has no meaningful 

effect on other cognition related outcomes.(Lenehan et al., 2015) For example, higher levels of 

crystalized abilities or social and occupational skills may reduce rate of progression to cognitive 
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disability, even though longitudinal effects on cognitive maintenance are small.(Bendayan et al., 

2017; Jokinen et al., 2016) A plausible model would have education is the primary exposure, 

disability the outcome, and cognition as a mediator of the effect of education on disability. 

Education would be expected to have a direct effect on risk of disability and an indirect effect via 

baseline cognitive functioning. This relationship may show an exposure-mediator interaction. 

This would mean that, as well as the direct and indirect effects, there may be an interaction 

between education and cognition on disability risk. Only relatively recently have these complex 

effect decompositions been formally defined in a counterfactual framework and accessible 

software written for use by applied researchers.(Discacciati, Bellavia, Lee, Mazumdar, & Valeri, 

2019; VanderWeele, 2014; Vanderweele, Vansteelandt, & Robins, 2014)  

As an application of the counterfactual approach to causal effects and non-parametric structural 

models to the study of cognitive ageing this type of complex effects decomposition would also 

build upon the work presented in the fourth paper.(VanderWeele, 2014) Wider implementation 

of the marginal structural model (MSM) approach used in this analysis could be applied to a 

range of questions about the effects of social exposures on cognitive maintenance. As 

demonstrated in the fourth paper, this would make a valuable contribution to understanding 

these relationships by relaxing the assumption that there is no time varying confounding 

affected by past exposure. In my research I found that the association between social club 

membership and dementia was no longer significant in the marginal structural models. Related 

to this, the relationship between social isolation, loneliness and depression with dementia risk is 

one example of where the question of multi-directional causal relationships is central and MSMs 

could offer further insight.(Ismail et al., 2016; Yin, Lassale, & Steptoe, 2019)  

Further research is also needed into the exposures found to be associated with lower risk of 

dementia or cognitive impairment in this thesis. Volunteering appears to be a strong contender 

for a CSA likely to provide some reduction in risk of cognitive impairment and dementia.(Guiney 

& Machado, 2018) My findings demonstrate that this association is unlikely to be explained by 

time-varying confounding affected by past exposure. Nonetheless, unmeasured confounding 

may still play a role in the association. Additionally, volunteering in one societal context may be 

quite different from another. For this reason, further replication of this finding from datasets with 

different sets of confounders and drawn from different societal contexts is needed.  

Volunteering itself can include highly heterogenous set of activities. I believe that it is the 

combination of cognitive and social stimulation alongside increased physical activities which is 

likely to be why volunteering appears to have its protective effect on cognitive 

maintenance.(Guiney & Machado, 2018) On this basis I would not advocate further research 

trying to sub-divide volunteering and identify individual active components. However, arguments 

could be made for this. An argument could be made that sub-diving the intervention is one way 

of aiming to deliver the most efficient intervention possible. An alternative approach would be to 

aim to identify whether specific volunteering activities are associated with greater benefits that 

others, or what duration and intensity of volunteer activity is required to produce cognitive 
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benefits. There is a precedent of small studies testing the effect of volunteering on cognition, 

such as the Experience Corps study.(M. C. Carlson et al., 2008) Larger and longer duration 

experimental studies randomising those who would not otherwise have engaged in volunteer 

activity would be the ideal way of demonstrating causation. However, even if all the logistical 

and ethical challenges to building a more substantial experimental evidence base could be 

overcome, there would still remain substantial problems with external validity. This means that 

observational studies will continue to have an important place in answering these questions. 

General internet use was the other CSA found in my analysis to have an association with 

reduced risk of cognitive impairment and dementia. The majority of past research on computer 

use in older adults has focussed on targeted cognitive interventions. My findings are consistent 

with the smaller amount of research in the area of general computer use in finding a protective 

effect and extends this literature by demonstrating that this association is ELSA is not due to 

time varying confounding affected by prior exposure.(d’Orsi et al., 2017; Liapis & Harding, 2017; 

André J. Xavier et al., 2014) This suggests general internet use is a potential target for 

intervention to reduce the risk of cognitive impairment and dementia worth exploring in future 

research. However, as adults entering later life are becoming increasingly computer literate then 

this raises the important question regarding whether this will be possible to replicate in future 

cohorts. Whether this effect is seen cohorts with higher levels of computer literacy at baseline 

will be an important question for future research.  

Intervention studies teaching general computer skills are the definitive way of demonstrating 

causality. These are very difficult to design with adequate sample size and duration. As 

information technology use continues to become more widespread reducing the effect of non-

trial exposure would be difficult. Moreover, the interventions would need to be carefully 

designed to ensure that the participants who received the training were demonstrably putting 

those skills into regular use. This equally applies to other interventions which seek to promote 

new skills and their use. Both volunteering and internet use have in common that they require 

the acquisition and regular use of new skills. I believe that emphasis in both observational and 

experimental research should shift towards skill acquisition and sustained use, rather than 

activity participation alone.(Iizuka et al., 2019)    

 

9.5 Policy Implications 

Improving cognitive maintenance and thereby reducing the risk of mild cognitive impairment and 

dementia is a priority for public health and many older individuals.(Friedman et al., 2015; 

Livingston et al., 2017) This is the primary area of policy implications arising from this thesis 

relating to the 3rd and 4th papers presented. The policy relevance of the first two papers is 

primarily within the academic field. Taken together the first two articles demonstrate the 

importance of the evaluation of measurement instruments within a given dataset. Current 

commonly used appraisal criteria used to judge the methodological quality of research and 
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improve reporting, such as the STROBE criteria, do not include assessment of measurement 

properties of psychometric instruments.(von Elm et al., 2007, 2014) It may be time to consider 

whether a form of evaluation of the measurement properties of instruments used in 

observational research for cognitive function, or many other latent exposures and outcomes, 

should be considered a mark of quality of research and included formally in such guidelines or 

journal submission requirements.  

The results from the third paper suggest that education is associated with little substantively 

important difference in cognitive maintenance in those with either a declining or stable 

trajectory. This is consistent with the view that education primarily contributes primarily to 

passive brain reserve.(Lenehan et al., 2015; Stern, 2012) In this case, reduced rates of 

cognitive impairment and faster progression following diagnosis seen in those with higher levels 

of education are likely to be due to delay in the development of impairment because of higher 

baseline functioning alone.(X. Meng & D’Arcy, 2012) On a population level, these findings 

suggest that the expansion in higher education seen in many western countries is likely to be 

associated with a long term decline in dementia incidence. This is already being observed in 

some countries.(Serrano-Pozo & Growdon, 2019; Stephan et al., 2018) However, as life 

expectancy increases then the effect may be a reduction in age-specific incidence at younger 

ages without affecting the whole population incidence. Nonetheless, this postponement of 

morbidity would still be a public health gain overall. 

In the 4th paper the analysis found that volunteering and internet use specifically were protective 

against cognitive impairment. Evening classes, social clubs and working were not associated 

with reduced risk. This finding has direct implications for decisions regarding which CSA older 

adults may wish to choose or policymakers to promote if they wish to reduce the risk of 

cognitive impairment on an individual or population level. Analyses using methods designed for 

causal inference from observational data such as those presented in this thesis are particularly 

for important for providing policy evidence in the context of the difficulties in performing 

adequate experimental studies. It is encouraging that our findings are consistent with prior 

research on these specific CSA.(Guiney & Machado, 2018; Liapis & Harding, 2017) Whilst 

awaiting further research, public or individual action to promote volunteering and learn new 

computer skills appear to be good bets for the CSA most likely to reduce risk of cognitive 

impairment and dementia. With the results of my analysis in the context of prior research they 

can be cautiously recommended for this aim. The potential harms from volunteering these 

activities are largely restricted to opportunity costs, whilst the potential benefits to the individuals 

and wider society extend well beyond cognition alone.  

The finding of no association with evening classes and social clubs may also have implications 

for practice. Social club membership and evening class attendance as reported by ELSA 

participants has no strict definition. There are likely to represent quite heterogeneous categories 

including a wide range of specific activities. This does limit the interpretation of these findings. 

This analysis finds that the typical type and intensity of evening class or social club activities 
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being undertaken by older adults in England is not sufficient to be associated with improved 

cognitive maintenance. Conceptually the marginal structural model is attempting to estimate the 

effects of fixing an individual’s exposure to attendance or non-attendance of those evening 

classes or social clubs. Consequently, my analysis suggests that interventions aimed at 

improving older adult’s attendance at existing social or educational activities are not be likely to 

be effective for improving cognition. Naturally, this does not mean there might not be a range of 

other beneficial non-cognitive outcomes of such an intervention. Nor does it mean that some 

social programmes or educational activities could not have beneficial effects on cognitive 

maintenance. The mix of these activities undertaken by ELSA participants is representative of 

the age-specific English population, so promotion of more of these activities for the prevention 

of cognitive impairment in the English or similar contexts is not supported by my analysis.  

In conclusion, this thesis advances our knowledge of how cognitive maintenance can be 

measured and the effect of education and other cognitively stimulating activities on cognitive 

maintenance in later life. For the measurement of cognitive maintenance, I demonstrate how 

using pre-specified cognitive scores or factor analysis can lead to highly variable effects on later 

analysis and how Bayesian approximate measurement invariance can be applied to cognitive 

factors over time. I found that education provides primarily passive cognitive reserve, extending 

past research by showing that this applies latent classes of cognitively stable or declining older 

adults, Contrastingly, I found that specific cognitively stimulating activities in later life, 

volunteering and internet use, were associated with improved cognitive maintenance. This was 

shown by a reduced risk of dementia or cognitive impairment and contributed to the field by 

being the first analysis on the effect of CSA on cognition to use marginal structural models to 

account for reverse causation.     
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Appendices. 

Appendix 5.1 Correlation Matrix between Cognitive Function Variables Averaged Over All Waves 

 

 

 

 

 

 

 

 

 

 

 

  Date Month Year Day Prospective Fluency Immediate Delayed Correct Missed Speed 

Date 1            

Month 0.578 1           

Year 0.558 0.788 1          

Day 0.479 0.654 0.684 1         

Prospective 0.253 0.382 0.504 0.389 1        

Fluency 0.233 0.374 0.483 0.366 0.387 1       

Immediate Recall 0.245 0.357 0.458 0.366 0.381 0.479 1      

Delayed Recall  0.273 0.394 0.504 0.398 0.411 0.476 0.729 1     

Letters Correct 0.118 0.148 0.211 0.156 0.204 0.201 0.209 0.226 1    

Letters Missed -0.142 -0.155 -0.219 -0.170 -0.243 -0.263 -0.266 -0.287 -0.888 1   

Letters 
Completed 0.126 0.196 0.265 0.206 0.11 0.204 0.19 0.179 -0.281 0.213 

1 
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Appendix 5.2 Exploratory Factor Analysis Loadings by Wave for the 3 Factor Solution. 

  Wave 1 2 3 4 5 

  Factor 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Variable Date 0.601*   0.652*  -0.026 0.681*   0.681*  0.014 0.631*    

  Month 0.883*   0.994*  0.021 0.897*   0.921*  0.003 0.929*    

  Year 0.834*   0.910*  -0.024 0.931*   0.898*  -0.021 0.928*    

  Day 0.698*   0.785*  0.024 0.687*   0.826*  0.064* 0.772*    

  Prospective 0.267* 0.341*  0.403* 0.249* 
-

0.084* 0.348* 0.245*  0.316* 0.255* 
-

0.091* 0.380* 0.204*   

  Fluency 0.230* 0.465*  0.276* 0.397* 
-

0.032* 0.187* 0.488*  0.282* 0.404* 
-

0.022* 0.279* 0.396*   

  Immediate  0.848*    0.831* 0.035*  0.880*    0.883* 0.031*  0.891*   

  Delayed  0.814*    0.805* 0.009  0.790*    0.820* 0.006  0.757*   

  Correct   

-
0.971*    

-
1.013*   

-
1.026*    

-
1.016*   

-
0.985* 

  Missed    0.897*    0.841*   0.829*    0.839*   0.873* 

  Speed 0.202* 0.248* 0.373* 0.217*   0.374* 0.225*   0.365* 0.257*   0.398* 0.285*   0.397* 

Loadings less than 0.2 not shown. 
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Appendix 5.3 The Correlation between Factor Scores and Index Scores. 

 

  Attention Memory Visual Global Memory Executive 

Attention 1.000       

Memory 0.826 1.000      

Visual 0.369 0.354 1.000     

Global 0.798 0.913 0.426 1.000    

Memory 0.824 0.949 0.294 0.897 1.000   

Executive 0.531 0.599 0.464 0.834 0.504 1.000 
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Appendix 7.1 Histograms demonstrating the distribution of verbal fluency scores in waves 1 to 5 

of the English Longitudinal Study of Ageing 
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Appendix 7.2 Histograms demonstrating the distribution of immediate scores in waves 1 to 5 of 

the English Longitudinal Study of Ageing 
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Appendix 8.1 The covariates used in the estimation of the marginal structural models for each 

cognitive stimulating activity.  

Working 

Time invariant variables in the model for working in the month before the interview were age at 

baseline and gender. Time varying variables were whether the individual was at or past state 

retirement age, an interaction between age at baseline and being at state retirement age, 

attending evening classes and homemaking. 

Volunteering 

Time invariant variables in the model for volunteering were age at baseline and educational 

attainment. Time varying variables were whether the individual was at or past state retirement 

age, an interaction between age at baseline and being at state retirement age, verbal fluency, 

self-rated health, self-rated eyesight, going on day trips, being a member of a church or other 

religious organisation, charitable work, gym class membership and participation in ‘other’ 

activities not specified in the list provided to participants.  

Social Club Membership. 

Time invariant variables in the model for social club membership were wealth and educational 

attainment. Time varying variables were other group memberships, working, homemaking, 

volunteering, verbal fluency, episodic memory and self-rated hearing. 

Internet use 

Time invariant variables in the model for internet use were age at baseline, gender, 5 category 

social class, educational attainment, income and wealth. Time varying variables were verbal 

fluency, episodic memory, working, training, gym class membership and mobile phone use. 

Evening class attendance 

Time invariant variables in the model for attending evening classes were wealth, educational 

attainment and being non-married. Time varying variables were volunteering, episodic memory 

and self-rated health. 

Daily Newspaper Reading 

Time invariant variables in the model for newspaper reading were age at baseline, being non-

married and gender. The time varying variables were verbal fluency, episodic memory and 

depression. 
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Appendix 8.2. Wave response rate and item non-response for all cognitively stimulating activity exposure variables.  

 

Non-response 

Wave  
Final numbers† 

1 2 3 4 5 6 

  total n 11932 9249 7168 5971 5262 4711  

Main survey 
Employment / 

9 (0.1%) 0 1 (0.0%) 2 (0.0%) 2 (0.0%) 0 (0.0%) 
3875 

Volunteering 2487 

Questionnaire 

Internet use / 1164 
(9.7%) 

1169 (12.6%) 1010 (14.1%) 
807  

(13.5%) 
531 

(10.1%) 
555 

(11.8%) 

2401 

Newspaper 2770 

Social Club / 1577 
(13.2%) 

1597 (17.3%) 1264 (17.6%) 1021 (17.1%) 
703 

(13.4%) 
665 

(14.1%) 

2460 

Evening Classes 2452 

 

†The number of participants included in the final regression after accounting for all missing data at all time points required to estimate the inverse probability of 

treatment and censoring weights.  

 

 

  



 

 

217 
 

Appendix 8.3 Inverse probability of treatment and censoring weighted vs standard regression models for cognitively stimulating activities from 2004 to 2012 (waves 2 

to 6) predicting risk of probable cognitive impairment in 2014 (wave 7). 

 

 CI, confidence interval; IPTCW, inverse probability of treatment and censoring weights; RR, Risk Ratio; W, wave.  

Year of 
Employment Volunteering 

  
Internet Use 

  
Social Club 

  
Newspaper Reading 

  
Evening Classes 

  

Exposure RR (95% CI) P>z RR (95% CI) P>z RR (95% CI) P>z RR (95% CI) P>z RR (95% CI) P>z RR (95% CI) P>z 

IPTCW                         

W2 / 2004 
0.94 (0.79 to 

1.12) 0.466 
0.65 (0.42 to 

1.01) 0.055 
0.66 (0.52 to 

0.84) 0.001 
0.91 (0.71 to 

1.17) 0.46 
0.96 (0.82 to 

1.11) 0.575 
0.82 (0.56 to 

1.21) 0.315 

W3 / 2006 
0.90 (0.74 

to1.10) 0.298 
0.63 (0.41 to 

0.98) 0.042 
0.65 (0.52 to 

0.81) <0.001 
1.09 (0.85 to 

1.41) 0.481 
0.96 (0.82 to 

1.11) 0.554 
0.83 (0.54 to 

1.26) 0.376 

W4 / 2008 
0.89 (0.71 to 

1.12) 0.322 
0.63 (0.40 to 

0.98) 0.039 
0.62 (0.50 to 

0.77) <0.001 
0.96 (0.73 to 

1.26) 0.768 
0.97 (0.83 to 

1.13) 0.712 
0.79 (0.52 to 

1.19) 0.257 

W5 / 2010 
0.89 (0.68 to 

1.15) 0.361 
0.52 (0.30 to 

0.88) 0.015 
0.67 (0.54 to 

0.82) <0.001 
0.92 (0.69 to 

1.22) 0.564 
0.97 (0.83 to 

1.13) 0.694 
1.07 (0.73 to 

1.57) 0.736 

W6 / 2012 
0.97 (0.72 to 

1.30) 0.816 
0.56 (0.34 to 

0.94) 0.026 
0.69 (0.56 to 

0.85) <0.001 
0.81 (0.60 to 

1.08) 0.151 
0.95 (0.82 to 

1.11) 0.53 
0.72 (0.48 to 

1.09) 0.121 

Standard                         

W2 / 2004 
1.05 (0.90 to 

1.24) 0.523 
0.99 (0.84 to 

1.16) 0.877 
0.74 (0.61 to 

0.89) 0.001 
1.07 (0.90 to 

1.27) 0.458 
0.89 (0.78 to 

1.02) 0.1 
0.89 (0.68 to 

1.17) 0.411 

W3 / 2006 
0.98 (0.81 to 

1.18) 0.843 
0.84 (0.70 to 

1.01) 0.061 
0.78 (0.65 to 

0.94) 0.009 
1.14 (0.95 to 

1.37) 0.162 
0.98 (0.87 to 

1.12) 0.81 
0.85 (0.61 to 

1.18) 0.337 

W4 / 2008 
0.90 (0.73 to 

1.11) 0.327 
0.80 (0.66 to 

0.98) 0.029 
0.72 (0.60 to 

0.86) <0.001 
0.97 (0.79 to 

1.19) 0.796 
1.01 (0.88 to 

1.16) 0.911 
0.90 (0.65 to 

1.25) 0.524 

W5 / 2010 
0.88 (0.69 to 

1.12) 0.304 
0.73 (0.59 to 

0.91) 0.005 
0.64 (0.54 to 

0.77) <0.001 
0.87 (0.72 to 

1.05) 0.147 
0.91 (0.79 to 

1.06) 0.222 
0.99 (0.76 to 

1.30) 0.96 

W6 / 2012 
1.00 (0.78 to 

1.30) 0.978 
0.68 (0.55 to 

0.85) 0.001 
0.66 (0.56 to 

0.79) <0.001 
0.68 (0.54 to 

0.86) 0.001 
0.86 (0.74 to 

0.99) 0.033 
0.94 (0.79 to 

1.08) 0.142 
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Appendix 8.4 Inverse probability of treatment and censoring weighted vs standard regression models for cognitively stimulating activities from 2004 to 2012 (waves 2 

to 6) predicting telephone interview for cognitive status-27 score in 2014 (wave 7). 

  

CI, confidence interval; IPTCW, inverse probability of treatment and censoring weights; RR, Risk Ratio; W, wave. 

Year of 
Employment Volunteering 

  
Internet Use 

  
Social Club 

  
Newspaper Reading 

  
Evening Classes 

  

Exposure beta (95% CI) P>z beta (95% CI) P>z beta (95% CI) P>z beta (95% CI) P>z beta (95% CI) P>z beta (95% CI) P>z 

IPTCW                         

W2 / 2004 
0.12 (-0.17 to 

0.42) 0.420 
0.08 (-0.36 to 

0.51) 0.732 
0.93 (0.50 to 

1.37) <0.001 
-0.16 (-0.73 to 

0.41) 0.581 
-0.05 (-0.62 to 

0.51) 0.851 
0.41 (-0.12 to 

0.93) 0.130 

W3 / 2006 
0.19 (-0.12 to 

0.50) 0.232 
0.34 (-0.11 to 

0.78) 0.137 
0.91 (0.47 to 

1.34) <0.001 
-0.36 (-0.94 to 

0.21) 0.213 
-0.03 (-0.59 to 

0.54) 0.927 
0.44 (-0.12 to 

0.99) 0.127 

W4 / 2008 
0.17 (-0.17 to 

0.52) 0.331 
0.40 (-0.05 to 

0.86) 0.082 
0.91 (0.49 to 

1.33) <0.001 
-0.22 (-0.79 to 

0.34) 0.434 
-0.10 (-0.67 to 

0.48) 0.742 
0.38 (-0.14 to 

0.90) 0.151 

W5 / 2010 
0.21 (-0.26 to 

0.51) 0.536 
0.37 (-0.10 to 

0.84) 0.126 
0.93 (0.52 to 

1.33) <0.001 
0.05 (-0.52 to 

0.61) 0.877 
-0.18 (-0.75 to 

0.39) 0.532 
-0.17 (-0.91 to 

0.58) 0.661 

W6 / 2012 
0.12 (-0.30 to 

0.55) 0.569 
0.39 (-0.08 to 

0.85) 0.103 
0.86 (0.47 to 

1.24) <0.001 
0.17 (-0.47 to 

0.81) 0.595 
-0.13 (-0.71 to 

0.44) 0.657 
0.12 (-0.35 to 

0.58) 0.631 

Standard                         

W2 / 2004 
-0.02 (-0.27 to 

0.22) 0.843 
-0.06 (-0.36 to 

0.24) 0.697 
0.95 (0.60 to 

1.31) <0.001 
-0.36 (-0.78 to 

0.07) 0.099 
0.23 (-0.24 to 

0.70) 0.331 
0.56 (0.12 to 

1.01) 0.014 

W3 / 2006 
0.13 (-0.13 to 

0.39) 0.317 
0.43 (0.14 to 

0.73) 0.004 
0.76 (0.41 to 

1.01) <0.001 
-0.50 (-0.95 to 

-0.05) 0.029 
-0.10 (-0.56 to 

0.36) 0.672 
0.47 (0.03 to 

0.92) 0.039 

W4 / 2008 
0.26 (-0.03 to 

0.55) 0.082 
0.35 (0.05 to 

0.65) 0.023 
0.65 (0.31 to 

1.00) <0.001 
-0.20 (-0.64 to 

0.24) 0.373 
-0.24 (-0.72 to 

0.24) 0.321 
0.18 (-0.27 to 

0.63) 0.437 

W5 / 2010 
0.21 (-0.13 to 

0.55) 0.224 
0.43 (0.12 to 

0.75) 0.007 
0.90 (0.57 to 

1.23) <0.001 
0.32 (-0.13 to 

0.76) 0.161 
-0.11 (-0.59 to 

0.38) 0.673 
0.24 (-0.24 to 

0.72) 0.333 

W6 / 2012 
0.10 (-0.29 to 

0.49) 0.613 
0.53 (0.22 to 

0.84) 0.001 
0.91 (0.60 to 

1.23) <0.001 
0.55 (0.07 to 

1.03) 0.026 
0.07 (-0.42 to 

0.56) 0.782 
0.39 (-0.04 to 

0.82) 0.076 


