
Jetology:
A precision understanding of jet
substructure and the dead-cone

effect
Jacob Henry Rawling

School of Physics and Astronomy

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy
in the Faculty of Science and Engineering

2019



Contents

1 Introduction 8

2 Theoretical framework 10
2.1 The Standard Model of particle physics . . . . . . . . . . . . . . . . . . . . . 10
2.2 Perturbative QCD and collider physics . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Monte Carlo event generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 The Top quark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 The Dead-Cone Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 The LHC and the ATLAS experiment 30
3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 The ATLAS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Detector simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Object reconstruction methods 42
4.1 Tracks and vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Electrons and photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Missing transverse momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Overlap removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Dijet in situ inter-calibration 54
5.1 The η inter-calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 η inter-calibration of 2015 and 2016 data . . . . . . . . . . . . . . . . . . . . . 57
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Top tagging 70
6.1 Top tagging algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 The QCD jet background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 All order calculation of top-tagged jets . . . . . . . . . . . . . . . . . . . . . . 85
6.4 Tagging efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Measuring the dead-cone 88
7.1 Analysis Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Data and simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2



Contents Contents

7.4 tt̄ reconstruction method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5 Optimisation of measurement regions . . . . . . . . . . . . . . . . . . . . . . . 104
7.6 Unfolding Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.7 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.9 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8 Conclusion 146

Appendices 148

A Full uncertainties of the Aθ differential cross-section measurement 149

References 167

Total Word Count: 47552

3



Abstract

A measurement of the relative differential cross-section of tt̄ production in proton-
proton collisions at

√
s = 13 TeV of a novel observable, Aθ, is presented. The measure-

ment was performed in the lepton+jets final state with data recorded by the ATLAS
detector. The integrated luminosity of the dataset used was L =138.2 fb−1. The effects
of the detector were removed using a statistical procedure. The Aθ observable was de-
signed to be sensitive to dead-cone effect, a suppression of radiation in the collinear
region around a massive radiator. The Aθ observable was found to be sensitive to the
radiative properties of the tt̄ system, evaluated by comparison with several NLO pre-
dictions. The observed suppression strength of the dead-cone effect was parameterised
by the fDC observable, such that fDC = 1.0 corresponds to the SM prediction of the
dead-cone effect and fDC ∈ [0, 1]. The dead-cone suppression strength was measured
to be fDC = 0.527 ± 0.041(stat) ± 0.295(syst). The measured fDC lies 1.77σ from the
case where the top quark radiates as if it were massless, fDC = 0.0.

Furthermore, a novel analytic approach top tagging was explored. Two top tagging
algorithms were proposed: TopSplitter and Ym splitter. The action of these taggers
on top jets and quark-initiated jets were studied using all ordered analytic calculation.
The calculation was compared to Monte Carlo prediction, and found that the parton
shower used within traditional Monte Carlo captures the all order behaviour of jets
after the application top tagging algorithms.
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collaboration with James Howarth and Ian Connelly, who participated as advisers to
the analysis and editors to the paper. The author was responsible for all parts of the
analysis. The data driven background parameterisations used for evaluating “fake”
leptons were measured by ATLAS members Nello Bruscino and Erich Varnes.
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1. Introduction

The Standard model of particle physics is a theoretical description of fundamental
particles and the interactions that govern their behaviour. Quantum Chromodynam-
ics (QCD) is the sector of the Standard Model that describes the strong interaction
between colour charged particles. Collimated showers of particles are produced by the
QCD decay of colour charged particle. These showers are typically clustered in objects
called jets. The most massive particle in the Standard Model is the top quark. Like
all quarks, the top quark is colour charged, and therefore can emit QCD radiation.
Precision measurements of top quark properties in the highly boosted regime require
the identification of top quarks, known as top tagging. Top tagging requires detailed
understanding of jets produced by light partons, as well as a detailed understanding
of the top quark’s QCD radiation structure. This thesis aims to understand the be-
haviour of QCD radiation in the top sector of the Standard Model, and further the
understanding of jet physics in proton-proton collisions at the Large Hadron Collider
(LHC).

Understanding QCD radiation from massive radiators is a central aim of this thesis.
A new variable sensitive to the dead-cone effect, the suppression of emitted radiation
from a massive radiator, is proposed. The relative differential cross-section, 1

σ0
dσ

dAθ
, was

measured in a fiducial phase-space in tt̄ events in the lepton+jets channel using data
recorded at the ATLAS detector in the years 2015, 2016, 2017 and 2018 at a centre
of mass energy

√
s =13 TeV. A statistical procedure was validated and optimised to

remove detector effects for this measurement. A gradient free black box optimisation
procedure, typically used in machine learning hyperparameter optimisation, was used
for the first time as a method of optimising a physics analysis and found to increase
the statistical significance of the measured result.

To further the understanding of jet physics at the LHC, the calibration of jets
across the ATLAS detector was also explored. A data driven calibration procedure
was performed with data collected by the ATLAS detector in years 2015 and 2016
at a centre of mass energy

√
s =13 TeV. The calibration procedure corrects the jet

energy scale to be uniform as a function of jet direction across the detector. A suite
of validation procedures was performed on the measured calibration. Limitations in
the procedure were identified and understood. A novel extension to the data driven
calibration procedure was introduced to overcome the evaluated limitations in the
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1. Introduction

method.
Top Tagging techniques are extended and jet substructure is understood using a

novel analytic resummed calculation of jet mass after the application of top tagging
algorithms. A new top tagging algorithm, Ym splitter, is constructed based explicitly on
an analytic understanding of jet physics. Furthermore, the CMS Top Tagger is studied
and limitations with this algorithm identified. These limitations were overcome with
the TopSplitter algorithm, a new top tagging algorithm motivated by an analytic
understanding of jet physics. A novel all order calculation of the action of top tagging
algorithms upon jets formed from top quarks and from light quarks was performed.
To understand whether traditional Monte Carlo (MC) based predictions captures the
all order behaviour of top tagging algorithms, the all order analytic prediction was
compared systematically to MC prediction.

This thesis is structured in the following manner. Chapter 2 introduces the theo-
retical framework of the Standard Model. This chapter details methods for calculat-
ing predictions using the framework of Quantum Field Theory, provides detail on the
strong force, and motivates the study of the radiative properties of the top quark. In
Chapter 3 the ATLAS detector and LHC accelerator complex at CERN are described.
Chapter 4 details how measured read-outs from the ATLAS detector are reconstructed
into physics objects. The following three chapters discuss measurements with ATLAS
data, and studies of the top quark. A method of calibrating jets measured with the
ATLAS detector is discussed in Chapter 5. The identification of the jets which fully
contain decay products of a top quark is discussed using a novel analytic approach in
Chapter 6. Finally, the measurement of a variable sensitive to top quark radiation is
discussed in Chapter 7.

All units are given using natural units where ~ = c = 1, where ~ is the reduced
Planck constant and c is the speed of light in a vacuum. Electric charges are implicitly
given in multiples of the elementary charge e = 1.6 × 10−19C.

9



2. Theoretical framework

The description of fundamental particles of nature has evolved dramatically over the
past sixty years. The culmination of the theoretical description of experimental results
is Quantum field theory (QFT). QFTs were formalised in the 1960s from an extension of
Dirac’s relativistic Quantum Mechanics framework and prediction of the positron (the
charge conjugate of the electron) [3, 4]. In the QFT formalism, particles are represented
by fields and interactions defined through a Largrange density which operates upon
those fields.

The quantum field theory known as the Standard Model (SM) is the most success-
ful description of the fundamental constituents of matter ever penned by humanity. It
has been tested and found to agree with experiment to extremely high precision, for
example the electron magnetic moment has been measured and found to agree with
the standard model to 0.7 parts per billion [5]. While it is the best description of the
fundamental particles of nature, the SM is incomplete. It does not describe the funda-
mental force of Gravity. Furthermore, there are no particles in the SM that account for
observed astronomical data which imply an abundant massive particle that does not
interact electromagnetically, so called Dark Matter. The SM also has no mechanism to
explain the abundance of matter compared to anti-matter within the universe. With
precision study of the SM, it is hoped a more complete description of the universe can
be achieved.

This chapter shall detail the Standard Model. In Section 2.1 an overview of the par-
ticles and interactions described in the SM is given. The interaction of colour-charged
particles is formalised in Section 2.2, including an overview of how SM predictions of
jet radiation are calculated. Section 2.3 describes the procedure for simulating events
used throughout this thesis. A thorough discussion of the heaviest observed elementary
particle, the top quark, is then presented in Section 2.4. Finally, the dead-cone effect is
introduced in Section 2.5. The effect was predicted over forty years ago, but has never
been measured experimentally.

2.1 The Standard Model of particle physics

Particles described by the SM are classified by their intrinsic angular momentum, or
spin, as one of the following:

10



2.1. The Standard Model of particle physics 2. Theoretical framework

Figure 2.1: The fundamental particles that compose the standard model of particle physics,
grouped together by type. The fermions are arranged in three generations by mass [10, 11].

• Fermions - particles with half integer spin.

• Bosons - particles with integer spin.

The SM describes twelve fermions, three fundamental forces of nature, and the Spin-0
mediator known as the higgs boson. The charges, masses and spin of the particles in the
SM are shown in Figure 2.1. The three fundamental forces of the SM are the electro-
magnetic, weak, and strong force described by Quantum Electrodynamics (QED), the
Glashow-Salam-Weinberg (GSW) model of electroweak interactions [6–8], and Quan-
tum Chromodynamics (QCD) respectively [9].

The twelve fermion fields of the SM are classified by their couplings to the three
fundamental forces of nature into:

• Leptons: There are six leptons described by the SM, which can be further clas-
sified by their properties. The charged leptons carry an electromagnetic charge
of Q = ±1, given in units of the electron charge. The charged leptons can be
classified into the following flavours, ordered in increasing mass: e±, µ±, τ±. For
each charged lepton, there exists a neutral charged neutrino of flavour: νe, νµ, ντ .
The SM does not currently encode mass terms into the neutrino sector. However,
neutrinos have been observed to oscillate between three flavour states as they
travel [12, 13]. Such an oscillation implies that neutrinos have a non-zero masses
and measurements of the mass of the neutrino fields have been performed. The
sum of the mass of all neutrinos has been measured to be below ∼0.2 eV at 95%
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2. Theoretical framework 2.1. The Standard Model of particle physics

confidence level from cosmological studies [10], orders of magnitude lower than
all other standard model particles.

• Quarks: There are six types, or flavours, of quarks categorised into up- and down-
types. Up-type quarks have an electromagnetic charge of Q = +2/3, whereas
down type quarks have an electromagnetic charge of Q = −1/3. There are three
generations of up-down pairs of quarks. In ascending mass these are: (u, d), (c, s)
and (t, b). All quarks carry colour charge, and therefore interact via the strong
force. This interaction is described by QCD, which is discussed in detail in Sec-
tion 2.2.

The fundamental forces of nature are mediated by spin-1 vector gauge bosons: the
electromagnetic force is mediated by the photon, γ; the weak force is mediated by the
W+,W− and Z0 bosons; and the strong force is mediated by the gluon, g. The photon
and gluon are massless vector fields, whereas the vector bosons that mediate the weak
force have large non-zero mass.

2.1.1 The electro-weak sector of the SM

The interaction between the charged leptons and the photon was first described in a
QFT framework by Schwinger and Feynman [14], who pioneered Quantum Electrody-
namics (QED). In parallel to the advancement of QED, the weak force was studied
and understood. The Fermi interaction is a historic description of the weak interac-
tion, where the weak force was modelled as four-point contact interaction. Heavy vector
bosons that mediate the weak interaction were originally introduced to mitigate the
high energy divergence of the Fermi interaction. The massive weak bosons couple to
left-handed chiral fermion field doubletsu

d


L

ν`

`


L

,

which transform under the special unitary group SU(2) as doublets. The right handed
fermion fields transform as SU(2) singlets and do not interact with the weak massive
vector bosons. This difference in transformation of the left and right-handed fermion
fields means that the traditionally used Lagrangian mass terms are forbidden [15]. A
new mechanism to generate the mass terms for the fermion fields is needed, to replace
the now forbidden mass term.

The GSW model unifies the electromagnetic force described by QED with the weak
force [16–18] as the electroweak force. The GSW model introduces a scalar field that
undergoes spontaneous symmetry breaking (SSB), whereby the initial gauge symmetry
of the model is reduced. The scalar field generates mass terms for fermions and the
weak vector bosons, and the corresponding scalar boson is known as the higgs boson.
This spontaneous symmetry breaking of a gauge symmetry was postulated by Brout,
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2.2. Perturbative QCD and collider physics 2. Theoretical framework

Englert and Higgs [19, 20] as a mechanism to generate mass. The Higgs boson was
experimentally confirmed in 2012 by the ATLAS and CMS experiments [21, 22].

The weak charged current, mediated by the W± boson, provides the Standard
Model a mechanism to change the flavour of quarks and leptons. The weak interaction
couples to flavour eigenstates, instead of the mass eigenstates of QED and QCD. The
mixing of the quark flavours by the weak interaction is governed by the CKM matrix,
and given by

d′

s′

b′

 = VCKM


d

s

b

 =


VudVusVub

VcdVcsVcb

VtdVtsVtb



d

s

b

 , (2.1)

where VCKM is the unitary CKM matrix, and (d, s, b) are the mass eigenstates of the
down-type quarks [10]. There are four degrees of freedom in the CKM matrix. Three of
these degrees of freedom correspond to quark mixing angles, which govern the relative
probability of up and down type electroweak quarks decays. The fourth degree of
freedom in the CKM matrix corresponds to a complex phase, which generates Charge-
Parity (CP) violating processes in the Standard Model [23].

2.2 Perturbative QCD and collider physics

Gell-Mann and Zweig postulated the existence of colour-charged quarks that carry
fractional electromagnetic charge [24, 25], after first organising the growing number
of new hadrons (particles composed of quarks) that were observed experimentally [9]
by their flavour symmetries. The colour charge and its interactions is described by
Quantum Chromodynamics (QCD).

The QCD Lagrangian density for quarks and the gluon vector boson can be written
as [26]

LQCD =
nf∑
f

q̄i
f (iγσDσ −mf )ijq

j
f − 1

4F
a
µνF

µν
a , (2.2)

where qf and q̄f are the quark and anti-quark fields, of which there are nf flavours with
mass mf . The covariant derivative is defined as

Dσ = I∂σ − igst
aAa

σ , (2.3)

where gs is the strong gauge coupling constant for QCD interactions and Aa
σ is a

component of the gluon field. The generators of the SU(NC) symmetry group are ta,
where Nc = 3 for QCD and a is the colour index for the gluon field. The non-Abelian
field strength tensor, F a

µν in Equation 2.2, is defined by its commutator [Dµ, Dν ] =
−igst

aF a
µν , giving

F a
µν = ∂µA

a
ν − ∂νA

µa + gsf
abcAb

µA
c
ν , (2.4)
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2. Theoretical framework 2.2. Perturbative QCD and collider physics

where fabc are the SU(Nc) structure constants. The last term in Equation 2.4 is a
direct consequence of the non-Abelian nature of the SU(Nc) symmetry group, and
corresponds to gluon self interaction.

The Lagrangian density given in Equation 2.2 must be invariant to gauge transfor-
mations of its fermion fields [15]. This requirement on the Lagrangian implies it has
additional degrees of freedom, compared to the physics it describes. These additional
gauge degrees of freedom are removed with the introduction of an additional gauge
fixing term to the Lagrangian, in the form

LG.F = − 1
2λ(∂αAa

α)2 , (2.5)

where λ is a gauge fixing parameter. To remove all remaining longitudinal degrees of
polarisation from the gluon propagator the additional term LG.F must be accompanied
by a Faddeev-Popov "ghost" term. This introduces a complex-scalar "ghost" field, χa,
which couples to gluons inside loop diagrams [26]. Beyond this discussion, ghost fields
are not considered further in this thesis.

2.2.1 Properties of the SU(NC) group

The QCD Lagrangian is invariant under SU(NC) transformations of it fields, where
NC = 3. To understand QCD it useful to first understand the properties of this
symmetry group. The SU(NC) symmetry group consists of unitary objects, U , with
det(U) = ±1 [27]. The number of generators for a generic SU(Nc), symmetry group is
N2

C − 1. Therefore, the elements of this group are spanned by a basis of N2
C − 1 gen-

erators denoted as Ta, where a ∈ {1, ..., N2
C − 1}. An arbitrary element of the SU(3)

group can be expressed generically as

U = exp {iθaTa} ≈ I + iθaTa + O((θaTa)2) , (2.6)

for small θa. One can show that the generators Ta are traceless and hermitian using
Equation 2.6 and the unitarity property of Ta.

The generators of the SU(NC) symmetry group forms a Lie Algebra under the
commutator

[Ta,Tb] = ifabcTc , (2.7)

where fabc are the structure constants of the algebra which is totally asymmetric under
exchange of its indices and of unit size. The non-zero structure constants of the algebra
shows that SU(NC) is a non-commutative, or non-Abelian, group.

The generators are normalised according to the convention

tr(Ta,Tb) = TRδab , (2.8)

where TR is the normalisation constant for a particular representation.
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2.2. Perturbative QCD and collider physics 2. Theoretical framework

Group representations

The colour factors, CF and CA, determine the relative probability for a quark or a
gluon to couple to a soft gluon respectively. The difference in coupling strength between
quarks and gluons is a fundamental property of QCD and arises from the transforma-
tion properties of the quark and gluon fields. The values of CF and CA shall now be
evaluated.

The generators of a group have dimension M , and can be represented by matrices
of dimensions N × L; the choice of M defines the representation of the group. There
are two natural choices:

• N = L = NC : The fundamental representation, with normalization TR = 1
2 .

• N = L = N2
C − 1: The adjoint representation, with normalisation TR = NC .

For an arbitrary representation, R, the Casimir operator which takes the quadratic
form T 2 = TaTa can be defined. By Schur’s lemma T 2 = CRIR [27, 28]. The propor-
tionality constant CR can be evaluated by considering the trace of the operator T 2

tr(TaTa) =


δabtr(TaTb) = δabTRδab = TRδaa = TRdim(G)

CRtr(IR) = CRdim(R) ,
(2.9)

where dim(G) is the dimension of the group. Therefore,

CR = TR
dim(G)
dim(R) . (2.10)

For the SU(NC) group the dimension is simply N2
C − 1, which is naturally fixed for

any representation. Therefore the two representations have Casimir constants given by

CF = N2
C − 1
2NC

, (2.11)

CA = NC . (2.12)

Taking NC = 3, as shown from measurement, gives the colour factors

CF = 4
3 , (2.13)

CA = 3. (2.14)

2.2.2 Scattering amplitudes and the Feynman rules

To make predictions of a generic QFT, defined by its Lagrangian, a scattering amplitude
is required. The scattering amplitude connects initial quantum state |i〉 to the final
quantum state |f〉. The initial state must be evolved in the time domain into the final
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2. Theoretical framework 2.2. Perturbative QCD and collider physics

state from a point in the distant past −T to a point in the far future T . The time
evolution operator for T → ∞ is given by [15]

Ŝ = T
{

exp
[
i
∫
d4xLint

]}
(2.15)

Sfi = 〈f | Ŝ |i〉 , (2.16)

where Lint is the interacting Lagrangian density of QFT in position space at position x
and T is the time ordering operator, which arranges fields it acts upon chronologically.
In general, Sfi is not calculable in exponential form. Instead, a perturbative expansion
around the non-interacting case is performed. The transition matrix for this expansion
is defined as

iTfi = 〈f | Ŝ − I |i〉 = (2π)4δ(4)(
∑

ki −
∑

pi)iMfi , (2.17)

where the δ function conserves momentum between the initial and final states, ki and pi,
respectively. The invariant amplitude M is known as the matrix element, and is often
represented using graphical analogues known as Feynman diagrams. The complete set
of Feynman diagrams that span a perturbative expansion are known as the Feynman
rules. For the QCD Lagrangian these are given in Table 2.1.

The cross section for a scattering process, an experimentally measurable quantity,
can be defined using the amplitude M as

dσ = |M|2

F
(2π)2δ(4)(

∑
ki −

∑
pf )dΦn , (2.18)

where the flux factor, F , is proportional to the number of incoming particles. The
quantity dΦn is the differential phase-space of n final state particles. Integration over
this phase-space sums over all possible out going final state particle kinematics.

2.2.3 Running of the strong coupling constant

The perturbative expansion of the transition matrix is typically ordered in terms of
the coupling constant, αs. In perturbative QCD calculations which contain one loop
or more, typically occurring at order α2

s or higher, divergent diagrams occur. Renor-
malisation is the systematic cancellation of the divergent contributions to a calculation
needed to derive a finite prediction. After performing a renormalisation procedure, the
coupling constant has a dependence on energy. The renormalized “running” of the cou-
pling constant relates the coupling at scale Q to the coupling at a different scale µ, and
at one loop level is given by [26]

αs(Q2) = αs(µ2)
1 + β0αs(µ2) ln(Q2/µ2) . (2.19)

The scale dependence of αs is introduced by loop corrections. The term β0 is the one
loop contribution to the perturbative calculation of the QCD beta function, which
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i jp
δij

i(/p+m)
p2 −m2 + iε

a,µ b,νp
δab

i

p2 + iε

[
−gµν + (1 − λ) pµpν

p2 + iε

]

a,µ

ji −gsγ
µtaij

b,ν

c, σa, µ

q

pr
−gsf

abc[(p− q)σgµν + (q − r)µgνσ + (r − p)νgσµ]

b,ν

a, µ

c, σ

c, σ

−ig2
s [fxbafxcd(gµκgνσ − gνκgσµ)

fxbdfxca(gµκgνσ − gνµgσκ)+
fxbcfxad(gµµgσκ − gνκgσµ)]

Table 2.1: The Feynman rules for propagators and vertices in QCD excluding ghosts. Gluons
are represented by curly lines, quarks are represented by solid lines. The momenta in the three
gluon vertex is defined as incoming, i.e p + q + r = 0 [26].
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describes how the QCD coupling strength changes with respect to energy scale. It is
given by

β0 = 1
4π

[1
3 (11CA − 4TRnf )

]
, (2.20)

where nf is the number of active quark flavours at the energy scale Q2 with mass
m2

f < Q2. The number of active quark flavours is always less than 11CA/(4TR) ∼ 17,
therefore β0 is positive for all energy scales.

The running of αs at one-loop accuracy in QCD, has two key properties:

• Asymptotic freedom: For increasing energy (decreasing length) scale the in-
teraction strength of QCD decreases [29]. This property is clear from the positive
definiteness of β0 and the running of αs at one loop accuracy, given in Equa-
tion 2.19. The one loop prediction for the strong coupling constant in the limit
Q2 → 0 is αs → 0.

• Confinement: For decreasing energy (increasing length) scale the interaction
scale of QCD increases. Colour charges can therefore not be separated by long dis-
tances. Furthermore, for low energy QCD becomes non-perturbative as αs(Q2) >
1. This is known as confinement. Confinement has not been analytically proven
in perturbation theory from the QCD Lagrangian, but is strongly supported ex-
perimentally [26, 30].

2.2.4 The parton model and factorisation

Due to confinement, colour-charged particles cannot exist in a final state. Hadrons are
colour-neutral composite particles of two or more bound quarks. The colour-charged
constituents of a hadron are referred to as partons, and in perturbation theory are
modelled as free particles within the hadron [31, 32]. In addition to the bound, or
valence, quarks that define the hadron, there are also sea quarks arising from virtual
gluon splittings to qq̄ pairs. Sea quarks are always re-absorbed by the gluon field, such
that colour is conserved and the hadron is colour neutral.

The so-called hard scatter interaction between two partons can be factorised from
the soft non-perturbative physics of the hadron and the parton dynamics. A hard
process has large momentum transfer, whereas a soft process occurs at low energy
scales relative the centre of mass energy,

√
s. These two physical regimes correspond

to different length scales; the long length scale of the soft dynamics cannot resolve the
short length scale of the hard scatter interaction and therefore factorises.

Using the factorisation of long and short range interactions, the cross section for
some hard process pp → X is given by [26]

dσpp→X =
∫
dx1fa(x1, µ

2
F )
∫
dx2fb(x2, µ

2
F )dσ̂ab→X , (2.21)
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where σ̂ab → X is the short range 2 → N scatter between partons a and b and is
calculated using Equation 2.18. The function fi(x, µ2

F ) describes the likelihood that a
parton of flavour i carries a fractional energy x of the colliding parent hadron, and is
known as the parton density function (PDF). In order to prevent double-counting when
calculating first order contributions in αs, a factorisation scale, µF , is introduced that
divides initial-state emissions into two classes: those that are part of the hard scatter
process and those that are part of the non-perturbative PDF.

2.2.5 The Parton shower

Measurements of QCD processes rely on understanding a collimated shower of particles
that are produced by colour-charged partons produced in a hard scatter process. This
subsection describes a method to predict and understand these showers.

A generic hard process with two massless quarks in the final state can be used to
understand a parton shower. Let the quarks have four-momentum p1 and p2, illustrated
in Figure 2.2. It can be shown, that the emission of a soft real gluon, with four-
momentum k, has a differential cross-section of the form [33]

dσqqg = g2
sCF

∫ d3k

(2π)32k0

2(p1 · p2)
(p1 · k)(p2 · k)dσB , (2.22)

where dσB is the Born cross-section describing the generic hard process which has been
left unspecified. The coefficients gs and CF correspond to the QCD coupling strength
and quark colour factor respectively. The integral in Equation 2.22 has a divergent
structure for soft (k0 → 0) or collinear (p1 · k or p2 · k → 0) radiation. It can be
shown, that this divergence is exactly cancelled by the virtual contribution, shown in
Figure 2.2b, which has a contribution of the form [33]

dσqqg = −g2
sCF

∫ d3k

(2π)32k0

2(p1 · p2)
(p1 · k)(p2 · k)dσB. (2.23)

To fully control the divergent structure of collinear and soft radiation in QCD, the
virtual contribution must be accounted for. As shall be discussed in more detail in later
chapters, inexact cancellation between the real and virtual contributions results in large
logarithmic structures appearing in the perturbative expansion of an observable. The
emissions described in Equations 2.22 and 2.23 factorise from the Born cross-section,
therefore the physics of radiation can be described without specifying the hard process.

Now, consider radiation emitted at a wide angle from either of the two hard quarks.
Wide angle radiation from either of the final state quarks can only resolve the colour
structure of the qq̄ pair and not the individual particles. In the wide angle limit,
the emission probability is proportional to the colour charge of the parent of final
state particles 1 and 2, rather than the particles themselves. This is known as colour
coherence. Due to this colour coherence effect, it can be shown that the radiation
pattern from each hard particle 1 and 2 is confined to a cone with angle less than the
opening angle of the particles, θ12. This is known as angular ordering.
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p1

p2

k

(a) Real emission

p1

p2

k

(b) Virtual contribution

Figure 2.2: An illustration of the diagrams or a generic process with qq̄g in the final state
described at order α2

s.

It can be further shown that collinear radiation factorises from the hard process in
the same manner as soft-collinear radiation described above. Using this factorisation
and the angular ordering of the radiation, an arbitrary number of emissions from a
hard scatter process can be iteratively generated. The differential cross-section for a
collinear splitting of a parton j → i+ k is

dσn+1 = dσn
αs

π

dξ

ξ
Cijpij(z)dz, (2.24)

where z is the energy fraction k0/Ej carried by the daughter parton i. The ordering
variable, ξ, is proportional to (pj ·ki)/(|pj||ki|) for emission i. Emissions are ordered such
that ξn+1 > ξn due to angular ordering. The function pij(z) is the azimuthally averaged
Altarelli-Parisi (AP) splitting functions that describe the probability of splitting for the
parton j → i+ k, and Cij is the appropriate colour factor for such a splitting. The AP
splitting functions describe the splitting probability in the collinear limit. Equation 2.24
can be used to iteratively generate final state radiation from a process with n hard final
state particles. This is known as a parton shower.

Equation 2.24 contains the collinear and soft QCD divergences discussed in Equa-
tions 2.22 and 2.23. These divergences are controlled by introducing a resolution cut-off
Q0 in the integral, such that z(1−z)ξ > Q0, where Q0 is a small parameter. The cut-off
defines the scale at which the parton shower terminates and emissions are no longer
considered resolvable. After the parton shower has terminated, the non-perturbative
formation of colour neutral hadrons from the products of the shower is evaluated. The
formation of hadrons from colour-charged particles is known as hadronisation.

2.2.6 Jets

Jets are objects that facilitate the comparison of perturbative QCD predictions to data.
Direct prediction of all final state particles measured in a detector is not achievable to
high accuracy. Instead, final state particles in a detector are clustered into jets that have
a well defined correspondence to a perturbative QCD process of interest. High preci-
sion comparisons between data and prediction can then be performed. Jets are defined
through a clustering algorithm. Historically, two broad categories of jet algorithms have
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been researched: fixed-cone such as SISCone or CellJet [33, 34], and sequential recom-
bination algorithms such as the anti-kt algorithm. Fixed cone algorithms, in general,
can suffer from infra-red and collinear (IRC) unsafety, i.e divergence in perturbative
QCD predictions in the soft (infra-red) and collinear regime. There does exist seedless
fixed cone algorithms that are IRC safe, such as SISCone [34]. However, due to the
computational costs and area properties of seedless fixed cone algorithms they are less
well used within experimental collaborations.

Sequential recombination clustering algorithms produce a set of IRC safe jets for a
list of initial input entities, P, and a distance metric, diX . The distance metric defines a
distance relation between entities i and X, where X ∈ {j, B} and j ∈ P. The element
B is a special case used to define clustering termination.

The following procedure defines a generic recombination algorithm:

1. Construct a list of the distances dij between all entities i and j and diB between
i and the beam (B).

2. The smallest element from the distance list is considered, and if the distance is
between two four-momenta then they are recombined. Otherwise, i.e if it is a diB

element, then consider entity i a jet and remove it from the list of entities.

3. If there are no elements left in the list stop, otherwise go to step 1.

The definition of the distance metric for a sequential recombination algorithm is
the key distinction between several commonly used algorithms. The commonly used
set of algorithms known as kt clustering algorithms use the distance metrics

dij = min(k2p
ti , k

2p
tj )

∆2
ij

R2 , (2.25)

diB = k2p
ti , (2.26)

where ∆2
ij = (yi − yj)2 + (φi − φj)2 and kti, yi and φi are the transverse momentum,

rapidity and azimuthal angle of particle i, respectively. The radius parameter, R, con-
trols the extent of the formed jets in (y, φ) space. The parameter p defines the following
algorithms:

• p = 0: The Cambridge/Aachen (CA) algorithm.

• p = 1: The kt algorithm.

• p = −1: The anti-kt algorithm.

The clustering behaviour of these three clustering algorithms differs, because they
use different distance metrics. Both CA and kt clustering algorithms mirror the un-
derlying splitting of QCD. Soft and collinear constituents are preferentially clustered
together to form jets. This behaviour makes sense intuitively, however the resultant
jets have area properties that are disfavoured by the experimental community.
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The area of a jet defines an angular region in (y, φ) space around a jet. Soft radiation
introduced into an event within a jet’s area will be clustered into that jet. Jet area is
often used within jet calibration procedures aimed at removing soft contamination [1,
35]. A commonly used definition of the area of a jet is the active ghost associated area.
The active ghost associated area is evaluated by filling the input space uniformly with
a large number of infinitely soft “ghost” particles. The area of a jet, J , can then be
defined for a given ensemble {gi} of ghosts,

A(J |{gi}) = Ng(J)
νg

, (2.27)

where Ng(J) is the number of ghosts that are clustered into jet J and νg is the number
density of ghosts introduced to the (y, φ) plane.

Introducing infinitely soft ghost particles is a procedure often used within jet physics
for matching a truth particle to a jet. Therefore, an ideal jet algorithm will have robust
behaviour with respect to different ensembles of ghosts. For jets clustered with the
CA or kt algorithms, the active area depends strongly on the exact set of ghosts [36].
This behaviour is a direct result of soft and adjacent constituents clustering before
harder constituents. The active area of jets clustered with the anti-kt algorithm has no
dependence on the ensemble of ghosts used, making it ideal for experimental physics.
Furthermore, the anti-kt algorithm preferentially produces conical shaped jets com-
pared to other sequential recombination jet clustering algorithms. Soft contamination
from the underlying event in a proton-proton collision, or from nearby proton-proton
collisions, are expected to be approximately uniform in the azimuthal plane. There-
fore, a jet algorithm with consistently sized and shaped jets, such as anti-kt, is more
amenable to area based soft contamination removal techniques.

2.3 Monte Carlo event generation

The tools to describe a complete proton-proton collision at the LHC have now been
established. The physical processes in a proton-proton (pp) collision are factorised, and
described in stages by separate simulation tools. Figure 2.3 shows the factorised phases
of physics simulation in a typical pp collision. Initially the hard scatter is simulated
using a Monte Carlo event generator. For the simulation of a given process, the cross-
section defined in Equation 2.18 is integrated over a defined region of phase-space
using Monte Carlo methods. Points in phase-space are sampled, which correspond to
a set of final state partons. The sampled set of partons are weighted according to
their probability of production, allowing a prediction of the full kinematics of the final
state to be performed. After that, the parton shower evolves the final state partons
of the hard scatter. In Section 2.2.5 the discussion was limited to the showering of
colour-charged objects, however QED radiation is also simulated in a generic MC event
generator. The generation of QED radiation is often referred to as “dressing” leptons
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Figure 2.3: A schematic of a typical simulated pp collision. The parts high-lighted in red
correspond to the hard scatter matrix element (pp → tt̄H in this example). The dark green
ellipses correspond to the colliding protons. The purple blob shows a secondary hard scatter
event. The dark green circles at the outer edge of the image indicate the final state hadronised
products of the interaction [37].

and photons. After the parton shower has terminated, hadronisation is simulated and
all colour-charged particles are formed into colour neutral hadrons. Finally, the effects
of a detector are simulated and the expected read-out from the detector evaluated.
Detector simulation is discussed in more detail in Section 3.3. Monte Carlo simulation
is used extensively throughout this thesis.

2.4 The Top quark

This thesis aims to understand not only radiation of approximately massless radiators,
but also radiation from a system at a non-zero mass scale. The top quark provides
a unique avenue to achieve this goal. First discovered in 1995 by the D0 and CDF
collaborations at the proton-antiproton (pp̄) Tevatron collider [38, 39], the top quark
is the most massive particle in the standard model. It’s mass is notably at the scale of
the electroweak vector boson masses. The most recent measured world average for the
top mass is [10]

mtop = 173.0 ± 0.4 GeV. (2.28)

The large mass of the top quark imparts it with two important properties: it decays
to an on shell W boson, the only quark to do so; and it has a very short lifetime.
The lifetime of the top is O(5 × 10−25)s, orders of magnitude shorter than that of
non-perturbative QCD effects such as a hadronisation, which occurs on time scales
ΛQCD ∼ O(10−23) s [40].
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Figure 2.4: The leading order Feynman diagrams for tt̄ production in the SM at the LHC.
Diagrams with the topologies in the gg → tt̄ topologies are generically labelled: s, t and
u-channel diagrams.

2.4.1 Production

The Large Hadron Collider (LHC) is considered a top factory. On-shell tt̄ pairs are
produced at rate of O(107) per year at the LHC. Therefore, data recorded at the LHC
provides an ideal environment for precision studies of the top quark and its production
cross-section. There are two main production modes for top quarks in hadron-collisions:
pair production and single top production.

The largest contribution to top quark production is through pair production. The
tree level (leading order in perturbative QCD) Feynman diagrams for tt̄ production
from pp collisions are depicted in Figure 2.4, for both quark-antiquark and gluon-gluon
fusion. Gluon-gluon fusion is the dominant production channel at the LHC. It has three
production diagrams, known as the u−, s−, and t-channels. These channels are experi-
mentally indistinguishable, and named after the Mandelstam variables that describe the
mass of the virtual particle exchanged in the scattering process [15]. The top quark pair
production cross-section has been calculated to next-to-next-to-leading-order (NNLO)
in αs including next-to-next-to-leading-logarithmic soft-gluon contributions (NNLL) as
σtt̄ = 832+46

−51 pb at a centre-of-mass energy of
√
s = 13 TeV with an assumed top quark

mass of mt = 172.5 GeV [41–46].

Top quarks can be produced in association with either down-type quarks in the
s- or the t- channel through vector boson exchange, or with vector boson association
(VBA) through a quark exchange. Production of an individual top quark through either
of these processes, depicted in Figure 2.5, is known as single top production. Single
top production in the s- or t- channel has been calculated to next-to-leading order
(NLO) in αs and to NNLO+NNLL for the Wt channel. The cross-sections for these
production channels are shown in Table 2.2 for a centre of mass energy of

√
s =13 TeV.

Single top production at the LHC is dominated by the t- channel. VBA has a non-
trivial contribution to the single-top production cross-section, whereas s- channel is
negligible. The total inclusive single top production cross-section is around 36% of tt̄
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Figure 2.5: The leading order Feynman diagrams for single top production in the SM at
the LHC.

Channel Cross-section σ [pb]
t-channel 216.99 ±9.04

7.71

s-channel 10.32 ±0.4
0.36

Wt 71.7 ±3.50
3.85

Total 299.01 ±9.83
8.63

Table 2.2: The production cross-sections for the single top process through the t-channel,
s-channel and Wt in pp collisions with

√
s = 13 TeV with an assumed top quark mass of

mt = 172.5 GeV at next-to-leading order (NLO) in QCD [47–49].

pair production, therefore single top production is an important consideration for any
top quark studies performed at the LHC.

2.4.2 Decay

The top quark decays to a W boson and down-type quark. The CKM matrix element
Vtb governs the strength of flavour changing weak currents between the up-type top
quark and down-type bottom quark. The world average measurement of this CKM
matrix element is |Vtb| = 1.019 ± 0.025 [10, 50]. Therefore, top quarks decay almost
exclusively to a Wb system.

The final-state decay products of a tt̄ pair can therefore be understood almost
entirely by considering the decay products of the W boson. To a good approximation
the decay channels of the W boson can be evaluated by simple counting of the tree level
processes. Leptonically, the W decays to an `ν` system, where ` denotes the flavour
of the lepton. Alternatively, the W can decay to an up-type and down-type quark
pair, qq̄′. Neglecting Cabibbo-suppressed flavour combinations there are two possible
combinations: u, d and c, s.

The W boson is a colour singlet. In order to conserve colour charge, the decay
products from a W boson must also be. There are three possible colour singlets that
each flavour of qq̄′ pair can form. Therefore, quark decays of a given flavour are a factor
of 3 times as likely as leptonic decays of a given flavour. The approximate branching
ratios are BR(W → `ν`) ∼ 3/9 and BR(W → qq̄′) ∼ 6/9. As a top quark almost
exclusive decays to a Wb system, the final decay products of the tt̄ system can be
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Figure 2.6: The relative branching ratios in percentage points of the final states of a tt̄

system for the dilepton (greens), lepton+jets (blues) and all hadronic final state (red).

understood using simple combinatorics.
The decay channels of a tt̄ system are typically classified by the number of leptons

produced. As the τ lepton decays further via a W boson we take the "experimentalist"
definition of leptonic final states, and only consider electrons and muons as leptonic for
purposes of top quark decay classification. The branching ratios of the tt̄ decay channels
are shown in Figure 2.6, and are referred to as: all hadronic (or alljets ) where both W
bosons decay as W → qq̄′; lepton + jets where one top quark decays leptonically, with
a W → `ν` and the other hadronically, with a W → qq̄′; and finally dileptonic where
both top quarks decay leptonically via W → `ν` decays.

2.5 The Dead-Cone Effect

Radiation of a gauge boson from a massive radiator in any QFT has a characteristic
suppression in the collinear region around the radiator. This region is the so-called
dead-cone. The characteristic angle of suppression, θd, is given by

θd = m

|p|
∼ m

E
, (2.29)

where m, p, and E are the mass, momentum, and energy of the radiating top quark
respectively. The final approximation holds for a radiator with pT & 2m. The angle of
suppression is typically small for particles produced in collider experiments, as particles
are typically produced with a large Lorentz boost. Therefore, the effect has proved
challenging to examine experimentally and has never been experimentally observed.
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Studying top quarks produced at the LHC provides a unique opportunity to mea-
sure a long predicted, but elusive, physical effect of radiation. At a centre-of-mass
energy of

√
s = 13 TeV in pp collisions at the LHC, the characteristic angle of sup-

pression for top quarks is almost always larger than the granularity of the detector
systems used to measure the final state radiation (FSR) from the final state products
of a tt̄ system. For example, top quarks are produced with a modal energy of roughly
270 GeV, which corresponds to a dead-cone of size θd ≈ 0.63. For reference, the relevant
granularity scale for detectors at the LHC is 0.1. It is not until the 98th percentile of the
top quark energy distribution, where top quarks have an energy & 1500 GeV that the
typical detector systems of experiments at the LHC can no longer resolve the predicted
suppression in the radiation of a top quark.

The dead-cone effect can be understood in isolation by considering non-physical
stable top quarks produced in e+e− collisions. To first-order in the soft and collinear
limit, the radiation pattern of a FSR gluon with energy fraction z and opening angle
θ is

1
σ

d2σ

dzdθ2 u
αs

π
CF

1
z

θ2

θ2 + θ2
d

, (2.30)

where αs is the strong coupling constant, CF is the colour factor associated with quark
to gluon splitting and θ is the angle of radiation between the top and the gluon it
emits. The collinear divergence present in massless radiators and discussed extensively
in Section 2.2.5 have been removed by the θd term. Figure 2.7 shows the relative
intensity of radiations from unphyiscal stable top quarks, where the decay of the top
quark has not been simulated to provide a clear illustration of the radiation patterns
of interest in this thesis. Two radiation patterns are shown: the standard model case,
where the mass of the top quark affects the radiation pattern; and the dead-cone “off”
case, where top quarks radiate as if they were massless. The top quarks were produced
at a centre of mass energy

√
s = 2 TeV in e+e− collisions, simulated using the event

generator Pythia 8.2.24. In the SM “with dead-cone” case, Θ = θ/θd is approximately
1. The collinear region of phase-space, Θ . 1, is suppressed and corresponds to the
dead-cone. In the dead-cone off case, radiation from a top quark is most probable in
the collinear region of phase-space. The LO prediction Eq. 2.30 has been shown to have
good agreement (better than 10%) with NLO fixed-order predictions across a broad
range of Θ [51].

2.5.1 Interference effects

As discussed previously, the top quark decays into a Wb system. In order to examine
the dead-cone effect, the radiation from a top quark must be distinguished from the
FSR radiation of its daughter b-quark. At leading order, two different gluon emission
processes can be identified, as shown in Figure 2.8. The signal process which features
the dead cone is FSR top quark radiation, corresponding to an excited top emitting a
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Figure 2.7: The relative intensity of radiation produced by stable top quarks with (left) and
without (right) the dead-cone effect produced in e+e− collisions at

√
s = 2 TeV where the

angle between a radiating gluon and parent top, θ, has been normalized by the characteristic
dead-cone angle, θd of the radiating top quark for each event.
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Figure 2.8: Signal (S) and background (B1,2) diagrams for top quark decay relevant to this
analysis.
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gluon and becoming on-shell

S : t∗ → tg. (2.31)

This is the process that produces the dead cone distribution in Eq. 2.30. The back-
ground process, where the dead cone is absent, is gluon emission during on-shell top
decay (see Figure 2.8 ):

B1,2 : t → bWg. (2.32)

Even though diagrams S and B1 both have an off-shell top propagator, B1 does
not contribute to the dead cone effect. Interference between the signal and background
processes is proportional to the top quark width, Γt ≈ 1.4 GeV. This interference
becomes relevant when

2pt · pg ∼ mtΓt (2.33)

where pt and pg are the top and gluon four-momenta respectively. To realise the goal of
directly observing the dead-cone the S process must be isolated from both B1,2 and the
interference of diagrams S and B1,2. Furthermore, if the gluon energy is too small, then
there is no practical way to distinguish an on-shell top from an off-shell top. In this
soft gluon limit the interference between the S diagram and the B1,2 diagrams becomes
relevant.

The interference effect can be neglected when

Eg

Et

∼ pT,g

pT,t

� Γt

mt

, (2.34)

which for Γt/mt u 0.01 implies pT,g

pT,t
≥ O(0.1). This relation is found using the small

angle approximation in the lab frame between the radiative gluon and parent top quark,
i.e that 2pt · pg ∼ EtEgθ

2
d for sufficiently small angles.
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3. The LHC and the ATLAS experiment

The performance and general design of the Large Hadron Collider and ATLAS detector
shall be discussed in this chapter. Section 3.1 details the LHC. The ATLAS detector
is then discussed in detail in Section 3.2.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a 27 km circumference high energy particle collider
based at the European Organisation for Nuclear Research (CERN) on the Franco-
Swiss border [52]. The LHC accelerates two beams of protons or heavy ions in opposite
directions to the highest collision energies ever achieved in a laboratory experiment:
√
s = 13 TeV. This record-breaking centre of mass energy collision was first attained

in 2015 with proton-proton collisions.
The LHC tunnel is designed to have eight interaction regions (IR) and eight al-

ternating arcs and straight sections [52]. Four of the IRs are dedicated to instruments
to measure beam quality and stability. The other four IRs hold large detectors that
collect physics data during LHC operations. The ATLAS (A Toroidal LHC ApparatuS)
[53] and LHCf [54] detectors are located at IR1; ALICE (A Large Ion Collision Exper-
iment) [55] is located at IR2; The CMS (Compact Muon Solenoid) [56] and TOTEM
(The TOTal, Elastic and diffractive cross-section Measurement) [57] experiments are
positioned at IR5 and finally LHCb (LHC beauty) [58] and MoEDAL (Monopole &
Exotics Detector At the LHC) [59] are placed at IR8.

The LHC receives protons at an initial energy of 450 GeV from a series of smaller
accelerators that serve as the LHC injector chain [60], shown in Figure 3.1. The pro-
tons initially originate from a cylinder of hydrogen gas; the hydrogen is ionized by
being passed through an electric field. The resultant protons are then accelerated to
an energy of 50 MeV in the linear accelerator LINAC2. Afterwards, they are passed
through the Proton Synchrotron Booster (PSB) and brought to 1.4 GeV. Protons are
then transferred into the Super Proton Synchrotron (SPS). The SPS is the final stage
in the injection chain, and accelerates protons to a maximum energy of 450 GeV. After
reaching this energy, the protons are injected into the LHC. Radio frequency (RF)
cavities accelerate the protons to the beam collision energy: 3.5 TeV in 2011, 4 TeV
in 2012, and 6.5 TeV in 2015-2018. The process of beam injection into the LHC takes
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approximately 4 seconds; it then takes a further 20 minutes to reach beam collision
energy.

Once the beams have reached collision energy they can be brought to collision at
the dedicated Interaction Points (IPs) where the detectors are situated. After injection,
the beams’ relative position is observed; when their relative position is found to be
stable and safe, stable beam conditions are declared. Once attained, physics data is
recorded, typically for 10 hours. Due to beam instability, or reducing the collision rate
of circulating beams over time, the beam is periodically extracted from the LHC and
safely absorbed into a dedicated beam stop block in a process known as a beam dump.
The process of injection, acceleration, collision and dumping is referred to collectively
as a fill.

Within a beam at the LHC, protons are structured into bunches of around 1011.
The LHC can be filled with a maximum of 2808 bunches in each ring at the same time.
However, due to safety and stability requirements for operational running the maximum
achieved is 25561. The bunches are further organised into bunch trains, which consist
of up to 144 bunches with bunch spacing of 25 ns. Trains are separated by between 200
and 1000 ns.

3.1.1 Luminosity and pile-up

A primary parameter of interest to experiments at the LHC is the instantaneous lumi-
nosity, L, which is a measure of the rate of collisions. It is given by

L = nbfrn1n2

2πΣxΣy

, (3.1)

where nb is the number of colliding bunches, n1 and n2 are the number of protons per
bunch in beams 1 and 2, respectively, fr is the LHC bunch revolution frequency, and
Σx and Σy characterise the width of the beam along the x and y axes, respectively. The
beam widths Σx and Σy are measured using Van der Meer (VdM) scans [61], where
beams are incrementally separated by a known amount and the interaction rate is
measured. The integrated luminosity delivered to each LHC experiment can therefore
be written as

L =
∫
dtL, (3.2)

where the integration is over a period of time during which data was recorded.
The LHC delivered proton-proton collisions over the years 2010-2012; this data-

taking period is referred to as Run 1 and had a centre of mass energy of
√
s = 7 TeV

and
√
s = 8 TeV for years 2010-2011 and 2012 respectively. No further collisions were

performed until 2015; this period of time is the first long shut-down (LS1). During
1This can be seen be examining the 2015, 2016, 2017 and 2018 fill schemes at https://acc-stats.

web.cern.ch/acc-stats/#lhc/super-table.
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Figure 3.1: Overview of the CERN accelerator complex, including The Large Hadron collider
and full LHC injection chain [62].

LS1 the detectors were upgraded and maintained, accounting for the radiation damage
taken in their innermost layers. Further to this, the superconducting magnets and their
support systems were repaired and consolidated in preparation for high energy running.
The LHC delivered proton-proton collisions at a centre of mass energy of

√
s = 13 TeV

for the years 2015-2018; this data taking period is referred to as Run 2. The data taken
over Run 2 is used for the body of work discussed in this thesis.

As a consequence of the high instantaneous luminosity achieved at the LHC, the rate
of additional interactions occurring in a bunch crossing is non-negligible. Additional
particles recorded by the detector that originate from pp interactions which did not
cause the hard-scatter event of interest are known as pile-up. There are two cases to
consider: in time pile-up, where multiple pp collisions occur from one bunch crossing;
and out of time pile-up, where pp collisions from multiple bunch crossings cause signals
in the detector. The mean number of interactions per bunch-crossing, 〈µ〉, quantifies
the amount of pile-up for a given run and is a crucial parameter for understanding
run conditions. As the instantaneous luminosity was increased throughout Run 2 pile-
up became more and more intense, as shown in Figure 3.2. During 2017 running,
complications within the LHC machine caused beam stability issues and problematic
running conditions. In order to overcome this issue and maintain the planned increase
in integrated luminosity for 2017 running, the bunch structure was changed to increase
the instantaneous luminosity. This resulted in more pile-up than anticipated and is the
source of the peaked structure at 〈µ〉 ∼ 55.
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Figure 3.2: The average number of interactions per bunch-crossing, 〈µ〉 over the years 2015,
2016, 2017, and 2018 [63].

3.2 The ATLAS Detector

The ATLAS detector is a general purpose detector with forward-backward cylindrical
geometry that achieves nearly 4π solid angle coverage around the IP. The stated design
goal of the ATLAS detector is an observation of the Higgs boson [64]. However, the
generic nature of the detector subsystems allow for a broad range of physics to be stud-
ied. The detector is composed of five main subsystems, shown schematically in Figure
3.3: the inner tracking system, the solenoid magnets, the calorimeter system, a set of
toroidal magnets, and the muon spectrometer. The near-total solid angular coverage
of the detector allows for an accurate measurement of the total energy in an event.
From the total recorded transverse energy in an event, the transverse missing energy
can be calculated. The transverse missing energy is an important physical quantity,
and is discussed further in Section 4.5,

ATLAS uses a right-handed coordinate system with its origin at the nominal IP
in the centre of the detector and the z-axis along the beam pipe. The x-axis points
from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical
polar coordinates (r, φ) are used in the transverse plane, where φ is the azimuthal angle
around the z-axis. The pseudo-rapidity is defined in terms of the polar angle θ as

η = − ln tan(θ/2). (3.3)

Pseudo-rapidity describes the longitudinal boost a massless particle experiences in the
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Figure 3.3: Cut-away schematic of the 25 m × 44 m ATLAS detector [64].

forward direction; in the massless limit it is equivalent to rapidity, y = 1
2 lnE+pz

E−pz
, of a

particle. Angular distance between two points in the cylindrical (θ, φ) plane is measured
in units of ∆R ≡

√
(∆η)2 + (∆φ)2.

3.2.1 Inner detector

The Inner Detector (ID) measures the trajectory of charged particles within the |η| <
2.5 region, and provides electron identification within the |η| < 2.0 region [65]. High
precision momentum measurements are achieved through the three complementary and
independent detectors that comprise the ID: The Pixel Detector, the Semiconductor
Tracker (SCT) [66], and the Transition Radiation Tracker (TRT) [67]. Figure 3.4 shows
the trajectory of two particles, without the presence of a magnetic field, as well as the
relative layout of the subsystems of the ID, with the exception of the relatively recent
additional layer in the pixel detector. Like most subsystems of the ATLAS detector,
the subsystems of the ID are a combination of three distinct parts: a barrel in the
central region and two endcaps in the forward regions. The momentum resolution of
the ID in the central region (|η| < 2.0) is pT × σ(1/pT ) < 0.3 at pT = 500 GeV. In
the forward region of the ID (2.0 ≤ |η| < 2.5) the momentum resolution degrades to
pT × σ(1/pT ) < 0.5. This difference in performance is a result of the detector material
in the central and forward regions of the ID.

The Pixel Detector has a total of four distinct layers in the barrel region (|η| < 1.7),
and three pixel modules in the endcap regions (1.7 < |η| ≤ 2.5). It is constructed of
a total of 174444 sensor modules, containing 47232 silicon pixels of size 50× 400µm2

distributed over three outer layers. The innermost layer of the Pixel Detector, known
as the Insertable B-Layer (IBL), forms the layer closest to the beam-line at a distance
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of 33.25 mm. The IBL was inserted for the start of Run 2 in 2015 to increase vertex
reconstruction and tracking performance. As a consequence, the identification of jets
formed from the decay of B mesons was improved by the IBL [68].

As a particle passes through a silicon sensor, such as those in the Pixel Detector,
it creates electron-hole pairs in the semiconductor material. A bias voltage is applied
across the silicon. The voltage induces the electrons and holes in the semi-conductor
to flow towards the positively and negatively doped regions of the silicon respectively.
This current is read-out by electrons and is registered as a hit at the fixed point in
space where the sensor is known to be.

The SCT surrounds the Pixel Detector and comprises of four layers of silicon strip
modules in the barrel region (|η| < 1.4) and nine discs in each of the endcaps (1.4 <
|η| ≤ 2.5). In total, it is constructed from 15912 sensors across 768 silicon strip modules.
Each layer of SCT has double-sided strip modules, where the sides are rotated by
40.0 mrad with respect to each other; the small stereo angle enables a fully three-
dimensional measurement. The double-sided design of the strip modules reduces the
rate of coincidence hits due to noise faking the expected signal from particles traversing
the SCT.

The transition radiation tracker (TRT) comprises of layers of gaseous straw detec-
tors embedded in polymer fibres. The TRT is composed of 73 layers of tubes in the
barrel region (|η| < 0.7 ) and 160 in the endcap regions ( 0.7 < |η| ≤ 2.5 ). The large
number of hits per track compensates for the relatively poor resolution compared to
the high precision silicon detectors. An aluminium coating of the inner tube surface
acts as the cathode and an axially placed tungsten wire acts as the anode. Each straw
is filled with a mixture of xenon (70%), carbon dioxide (27%) and oxygen (3%). The
polymer fibre that interleaves the straws acts as transition radiation material within
the region |η| < 2.0. As a particle transitions from the polymer to the gaseous tubes
it produces high energy transition radiation photons, typically in the X-ray energy
regime. These photons are efficiently absorbed by the xenon gas mixture within the
tubes, in turn liberating electrons. The transition radiation is detected in addition to
the ionised charge carriers liberated from the gas as a particle traverses an individual
straw. Since an electron is ultra-relativistic at LHC energy scales, the transition radi-
ation it produces is larger than the less boosted pion. Therefore, the TRT electronics
have two thresholds, high and low, to assist in the discrimination between electrons
and pions.

The calorimetry system of the ATLAS detector, shown in Figure 3.5, is composed
of four sampling calorimeters that provide accurate energy measurements within the
|η| < 4.9 region. The electromagnetic calorimeter (EM) is designed to accurately mea-
sure the energy of photons and electrons incident in the detector in the region |η| < 3.9.
The hadronic calorimeter is designed to fully contain collimated showers of charged and
neutral particles, known as jets, produced in collisions. Finally, the Forward Calorime-
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Figure 3.4: Drawing of the Pixel Detector, SCT and TRT subcomponents of the inner
detector and their relative placements. The two red lines show the sensors and structural
elements traversed by two charged tracks of 10 GeV pT in the end-cap inner detector (η = 1.4
and 2.2) in the absence of a magnetic field [64].

ter (FCal) covers the phase-space close to the beampipe in the region 3.2 < |η| < 4.9,
providing the near-total hermetic 4π coverage the ATLAS detector requires for calcu-
lating the aforementioned missing transverse energy.

Sampling calorimeters consist of layers of active and passive material [69, 70]. The
dense passive material induce interactions between an incident particle and the detec-
tor, causing a shower of particles. The shower causes either ionisation or scintillation
within the active material, which can then be detected and read-out through electron-
ics. ATLAS has both Liquid Argon (LAr) ionisation-based detectors, in particular the
FCal and EM calorimeter and parts of the hadronic calorimeter, as well as scintillation-
based calorimeters in parts of the hadronic calorimeter.

The EM Calorimeter (ECal) is a LAr-based ionisation calorimeter. The ECal is
composed of a barrel calorimeter in the region |η| < 1.475 and two EM endcap (EMECs)
calorimeters covering the regions 1.375 < |η| < 3.2 [71]. The transition region between
the barrel and the endcap detectors, 1.37 < |η| < 1.52, is sometimes referred to as
the “crack” region as it is not instrumented.

The electromagnetic barrel (EMB) is divided into two identical half-barrels with a
4 mm gap z = 0 for the beampipe. The EMB consists of two wheels of 1024 steel clad
lead-absorbers, interleaved with the same number of electrodes held in place by a hon-
eycomb structure with a gap size of 2.1 mm. Each EMEC is built out of 256 absorbers
for the inner wheel and 768 for the outer wheel. The electrodes are constructed from
copper etchings on polyimide and are held a a high voltage compared to the grounded
lead absorbers. The ionisation electrons liberated by ionising particles within the LAr
have a mean drift time of 450 ns [71].

The EMB and EMEC consist of three layers: the strip, the middle, and the back
layer - shown in Figure 3.6. The strip layer consists of strip cells of size ∆η × ∆φ =
0.003 × 0.1. The middle layer consists of cells of size ∆η × ∆φ = 0.025 × 0.025 [64,
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Figure 3.5: Schematic of the calorimeter subsystems of the ATLAS detector [64].

71]. The middle layer is physically the largest layer within the EM calorimeter, corre-
sponding to approximately 16 radiation lengths. The characteristic radiation length,
X0, corresponds to the length after which the number of particles in a shower has dou-
bled. The third layer consists of coarser granularity cells of size ∆η×∆φ = 0.05×0.025,
and is intended to provide information about the longitudinal evolution of the shower.
In addition to these three layers the EMB has a presampler in the region |η| < 1.8,
which allows for upstream losses in energy of electrons and photons to be measured
and corrected for.

Surrounding the EM calorimeter is the hadronic calorimeter. It is a tile sampling
calorimeter (TileCal) [72] in the barrel region, |η| < 1.7, and two identical LAr sampling
calorimeters in the range 1.5 < |η| < 3.2 for the hadronic endcap (HEC) calorimetry
system. The TileCal uses steel as the absorbing material and scintillating tiles coupled
to optical fibers as the active material. Photo-multipliers (PMTs) are attached to the
fibers in order to read out the detector activity.

The Forward Calorimeter (FCal) covers the remaining 3.2 < |η| < 4.9 region
of phase-space [73]. Its primary design goal is to increase the coverage of the ATLAS
detector - affording complete hermetic coverage around the IP. The coverage is neces-
sary for good energy and position resolution of the missing transverse energy signal. A
further design requirement of the FCal is a fast response, of order of the beam cross-
ing interval 25 ns [73, 74]. It consists of three modules in each endcap. The first layer
consists of copper and LAr and is designed for measuring electromagnetic activity. The
last two layers are tungsten and LAr, and designed for measuring hadronic showers.
In the first layer absorber rods are situated within copper tubes with a sub-millimeter
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Figure 3.6: A cut-away of the EMB calorimeter showing the three layers that it comprises, as
well as the trigger read-out system and presampler. Dimensions of the layers are given in me-
ters as well as characteristic radiation length, X0, of incident electromagnetically interacting
particles [64].

gap. The gap size was chosen to be notably small in order to achieve the design goal
of a O(25 ns) response; in addition to short response time, the small gap avoids ion
build-up caused by the high particle flux in the forward region.

3.2.2 The Magnet Systems

The ATLAS magnet systems, shown in Figure 3.7, are four superconducting magnets,
power supply, cryogenics, vacuum system, and the associated control and safety systems
needed for these subsystems [75]. The four magnets can be grouped into two categories:
solenoid and toroid.

The solenoid magnet is a 5.3 m long cylinder with a bore of 2.5 m placed between
the Inner Detector and the Calorimetry systems [76]. It provides a 2 T magnetic field
for the central tracking system.

The toroid magnet system is composed of three air core superconducting magnets:
the barrel toroid (BT) [77] in the central region, and two endcap toroids (ECTs) [78].
The BT and the ECT all consist of eight flat racetrack coils, each consisting of two
double pancake windings housed in a common aluminum alloy casing. Each coil has
its own vacuum vessel and each magnet system creates a 4 T magnetic field on the
superconductor. The coils are arranged symmetrically around the detector.
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Figure 3.7: The ATLAS magnet system. The toroid system consisting of the BT and ECTS
is shown in red. Within the EM calorimeter and TileCal is the solenoid [64].

3.2.3 Muon spectrometer

The Muon Spectrometer (MS) [79], shown in Figure 3.8, comprises of four systems
that are used for either high-precision tracking or high-rate triggering (rapid selection
of events). Two design goals of the MS were: a total coverage of |η| < 3.0, and a
momentum resolution of 20% or better at a pT = 1 TeV. The coverage of MS has a
gap at η ∼ 0. The gap is where support systems of the ATLAS detector are located,
specifically the support systems for the ID, Calorimeter, and Solenoid Magnet, as well
as the feet of the magnet systems.

The two high-precision subsystems are the Monitored Drift Tubes (MDTs) and
Cathode Strip Chambers (CSCs). The MDTs are a set of precision chambers in the
region |η| < 2.7. Each chamber is made of a series of 30 mm diameter tubes of varying
lengths from 70 cm to 630 cm. The active material within the drift tubes is a gaseous
mixture of argon (90%), nitrogen (4%) and methane (5%). The large diameter of the
tubes results in a maximum drift time of 480 ns, making the MDTs inappropriate for
triggering. The tubes are placed transverse to the beam axis to allow for the mea-
surement of coordinates in the bending plane of the toroidal magnets. There are two
superlayers of MDTs, each with 3 or 4 layers of tubes. The CSCs comprise the inner
layer of the MS in the region 2.0 < |η| < 2.7. They are multi-wire proportional cham-
bers (MWPCs) with an argon, carbon dioxide, and methane mixture as the operating
gas, achieving a resolution of approximately 40µm in the bending plane.

Resistive Plate Chambers (RPCs) in the barrel region of |η| < 1.05 provide high-
rate tracking information used within the trigger system. RPCs are gaseous parallel
electrode-plate detectors with an argon (80%) and carbon dioxide (20% ) mixture as
the active material. The Thin Gap Chambers (TGCs) comprise the endcaps for the
high-rate muon tracking systems. These are MWPCs that use carbon dioxide (55%)
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Figure 3.8: Schematic of the muon systems and toroid magnet systems in which the RPCs
are embedded [64].

and n-pentane (45%) as the active material.

3.2.4 Trigger and data acquisition

The collision rate of protons delivered by the LHC is ∼ 40 MHz. In order to read
out all detector systems and write the information to disk, the event rate must be
reduced to around 1 kHz [80, 81]. This limit is imposed by computing and storage
constraints [82]. Conveniently, the majority of the pp collisions at 13 TeV produce soft
interactions, which are not the focus of the physics programme within the ATLAS
collaboration. These soft interactions do not produce signatures within the detector
that mimic signatures of interest.

The ATLAS Trigger and Data Acquisition (TDAQ) systems [83] are designed to
efficiently and effectively select and record potentially interesting events for later study.
A two-tiered trigger system is used combining hardware and software systems to effec-
tively reduce the event rate to the desired 1 kHz.

The Level 1 (L1) Trigger system [84]: The first stage of the TDAQ trigger
system reduces the data rate to approximate 100 kHz, making decisions within < 2.5µs
for Run 2 using custom built hardware with low latency. The L1 system only processes
information from a subset of the full ATLAS read-out systems. It uses reduced gran-
ularity information from the EM and hadronic calorimeters to search for electrons,
photons, taus and jets, as well as large total missing transverse energy. The L1 system
also reads activity from the RPCs and TGCs muon system. There are three L1 trigger
processors deployed in Run 2: L1Muon, L1Calo, and L1Topo.

The L1Calo trigger is based on dedicated analogue trigger signals from the ATLAS
calorimeters. These are independent from the signals utilised by offline reconstruction
software. The L1Muon system searches for coincidence hits across multiple layers of
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the processed muon trigger system. For each location - or region of interest (RoI) - in
a layer there is a pre-calculated window of locations in another layer for which a muon
above a certain pT is expected to produce a coincidence hit.

L1Topo takes the Level-1 trigger objects from the L1Calo and L1Muon triggers. It
allows topological selections, combining kinematic information from multiple calorime-
ter and muon trigger objects, such as angular separation, invariant mass requirements,
or global event quantities.

The High Level Trigger (HLT) system [85]: The HLT system refines the L1
selection using the additional information from the full ATLAS detector read-out with
the same granularity as offline reconstruction. Object reconstruction is run only in RoIs
and therefore reconstruction algorithms differ from the offline algorithms. However,
they are constructed as similarly as possible. The final output rate of the HLT system
in Run 2 is 1 kHz.

The trigger menu is a set of allowed combinations of L1 and HLT trigger selections.
There are around 3000 combinations of L1 and HLT triggers that constitute the full
trigger menu for Run 2, however, only a subset of these possible combinations are used
in any given run.

ATLAS uses a consistent naming convention for all triggers within the trigger menu
<LEVEL>_<OBJECT><pT ><EXTRA_INFO>. <LEVEL> specifies the trigger system, either HLT

or L1, <OBJECT> specifies the physics object (e, j or mu for electrons, jets or muons
respectively), <pT > is the minimum pT cut in GeV the trigger level object must meet
and <EXTRA_INFO> describes additional information not fitting this requirement. For
example, HLT_j25 corresponds to an event level requirement of at least one trigger
jet with a minimum pT of 25 GeV. Whereas, L1_MU20 corresponds to the event level
requirement of a L1 muon candidate with at least 20 GeV.

3.3 Detector simulation

The effects of the detector are understood through a detailed simulation procedure.
Detector simulation is the final stage in the simulation of events. Two detector simula-
tion procedures are used [86]: Geant4, known as full simulation (FullSim or FS); and
AtlFast2, known as FastSim or AFII [87]. Detector simulation is performed to high
precision with Geant4. The ATLAS detector and all subcomponents is fully modelled
with their true geometry. AtlFast2 uses full simulation of the Muon Spectrometer
combined with ATLAS Fast Calorimeter Simulation (FastCaloSim) for the calorimeter
system, and fast ATLAS track simulation (FATRAS) [87]. FastCaloSim is the parame-
terisation of the calorimeter response, based on the Geant4 simulation [88]. FATRAS
uses simplified reconstruction geometry of the detector to decrease simulation time [89].
As the name suggests, FastSim is computationally less expensive than FullSim detector
simulation.
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In order to perform physical measurements of particles produced at the LHC, physi-
cal objects must be reconstructed from the read-outs of the ATLAS detector. In this
Chapter, the primary physics objects used by the ATLAS collaboration are defined and
detailed. Charged particle tracks are defined in Section 4.1, followed by the reconstruc-
tion of electrons and photons in Section 4.2. The jet reconstruction and calibration
procedure is detailed in Section 4.4, and the reconstruction of missing transverse en-
ergy in Section 4.5. Finally, a procedure to prevent double counting of recorded energy,
known as overlap removal, is discussed in Section 4.6.

4.1 Tracks and vertices

Hits in each layer of the Pixel Detector and SCT seed algorithms to reconstruct so-
called tracks in order to reconstruct the trajectory of particles that have traversed the
detector. The track reconstruction algorithm [90] starts at the inner-most layers of the
ID and builds tracks radially outward from the beampipe. Track candidates must meet
the quality requirements of having at least seven hits across the silicon trackers; no
more than one hole in the Pixel Detector; and no more than two holes in the SCT. A
hole is defined as a location within a silicon detector where a hit is expected to appear,
but is not observed. Track candidates of sufficient quality are projected into the TRT,
where the full track is refitted with the hits measured in the TRT.

A vertex is the origin point of a track. After track reconstruction has been per-
formed, the vertices in an event can be reconstructed. Tracks used in vertex reconstruc-
tion must pass several additional quality requirements: Tracks must have a minimum
transverse momentum of 400 MeV; they must be located within the region |η| < 2.5; at
least one hit in either the IBL or the B-layers of the Pixel Detector; no more than one
hole in the SCT; no holes in the Pixel Detector; at least 9 (11) hits in the silicon detec-
tors for |η| ≤ 1.65 (|η| > 1.65) [91]. The vertex reconstruction algorithm is an iterative
procedure. Starting at an initial seed position for a vertex, tracks are used to fit the
best vertex position. In each iteration less compatible tracks are down-weighted and
the vertex position reconstructed [92]. After the position is fitted, incompatible tracks
are removed and used in the determination of another vertex. Vertices are required
to have at least two tracks. The algorithm is repeated until there are no unassociated
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tracks in the event, or no additional vertices can be found.
The primary vertex in an event is defined as the vertex with the largest scalar

sum of associated track transverse momentum. The resolution of track reconstruction
is understood in terms of the impact parameters. The impact parameters, d0 and z0,
are the closest perpendicular distance between a track to the primary vertex in the
transverse and z directions respectively. The impact parameters are often scaled by
the inverse uncertainty on their measurement, σ(d0) and σ(z0). Such a scaling results
in a dimensionless significance of the deviation of a track from the primary vertex,
defined as dsig

0 ≡ d0/σ(d0) and zsig
0 ≡ z0/σ(z0).

4.2 Electrons and photons

Electrons (and positrons) that traverse the ATLAS detector can leave a track in the
ID, and deposit energy in the EM calorimeter. Therefore, the electron reconstruction
algorithm must combine the measured energy and momentum from these two sepa-
rate subsystems in a way that ensures no double counting and maximises resolution.
Electrons and positron are collectively referred to as electrons herein.

Energy deposits are clustered together using a sliding window algorithm [93]. The
EM Calorimeter is divided into a grid in η-φ space of size ∆η×∆φ = 0.025×0.025; from
this grid towers are formed. Towers are sums of energy cells in longitudinal layers of the
detector. A fixed window is moved across each element of the tower grid. A precluster is
formed if the window transverse energy is greater than the threshold value of 2.5 GeV.
The window transverse energy is defined as the sum of the deposited transverse energy
in all towers in that window. The position of a precluster is computed as the energy-
weighted η and φ barycentres of all cells within a fixed window around the tower at the
centre of the sliding window. Preclusters are used as seeds for EM cluster formation.
Cells are assigned to EM clusters by taking all cells within a layer-dependent rectangle
around the seeding precluster.

Tracks are then matched to EM clusters. In the cases of multiple candidate tracks
matching a cluster, a so-called primary track is chosen. The primary track is chosen by
evaluating the cluster-track angular distance, R, with differing track momentum hy-
pothesis. The hypothesis with the smallest cluster-track angular distance is chosen [94].
Electron candidates without associated tracks are considered to be photons.

Electron identification algorithms are applied to the candidate electron (track-
cluster matches) for all candidates in the region |ηcluster| < 2.47. Candidate electrons
measured in the crack regions between different electromagnetic calorimeter compo-
nents, 1.37 < |ηcluster| < 1.52, are rejected. The goal of identification algorithms is to
distinguish real electron signals from fake electron signals. Fake electron signals arise
from hadronic showers that shower strongly in the EM Calorimeter, and from converted
(early showering) photons. A multivariate likelihood discriminant is used to distinguish
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real electrons from the fake background [94]. The discriminant uses cluster information
such as shower shape, information from the TRT, track properties, variables measuring
bremsstrahlung effects, and the number of hits in the IBL.

Three levels of identification operating points are provided. Ordered from lowest to
highest reconstruction efficiency they are: Loose, Medium and Tight [94]. Lower effi-
ciency identification operating points fully contain higher efficiency operating points,
such that all electrons that pass the Tight identification requirement also pass the
Loose and Medium requirement. The operating points are defined based on reconstruc-
tion efficiency measured in simulated Z → ee events. The Tight working point is used
with an identification efficiency of 78% at ET = 20 GeV [94].

Two category of electrons are considered: prompt and non-prompt. Prompt elec-
trons originate from heavy resonance decays, such as W → eν, whereas, non-prompt
electrons originate from converted photons, heavy flavour decays in hadronic showers
and light hadron mis-identification. Electrons originating from a hard scatter process
are prompt, therefore prompt electrons are of primary interest in a physics measurement
that uses data recorded by the ATLAS detector. Electron isolation aims to disentangle
prompt electrons from non-prompt.

Isolation variables that characterise the activity of the detector in a cone around the
track and EM clusters that constitute an electron are constructed. These variables are
measured in Z → ee events. From these variables, distinct electron isolation operating
points are defined. The isolation efficiency is defined as the number of correctly identi-
fied isolated prompt leptons divided by all recorded leptons. The Gradient operating
point is constructed such that the isolation efficiency has a linear dependence on the
transverse energy of the calorimeter and track isolation variables. The Gradient iso-
lation working point was used for the work presented in this document. This working
point uses a sliding scale isolation which gives an efficiency, ε(pT), that increases with
electron pT until it reaches a plateau of 100%.

Precise knowledge of the energy scale and resolution of photons and electrons is vital
for measurements that use these reconstructed physics objects. Reconstructed electrons
and photons are calibrated to mitigate the effect of detector non-uniformity and mis-
measurement [95]. A multi-step calibration procedure is used to correct for these effects,
and assess the energy scale and resolution of measured photons and electrons. Initially,
data-only corrections are applied that equalise the response of the longitudinal layers of
the ECal between data and simulation. The uniformity corrections were derived using
Run 1 data in 2012, and validated under Run 2 conditions [95].

After detector non-uniformity has been accounted for, the energy scale of mea-
sured electrons and photons is corrected. The correction is applied to both data and
simulation. A multi-variate regression algorithm calibrates the objects. The regression
algorithm corrects for energy deposited in front of the calorimeter and outside of a
cluster. Furthermore, the regression algorithm accounts for variations in the measured
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energy as a function of the electron direction. Typically, the applied corrections range
from a few percent for low-pT electrons, up to ∼ 20% for 100 GeV electrons. Finally,
residual disagreement between data and simulation is measured in Z → ee events. The
residual disagreement is then removed using data-driven correction factors derived from
these measurements. The correction factors in the final stage of the calibration chain
are applied as energy scale factors to data, and as resolution correction factors to
simulation [95].

4.3 Muons

Muon candidates are selected by matching tracks from the Muon Spectrometer (MS)
to tracks from the ID [96]. First, hits within an individual MS subsystem’s chamber are
reconstructed to form a track segment. Muon track candidates are then constructed by
fitting hits from segments in different layers, starting with segments in the middle layers
of the detector, where more trigger hits are available. Segments are matched based on
their relative position and angles. The track candidates are extended into the outer
and inner layers. Muon track candidates are combined with ID information, typically
with an outside-in approach, where MS tracks are reconstructed first and extrapolated
inwards to then match with an ID track.

A muon identification procedure is performed to identify prompt muons from non-
prompt muons. Non-prompt muons originate from in-flight decays of charged pions or
kaons. Non-prompt muon candidates have a distinctive “kink” in their reconstructed
track, corresponding to the point in space where the meson decayed. The quality of
the fitted track degrades due to the “kink” in the non-prompt muons trajectory. Fur-
thermore, the ratios of measured energy between the ID and MS differs substantially
to that of prompt muons. Four muon identification working points are constructed.
These use the fit quality and ratio of energy deposited in the ID and MS as input
variables. Muon identification efficiencies are studied with a tag-and-probe method in
data and simulation Z → µµ and J/Ψ → µµ events. An identified muon that satisfies
a working point’s requirements is used to tag the event, and the other muon is used to
measure the efficiency. Efficiency scale factors are calculated that describe deviations
of simulation from the real detector behaviour. The calculated scale factors are used
to correct for these deviations in simulation, and estimate the uncertainty introduced
in a measurement by the muon identification procedure. Of the four calibrated muon
identification working points, the Medium muon working point was designed to min-
imise systematic uncertainties associated with muon calibration and reconstruction.
The Medium working point was used in the measurements presented in this thesis.

Muon isolation requirements are also imposed on reconstructed muons to discrimi-
nate between muons originating from heavy particle decays and those originating from
semileptonic decays within a hadronic shower. The detector activity around a muon

45



4. Object reconstruction methods 4.4. Jets

candidate is measured and seven isolation working points are provided. The isolation
efficiency is measured in data and simulation with the tag-and-probe method, and scale
factors are derived to account for deviations. A data- and MC-based calibration is ap-
plied to the reconstructed muons to correct the momentum of the measured muons [96].
As with the electron isolation requirements, a so-called Gradient operating point is
defined such that the isolation efficiency has a linear dependence on the variables used
to construct the discriminator. The Gradient isolation requirement was used in the
measurements presented in this thesis.

4.4 Jets

Jets measured by the ATLAS detector are constructed from three-dimensional Topolog-
ical clusters (TopoClusters) of topologically connected cells within the EM or Hadronic
Calorimeter systems [97]. The 4-2-0 scheme is used to construct the TopoClusters [97].
The significance of an observed energy deposit in a cell is considered. The average
expected noise of the cell, σcell, is compared to the energy deposited in a cell, Ecell.
As the significance is calculated per cell, topological clusters can be composed natu-
rally from cells across different calorimeter systems. TopoClusters are seeded by cells
with Ecell > 4σcell. All adjacent cells with Ecell > 2σcell are added to the TopoCluster
iteratively in three-dimensional space until no new cells satisfy the 2σcell requirement.
The TopoCluster is completed with a final addition of all adjacent cells satisfying
Ecell > 0σcell, removing any negative energy cells that can result from pile-up and elec-
tronic noise [98]. The 4-2-0 procedure is repeated for all initial seed cells, forming the
complete set of TopoClusters for an event.

TopoCluster directions are constructed from the energy-weighted centroid of the
TopoCluster relative to the detector origin. Their energy is taken as the sum of all
constituent cell energies, and they are taken to be massless. TopoClusters are measured
at the electromagnetic (EM) energy scale, which correctly recovers the energy of an
electromagnetic shower. The response of the ATLAS calorimeter system at the EM
energy scale has been measured and understood with test beam studies [99–102].

The energy scale of TopoClusters can be refined using the local cluster weight
(LCW) scheme [103]. Energy deposits in the calorimeter arise from either hadronic
showers or electromagnetic showers. These two categories of particle showers are com-
posed of different particles. Due to the non-compensating nature of ATLAS, the detec-
tor response differs between these two categories of particle showers. The LCW energy
scale attempts to identify whether a cluster is part of a hadronic or electromagnetic
shower, and corrects the energy scale accordingly.

Jets at ATLAS are constructed from TopoClusters using the anti-kt clustering al-
gorithm with a radius parameter of R = 0.4. A multi-step calibration procedure is then
applied to each jet, to correct its position, energy and account for non-compensation

46



4.4. Jets 4. Object reconstruction methods

Figure 4.1: The calibration chain applied to R = 0.4 jets measured by the ATLAS detector in
the years before 2016; after 2016, the origin correction step was performed at the TopoCluster
level and not part of the jet calibration sequence [104].

of the detector, shower leakage, dead material in the detector and pile-up.

4.4.1 Jet calibration

The jet calibration chain for R = 0.4 jets has the goal of correcting jets to the energy
scale of truth jets. Truth jets are defined as jets constructed using the anti-kt algorithm
with R = 0.4 from detector-stable final-state particles in simulation. Particles are
considered stable if their lifetime, τ , satisfies the expression cτ > 10 mm, where c is the
speed of light. Neutrinos, muons and particles from pile-up activity are excluded from
truth jet clustering. Truth jets are considered in the pT > 7 GeV and |η| < 4.5 region.
Detector-level jets, constructed using by applying anti-kt algorithm to TopoClusters in
simulation, are matched to truth jets using the ∆R distance measure. Figure 4.1 shows
the calibration chain applied to jets measured in the ATLAS detector. This subsection
shall describe in detail the procedures used at each step in the chain.

An origin correction procedure is the first stage in the jet calibration chain after
TopoCluster formation. The origin of TopoClusters is the geometric centre of the de-
tector. Therefore, initially jets are also reconstructed as originating from the geometric
centre of the detector, as used for TopoCluster reconstruction. Origin correction changes
the direction of reconstructed jets such that they originate from the primary vertex, as
defined in Section 4.1, with the largest scalar sum of constituent track transverse mo-
mentum. This increases the η and φ resolution of jets, when compared to particle-level
truth, but leaves the energy scale unmodified. Origin correction is only necessary for
simulation and data processed prior to 2016. The reconstruction software framework
within ATLAS was overhauled substantially in the years 2015 and 2016; as part of
this overhaul TopoClusters origins were corrected before clustering. This removed the
necessity of this state for calibrations derived after 2016.

The next two stages in the calibration chain correct for the effects of pile-up upon
jets. First, the pile-up density, ρ, in an event is calculated. The pile-up density in an
event is defined as the median pj

T/A
jet taken over all jets formed in an event, where
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Ajet and pjet
T are the area and transverse momentum of a jet in an event respectively.

Then ghost associated area, A, of all clustered jets is calculated. The expected amount
of pile-up within a jet is given by ρ ·A, which is used as a subtractive correction factor
to the pT of measured jets. In performing the area-based pile-up subtraction procedure,
it is implicitly assumed that the pile-up activity is uniform across the detector. Jets
are found to have a residual pile-up dependence after the pile-up subtraction. The
dependence is characterised in terms of the average number of interactions per bunch
crossing, 〈µ〉, and the number of primary vertices in an event, NPV, in bins of η and
pT . The residual dependence is then removed, such that on average ∂pT

∂NPV
= ∂pT

∂µ
= 0.

The fourth procedure applied to reconstructed jets is to correct their absolute energy
scale to that of particle level jets. This corresponds to the blue box in Figure 4.1. The
energy response is given by

R = EReco

ETruth , (4.1)

where EReco is the energy of a jet at detector level, and Etruth is the energy of the
∆R-matched truth jet. The response R is the inverse of the calibration factor required
to correct a jet to the correct truth-level energy scale. The calibration is evaluated in
bins of pseudorapidity calculated using the detector centre as the origin, ηdet, and truth
jet energy, Etruth. A numerical inversion procedure is applied to the mean of a fitted
Gaussian of the binned response distributions, and a calibration derived in terms of
η and Ereco. At transition regions between detector systems a small bias is observed,
as shown in Figure 4.2a. The bias arises from one detector system having a response
closer to unity than another, therefore reconstructing part of the jet more completely
than the other system. Such a biased reconstruction of energy artificially biases the
direction of the jet towards the system with better response, as shown in Figure 4.2b.
A second set of calibrations are derived to correct for the difference between ηreco and
ηtruth, binned in Etruth and ηdet. The η-calibrations are numerically inverted to provide
a calibration in terms of Ereco and ηdet. Jets calibrated with this procedure are often
referred to as EM + JES or LCW + JES scale jets depending upon the energy scale
of the input TopoClusters.

After the absolute energy scale correction is applied, jets are (on average) calibrated
to the appropriate energy scale. However, there remains residual non-closure of gluon-
initiated jets compared to quark-initiated jets arising from the differences in energy
response between those two jet types. A sequential five step jet-by-jet correction called
the Global Sequential Calibration (GSC) is applied [35], shown as the brown box in
Figure 4.1. The GSC uses the topology of calorimeter energy deposits, properties of
the tracks associated with jets, and any associated energy deposits in the muon spec-
trometer. Jet energy resolution and calibration closure is improved with this correction.

The final stage in the jet calibration chain is a four step data-driven correction
procedure called the in situ calibration chain. In situ corrections remove residual dis-
crepancies between simulation and recorded data, and are applied to recorded data
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(a) The average energy response. (b) The signed residual bias.

Figure 4.2: The average energy response as a function of ηdet for truth jets in bins of
Etruth ∈ {30, 60, 110, 400, 1200} and the the signed residual ηdet bias of the absolute η JES
correction introduces before correction.

only. The pT response, Rinsitu, is defined in the same manner as the energy response
in Equation 4.1 with the substitution of jet pT instead of energy. The data-simulation
difference is evaluated with the double ratio of a pT -response as

c = Rdata
insitu

RMC
insitu

, (4.2)

where c is the correction factor binned in pT and ηdet. The pT -response is evaluated
using several different methods, all of which depend on the idea of momentum balance.
Due to the conservation of momentum a two body system produced from pp collisions
at the LHC is expected to have opposite and equal transverse momentum. One of the
two objects in a decay is used as reference, and measures the expected energy scale
of the other object, the probe. For instance, a jet is balanced against a photon in the
γ+jet event topology. The photon acts as the reference as photons are measured to
higher precision than jets by the ATLAS detector.

The first stage of the in situ calibration chain is the dijet in situ η inter-calibration,
where a relative calibration factor is applied to jets outside of the central region of
the detector, |η| > 0.8. This stage of calibration aims to calibrate jets such that their
response is uniform across the detector. The dijet η inter-calibration is discussed in
detail in Section 5.1.1.

After forward jets have their relative response corrected, central jets have a three-
stage absolute correction factor applied. Jets in the central region are balanced against
Z, γ, or a multi-jet system. The calibration factor c from Equation 4.2 is evaluated
in a single bin of |η| < 0.8. The three different topologies used to derive the absolute
in situ calibration of central jets are complementary, each probing a higher pT regime
than the last. They are combined using a global fit and found to have good agreement,
as measured by a χ2 goodness of fit test and depicted in Figure 4.3, for a large range
of jet pT .
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Figure 4.3: The combined absolute in situ calibration factor evaluated from data recorded
in 2015 in the Z-jet, γ-jet and multijet topologies [104].

Jet energy scale uncertainties

The uncertainty associated with the energy scale calibration of jets is evaluated pri-
marily through variations in the in situ calibration procedures. The effects of event
selection and modelling within the in situ procedures are evaluated. In total there are
nearly 100 separate nuisance parameters that arise from these sources of uncertainty;
however, for most physics analyses the complete set of nuisance parameters is cumber-
some to use and not necessary to accurately describe the uncertainty of the JES. The
so-called category reduction is used to reduce the total number of nuisance parameters
to consider to roughly 30. The eponymous categories in the category reduction scheme
are groups of systematics arising from similar sources, such as modelling or a specific
detector-related requirement that is a free parameter of an analysis. For each η-pT

bin the correlation between groups of systematics is evaluated. This correlation matrix
is diagonalised and the eigenvectors assessed. Leading eigenvectors are retained, and
sub-leading ones discarded. In this way, maximal correlation between uncertainties is
retained. The reduced set of uncertainties retains a physical meaning, as only related
sources of uncertainty are combined.

Jet energy resolution

The quality of the jet energy scale calibration is quantified by the jet energy resolu-
tion (JER). This is assessed through studies of dijet simulation and data-simulation
comparisons are evaluated in the absolute in situ measurements outlined above [35,
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104]. The calibration factor, c from Equation 4.2, is evaluated as the mean of a fitted
Gaussian in bins of η and pT . The width of this Gaussian corresponds to the resolution
of the jet energy scale. Uncertainties on the JER measurement are reduced using the
eigenvector decomposition technique into 13 nuisance parameters, where the category
information is completely lost.

4.4.2 Jet flavour tagging

Jets are identified as originating from b-quarks using a multivariate discriminator called
MV2c10 [105, 106]. B mesons travel a measurable flight distance from the primary vertex
before decaying. Therefore, a b-jet is expected to contain tracks that originate from
a secondary vertex. The secondary vertex corresponds to the location where the B

meson decayed. The MV2c10 variable exploits this characteristic decay pattern of b-jets
to distinguish them from a light and charm jet background. Charm jets are considered
separately from light (u-, d-, g-originating) jets due to their experimental properties;
The lifetime of the c-quark is sufficient such that a non-negligible fraction of D mesons
have a measurable flight distance before subsequent decay. Therefore, charm jets form
a source of irreducible background to b-jet identification.

The multivariate discriminator MV2c10 is constructed from the jet impact param-
eter, multiplicity, secondary vertex and mass information. The training sample uses
a mixture of 7% c-jets and 93% light-jets to provide a balance between charm- and
light-jet rejection. In this analysis, the 85% b-tagging efficiency working point is used
which has a corresponding rejection rate for light (charm) jets of 28 (2). The procedure
of identifying a jet as a b-jet is known as b tagging.

4.4.3 Jet cleaning

Jets can be reconstructed from background sources that are unrelated to the pp colli-
sions at the centre of the detector. These jets are referred to as pathological. Patho-
logical jets can be reconstructed from: cosmic rays, noise in the detector, or muons
produced from decays of proton lost upstream in the beampipe. To reduce jets re-
constructed from these background sources, jets are classified as Good or Bad. Any
event containing a Bad jet are rejected. The classification is based on a variables based
on signal pulse shape in the LAr calorimeters, energy ratio variables between different
calorimeter subsystems, and track-based variables. Two working points are constructed:
Tight and Loose.

The efficiency of these working points is measured in dijet data and found to reject
the background at 99% and 95% for Loose and Tight respectively. Events containing
a Bad jet are rejected; this procedure is referred to as jet cleaning [107].
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4.4.4 Jet vertex tagging

A multivariate discriminant has been constructed to reduce the impact of pile-up,
detector noise, and the underlying event producing jets. This discriminant is known
as the jet vertex tagger (JVT). By ghost associating tracks to jets, the fraction of
jet energy from the primary vertex can be assessed. Jets originating from the hard
scatter process are expected to have a large fraction of energy originating from the
primary vertex, whereas, jets originating from pile-up, underlying event activity, or
noise are expected to have a small fraction of energy originating from the primary
vertex. The JVT exploits this difference. The discriminator is constructed from the
number of primary vertices in an event and track-based variables. All jets within the
region |η| < 2.4 and pT < 50 GeV have their JVT score - the output of the multivariate
discriminator - calculated, and a simple cut is applied based on this score [108].

4.5 Missing transverse momentum

The missing transverse momentum, Emiss
T , is reconstructed using calibrated electrons,

muons and jets. Electrons and muons are required to satisfy the object selections de-
scribed above. The missing transverse energy of an event is calculated as the sum of
the negative momentum for all calibrated objects measured in that event:

Emiss
x(y) = Emiss,e

x(y) + Emiss,γ
x(y) + Emiss,τ

x(y) + Emiss,jets
x(y) + Emiss,µ

x(y) + Emiss soft
x(y) , (4.3)

The “soft” term is reconstructed from transverse momentum deposited in the detector
but not associated with any reconstructed physics object (electron, photon, τ lepton, jet
or muon). The soft term is measured using tracks reconstructed in the ID, and known
as the Track Soft Term (TST) [109, 110]. Tracks are required to have pT > 0.59 GeV
and pass vertex association cuts of dsig

0 < 2 and |z0| sin θ < 3 mm, where dsig
0 and zsig

0

are impact significance parameters defined in Section [sec:tracks_and_verts].

4.6 Overlap removal

An object recorded by the detector may satisfy both the jet and lepton object defini-
tions discussed above. Further to this, in-flight decays of hadrons can produce leptonic
signals in the detector that are not removed by lepton isolation requirements. A so-
called overlap removal procedure is defined such that detector information corresponds
uniquely to one physics object hypothesis.

If a selected electron shares a track with a selected muon, the electron is removed. If
a jet is within ∆R < 0.2 of a reconstructed electron, the jet is removed. Subsequently,
to reduce the impact of non-prompt leptons, if an electron is within ∆R < 0.4 of a jet,
then that electron is removed. If a jet has less than three tracks and is within ∆R < 0.2
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of a muon, the jet is removed. Finally the muon is removed if it is within ∆R < 0.4 of
a jet.
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Jets are calibrated to the truth-jet energy scale using a multi-step procedure known as
the calibration chain, discussed in Section 4.4.1. The majority of the jet energy scale
calibration is derived using Monte Carlo (MC) simulation of various physics processes
and the ATLAS detector. The final stage in the jet calibration chain is to correct for
residual mis-modelling of the detector, using four data-driven corrections known as the
in situ calibrations.

The focus of this chapter is the first in situ correction: the dijet η inter-calibration,
in which, forward jets (0.8 < |η| < 4.5) are calibrated to the energy scale of central
jets (|η| < 0.8). The method aims to produce a uniform jet response as a function
of detector position, as well as correcting for residual mis-calibration in the previous
steps of the chain. The forward region of phase-space for the dijet event topology is the
least well understood region [35], a fact that shall be demonstrated in this Chapter.
Calibration based solely on simulation is not sufficient for the goals of the physics
programme at ATLAS, and a data driven method is required.

5.1 The η inter-calibration procedure

As with all in situ calibrations, the dijet η inter-calibration is performed by deriving
calibration factors from the double ratio of the data to simulation response given in
Equation 4.2. Two commonly used methods for deriving the correction factors are: the
central reference method, and the matrix method. The calibration factors are derived
in bins of the dijet systems kinematics. After the calibration has been measured, a
transformation from the dijet kinematics to the kinematics of an individual jet is ap-
plied. This transformation allows a measured calibration to be applied to jets measured
in different event topologies. Finally, a smoothing is applied to the transformed set of
calibrations to reduce the impact of statistical uncertainty.

5.1.1 The central reference method

Due to momentum conservation, the leading order prediction for pair-produced parti-
cles at the LHC is for equal and opposite transverse momentum. Imbalances in pT can
arise due to mis-calibrations in one region of the detector relative to another. Next-
to-leading order (NLO) effects can also spoil the momentum balance of the system,
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however these can be controlled for by event selection criteria that preferentially select
a dijet topology. The mis-calibrations ultimately are the result of an imperfect descrip-
tion of the complexities of the ATLAS detector in the MC simulations used earlier in
the jet calibration chain.

The central reference method exploits the expected pT -balance of dijet events to cal-
ibrate probe jets, in any region of the detector, relative to reference jets, in the central
region (|η| < 0.8). The central region of the detector is the most heavily instrumented,
and also found to have the best pT response from test beam measurements [99]. There-
fore, jets measured in the forward region are calibrated to that of the better measured
central region. The relative calorimeter response can be quantified by the balance in
transverse momentum between the reference and probe jet. The pT -balance, or asym-
metry, is defined as

A = pprobe
T − pref

T

pavg
T

, (5.1)

where pavg
T = (pprobe

T + pref
T )/2. The asymmetry is evaluated in bins of ηdet, the probe

jet pseudo-rapidity constructed with the geometric center of the detector as the origin,
and pavg

T . The η inter-calibration factor, c, and the relative response of the probe jet,
R is then taken as

R = 1
c

= 2 + 〈A〉
2 − 〈A〉

=
〈
pprobe

T

pref
T

〉
, (5.2)

where the average asymmetry, 〈A〉, is evaluated in a fixed region of ηdet and pavg
T by

performing a binned Gaussian fit1 of the asymmetry distribution in that region. If both
jets are within the reference region each jet is used to probe the other. The average
asymmetry in the reference region is therefore zero by construction. The fit was required
to have passed the quality requirement χ2/NDoF < 15, where NDoF is the number of
bins in the asymmetry distribution. The Pearson χ2 test statistic corresponds to

χ2 =
∑
i∈N

(Oi − Ei)2/σ2
O,i, (5.3)

where Oi and Ei are the observed and expected values of the fitted histogram for
the i-th bin of the fitted asymmetry histogram, respectively, and σO,i is the statistical
uncertainty on the observed value Oi. The mean of asymmetry distributions was used
for asymmetry bins that failed the quality requirement.

5.1.2 Matrix method

The central reference method discards dijet events where both jets lie outside of the
central region. The dijet forward cross-section drops steeply as the rapidity interval
between the jets increases. In order to probe the response of the forward region with

1The TMinuit software package’s implementation of the MIGRAD algorithm was used [111].
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greater statistical precision, the method is extended by replacing “probe” and “refer-
ence” jets by “left” and “right” jets defined as ηleft < ηright. Equations 5.1 and 5.2 are
correspondingly replaced with

A = pleft
T − pright

T

pavg
T

, (5.4)

R = pleft
T

pright
T

= cright

cleft = 2 + 〈A〉
2 − 〈A〉

. (5.5)

The response R is calculated from the ratio of η inter-calibration factors, cleft and cright,
for the left and right jets respectively. The average response, 〈Rijk〉, is evaluated using
the Gaussian fitting procedure outlined previously for each ηleft bin, i, ηright bin, j, and
pavg

T bin, k. The relative correction factor for a given jet η bin i and fixed pavg
T bin k is

obtained by minimizing a matrix of linear equations

S(c1k, ..., cNk) =
N∑

j=1

j−1∑
i=1

(
1

∆ 〈Rijk〉
(cik < Rijk > −cjk)

)2

+X(cik), (5.6)

where N is the number of η-bins, and ∆ 〈Rijk〉 is the statistical uncertainty of 〈Rijk〉.
The so-called beta function

X(cik) = K(N−1
bins

Nbins∑
i=1

cik − 1)2, (5.7)

is used to prevent the trivial solution of cik = 0 ∀ i, k ∈ {1, .., N}, where K is an
arbitrary constant much larger than Nbins.

5.1.3 Derivation of a residual correction

A final residual correction is evaluated in the kinematics of a probe jet. This involves
a transformation from the dijet topology to that of the probe jet.

The in situ double ratio, equivalent to Equation 4.2,

Cik = cdata
ik

cMC
ik

, (5.8)

is used to provide data-driven calibration factor in bins of ηdet, i, and pavg
T , k of the

dijet system. The calibration is applied to individual jets. A given jet with transverse
momentum pT located at ηdet is mapped to the dijet system with the following relations

pT =
〈
pprobe

T

〉
ik

= 2Rik

(Rik + 1) 〈pavg
T 〉ik (5.9)

ηdet =
〈
ηprobe

〉
ik
. (5.10)

A Gaussian smoothing is applied and a smoothly varying residual calibration function,
F res(pT , ηdet), evaluated where

F res(pT , ηdet) =
∑Nbins

i=1 ciwi∑Nbins
j=1 wj

, (5.11)
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and

wi = 1
∆Ci

× Gauss
(

log pt − log < pprobe
t >i

σpT

⊗ ηdet− < ηdet >i

ση

)
. (5.12)

The index of a given (ηdet, p
avg
T ) bin is given by i. The 2D Gaussian smoothing kernel

has the width parameters

ση =


0.05 2.1 < |η| < 2.6

0.2 otherwise.
(5.13)

and

σpT
= 0.2, (5.14)

optimised such that the dependence of the residual calibration is captured and the
impact of statistical fluctuations are minimised. Here, ⊗ denotes addition in quadrature
and Gauss(x) denotes a Gaussian function with zero mean and unit width evaluated
at point x, ∆Ci is the statistical uncertainty of calibration factor Ci, and

〈
pjet

T

〉
and

〈ηdet〉 are the average pT and η of the probe jets in the bin respectively.

5.2 η inter-calibration of 2015 and 2016 data

Physics analyses are performed using calibrations measured with partial datasets as
the run progresses, in order to present findings as quickly as possible. As such, η inter-
calibration factors are measured over the course of Run 2. This chapter shall primarily
discuss the measurement performed with a partial 2016 dataset with a recorded inte-
grated luminosity of L = 24.3 fb−1. As shall be shown, the measured η inter-calibration
factors were found to be consistent across 2015 and 2016, which have different run con-
ditions. Therefore, the conclusions reached in this chapter should generalise to data
recorded throughout Run 2.

5.2.1 Event and data selection

Recorded data were required to satisfy general data quality criteria, such as stable
beam conditions and good detector performance. Events were rejected if any jets fail
the LooseBad jet cleaning working point described in Section 4.4.3. Beyond LO, the
pT -balance of a dijet system is spoilt by the presence of additional radiation. The evalu-
ated response factor cMC

ik depends upon the exact subtleties of how additional radiation
is handled, how the parton shower is evolved and how the subsequent shower interacts
with the complex and varied detector material of ATLAS. To isolate the detector mis-
modelling, stringent event selection requirements are enforced to preferentially choose
dijet events. The dijet topology was selected for using the event selection requirements:

• At least one HLT jet trigger from the list defined in Table 5.1 must have fired.

57



5. Dijet in situ inter-calibration 5.2. η inter-calibration of 2015 and 2016 data

• At least one primary vertex with at least two reconstructed tracks.

• At least two reconstructed anti-kt R=0.4 EM scale jets with a minimum pT of 25
GeV.

• The angular separation in φ between the leading two jets, ∆φ > 2.5.

• Should an additional radiative jet exist with transverse momentum, p3
T , its mo-

mentum is required to be p3
T < f third

frac p
avg
T , where f third

frac = 0.4.

Event Generators

Two MC generators are used to simulate dijet events resulting from pp collisions at
the LHC at next-to-leading order accuracy in perturbative QCD. The 2 → 3 matrix
elements are interfaced with the next-to-next-to leading order (NNLO) CT10 parton
distribution functions. The generators used are:

1. Powheg+Pythia8 [112] with the A14 tune [113]: The Lund string fragmenta-
tion framework is used to simulate hadronisation.

2. Sherpa 2.1 [114]: An angular-ordered parton shower was matched to the hard
scatter using the CKKW [115, 116] prescription. Hadronisation is simulated using
a cluster fragmentation model.

The effects of the ATLAS detector were simulated using GEANTv4 [117]. Further
to the event selection described above, Monte Carlo samples had a further cleaning
applied. The cleaning aims to remove pile-up jets from the event selection in MC. Pile-
up jets are overlaid to a hard scatter process, without a truth record. Therefore, the
reconstructed leading jet was required to have a transverse momentum within ±40%
of the leading truth jet.

5.2.2 Trigger and binning considerations

The HLT jet triggers at ATLAS for a given ET level are separated into a forward
(3.2 < |η| ≤ 4.9) and a central (|η| < 3.2) trigger. All jets triggers with a thresh-
old less than 360 GeV are pre-scaled. This means that for every N events that satisfy
the trigger requirements only one is recorded, where N is the pre-scaling factor. For
data recorded during 2015 and 2016 data taking periods, the total number of events
recorded by the forward and central jet pre-scaled triggers is approximately equal.
However, jets are preferentially produced in the central region of the detector. There-
fore, the η distributions of measured jets is distorted in the forward region. Before a
measurement can be performed, the distortion in jet kinematics due to pre-scaled trig-
gers must be accounted for. Events were classified as forward or central corresponding
to which trigger was fired, then scaled to the inverse of the recorded luminosity mea-
sured by each trigger. This restores the physical distribution of the η spectrum of dijet
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events. Correctly recovering the η spectrum for dijet events acts as validation check
for the trigger luminosity weighting procedure. The asymmetry distributions evaluated
to perform the η inter-calibration were similarly scaled according to the inverse of the
trigger luminosities that entered into them.

Each pavg
T bin was assigned a trigger combination spanning the full detector coverage

that is kinematically accessible by the dijet system. Triggers fire based on reconstructed
L1 and HLT objects; the kinematics of trigger objects differ from those of the offline
physics object for which the calibration is derived. A trigger, or combination of triggers,
are required to recover at least 99% of dijet events in a kinematic region of pavg

T . A trigger
combination with this property is said to be fully efficient.

Every bin of pavg
T required a fully efficient trigger combination. The trigger efficiency

for a jet trigger HLT_jX, where X is the ET requirement of the trigger in GeV, is

εHLT_jX(pavg
T ) =

Nemulated
HLT_jX (pavg

T )
Nproduced

HLT_jY (pavg
T )

, (5.15)

where NHLT_jY is the number of events that pass the reference trigger that is fully
efficient at the investigated pavg

T , and Nemulated are the number of events that pass an
emulated version of the trigger with offline objects. The lowest HLT trigger used, j15,
was found to be fully efficient for pavg

T > 25 GeV in previous performance studies.
Performance runs with HLT_j15 in pass-through mode, where an event was recorded
even if it fails the trigger selection criteria, were used. The number of events that pass
or fail the trigger when it is in pass-through mode is used as the denominator for
Equation 5.15, and those that pass are the numerator. The turn on point, defined as
the 99% efficiency after which triggers are considered fully efficient, can be evaluated
from the trigger efficiency curves presented in Figure 5.1. The trigger efficiency plateaus
for each trigger combination slightly after the nominal threshold value. The plateau
region is fully efficient, and the turn on point in the trigger efficiency curve corresponds
to the start of the plateau. The turn on points in terms of pavg

T for all considered trigger
combinations used in deriving the dijet η inter-calibration in the years 2015 and 2016
are presented in Table 5.1. There is a 5-40 GeV difference between the turn on point in
pavg

T and the threshold of the trigger, depending on the trigger in question. This offset
is expected from the difference between trigger and offline physics objects. The pavg

T

and ηdet was optimised such that all pavg
T bins have a fully efficient trigger; furthermore,

no η bins spanned a transition between different calorimeter systems.

5.2.3 Validation of the procedure

In order to understand the behaviour of the measured calibration, a suite of validations
were performed. These focused on consistency of the derived calibration across method
and datasets. Studies of the calibration’s performance were also undertaken, whereby
calibrated data was examined and compared to uncalibrated data and simulation.

59



5. Dijet in situ inter-calibration 5.2. η inter-calibration of 2015 and 2016 data

Figure 5.1: The efficiency curves, as defined in the text, for a dijet system with jets calibrated
with the EM+JES scheme for the trigger combinations used in the 2015 and 2016 dijet η

inter-calibration.

Comparison of methods

The central reference method and matrix method should produce consistent η inter-
calibration factors within the statistical uncertainty of each procedure. The inter-
calibration factors, c, for both methods in data and simulation were compared over
the full region of phase-space covered by the calibration. The methods were found to
be consistent within the (correlated) statistical uncertainty. A representative sample of
the comparisons is shown in Figure 5.2. The matrix method was used to provide the
nominal calibration due to its increased statistical precision.

Comparison of data and simulation

The relative pT response as a function of ηdet is shown in Figure 5.3 for data and two
MC event generators, Powheg+Pythia8 and Sherpa2.2.1, across a representative
range of pavg

T . For |ηdet| > 1.2 there is a consistent disagreement between the relative
calorimeter response of data and MC of between 2% and 5%. Previous studies presented
in Reference [118] have shown this disagreement in the forward region arises from the
energy sampling procedure of the EMEC and HEC. The region 2.0 < |ηdet| < 3.0
region has an additional increase in the relative response measured in data compared
to simulation. This is larger for pavg

T > 55 GeV, corresponding to poor performance
of the HEC relative to the central calorimeter systems for high pT jets. The η inter-
calibration is designed for and intended to correct for features such as these.
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Trigger Combination 99% Efficiency point/ pavg
T [GeV]

HLT_j15_OR_HLT_j15_320eta490 25
HLT_j25_OR_HLT_j25_320eta490 30
HLT_j35_OR_HLT_j35_320eta490 40
HLT_j45_OR_HLT_j45_320eta490 50
HLT_j60_OR_HLT_j60_320eta490 80

HLT_j110_OR_HLT_j110_320eta490 175
HLT_j175_OR_HLT_j175_320eta490 220
HLT_j260_OR_HLT_j260_320eta490 330
HLT_j360_OR_HLT_j360_320eta490 400

Table 5.1: The trigger combinations used to evaluate the η inter-calibration factors for 2015
and 2016 data reordered at the ATLAS detector and their corresponding 99% efficiency in
terms of pavg

T of the two leading jets of selected dijet events.

Data taking year comparisons

The relative response measured in data recorded throughout 2015 and 2016 is presented
in Figure 5.4. The measured calibration factors agree well within their respective sta-
tistical uncertainty, indicating that there is little dependence on the differences in
run conditions across datasets recorded in 2015 and 2016. The pile-up distribution of
recorded events at the LHC is difficult to model and can have a large effect on soft-jets
measured by ATLAS. The JVT requirement applied to jets is used to mitigate the
effects of pile-up and reject jets likely to originate from pile-up. The JVT is discussed
and defined in Section 4.4.4. The pile-up rate increased year-on-year (as discussed in
Section 3.1.1), therefore the impact of pile-up upon the inter-calibration is expected
to increase between years. Comparing data recorded during different run conditions
shows the method is robust to changes in pile-up conditions and run conditions at the
LHC.

Closure of the matrix method

The derived residual calibration factors found using the matrix method were applied
to the dataset used in their derivation, after which the method was repeated and the η
inter-calibration factors, C ′

ik, were evaluated. This procedure is referred to as a closure
test, and evaluates how successfully the calibration corrects the detector response. The
non-closure of the measured calibration, defined as

σclosure
i = 1 − C ′

ik, (5.16)

is shown in Figure 5.5 for two representative bins of pavg
T as a function of ηdet. The

non-closure is found to be significant in the 2 < |ηdet| < 3 region for a broad range of
pavg

T , where the statistical uncertainty of the measured non-closure is evaluated using
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Figure 5.2: The relative pT -response evaluated by the central reference method (hollow
markers) and matrix method (solid markers) for data (black) and simulation (blue) for two
representative regions of phase-space. The lower panel of each plot shows the ratio between
the relative response evaluated for each method.

the bootstrapping procedure described in Section 5.2.6. The non-closure is largest in
the regions with fewest statistics. This is a direct result of the Gaussian smoothing that
weights regions by their associated statistical uncertainty. For the high pavg

T region of
phase-space the non-closure is largest at |ηdet| ∼ 2.6, corresponding exactly to where a
sharp increase in the relative response in data compared to that predicted by simulation
is observed. For the regions |ηdet| < 1.0 and |ηdet| > 3.0 the non-closure is statistically
insignificant, indicating the jets are calibrated to the correct energy scale.

5.2.4 Method bias studies

The observed non-closure seen in Figure 5.5 is most extreme in regions where the
measured inter-calibration factors are large or have a large statistical uncertainty. This
implies that the method fails to calibrate extreme localised differences between the
measured and predicted response. The method was examined by deriving and applying
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Figure 5.3: The relative pT -response evaluated by the matrix method for data (black),
Powheg+Pythia8 (red) and Sherpa (blue) for four representative regions of phase-space.
The lower panel of each plot shows the ratio of the evaluated relative pT -response for data
and simulation.

calibrations using the nominal MC, Powheg+Pythia8, as pseudo-data. The pseudo-
data were biased in the following two controlled ways:

• Injected localised bias: Jet pT in the region −1.8 < η < −1.5 were biased by
a factor sbias = 10%, such that pT → sbias · pT .

• Stress test: Jet pT in the region |η| > 1.0 were biases by a factor sbias = 6%,
such that pT → sbias · pT

The biased pseudo-data were calibrated and the closure, as defined above, examined.
The stress test corresponds to a constant shift in energy scale, similar to what is ob-
served in the data-simulation comparisons in the forward region. The method captured
the bias introduced in the stress test, as shown in Figure 5.6. The ratio between the
measured relative response before and after calibration corresponds to 1 + σclosure. A
small residual non-closure compatible with the statistical uncertainty of the method is
found after inter-calibration has been applied.

An extreme localised bias of 6% leaves a significant residual non-closure, shown
before and after calibration in Figure 5.7. The ηdet bins adjacent to the biased bin
−1.8 < ηdet < −1.5 have a significant non-closure; this originates from the smoothing
procedure used to derive the residual calibration. The kernel width is much broader
than the biased region. Furthermore each bin has approximately equal statistical un-
certainty. The smoothing therefore distributes the increased response to adjacent bins.
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Figure 5.4: The relative response measured using the matrix method for data recorded in
2015 (hollow) and the 2016 (solid) datasets for representative pavg

T (left) and ηdet (right) bins.
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Figure 5.5: The remaining non-closure, defined in Equation 5.16, of the 2016 measured η

inter-calibration as a function of ηdet in two representative pavg
T bins for anti-kt jets calibrated

to the EM+JES scale.

In the un-biased cases this is desired behaviour, and produces an η inter-calibration
that smoothly varies as function of η and pavg

T whilst capturing changes in response.
However, the smoothing procedure breaks down for localised biases of this size.

5.2.5 Iterative calibration

In order to remove the residual non-closure presented in Figure 5.5, the η inter-
calibration procedure was extended to a novel n-step iterative method. An initial set of
residual inter-calibration factors, C0, and corresponding residual calibration F rel

0 were
found. A secondary set of inter-calibration factors, C1, and residual calibrations, F rel

1 ,
were derived from data calibrated to EM+JES scale with the F rel

0 inter-calibration ap-
plied. The inter-calibration procedure can then proceed iteratively, until N calibration
factors have been evaluated for each bin. The residual calibrations were derived from
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Figure 5.6: The relative response, 1/c, of pseudo-data before (hollow circles) and after
calibration (black) for an injected stress of 6% in the region |η| ≥ 1.0 for the 25 ≤ pavg

T <

40 GeV (left) and 85 ≤ pavg
T < 115 GeV (right). The predicted relative response of the

Powheg+Pythia8 event generator is shown (blue), as is the ratio of the calibrated and
uncalibrated pseudo-data to un-biased simulation (lower panel). This ratio corresponds to
1 + σclosure.

calibration factors Cn, where n denotes the iteration step. The total inter-calibration
factor in a given bin corresponds to

Ctot = C0

N∏
i=1

Ci, (5.17)

where N is the total number of steps in the procedure. For an iterative calibration
procedure the convergence requirement

1 ≤ |cn| < |cn+1| ∀ cn ∈ Cn, cn+1 ∈ Cn+1 (5.18)

must be satisfied. The closure for step M corresponds to the set of inter-calibration
factors for step M + 1 of the iterative inter-calibration procedure. Figure 5.8 shows
the closure of an iterative inter-calibration procedure with N = 2 and N = 6 steps in
the lowest pavg

T bins accessible to the method. In the region 2 < |ηdet| < 3 the inter-
calibration diverges and Equation 5.18 is not satisfied. Therefore, repeated applications
of the procedure do not resolve the observed non-closure. Secondary to this, each sub-
sequent inter-calibration has decreasing statistical precision as jets migrate outside of
the calibration selection. This is visible in the increased statistical uncertainty of the
N = 6 calibration compared to N = 2. An iterative η inter-calibration procedure
therefore cannot be used to remove the observed non-closure.

5.2.6 Systematic uncertainties

Three sources of uncertainties affecting the derived η inter-calibration factor were con-
sidered:

• Modelling: Differences in the predicted relative response by the different MC
generators Sherpa and Powheg+Pythia8.
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Figure 5.7: The relative response, 1/c, of pseudo-data before (hollow circles) and after
calibration (black) for an injected bias in the region −1.8 < ηdet < −1.6 for the 85 ≤ pavg

T <

115 GeV bin (top left) and the −1.8 < ηdet < −1.5 (top right), −1.5 < ηdet < −1.2 (bottom
left), and −2.1 < ηdet < −1.8 (bottom right) bins. The predicted relative response of the
Powheg+Pythia8 event generator is shown (blue), as is the ratio of the calibrated and
uncalibrated pseudo-data to un-biased simulation (lower panel). This ratio corresponds to
1 + σclosure.

• Dijet topology requirements: The event selection criteria were changed and
the corresponding shift on the measured η inter-calibration evaluated.

• Closure: Non-closure, σclosure, larger than the statistical uncertainty was eval-
uated and considered an additional source of uncertainty. Whilst this was found
to be related to the smoothing applied, a smoothly varying inter-calibration was
deemed more relevant for physics analyses than the observed small residual non-
closure.

Uncertainties are smoothed and transformed in the same manner as the residual
calibration itself, F res, into a function of individual jet pT and ηdet. The smoothed
uncertainty on the residual calibration is shown in Figure 5.9 in four representative
regions of phase-space.

The following event selection requirements were changed in turn: the JVT require-
ment was tightened to the calibrated working point JVT > 0.94; The ∆φ(j1, j2) re-
quirement was varied by ±0.3 around the nominal value of 2.5; and the requirement
on the fractional third jet momentum, f third

frac , was varied by ±0.1 about its nominal
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value of 0.4. The uncertainty associated with the JVT requirement was symmetrised
to provide upward and downward uncertainties.

The statistical significance of the uncertainties related to the dijet topology require-
ment was evaluated using a bootstrapping procedure. Whereby, the original population
of simulated and data events are re-sampled to generate pseudo-experiments in the
following procedure:

1. For each MC and data event draw a random number from a Poisson distribution
with a mean of unity.

2. Evaluate the nominal η inter-calibration factors, c′ nominal
i for bin i, with this re-

weighting applied to both simulation and data. The re-weighted MC and data
samples are considered a pseudo-experiment. The ′ denotes a pseudo-experiment.

3. Using the same event weights defined in step 1, construct the η inter-calibration,
c′ syst

i for bin i, selected with a systematically varied event selection criteria.

4. Evaluate the size of the systematic uncertainty for this pseudo-experiment, σ,
which for bin i is

σsyst
i = c′ nominal

i − c′ syst
i . (5.19)

5. Repeat Steps 1-4 Ntoys = 900 times. For each bin i evaluate the mean and root
mean square of the evaluated uncertainty for each pseudo-experiment, 〈σi〉 and
RMS(σi) respectively. The evaluated uncertainty for a given systematic is then
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Figure 5.9: The total systematic uncertainty of the residual η inter-calibration as a function
of ηdet (top), the jet η with respect to the geometric centre of the detector, and jet pT (bottom)
for EM+JES calibrated jets in four representative slices of phase-space.

taken as 〈σi〉±RMS(σi), where RMS(σi) is considered the statistical uncertainty
of the evaluated systematic uncertainty.

A systematic uncertainty is considered to be statistically significant if RMS(σi) '
〈σi〉. The five event-selection motivated systematics were evaluated using the boot-
strapping procedure outlined above, for the majority of phase-space these were found
to be statistically insignificant. A conservative approach of taking the envelope of these
systematic uncertainties was used, whereby the largest of all statistically insignificant
uncertainties was taken for each point in phase-space.

The modelling uncertainty is the dominant source of uncertainty in the method.
For the Run 1 η inter-calibration measurement the modelling uncertainty was O(10%);
advances in event generators since 2012, specifically NLO implementations of a dijet
system in pp collisions, have resulted in better agreement between predictions and an
associated uncertainty. The non-closure of the method is a sub-dominant uncertainty,
largest in the studied region of 2.0 < |η| < 3.0.

5.2.7 Residual η inter-calibration

The smoothed residual η inter-calibration factors are shown in Figure 5.10. For the
majority of phase-space the inter-calibration corresponds to a lowering of the energy
scale of the measured jets in the forward region. The calibration is largest in the forward
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Figure 5.10: Residual η inter-calibration factors as a function of ηdet, the jet η with respect
to the geometric centre of the detector, for EM+JES calibrated jets for two representative
pavg

T bins 25 ≤ pavg
T < 40 GeV (left) and 85 ≤ pavg

T < 115 GeV (right). The smoothed residual
calibration (black) is shown with the smoothed statistical (blue) and systematic (green)
uncertainties.

region of the detector, where the dijet system is least well understood, as reflected by
the systematic uncertainties. Furthermore, the smoothing is found to capture the large
changes in measured calibration across the range 2.0 < |η| < 3.0.

5.3 Conclusion

The calibration of data recorded during 2015 and 2016 has been presented and dis-
cussed. This calibration of forward jets is vital to physics efforts within the ATLAS
collaboration, as well as the work presented in later sections of this thesis that utilise
radius R = 0.4 jets. The measured calibration was found to be stable over differing run
conditions of the LHC. Future studies can therefore combine the datasets from these
periods to achieve higher statistical precision than the measured calibration presented
here. New methods and understanding of the behaviour of this calibration have been
presented. A bootstrapping procedure was introduced to estimate the statistical sig-
nificance of systematic uncertainties and ultimately reduce the total uncertainty of the
method. The uncertainty due to modelling of the dijet system, whilst lower than in pre-
vious measurements, was found to be the dominant source of uncertainty. Non-closure
of the method has been identified, reduced and controlled for through modification of
the procedure. Furthermore, potential methods of reducing the non-closure through an
iterative calibration have been explored.
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Analytic methods of understanding jet substructure provide an alternative to the ex-
tensive Monte Carlo event generator studies typically performed by experimental col-
laborations [119]. In recent years the analytic understanding of jet substructure has
progressed substantially, with a focus on investigating the discrimination power of
jet substructure between heavy-particle decays and jets initiated by light QCD par-
tons [120, 121]. Fixed order calculations are limited in the domain of jet substructure.
Instead, all-order calculation is required to accurately describe variables sensitive to
perturbative QCD in the highly boosted regime. Furthermore, analytic techniques have
been used to propose powerful new methods of removing soft contamination from jets,
such as the mMDT/Soft-Drop algorithms [121, 122].

The discrimination of hadronically decaying top quarks from a QCD jet background
is referred to as top tagging. Large-R jets are often used in boosted topologies. A jet
is considered to be “large” if its radius parameter R & 0.8. In the case of a boosted
top quark decaying hadronically, large-R jets typically form a 3-prong jet. Experimen-
tal collaborations utilise a suite of different top tagging algorithms. So-called simple
tagging algorithms utilise requirements on jet kinematics and variables sensitive to the
substructure of a jet [123, 124], whereas more complicated algorithms utilise machine
learning methods. However, all tagging methods used in physics measurements and
searches rely on two ideas: the discrimination power of the jet mass, and identification
of multi-prong substructure within a jet.

Two top tagging methods that lend themselves to analytic methods will be discussed
in Section 6.1. In Section 6.2 a leading order in αs calculation of the jet mass after
the application of these top taggers is explored, and then generalised to an all-order
calculation. Finally the behaviour of top jets is examined in Section 6.3 and a novel
understanding of top tagging performance through analytically calculated ROC curves
is presented in Section 6.4.

6.1 Top tagging algorithms

Whilst a large range of top tagging algorithms exist and have been studied with Monte
Carlo based methods, none have been examined using analytics. As such, an existing
experimental algorithm was explored and adapted, along with a new method motivated
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by phenomenological studies. The CMS collaboration’s historic tagging algorithm, the
CMS tagger, was studied and understood. It was found to be collinear unsafe at order
O(α3

s). The collinear unsafety of the tagging algorithm prevented a detailed analytic
understanding of the procedure and raises concerns about the general behaviour of the
tagger. An IRC safe extension of the CMS tagger, TopSplitter, was proposed and
studied in detail. Furthermore, the Y-splitter tagger is extended to the Ym splitter top
tagging algorithm. Extending the two prong case of heavy boson tagging to the three
prong boosted top tagging.

6.1.1 The Ym splitter top tagging algorithm

The Y-splitter tagger was introduced as a method of identifying the two-prong structure
of a jet for W/Z/Higgs identification [120]. The algorithm reclusters an initial jet using
the kt clustering algorithm, and the kt clustering history is examined. Subjets are
evaluated by decomposing the initial jet according to its kt clustering history. The kt

splitting distance, dp=1
ij = min(p2p

T,i, p
2p
T,j)∆R2

ij, of the decomposed subjets i and j from
the clustering history have a requirement imposed, such that dij ∼ m2

W for the first
declustered set of subjets. The parameter p of the clustering algorithm is unity for
the kt clustering algorithm, as discussed in Section 2.2.6. For Y splitter tagging, the
splitting distance is normalised to mass and the y variable is required to meet the
condition:

y = dij

mij

> ycut. (6.1)

Extending Y-splitter to the case of three prongs presents the immediate problem of
selecting a third prong in an IRC safe manner with high signal to background selection
efficiency. Top jets have two characteristic mass scales: that of the electroweak W

boson and that of the top quark itself. This implies that the jet mass and pairwise
subjet mass is an important property in top tagging. Motivated by this fact, the initial
reclustering of a jet was performed with the general kt clustering algorithm, taking a
distance metric that corresponds to the mass of two subjets in the soft and collinear
limit. The distance metric dij in Equation 2.25 was used with p = 1/2, instead of the
kt distance metric used in Y-splitter which corresponds to p = 1. This algorithm is
referred to as Ym splitter due to this mass based distance metric.

The Ym splitter top tagging algorithm proceeds as follows:

1. Recluster an initial jet with the general kt algorithm, p = 1/2.

2. Primary decomposition: Evaluate two subjets by undoing the last step of
clustering. Require each subjets to satisfy the requirement

psubjet
T > ζcutp

jet
T . (6.2)

If either subjet fails the ζcut requirement reject the jet.
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3. Secondary decomposition: Decluster both subjets obtained from primary de-
composition. The primary subjet with smallest general kt (p = 1/2) distance
between its constituent subjets is retained unaltered. The subjet with the larger
distance is decomposed, and the ζcut imposed on both resultant subjets. After
secondary decomposition exactly three subjets are yielded: An unaltered subjet
from primary decomposition, and two secondary subjets that pass Equation 6.2.

4. Impose a minimum pairwise mass condition on the three subjets, 1, 2, 3, such
that

min(m12,m13,m23) > mmin , (6.3)

where mmin . mW . The minimum pairwise mass is expected to be comparable
to the W boson mass, mW , therefore jets failing this requirement are rejected.

6.1.2 The CMS tagger

The historic CMS tagger is a modification of the John Hopkins Tagger [125], and
classifies jets as follows:

1. Recluster the initial anti-kt jet with the Cambridge/Aachen algorithm.

2. Primary decomposition: Evaluate two subjets by undoing the last step of
the clustering. Require the declustered subjets to individually satisfy the ζcut

requirement given in Equation 6.2. Should both primary subjets fail, reject the
jet. If only one subjet passes the requirement, repeat the declustering upon the
subjet that passed the requirement until two subjets that satisfy Equation 6.2
have been declustetred. If no subjets that pass the ζcut condition can be found,
reject the jet.

3. Secondary decomposition: Repeat the primary decomposition procedure
upon each of the two evaluated subjets from the primary decomposition, with
the original jet pT used in Equation 6.2. If the secondary decomposition of a
subjet fails, and either one or neither of the jets pass the ζcut requirement, then
the original primary subjet is retained. This results in two, three or four subjets
being evaluated. Jets are required to have at least three subjets, otherwise they
are rejected. The removal of a subjet at this stage can be considered to be a
type of jet grooming, as soft constituents that are likely to be soft radiation are
discarded based on their kinematics.

4. The three highest pT subjets are selected, and the minimum pairwise mass of
these subjets evaluated. The mmin requirement in Equation 6.3 is then imposed.
The parameter mmin is typically taken as 50 GeV.
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5. Two versions of the CMS tagger have been proposed in References [126] and
[127]. In the most recent version, an additional requirement was imposed on the
decompositions of a subjet into subjets i and j:

∆Rij > 0.4 − Apsubjet
T , (6.4)

where ∆Rij is the angular separation between decomposed subjets i and j. The
default value of A is 0.0004 GeV.

The original version of the CMS tagger is collinear unsafe. The unsafety arises from
the selection of the three hardest out of a possible four subjets, whereby a collinear
splitting would change the pT ordering of these subjets and would render the algorithm
unsafe. The introduction of an angular requirement in Equation 6.4 mitigates this
unsafety at low-pT. However for jets with pT/A > 0.4 the issue remains.

6.1.3 The TopSplitter tagging algorithm

To study the CMS tagger with perturbative QCD calculations, an IRC algorithm is
required. The TopSplitter algorithm is a modification of the CMS tagger, such that
three subjets are chosen after secondary decomposition in an IRC safe manner.

When considering the hadronic decay of a top quark, the splitting with largest mass
is the t → Wb. An ideal algorithm would identify this splitting. As the CMS tagger
uses the angular ordered CA clustering history, the most massive splitting is not readily
identifiable. TopSplitter produces a secondary decompositions with the most massive
splitting as one subjet, and explores the CA clustering history in order to do this.

How the TopSplitter algorithm identifies the most massive splitting can be un-
derstood by considering the decomposition of primary subjets A and B. A and B are
the result of the primary decomposition. The clustering history of a primary subjet
can be thought of as tree, where each recombination constitutes a branch in the tree.
The CA tree of a primary subjet is recursed through, choosing the hardest subjet at
each recursion step. Any subjets that fail the ζcut requirement during recursion are
removed. The splitting with the largest pT,jθj is identified as A′, where j is the index
of CA tree recursion, pT,j is the transverse momentum of the softest subjet at splitting
j, and θj the angular separation of the two branches at splitting j in the CA tree. All
of the softer subjets that pass the ζcut requirement at each splitting are recombined to
produce A′′. Figure 6.1 illustrates the recursion performed at secondary decomposition
in the TopSplitter tagging algorithm. Finally, the primary subjet with the less mas-
sive secondary decomposition is retained and the more massive decomposed using the
recursive procedure described above, resulting in exactly three subjets.

The recursion introduces a grooming on each subjet, which has a similar behaviour
as previous recursive grooming methods such as SoftDrop/mMDT. Furthermore, the
structure of the algorithm lends itself to all order calculation.
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Figure 6.1: An illustration of the results of secondary decomposition of the TopSplitter

algorithm, in three cases of differing pT orderings of the subjets. The nodes correspond to
splittings in the Cambridge Aachen clustering history, ordered such that θ0 > θ1 > θ2, and
the labelled branches correspond to the softer subjet at each splitting. The red and blue
dashed circles correspond to evaluated subjets, where the colour matched lines correspond
to the subjet constituents. The CA tree terminates after node 2, and all subjets shown here
pass the ζcut requirement in Equation 6.2.

6.2 The QCD jet background

The action of a tagging algorithm on a background QCD jet can be understood by
direct calculation of the jet mass distribution after application of the algorithm. In the
boosted limit, the jet mass is small compared to the transverse momentum of a jet, pT.
The action of a tagger shall be explored with the boost invariant jet mass, given by

ρ = m2

R2p2
T

, (6.5)

where m is the jet mass and R the radius parameter of the jet clustering algorithm,
taken to be R = 1.0 for these studies. In the boosted limit ρ � 1. The mmin mass
constraint of the top tagging algorithms explored shall be considered as

ρmin = m2
min

R2p2
T

, (6.6)

in the boosted limit ρmin � 1. The ζcut examined was fixed to ζcut = 0.05. This value
was chosen based on current usage of ζcut style requirements in experiment, for example
the ATLAS standard trimming configuration.

6.2.1 Leading order calculation of jet mass

The behaviour of a quark-initiated jet can be understood from perturbative QCD
calculations performed with the eikonal approximation, where partons are considered
massless and radiation is soft and collinear. Two real emissions from the initial hard
parton must be considered in order to produce a three-pronged jet. This can be con-
sidered simply as repeated emissions from a quark with momentum fractions z1 and z2

and angles θ1, θ2 with respect to the parent quark p, respectively. Using the approx-
imation of repeated emissions from a quark implies a strong angular ordering to the
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(1 − z1)p
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⊗
z3p

z2p

Figure 6.2: An illustration of the eikonal strongly ordered limit for a quark initiated jet.
Two emissions from a hard quark with momentum p are produced with fractional momentum
z1 and z2, where the angles emissions are θ1 � θ2 in this limit.

decay, such that θ1 � θ2, and the separation between emissions 1 and 2, θ12 ∼ θ1. The
strongly ordered approximation is shown schematically in Figure 6.2. In this limit the
jet mass is set by the first (larger angle) emission, meaning

ρ = z1(1 − z2)p2
T θ

2
12

R2p2
T

≈ z1θ
2
1 . (6.7)

Similarly, the minimum pairwise mass requirement is imposed against the mass of the
final objects with smallest angular separation, the quark and secondary gluon, ρ23 ≈
z2(1 − z3)θ2

23 ≈ z2θ
2
2. A factor 1/R2 has been ignored in both of these approximations,

as the radius parameter of all clustering algorithms is taken as R = 1.
At leading order, O(α2

s) in the context of this calculation, in the soft-collinear
strongly ordered limit, the action of the CMS tagger upon a quark initiated jet is

1
σ

dσ

dρ
=
(
CFαs

π

)2 ∫ dz1

z1

dz2

z2

dθ2
1

θ2
1

dθ2
2

θ2
Θtagger(z1, z2, θ

2
1, θ

2
2)

ΘCA jet(z1, z2, θ
2
1, θ

2
2)δ(ρ− z1θ

2
1), (6.8)

= 1
ρ

(
CFαs

π

)2 (
ln2 1

ζcut
ln ρ

ρmin
+ ln3ζcut

)
(6.9)

where the actions of the tagger and CA jet clustering are imposed as a set of restrictions
on phase-space in the function

Θtagger(z1, z2, θ
2
1, θ

2
2) = Θ(θ2

1 < θ2
2 < 1)Θ(z1 > ζcut)

×Θ(z2 > ζcut)Θ(z2θ
2
2 > ρmin), (6.10)

ΘCA(z1, z2, θ
2
1, θ

2
2) = Θ(R2 > θ1)Θ(R2 > θ2)Θ(R2 > θ12)

= Θ(R2 > θ1). (6.11)

The Θ(x > a) is the Heaviside step function, which is unity for x > a and zero
otherwise. As is typical in calculations of this manner, the azimuthal angle for both
splittings has been integrated over in Equation 6.8. The jet clustering function, ΘCA,
corresponds to the set of limitations on splittings required such that all splittings are
clustered into one CA jet. The additional clustering requirements of an anti-kt (or
general-kT (p = 1/2)) jet can be imposed with a similar set of restrictions on phase-
space. To clarify the behaviour of the tagging function, these additional jet clustering
requirements are not considered.
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The restrictions on emissions imposed by the TopSplitter tagging algorithm in
this limit are described by the tagging function in Equation 6.10. At this order of
the perturbative calculation there are no differences between the CMS tagger and
TopSplitter. Differences such as the collinear divergence in the CMS tagger enter at
α3

s, NLO in this context. The tagging function, Θtagger, produces large logarithms of
the ζcut and ratio of the mass sale within the jet which are given in Equation 6.9.

In this soft limit the behaviour of a quark and gluon initiated jet differs only by
their associated colour factors, CF and CA respectively. The soft limit can be lifted to
include contributions of hard collinear splittings by taking dz1

z1
→ Pqg(z1)dz1. However,

the utility of this calculation is still limited by the strong angular ordering assumption.
As the electroweak scale and the top quark mass are of similar order, the angular
ordering assumption does not hold for top jets. The relevant background QCD jets are
formed from three hard partons, with no assumption on the parton’s angular ordering.
To examine the action of taggers on these jets, the 1 → 2 AP splitting functions must
be extended to the case of three unordered products - the triple collinear limit.

6.2.2 The triple collinear limit

Consider a massless parton, a, undergoing a splitting process a(p) → a1(p1) + a2(p2) +
a3(p3). The triple collinear limit is approached when the momentum of the three par-
ticles become simultaneously parallel. The momentum of parton ai can be written in
the light cone basis such that

pµ
i = xip

µ + kµ
⊥,i −

k2
⊥,i

xi

nµ

2p · n
, (6.12)

where the collinear direction specified by the parent parton a is denoted by the light-like
longitudinal momentum pµ, xi is the longitudinal momentum fraction of the daughter
parton ai, k⊥,i is the transverse momentum and nµ is an auxiliary light-like vector
which specifies the direction the collinear limit is approached. Specifically k⊥,i · n =
p2 = n2 = 0.

Note that, in this basis ∑i xi 6= 1.0,∑i k⊥,i 6= 0, therefore it useful to further define
the intuitive fractional longitudinal momentum variables zi that have the property∑

i zi = 1.0 as well as key Lorentz invariants of the three body system

zi = xi/
∑

i

xi, (6.13)

sij = (pi + pj)2 = 2pi · pj = zizjθij, (6.14)

sijk = (pi + pj + pk)2 = sij + sik + sjk. (6.15)

The invariants sij and sijk describe the invariant mass carried by partons i, j and the
total three parton system, respectively.

The 1 → 3 splitting functions describe the probability of a parton a, undergoing
a splitting process a → a1 + a2 + a3 in the triple collinear limit, just as the AP
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splitting functions describe the probability of a parton undergoing the splitting process
a → a1 + a2. The Abelian C2

F term for the spin-averaged term of the triple-collinear
splitting functions is given by

〈P̂ (ab)
g1g2q3〉 = C2

F [ s2
123

2s13s23
z3

(
1 + z2

3
z1z2

)
− s23

s13

+ s123

s13

(
z3(1 − z1) + (1 − z2)3

z1z2

)
] + (1 ↔ 2) .

(6.16)

The full set of spin averaged splitting functions, including the remaining CFTR and
CFCA terms for the total quark splitting function P̂q→xxq, can be found in Refer-
ences [128–130]. The details of the functional form of each splitting function is not of
interest, therefore it shall not be given or discussed further.

The phase-space in the triple-collinear limit can be written in terms of the angular
separation and fractional longitudinal momentum of partons, θij and zi respectively,
as

dΦ3 = (ptR)4

π
(z1z2z3) dz2 dz3 dθ

2
12 dθ

2
23 dθ

2
13∆−1/2Θ (∆) , (6.17)

with the Gram determinant ∆ given by [131, 132]

∆ = 4θ2
13θ

2
23 − (θ2

12 − θ2
13 − θ2

23)2. (6.18)

Again, the azimuthal degrees of freedom in emissions have been integrated over when
defining this phase-space factor.

The leading order calculation of the jet mass in the eikonal strongly ordered limit,
given in Equation 6.8, can now be extended as(

1
σ

dσ

dρ

)LO,triple−collinear

=
∫
dΦ3

αs(kt1)αs(kt2)
(2π)2

〈P̂ 〉
s2

123
ΘjetΘtagger

· δ
(
ρ− s123

R2p2
t

)
,

(6.19)

where the arguments of the jet and tagger functions, Θjet and Θtagger, have been sup-
pressed for clarity. The running of the strong coupling constant has also been accounted
for, and each branching is evaluated at the appropriate energy scales of the two leading
partons in an event kt1 and kt2.

The restrictions on phase-space imposed by the tagging algorithms and jet finding
can now be clarified in the triple collinear limit as

Θjet (ζcut, ρmin) =
∑

i>j 6=k

Θ
(
danti-kt

ij < min(danti-kT
ik , danti-kt

jk )
)

×Θ(θij < R)Θ(θ(i+j)k < R),
(6.20)

and
Θtagger (ζcut, ρmin) =

∑
i>j 6=k

Θ
(
d

(tagger)
ij < min(d(tagger)

ik , d
(tagger)
jk )

)
× Θ (min(zk, 1 − zk) > ζcut)

× Θ (min(zi, zj) > ζcut)

× Θ (min(ρij, ρjk, ρki) > ρmin) ,

(6.21)
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where the mass of two emissions i and j is given by ρij = zizjθij, and the dis-
tance metrics, dij, for the jet function and jet clustering terms in the Ym splitter and
TopSplitter tagging functions are

dTopSplitter
ij = θ2

ij, (6.22)

dYm splitter
ij = min(zi, zj)θ2

ij, (6.23)

danti-kt
ij = min(z−2

i , z−2
j )θ2

ij, (6.24)

At this order of perturbation theory, the reclustering requirements can be neglected
and the action of the tagging function simplified as

Θtagger (ζcut, ρmin) = Θ (min(z1, z2, z3) > ζcut) Θ (min(ρ12, ρ13, ρ23) > ρmin) ,

(6.25)

which is the same for the TopSplitter and Ym splitter taggers.

6.2.3 All order calculations

The jet mass distributions described thus far are accurate to fixed order α2
s. The natural

extension to this description is to perform a resummation of the many soft emissions
from the hard partons described at fixed order. This subsection shall briefly define and
discuss the tools needed to perform the resummed calculation, and then discuss the
resummed jet mass distribution itself.

It is well known that a fixed order description of a generic variable sensitive to radia-
tive effects, say J , does not capture the small J behaviour accurately. To describe such
an observable, the perturbative series must be re-ordered in terms of αn

s lnm 1
J where

n < m ≤ 2n. A re-ordering of the perturbative series corresponds to consideration of
infinitely many real and virtual emissions. Observing a given value of J imposes restric-
tions on the phase-space of real emissions, whilst leaving virtual emissions unrestricted.
The infinitely many emissions are resummed and generate the logarithmic terms, which
arise from the inexact cancellations between the real and virtual emissions.

The cumulant (also known as integrated cross-section), Σ, for a generic jet shape
observable, J , after all order resummation of soft real and virtual contributions corre-
sponds to an exponential Sudakov form factor multiplied by a fixed order cross-section
pre-factor. For a generic hard process, this can be expressed as [26, 133]

Σ(J ) =
∫ J

0
dJ ′ dσ

dJ ′ (6.26)

=
[ ∞∑

i=0

(
αs

2π

)i

Ai

]
exp [Lg1(αsL) + g2(αsL) + αsg3(αsL) + ....] +B(α,J ),

(6.27)

where L = ln 1
J . The pre-factor, given as series expansion in αi

s and Ai coefficients,
corresponds to the cross-section of the hard-scatter process at fixed order i in αs. The
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exponential term is known as the Sudakov form factor, and can be interpreted as the
probability for a decay resulting in the observable taking the value J not occurring. The
exponentiated series of terms are ordered by their relative size. The function Lg1(αsL)
contains all leading logarithmic (LL) contributions of the form αn

sL
n+1, where n is the

order of the perturbative expansion in αS required to describe the generic hard process.
The so-called B factors vanish in the limit J → 0, and correspond to a series of power
correction terms to the cumulant.

The Sudakov form factor, S, is typically expressed in terms of the exponentiated
series as

S = exp [Lg1(αsL) + g2(αsL) + αsg3(αsL) + ....] ,

≈ exp [−R(Lg1(αSL)] , (6.28)

where the truncated series of large logarithmic terms, R, is known as the radiator,
truncated here to LL accuracy.

The jet mass distribution for the tagging algorithms discussed can now be calcu-
lated in the strongly ordered limit at O(α2

s) + LL accuracy. Starting at the jet mass
distribution in the strongly ordered limit given by Equation 6.8, consider the addition
of many soft emissions from the hard parton as

1
σ

dσ

dρ
=
∫ (

CRαs

π

)2 dz1

z1

dθ2
1

θ2
1

dz2

z2

dθ2
2

θ2
2
δ(ρ− z1θ

2
1)ΘjetΘtagger

∞∑
k′=0

k′! ×

 1
k′

k′∏
i=1

CRαs

π

dθ′2
i

θ′2
i

dzi
i

z2
i

[
Θreal

i − 1
]

Θ(θi
i > θ′

i+1)
 (6.29)

1
σ

dσ

dρ
=
∫ (

CRαs

π

)2 dz1

z1

dθ2
1

θ2
1

dz2

z2

dθ2
2

θ2
2
δ(ρ− z1θ

2
1)ΘjetΘtagger

× exp
[
−
∫ CRαs

π

dz

z

dθ2

θ2 Θvetoes
]
. (6.30)

Here, the allowed phase-space for real emissions, i, is given by Θreal
i . The allowed phase-

space of real emissions is defined by the tagging algorithm and imposition that the jet
mass takes the value ρ = zθ1. This shall be discussed in more detail in the next section
where the radiators are calculated. Angular ordering of emissions is imposed by Θ(θi

i >

θ′
i+1). The factor −1 in the

[
Θreal

i − 1
]

term corresponds to the cancellation of virtual
contributions with real emissions. Virtual emissions are allowed across all of phase
space, and therefore contribute as a constant term in the integral dθidzi. However, the
phase-space in which a real emission is allowed is restricted by the tagging algorithm,
and by angular ordering. For the exponentiation given in Equation 6.30 to occur, the
soft emission dependent terms

[
Θreal

i − 1
]

must factorise across all emissions i. Such a
factorisation is non-trivial in general. At LL accuracy, this factorisation can be achieved
by taking

[
Θreal

i − 1
]

→ Θvetoes. Here, Θvetoes describes the restrictions on phase-space
imposed by the tagger, as opposed to the allowed regions of phase space described by
Θreal. It can be shown very generally that the bottom line of Equation 6.29 corresponds
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6. Top tagging 6.2. The QCD jet background

to the exponential Sudakov form factor at LL accuracy discussed in Equation 6.27 [26,
133]. The second line of Equation 6.30 corresponds to the resummation of all soft
radiation from the primary hard parton for a given tagger at LL accuracy, and implicitly
defines the radiator as

R =
∫ dz

z

∫ dθ

θ

αs(zθE)
π

Θvetoes. (6.31)

In order to achieve LL accuracy, the running of αs is calculated to one-loop accuracy
for emissions at an energy scale zθE, where E is the energy of the radiating parton.

As stressed previously, QCD jets formed from three hard partons with no assump-
tions placed upon their ordering are the subject of study in this Chapter. This is
equivalent to treating logarithms of ζcut, ρ and ρmin /ρ on equal footing, and can be
achieved by increasing the accuracy of the pre-factor of the Sudakov in Equation 6.30,
moving from the strongly ordered limit to the triple collinear limit as

1
σ

dσ

dρ
=
∫ αs(kt,1)αs(kt,2)

(2π)2 dΦ3
〈P̂1→3〉
s2

123
ΘjetΘtagger

· δ
(
ρ− s123

R2p2
t

)
· exp [−Rtagger(ρ1, ρ2, θ)] .

(6.32)

The jet mass radiator for a given tagger is Rtagger(ρ1, ρ2, θ), where the parameters shall
be defined in detail in the next section. Equation 6.30 introduced radiation from the
primary parton, however radiation from the sub-leading hard parton in a QCD jet must
also be considered. This corresponds to an additional radiator term in the Sudakov form
factor, which shall be evaluated in the next section explicitly.

The triple-collinear calculation that forms the pre-factor of the Sudakov in Equa-
tion 6.32 is calculated to higher accuracy than the radiator. A matching must be
performed so that at order α2

s the jet mass distribution uses the full triple-collinear
splitting function, while beyond α2

s all large LL terms are retained. The parameters of
the radiator, ρ1, ρ2 and θ, shall be defined separately for each tagging algorithm. It is
most convenient to define the parameters at the same time as describing the match-
ing of the Sudakov form factor and the pre-factor, this is detailed in Sections 6.2.4
and 6.2.5. The resummation completes the description of the jet mass under the action
of a tagger to the accuracy of O(α2

s) + LL.

6.2.4 The Ym splitter radiator

The Ym splitter radiator at LL shall first be calculated with a pre-factor in the strongly
ordered limit, as described by Equation 6.30, and then matched to the full triple-
collinear limit pre-factor. The radiator can be understood by considering two soft emis-
sions k1 and k2 from a hard quark. Let xi and θi be the momentum fraction and angle
of emission of ki with respect to the hard parton. The strong angular ordering of this
limit means that θ1 � θ2 is satisfied by construction. At leading logarithmic accuracy
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6.2. The QCD jet background 6. Top tagging

strong ordering in mass (or equivalently general kT (p = 1/2) distance) can be assumed.
The jet mass is set by the first emission meaning ρ ≈ ρ1, where ρ1 ≈ x1θ

2 � ρ2 = x2θ
2
2.

By construction, k1 and k2 are the emissions obtained by the declustering procedure
of the Ym splitter algorithm. Due to the mass ordering of the emissions, k1 and k2

are also the emissions that dominate the pairwise masses entering the ρmin condition.
Therefore, all tagger constraints are fully determined by declustering partons k1 and
k2 which produce the leading-order pre-factor in Equation 6.30.

To calculate the radiator directly, the form of Θvetoes must be understood. Consider
many soft emissions ordered in mass, or equivalently in the soft limit the general kT

(p = 1/2) distance zθ2. First consider the soft emissions from the primary (initial) hard
parton, described by momentum fraction z and angle θ with respect to the primary
parton. For the pre-factor to match the Sudakov, the many soft emissions must not
dominate the mass of the jet or the declustered subjet. Therefore, soft emissions with
zθ2 > ρ2 are vetoed.

Now consider soft emissions from the secondary splitting, k1, with momentum frac-
tion z and angle θ with respect to the k1 splitting. Soft emissions must be required to
not set the mass of the jet or the decomposed subjets evaluated by the tagging algo-
rithm. The momentum fraction with respect to the primary parton is x1z. Therefore
emissions with x1zθ

2 > ρ2 are vetoed. Furthermore, soft emissions are required to be
emitted at angle less than θ1 due to angular ordering. Figures 6.3a and 6.3b show the
effect of these vetoes on the allowed kinematics of real emissions in the Lund plane.

The Sudakov form factors calculated at LL accuracy for the Ym splitter tagging
algorithm are given by the exponentiation of the following radiators

RYmsplitter(ρ1, ρ2, θ1) = Rprimary
Ymsplitter(ρ1, ρ2, θ1) +Rsecondary

Ymsplitter(ρ1, ρ2, θ1)

Rprimary
Ymsplitter(ρ1, ρ2, θ1) =

∫ dθ2

θ2
dz

z

αs(zθpTR)CR

π
Θ(zθ2 > ρ2)

Rsecondary
Ymsplitter(ρ1, ρ2, θ1) =

∫ dθ2

θ2
dz

z

αs(zθx1pTR)CR

π
Θ(zx1θ

2 > ρ2)Θ(θ2 < θ1),

(6.33)

where the first term, Rprimary
Ym splitter, corresponds to restrictions on real emissions from the

primary hard parton, and the second term, Rsecondary
Ym splitter, arises from restrictions on real

emissions from the first splitting of this hard parton.

Matching the Sudkaov to the triple-collinear limit

The Sudakov form factors must be matched to the triple-collinear limit at αs, such
that a consistent picture of the jet mass distribution is described. Consider the three
final state partons after a 1 → 3 splitting process p1, p2 and p3. For the scenario where
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(a) Emissions from primary parton for configuration
ρ ∼ ρ1 � ρ2.
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Figure 6.3: The Lund planes for emissions from a primary parton and the first hardest
splitting under the action of the Ym splitter tagging algorithm. The black points in Figure 6.3a
illustrate the kinematics of the hardest emissions k1 and k2. Both emissions satisfy the ζcut

condition shown in the green dashed line. The blue line represents the boundary of zθ2 = ρmin,
and the dashed green line depicts z = ζcut. The black dashed line in Figure 6.3b represents
the boundary for which θ < θ1, a requirement imposed on emissions due to angular ordering.
The red shaded region corresponds to regions of phase-space which are vetoed by the tagging
algorithm.

p1 is declustered with the prong (p2, p3), the matched variables are given by

θ1 = θ1(2+3), θ2 = θ23, (6.34)

ρ1 = min(z1, 1 − z1)θ2
1, ρ2 = min(z2, z3)θ2

2, (6.35)

kt1 = min(z1, 1 − z1)θ1ptR kt2 = min(z2, z3)θ2ptR, (6.36)

x1 ≡ ρ1/θ
2
1 = min(z1, 1 − z1). (6.37)

Note that all permutations of declustering are considered when calculating the jet mass
distribution. The above set of definitions defines one of three possible combinations to
illustrate the matched variables across regions of different accuracy within the calcu-
lation. The matching procedure can be shown to reduce to the correct leading order
description of the jet mass distribution, when the pre-factor is calculated in the strongly
ordered limit.

6.2.5 The TopSplitter radiator

The radiator of the TopSplitter tagging algorithm can be evaluated in the same man-
ner. Starting again in soft strongly ordered limit described by Equation 6.30, consider
the situation where emission k1 is declustered first, followed by the declustering of p and
k2 separately. Again, let xi and θi be the fractional longitudinal momentum and angle
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of emission ki with respect to hard parton p. To satisfy TopSplitter xi > ζcut, then
by definition the k2 emission dominates the mass of prong such that ρ ≈ rho2 = x2θ

2
2.

Now consider many soft emissions off of the primary (initial) hard parton p. To
avoid double counting in the radiator and pre-factor, all emissions with a mass larger
than ρ ∼ ρ2 must be vetoed, i.e zθ2 > ρ2. Emissions at angles larger than θ2 but
with z < ζcut are removed by the secondary decomposition stage of the TopSplitter

algorithm. Emissions at angles smaller than θ2 by definition cannot dominate the mass
of prong, therefore the requirement zθ2 > ρ2 is only active when z > ζcut. Emissions
from the secondary hard prong, k1, must be angular ordered, such that θ < θ1. By the
same arguments as above, emissions with a mass larger than ρ2 and energy fraction
with respect to total jet pT , x1z, larger than ζcu are vetoed. These vetoes are shown in
Figure 6.4.

The total radiator for the TopSplitter algorithm is therefore given by

RTopSplitter(ρ1, ρ2, ζcut) = Rprimary
TopSplitter(ρ2, θ1) +Rprimary

TopSplitter(ρ2, θ1), (6.38)

where

Rprimary
TopSplitter(ρ1, ρ2, ζcut) =

∫ dθ2

θ2
dz

z

αs(zθpTR)CR

π
Θ(z > ζcut)

× Θ(zθ > ρ2 or θ > θ1), (6.39)

Rsecondary
TopSplitter(ρ1, ρ2, ζcut) =

∫ dθ2

θ2
dz

z

αs(zθx1pTR)CR

π
Θ(x1z > ζcut)

Θ(zx2
1θ

2 > ρ2)Θ(θ > θ1). (6.40)

The IRC unsafety of the un-modified CMS tagger prevents an all orders calculation
of the jet mass distribution after application of the CMS tagger. Closed form expressions
for all discussed radiators discussed are given in Reference [2].

Matching the Sudkaov to the triple-collinear limit

As with the Ym splitter tagging algorithm, the radiators are defined in terms of ρ1,
ρ2 and θ1. As long as the correct jet mass distribution in the strongly ordered limit is
recovered, ρ1, ρ2 and θ1 may be defined arbitrarily. As before, consider the three final
state partons after a 1 → 3 splitting process p1, p2 and p3. For the scenario where p1

is declustered with the prong (p2, p3), the matched variables are given by

θ1 = θ1(2+3), θ2 = θ23, (6.41)

ρ1 = z1(1 − z1)θ2
1, ρ2 = z2z3θ

2
2, (6.42)

kt1 = z1(1 − z1)θ1ptR kt2 = z2z3θ2ptR, (6.43)

x1 ≡ ρ1/θ
2
1 = min(z1, 1 − z1). (6.44)

All permutations of declustering are considered when calculating the jet mass distri-
bution.
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Figure 6.4: The Lund planes for emissions from a primary parton and the first hardest
splitting under the action of the TopSplitter tagging algorithm. The black points in Fig-
ure 6.4a illustrate the kinematics of the hardest emissions k1 and k2. Both emissions satisfy
the ζcut condition shown in the green dashed line. The blue line represents the boundary of
zθ2 = ρmin, and the dashed green line depicts z = ζcut in Figure 6.4a and zx1 = ζcut in
Figure 6.4b. The vertical black dashed lines represents the boundary for which θ < θ1, a re-
quirement imposed on emissions due to angular ordering. The red shaded region corresponds
to regions of phase-space which are vetoed by the tagging algorithm.

6.2.6 Results

The master equation for this analysis is Equation 6.30 which cannot be evaluated with a
closed form solution. Instead the Monte Carlo based integration algorithm VEGAS was
used [134]. An even grid of 350 points in ρ space were evaluated with 106 evaluations per
value of ρ, and a warm-up number of 105 sampling points. VEGAS is most performant
across the integration range [0, 1], therefore the variables of integration in Equation 6.30
where transformed to have this numeric range.

Figure 6.5 shows the all order calculation of the jet mass distribution for a quark
initiated jet after application of the Ym splitter or TopSplitter taggers. The back-
ground selection efficiency, εb, of a tagger with fixed mmin parameter for jets in the
mass range m ∈ [mlow,mhigh] is defined as

εb = 1
σ0

∫ mhigh

mlow

(
dσ

dρ

)(
2m
p2

T

)
dm (6.45)

= 1
σ0

∫ mhigh

mlow

(
dσ

dm

)
dm. (6.46)

A mass window is placed around the top quark mass when assessing the selection
efficiency, as is typical in tagging algorithms used in experiment.

The background selection efficiency was also evaluated using the Pythia 8 event
generator. Simulated pp collisions with only the qq̄ → qq̄ matrix element were consid-
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Figure 6.5: The background efficiency, εb, as a function of mmin cut for various taggers cal-
culated analytically (left) and examined through the Monte Carlo event generator Pythia 8
(right).

ered at
√
s = 13 TeV. Only jets with pT > 2 TeV were evaluated. No hadronisation or

under-lying event activity was considered.
Both the ordering of the tagger performance and approximate background rejection

agrees well between Pythia 8 and the analytic calculation. The phenomenological
region of mmin > 50 shows excellent agreement, indicating the strong angular ordering
assumption made within the Pythia 8 parton shower agrees well with the more precise
triple-collinear limit.

6.3 All order calculation of top-tagged jets

The action of a tagging algorithm on the signal jet can be calculated using the same
tools described above. However, instead of the splittings of a massless quark described
by P̂1→3, the decay products of a top quark must be considered as

1
σ

(
dσ

dρ

)LO, signal

=
∫
dΦ3

|Mt→bqq|2

s2
123

ΘjetΘtagger

·δ
(
ρ− s123

R2p2
t

)
· exp

[
−Rsignal

tagger(ρ1, ρ2, θ)
]
,

(6.47)

where the matrix element for a top quark decay, Mt→bqq, is calculated at fixed elec-
troweak coupling with an additional term in the W boson propagators, mtΓt, that
accounts for in flight on-shell decays [135].

Achieving leading logarithmic accuracy of the signal mass distribution is substan-
tially more complicated than for QCD jets. The ordering of the three prongs found by
the taggers’ double declustering procedure will in general involve different combina-
tions of the b and W decay products. Therefore, the matching between soft radiation
and the hard process described by the matrix element is challenging. The non-trivial
combinations of the emission from the W boson and the b quark prevent the system-
atic matching of a Sudakov factor to an arbitrary secondary emission. Additionally,
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Figure 6.6: The signal efficiency, εs, as a function of mmin cut for various taggers calculated
analytically (left) and examined through the Monte Carlo event generator Pythia 8 right).

soft gluon emissions in top productions and decay are well known to complicate the
emission pattern for energies near or below the top width. In the extremely boosted
regime, the dead-cone effect can be neglected, as the effect is relevant at an angular
scale θ � ρ. Instead of a general situation, the signal jet shall be considered in the limit
where ρ2 is always set by the W boson decay. At leading logarithmic accuracy in this
limit, where only soft and collinear radiation is considered, all of these complications
can be neglected.

Radiation of the top quark system can now be considered as originating from a
single fast moving colour line in the jet direction. In this approximation the radiators
for top jets under the application of TopSplitter and Ym splitter are given by the
primary radiators for each tagging algorithm

Rsignal
Ym splitter(ρ2) = Rprimary

Ym splitter, (6.48)

Rsignal
TopSplitter = Rprimary

TopSplitter. (6.49)

Figure 6.6 compares the calculated signal efficiency for a fixed mmin parameter of
the two top tagging algorithms with the Pythia 8 predictions for the same system.
The signal efficiency is calculated in the same manner as the background efficiency,
using Equation 6.46. The agreement between the analytic result and Monte Carlo is
substantially poorer than the equivalent result for quark initiated jets. This is unsur-
prising given the higher accuracy of the quark initiated jet calculation. In particular
soft gluon emissions from the top quark have been neglected in the analytics but are
accounted for by Pythia 8. These emissions are known to have a strong effect on the
radiative properties of the top quark.

6.4 Tagging efficiency

The performance of the tagging algorithms can now be understood with a ROC curve,
relating the background selection efficiency to a given signal selection efficiency. Cru-
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Figure 6.7: The ROC curves from varying the mmin cut for various taggers calculated
analytically (right) and examined through the Monte Carlo event generator Pythia 8 (left).
Figures 6.5 and Figure 6.6 show the input background and signal efficiency curves for the
ROC curves presented here.

cially, this can be done using the analytic calculation for the background. The ROC
curves for the Ym splitter and TopSplitter algorithms, evaluated by varying mmin,
are presented in Figure 6.7, calculated with the analytic results discussed previously
and Pythia 8.

As expected from the poor agreement of the signal efficiency curves in Figure 6.6,
the analytics and MC predictions have broad disagreement over a range of signal effi-
ciencies. This is most evident for the TopSplitter algorithm at high signal efficiency.
The Ym splitter algorithm also has a high signal efficiency disagreement. The general
shape of the ROC curves and relative performance of the algorithms has been captured
by the analytic description.

6.5 Conclusion

A novel approach to understanding top tagging algorithms has been presented and
discussed. This affords a detailed understanding of the radiation of background and
signal jets, which when compared to Monte Carlo highlight the approximations taken
within MC that remain valid for phenomenological interesting regions of tagging pa-
rameters. An extension of the CMS tagger known as TopSplitter has been presented.
Furthermore, the Y splitter tagging algorithm was extended for the case of three prong
decays and a novel approach to the selection of a third prong presented. Ym splitter
was found to have strong tagging performance, better than the analytically motivated
extension to the CMS top tagger, TopSplitter. Extending the methods presented here
to include jet shape variables, such as energy correlation functions, would be an ideal
direction of further study. Furthermore, the discrimination power of gluon initiated jets
was not explored in this study, and as such is an important extension to this body of
work.
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7. Measuring the dead-cone

The radiation pattern of the top quark provides a unique avenue to understand QCD.
The mass of the top quark is non-negligible at the energy scale of proton-proton colli-
sions at the LHC. Therefore, the mass dependence of the radiation pattern of the top
quark can be examined directly from analysis of LHC data. Radiation produced by a
radiator with mass m and momentum p is suppressed for emission angles θd . m/|p|,
leading to the dead-cone effect [136]. The dead-cone is a fundamental prediction of
QCD and other gauge theories, relying only on the behaviour of radiation from mas-
sive particles in the soft and collinear limit.

Recent measurements from the ATLAS collaboration of jet substructure variables [137]
and of colour-flow [138] between jets have tested the structure of partonic splitting
within and between clustered jets. The former found agreement of ∼15% between data
and Monte Carlo, while the latter found much stronger disagreement. It is clear that
our understanding of partonic splitting in the busy hadronic environment produced
in proton-proton collisions at the LHC is incomplete. Further studies of jet multiplic-
ity and behaviour in the tt̄ + 1 jet environment tested the partonic splitting from
heavy quarks in the formation of new jets [139, 140]. The expected jet multiplicity and
kinematics of the system from precision NLO+NLL calculations were also found to
differ substantially from the data. To understand QCD we must investigate more of its
fundamental features, such as the dead-cone.

Rigorous testing of QCD predictions have thus far not yielded a definitive measure-
ment of a dead-cone. Unfortunately, the angular scale of suppression is identical to the
scale of the opening angle between decay products of a radiator, typically resulting in
the dead-cone being filled by FSR from daughter particles. This has limited the inter-
pretation of direct probes of the dead-cone using bottom and charm quarks that have
been attempted, for example in e+e− collisions at the LEP collider [141] and proposals
made with ep collisions at the HERA collider [142].

This thesis aims to perform a measurement of the dead-cone effect in the tt̄+ 1 jet
system, where one of the top quarks decays leptonically. Previous phenomenological
studies have shown that jet substructure techniques allow for a direct measurement of
the effect with the data set expected to be recorded at the HL-LHC [51]. This chapter
shall show that a simpler and novel measurement is possible with the Run II data
currently recorded by the ATLAS detector through the use of an unfolded relative

88



7.1. Analysis Strategy 7. Measuring the dead-cone

differential cross-section measurement of the resolved tt̄ system with an additional jet.

7.1 Analysis Strategy

To examine the radiative properties of a top quark, a measurement was performed of
a newly defined variable

Aθ = θ − θd

θ + θd

, (7.1)

where θ is the angular separation between a top quark and an identified radiative jet,
and θd is the dead-cone angle. The dead-cone angle is defined as m/|p|, which can be
approximated to m/E in the boosted limit. In this analysis the approximation was
taken across the full kinematic range of measured top quarks and the measured energy
and mass of the reconstructed top quarks were used when measured θ. For relatively
low pT top quarks, pT ∼100 GeV, early studies indicated m/E could be measured with
better resolution thanm/|p|. Furthermore, data and simulation are analysed in identical
manners. Therefore, θd was taken as m/E for the entire measurement discussed in
this chapter. By construction, Aθ is bounded to the range [−1, 1]. Massive radiators
are expected to have a deficit of events in the region Aθ < 0 compared to massless
radiators, due to the dead-cone effect. Therefore the Aθ observable is expected to have
large shape differences for massive and massless radiators. The relative Aθ differential
cross-section, 1

σ
dσ

dAθ
, was measured, where σ is the total tt̄ production cross-section in

the region of phase-space in which the measurement is performed. In effect, the shape
of the Aθ distribution was measured. Measuring the shape reduces the total systematic
uncertainty, as uncertainties that are uniform as a function of Aθ reduce to zero.

The measurement was structured in the following manner. First, a pre-selection is
applied to recorded data to preferentially select tt̄ events in the lepton+jets channel.
The pre-selection criteria are described in Section 7.3. The kinematics of the tt̄ system
is then reconstructed in full from measured objects in the detector. The procedure used
to perform this reconstruction is discussed in Section 7.4. Signal regions sensitive to
the radiative properties of top quarks are then defined with the novel use of a machine
learning optimisation procedure detailed in Section 7.5. The effects of the data and
background contributions are removed using a statistical procedure known as unfolding.
The measurement of 1

σ
dσ

dAθ
, where dσ is the tt̄ differential cross-section at particle-level is

then performed. The particle-level is defined as all detector-stable particles, with cτ >
10 cm. The unfolding procedure and validation studies of the procedure are presented in
Section 7.6. The systematic uncertainties on the measured cross section are evaluated
and presented in Section 7.7, including examination of the bin-by-bin correlation of
the measured Aθ distributions. Finally, the measurement is presented in Section 7.8.
Interpretation of the results is discussed in Section 7.9, where methods of extracting a
significance on the strength of angular suppression in the collinear region are proposed
and performed.
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7.2 Data and simulation

Data collected by the ATLAS detector in the years 2015 to 2018 at a centre of mass
energy of

√
s = 13 GeV were used to measure the Aθ observable. The integrated lu-

minosity of the dataset used in the measurement is 138.2 fb−1. Events are only used if
they were recorded with all detectors operational and with stable beam conditions.

7.2.1 Simulation

A full description of the physical processes in measured pp collisions facilitates compar-
ison between prediction and data. Monte Carlo event generators using the multi-step
procedure outlined in Section 2.3 were used to generate the samples described in Ta-
ble 7.1. Simulation of pp collisions were crucial for the measurement presented in this
chapter. They were used to estimate the number of events originating from background
processes that pass the signal selection. The distortion of the Aθ observable induced
by the detector was also studied using simulation. Finally, the size and impact of sys-
tematic uncertainties from a variety of sources were assessed using simulation.

Signal simulation

A nominal tt̄ sample was chosen to model the effect of the detector on the measured Aθ

distribution, including modelling the number of events that pass selection, and the size
and shape of detector related uncertainties that affect the measurement. This nominal
tt̄ sample was generated with Powheg for the NLO matrix element simulation and
NNPDF for the parton density function. The hard scatter process was then interfaced
with Pythia 8 for LO parton shower. The effects of the detector were simulated
using Geant4, discussed in Section 3.3. This sample was chosen as the nominal for
consistency with other ATLAS top-quark measurements, and to utilise the extensive
validation performed in those measurements.

The hdamp parameter controls the energy scale of the first emission beyond the
LO configuration in tt̄ simulation [143]. In the nominal tt̄ sample, hdamp was taken to
be 1.5mtop. The choice of the radiation factorisation scale and the hdamp parameter
were probed using the nominal sample. Historic studies have used alternative signal
samples to examine these effects. However, recent advances in Powheg+Pythia 8
have facilitated the use of a weight based procedure to probe the effect of theses choices.
The procedure to estimate these uncertainties shall be discussed in more detail in
Section 7.7.

It is important to emphasise that the analysis is based on the NLO Powheg+Pythia 8
sample, which implicitly simulates the dead-cone effect within the NLO matrix element.
Pythia 8 has the ability to switch the dead-cone effect on or off when used as an event
generator at LO. However, because the dead-cone effect is an implicit component of the
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NLO calculation, it cannot be "switched off" in an NLO calculation. Two LO Pythia 8
samples were used: one with the standard model hypothesis where the dead-cone ef-
fect is “on”, and one with the dead-cone effect “off”. The “on" (SM) sample is used
to investigate the physics modelling differences between the Pythia 8 LO and NLO
Powheg+Pythia 8 samples. The “off” sample was used to investigate the effect of
top-quark radiation in a scenario where radiation is generated as if the top quarks were
massless. These samples are referred to as dead-cone on and dead-cone off respectively.
These two samples were used to assess the size of the dead-cone effect, as measured by
the Aθ observable, and their use is described further in Section 7.9.

Alternative signal samples

Additional tt̄ samples were generated to study the effects of the modelling of the signal
process on the measurement. One sample replaces the NLO ME generation, performed
by Powheg2 in the nominal tt̄ sample, with MadGraph5_aMC@NLO. Another
replaces the LO shower, performed by Pythia 8 in the nominal tt̄ sample, with Her-
wig 7. The effects of the detector were simulated using the AFII detector simulation,
discussed in Section 3.3.

Pile-up simulation

To model the effect of pile-up in data events, multiple proton-proton collisions are
simulated with the soft QCD processes of Pythia 8 [112] using the A2 tune [144], with
the detector response simulated using Geant4 [145]. These pileup events are overlaid
on the signal and background processes during the digitisation simulation step, prior
to reconstruction. During the analysis, MC events are then re-weighted, based on the
simulated pileup profile, in order to match the one observed in data.

The simulated events are split into three different generation campaigns: MC16a,
which models the 2015 and 2016 combined dataset; MC16d, which models the 2017
dataset; and MC16e which models the 2018 dataset. Each of these campaigns uses a
different profile of pileup interactions which match the relevant running conditions at
the time. MC16a events use a pileup profile which matches the distribution in data col-
lected in 2015 and 2016. MC16d and MC16e events use a pileup profile which was based
on the distribution of the actual number of interactions per bunch-crossing (rather than
the average) in 2017 and 2018 data respectively, with some additional smearing applied.

Background simulation

All processes which produce a similar detector signature to the pair-produced tt̄ system
are considered sources of background. The lower panel of Table 7.1 gives a detailed
description of the background samples used.
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Process Generators Type PDF Tune Detector simulation

tt̄ (nominal) Powheg2 [146–149] NLO ME NNPDF-3.0 [150] -
FS+Pythia 8 +LO PS NNPDF-2.3 A14 [151]

+EvtGen1.6.0 +HF decays - -

tt̄ Powheg2 NLO ME NNPDF-3.0 -
AFII+Herwig 7 [152, 153] +LO PS MMHT2014 [154]

+EvtGen1.6.0 HF decays - -

tt̄ MadGraph5_aMC@NLO2.3.3 [155] NLO ME NNPDF-3.0 -
AFII+Pythia 8 +LO PS A14

+EvtGen1.6.0 HF decays - -

tt̄ (dead-cone off)† +Pythia 8 LO ME/PS NNPDF-2.3 A14
-+EvtGen1.2.0 HF decays - -

tt̄ (dead-cone on) +Pythia 8 LO ME/PS NNPDF-2.3 A14
-+EvtGen1.20 HF decays - -

Single top Powheg2 NLO ME NNPDF-3.0 -
FS+Pythia 8 +LO PS A14

+EvtGen1.6.0 HF decays - -

W/Z +jets Sherpa 2.2.1 NLO ME NNPDF-2.3.0 -
FS+LO PS A14

Diboson Sherpa 2.2.1 NLO ME NNPDF-3.0 -
FS(WW , WZ, ZZ) +LO PS A14

tt̄+V MadGraph5_aMC@NLO2.3.3 NLO ME NNPDF-2.3.0 -
FS(tt̄W , tt̄Z) +Pythia 8 +LO PS A14

+EvtGen1.6.0 HF decays - -

Table 7.1: A summary of the signal and background MC used in this analysis, shown in the
upper and lower half of the table respectively. The effect of the detector was simulated with
either Geant4, referred to as FullSim (FS), or with AltFastII (AFII). The MC generator used
at each stage of simulation chain is specified using the abbreviations ME for Matrix element,
PS for parton shower, and HF for heavy flavour decays. The LO dead-cone off sample denoted
by † was generated with the setting TimeShower:recoilDeadCone = off.

In this analysis, the total estimated background is removed per bin of the observ-
able in order to isolate the signal tt̄ process. This procedure is known as background
subtraction. To perform background subtraction samples were scaled to match the
integrated luminosity of the data. Every MC sample used is normalised to the best-
known SM prediction of the cross-section for the respective physics process. This is
often referred to as a k-factor correction. The precision of the k-factor correction for
each background process is given in Table 7.2. In addition to the pile-up reweighting,
additional scale factors for leptons, b-jets and JVT are used to correct the performance
of reconstruction algorithms in simulation to match the performance measured in data.
The effects of the detector were simulated using Geant4 for all background samples.
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Process Precision References

Top-pair NNLO (QCD) + NNLL soft resummation [42–45, 156–158]
Single-top NLO (QCD) [48, 49]
V + jets NNLO (QCD) [159]

Top-pair + V NLO (QCD + EWK) [160]
Diboson n/a n/a

Table 7.2: Summary of higher-order cross-section corrections applied to processes simulated
for this analysis.

7.2.2 Fake background estimation

Signatures in the detector that do not originate from a lepton, but are reconstructed
as one, are considered fake leptons. Fake and non-prompt leptons are a poorly mod-
elled non-trivial background. A common source of fake electrons is misidentified jets
that shower earlier than typical, and are consequently reconstructed as electrons. Fake
muons can originate from particles that pass through the detector completely. These are
known as punch-through particles. Punch-through particles can be produced from high
energy hadronic showers. Leptons produced in the hard-scatter process are considered
prompt, all other sources of lepton production are considered non-prompt. Non-prompt
leptons, usually muons, may originate from heavy-flavour hadron decays within jets
that pass isolation requirements, see Sections 4.2 and 4.3 for details on the lepton
isolation. Furthermore, non-prompt electrons may occur from the early conversion of
photons. The rate of the misidentification and reconstruction of fake and non-prompt
leptons, collectively referred to as “fakes”, is dependent on the specifics of the recon-
struction algorithm and the detector instrumentation used. Therefore, modelling of this
background using purely MC based methods is difficult and considered unreliable. A
data-driven approach is used to assess the size of these backgrounds.

The matrix method [161, 162] is used to estimate the number of fake events occur-
ring within the event selection. Two levels of lepton selection requirements are defined:
tight, which corresponds to the nominal selection; and loose, with less stringent identi-
fication and isolation requirements. The tight and loose definitions used in this analysis
are presented in Table 7.3. An inclusive data sample, S, is selected, where leptons ful-
fil either the loose or tight requirements. The set S can be decomposed into events
that pass the tight requirements, T , and those that exclusively pass the loose require-
ments, L. In addition, S can be decomposed into events with real leptons, R, and with
fake/non-prompt leptons, F , such that

T + L = S,

R + F = S.
(7.2)

The matrix method utilises this splitting of the inclusive data set, S, with the
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Figure 7.1: An illustration of the matrix method sample definitions.
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εR εF
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nR

nF

 , (7.3)

where nT and nL are the number of events passing the tight and loose selection, re-
spectively. The real and fake efficiency parameters, εR, and εF , respectively, quantify
the number of real and fake events that pass the tight selection criteria relative to the
loose selection criteria. Figure 7.1 illustrates the set of all measured events, and how
the real and fake efficiency parameters used in Equation 7.3 are defined.

The real and fake efficiencies are parameterised in variables that capture the like-
lihood of an event containing a fake lepton, such as the transverse momentum of the
leading jet, or the pseudo-rapidity of the lepton. The efficiencies are expected to de-
pend on the topology of an event. Therefore, combining multiple parameterisations
can capture analysis-specific event topologies and selections. An arbitrary number, n,
of parameterisations, εk, can be combined multiplicatively as

εcombined = 1
εn−1

0
·

n∏
k=1

εk. (7.4)

The combination procedure introduces an order dependence on the parameterisation
combination. The first paramaterisation, ε0, is used to average all subsequent param-
eterisations. This combination procedure was introduced in Reference [162], where it
is argued that the combination conserves correlations between parameterisations of
continuous and discrete variables. Unfortunately, Equation 7.4 may result in patho-
logical fake estimates as εcombined is not bounded to the region [0, 1]. The choice of
parameterisation, or multiple parameterisations, is discussed in Section 7.2.2.

After an appropriate parameterisation of the real and fake efficiencies is chosen and
measured, the fake background can be estimated. The expected number of fake events
that passes the tight selection, n̂T,F , can be estimated by inverting Equation 7.3 to find

n̂T,F = εFnF = εf

εr − εf

(εr(nT + nL) − nT ). (7.5)

94



7.2. Data and simulation 7. Measuring the dead-cone

Loose Lepton Tight Lepton

Lepton Isolation None Gradient
Electron Identification MediumLH TightLH
Muon Identification Medium Medium

Table 7.3: The tight and loose lepton requirements used within the matrix method for the
fake/non-prompt background contribution estimate. See Reference [94] for more details on
the definition of these terms.

The fake contribution can be estimated per bin of an arbitrary distribution by using
an event-by-event weight

we = εF

εR − εF

(εR − δe∈T ), (7.6)

where δe∈T = 1 if the event, e, satisfies the tight lepton requirements and zero otherwise.
The total contribution of the fake lepton background can be calculated by evaluating
the sum of we over all events passing the loose lepton requirements. Utilising the event-
by-event weights the shape of the fake background contribution in the signal region
can be evaluated in terms of the variable of interest, Aθ.

Fake parameterisation evaluation

The real efficiency, εr, was measured using a tag-and-probe method in Z → ee and
Z → µµ events. Control regions were constructed such that the mass of the lepton pair
was close to that of the Z boson. Hence, by construction the overwhelming majority of
measured leptonic pairs were composed of two real leptons. One lepton in each event
was considered to be the tag, and required to pass the tight lepton requirements. The
other lepton in the di-leptonic Z boson event was required to pass the loose lepton
requirements. This selection methodology allowed an unbiased sample of loose leptons
to be constructed. The tight selection criteria was applied to the real loose leptons,
and the efficiency measured as

εr = Number of tight probe leptons
Number of observed probe leptons (7.7)

To ensure maximal utility of the measured real efficiency, the event selection criteria
for the leptons was chosen to be looser than that of a typical physics analysis.

The fake efficiencies were measured in data samples in control regions (CRs) dom-
inated by non-prompt and fake leptons. The control regions contain at least one loose
lepton, and at least one jet. The electron control regions require a low missing trans-
verse energy, whereas the muon control regions require muons with a large track impact
parameter, dsig

0 . The tight selection criteria was applied to the fake loose lepton, and
the fake efficiency was measured as

εf = Number of events in fake lepton CR with a tight Lepton
Number of events in fake lepton CR . (7.8)
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The full procedure is described in Reference [162].

Fake parameterisation choice

The real and fake efficiencies can be parameterised using one of the following vari-
ables: lepton transverse momentum, plep

T ; leading jet transverse momentum, pjet
T ; lepton

pseudo-rapidity, ηlep; the ∆φ between the missing transverse energy and the lepton,
∆φ(`, ~/Et); and finally, the ∆R between the lepton and leading jet in an event, ∆R(`, j).
The parameterisation choice should, in principle, not impact upon the estimation in a
substantial manner. The event topology used to measure the efficiencies differs from
the event topology of the Aθ measurement. Therefore, parameterisations using vari-
ables that have similar behaviour in both topologies are expected to characterise the
fake background better than those that do not. Combinations of different efficiency
parameterisation is also possible. Only 28 combinations are allowed due to the order
dependence of combination in the implementation of the matrix method. However, in
practice, not all parameterisations are suitable. A short-list of acceptable parameterisa-
tions is evaluated by insisting on the following requirements for a given parameterisation
option:

1. All real efficiencies, εreal < 1.0.

2. A positive number of events in all bins of the detector-level Aθ distribution for
the pre-selection and signal regions.

Requiring the real efficiency to be within the range [0, 1] is necessary due to the
averaging method used to combine different parameterisations, which does not guar-
antee that εreal < 1.0. These requirements leave a total of six parameterisations. The
nominal choice of a fake efficiency parameterisation was chosen as plep

T ⊗pjet
T ⊗ ∆R(`, j)

for electrons and ηlep ⊗ pjet
T for muons. The choice of a single parameterisation is arbi-

trary, and so a systematic uncertainty that covers the differences between the nominal
parameterisation and the parameterisation with the largest difference in yield to the
nominal is introduced.

7.3 Event selection

Events are initially required to satisfy general data quality criteria. At least one primary
vertex with two associated tracks is required to have been reconstructed. For recorded
data, stable-beam conditions and good detector performance criteria were required.
Events were rejected if any jets fail the LooseBad jet cleaning working point, described
in Section 4.4.3.

Further to these generic selection criteria, all events are required to satisfy the
requirements summarised in Table 7.4. Events are initially required to have fired one of
the lepton triggers described in Table 7.5. The trigger menu was updated year-on-year,
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therefore the exact trigger selection used was year dependent. Events are then selected
based on reconstructed physics objects, described in Chapter 4. Events are required
to have exactly one lepton (electron or muon) with pT greater than 27 GeV which is
also matched to an appropriate HLT trigger. The 27 GeV minimum pT requirement
ensured the lepton triggers used were fully efficient across the full dataset examined.
Events are also required to have exactly five jets with pT greater than 25 GeV, of which
at least two must be b-tagged using the 85% working point of the MV2c10 b-tagging
algorithm. The 85% working point is used over the more commonly used 77% and 70%
working points in order to increase the available statistics in the analysis. The double
b-tag still effectively suppresses background, even at this highly efficient working point.

Selection Criteria Reconstruction Level Particle Level

Number of leptons (pT ≥ 27 GeV) = 1 = 1
Number of jets (pT ≥ 25 GeV) = 5 = 5
Number of b-tagged jets ≥ 2 ≥ 2
Missing Et ≥ 25 GeV ≥ 25 GeV

Table 7.4: The basic event selection for all events considered at both particle and recon-
struction level.

Year e+jets channel µ+jets channel

2015 HLT_e24_lhmedium_L1EM20VH HLT_mu20_iloose_L1MU15

HLT_e60_lhmedium HLT_mu50

HLT_e120_lhloose

2016/2017/2018 HLT_e26_lhtight_nod0_ivarloose HLT_mu26_ivarmedium

HLT_e60_lhmedium_nod0 HLT_mu50

HLT_e140_lhloose_nod0 HLT_mu60_0eta105_msonly†

Table 7.5: The triggers that are required to have been fired for the years 2015 and 2016/2017
in the e+jets and µ+jets selection channels.
† Applies to 2017 and 2018 data only.

The number of events passing selection was measured and compared to the predic-
tion, shown in Table 7.6. The total expectation is in good agreement with the observed
number of events within the statistical and systematic uncertainties. The most promi-
nent source of background contamination is from the W+jets and Single top back-
ground sources. As the dead-cone effect is a subtle effect, that is expected to be visible
in only a small subset of produced tt̄ pairs at the LHC, loose pre-selection criteria were
chosen. Therefore, a relatively large contribution of background processes is expected.

Figure 7.2 shows the kinematics of a selection of physics objects with the criteria
in Table 7.4 applied. In all cases the agreement between data and simulation is well
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Process Yield Uncertainty

tt̄ 1525650.9 318579.3
W+jets 108405.1 63553.5
Single top 60796.3 13150.6
Fakes 50508.0 10628.5
Z+jets 19589.3 4177.0
tt̄ + V 6368.3 1347.2
Diboson 5618.6 1188.8

Total Prediction 1776936.5 412624.9
Data 1818896.0 -

Table 7.6: Yield table for the inclusive selection defined in Table 7.4 including statistical and
systematic uncertainties. The background process cross-section uncertainties and full detector
uncertainties are combined in quadrature with the statical uncertainty on the prediction and
presented in the rightmost column. These systematic uncertainties are defined in more detail
in Section 7.7.

within the statistical and systematic uncertainty. The measured Emiss
T distribution has

a slight shape disagreement compared to prediction, at high Emiss
T there is an observed

deficit. The deficit is covered by systematic uncertainties arising from modelling of the
tt̄ system, therefore this level of disagreement is accounted for within the analysis.
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(a) e pT (b) e η (c) Missing /ET

(d) µ pT (e) µ η (f) b-jet multiplicity

(g) Leading jet pT (h) Leading jet η

Figure 7.2: Kinematic distributions of physics objects in the pre-selection.
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7.4 tt̄ reconstruction method

Each event in the desired lepton+jets tt̄ topology contains two tops: one hadronically
decaying, and one leptonically decaying. Both top quarks can be used to measure the
dead-cone, and hence the full four momenta of the tops in the tt̄ system are required for
this analysis. Events are required to have exactly five jets, of which four will be used to
reconstruct the tt̄ system. The remaining jet is considered the radiative jet, and assumed
to be emitted from a top quark. The angular separation between a reconstructed top
and the radiative jet, θ, is used in the construction of the Aθ observable. Two methods
of reconstructing the tt̄ system in full were explored and compared: the pseudo-top
reconstruction algorithm, and the χ2 method. The optimal method, χ2, was selected
and used in the measurement of Aθ.

7.4.1 Pseudo-top reconstruction

The LHC top working group has defined a general purpose method of reconstructing
top quarks in the lepton+jets event topology known as the pseudo-top reconstruction
algorithm [163]. The pseudo-top reconstruction algorithm applied to events selected
with the requirements given in Table 7.4 is executed in the following manner:

• b-jet selection: Select the two highest b-jets as those originating from the decay
of the two top quarks in the system.

• Leptonic W boson reconstruction: The neutrino transverse momentum is
assumed to correspond exactly to the missing transverse energy. The on-shell
mass constraint of the W boson and negligible mass of the neutrino are used
to constrain the neutrino-lepton system and calculate the longitudinal neutrino
momentum, pν

z . This results in a two-fold ambiguity for real solutions. In such
circumstances, the solution with larger |pν

Z | is chosen. For complex solutions
of pν

Z , the real part of the total solution is used. The leptonically decaying W
boson is then reconstructed using the lepton momentum and calculated neutrino
momentum.

• Hadronic W boson reconstruction: Combine the two highest pT jets in the
events, excluding the selected b-jets.

• Top quark reconstruction: Combine the b-jet closest to the lepton with the
reconstructed leptonic W boson to form the leptonically decaying top quark.
Combine the remaining selected b-jet with the hadronic W boson to reconstruct
the hadronically decaying top quark.
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7.4.2 The χ2 tt̄ reconstruction method

The χ2-method attempts to reconstruct the tt̄ system by evaluating all allowed permu-
tations of jet-to-top matching. From this a χ2 metric can be constructed and minimised.
This is equivalent to the KL Fitter method in the limit where no transfer functions are
considered [164]. The method proceeds as follows:

• Leptonic W boson reconstruction: The leptonic W boson is reconstructed
using the on-shell mass constraint to reconstruct the longitudinal momentum
from the missing transverse energy in the same manner as the pseudo-top recon-
struction procedure.

• Jet Assignment: All possible matchings between jets and top quarks are con-
sidered. In a given permutation, 2 b-jets are first selected as those originating
from the top quarks. For events with 2 b-jets, there are 2 possible b-jet permuta-
tions. For events with 3 b-jets, there are 3! = 6. There are 3! permutations of the
remaining three jets. Two of these jets are associated to the hadronically decay-
ing W boson and the third considered as the radiative jet. The four momenta of
each top quark is calculated for each permutation. The following χ2

reco variable is
evaluated, and the permutation with the minimal χ2

reco selected:

χ2
reco =

(
mtop −mreco

leptonic top

Γtop

)2

+
(
mtop −mreco

hadronic top

Γtop

)2

+
(
mW −mreco

hadronic W
ΓW

)2
,

(7.9)

where mtop = 172.44 GeV, Γtop = 1.35 GeV, mW = 80.385 GeV and ΓW = 2.085
GeV. With the exception of the top quark mass, these values are all the world
averages of these quantities [165, 166]. The top quark mass was taken as the
value used in generating the nominal MC. Only the mass is calculated for the
hadronically decaying W boson, so swapping the two jets matched to the W

will result in the same χ2
reco. As such, the number of permutations required to

be evaluated is halved. The remaining jet is taken to be the radiated jet and is
paired to the top quark closest in (η, φ) space.

• Top quark reconstruction: Using the permutation of jets which minimises
the χ2, the decay products of the leptonic and hadronic top quarks are identified.
The four-momenta of these objects are then summed to reconstruct the four-
momentum of the leptonic and hadronic top-quarks.

7.4.3 tt̄ method comparisons

Due to the ambiguity of defining a gluon jet originating from the top-quark before decay
at parton-level, the choice of reconstruction method was made based on the resolution
of variables defined between parton- and particle-level top quarks. The ratio of partonic
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Figure 7.3: The pT and angular resolution of the reconstructed top at particle-level using the
χ2 method for jet assignment compared to the LHC WG pseudo-top algorithm. The resolution
is shown for an inclusive selection of events and measured between the four-momenta of the
last top in the decay at parton level and the reconstructed particle-level object.

and particle-level pT and the angular separation, ∆R, is shown in Figure 7.3 for the χ2

and pseudo-top algorithms. The χ2 recovers the partonic top angular position and pT

at a higher rate than the pseudo-top algorithm. Therefore, the χ2 method was chosen
as the reconstruction algorithm used in the measurement of the Aθ variable.

The agreement between data and prediction of the minimum χ2
reco for each recon-

structed event is shown in Figure 7.4. A flat normalisation difference is observed, as
expected from the difference in data and predicted yields noted previously. However,
there are no shape differences as a function of χ2

reco. Therefore, the reconstruction of
top quarks across a range of kinematic combinations is described well by prediction
compared to the data. Furthermore, the transverse momentum and mass of the lep-
tonic and hadronic top quarks reconstructed using the χ2 method agrees with data
within 10%, shown in Figure 7.4. The relative deficit of data at high top quark pT

is expected from previous measurements of the top quark’s differential cross-section
measurements [139]. All distributions agree within the systematic uncertainties of the
system, discussed in detail in Section 7.7.
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(a) leptonic top quark pT (b) hadronic top quark pT

(c) leptonic top quark mass (d) hadronic top quark mass (e) χ2
reco

Figure 7.4: Measured kinematic distributions for events reconstructed with the χ2 method,
described in the text, for the reconstructed leptonic top and hadronic top for the transverse
momentum and mass
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7.5 Optimisation of measurement regions

After the generic event selection detailed in Table 7.4, signal regions were defined that
have maximal sensitivity to the dead-cone effect. This sub-section details a generic pro-
cedure to optimise the signal region of a physics analysis, and then discuss the specific
example of optimising the signal regions used in the measurement of the Aθ observ-
able. Measurements performed at the LHC have, in general, many free parameters that
must be decided by the analysers. The region of phase-space for which an analysis is
performed is a set of free parameters that must be chosen for each measurement. When
performing a measurement, the smallest systematic and statistical uncertainty is de-
sired. The systematic and statistical uncertainty of a measurement often depends on
the region of phase-space in which a measurement is performed. Therefore, measure-
ments at the LHC typically chose event selection criteria that define a region of phase
space which minimises the combined systematic and statistical uncertainty. Evaluat-
ing the region of most sensitivity is challenging; first a metric, p, that quantifies the
sensitivity of a measurement must be chosen. The sensitivity metric must then be
optimised with respect to phase-space restrictions, R, that define the measurement
region for the analysis. A single evaluation of the sensitivity metric corresponds to per-
forming a complete measurement with pseudo-data, including evaluation of all relevant
systematic uncertainties. This can be computationally expensive, therefore the num-
ber of sampled phase-space restrictions is necessarily small. Optimisation is typically
performed using a set of pseudo-data to avoid biasing the measurement.

Whilst a physicist might have an intuition on a sensible choice of R, it is difficult
to systematically asses the optimal choice. Conventional optimisation methods rely on
gradient descent based algorithms [167], where free parameters are iteratively updated
in a direction in parameter-space that minimises a loss function, L. A loss function
characterises the difference between the performance of an algorithm with a set of
parameters and the desired performance. In this instance L ≡ L(p−pmax), where pmax is
the unknown maximum sensitivity of an analysis. Due to the computational limitation
of evaluating a large number of restrictions R, the gradient of the loss function cannot
be estimated for measurement region optimisation.

One could also attempt to apply a maximum likelihood method [168] to estimate the
ideal set of phase-space restrictions for an algorithm. However, such methods typically
require an analytic expression for the dependence of the sensitivity metric, p, on the
restrictions, R, p(R). Due to the complications of a physics analysis - e.g detector
simulation, background contamination, or reconstruction efficiencies - p(R) may only
be probed through direct evaluation of p for a trial R. Therefore, conventional likelihood
maximisation is also not possible.

Gradient-free black box optimisation procedures are a class of optimisation algo-
rithms that specialise in the evaluation of unknown functions (black box), without
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evaluation of any derivatives of the optimisation metric. Bayesian optimisation with
Gaussian Processes (BayesOpt) is one such procedure. It has come to prominence
recently as a method of optimising the hyper-parameters of machine learning algo-
rithms [169]. This section shall define BayesOpt, and give a simple one dimensional
example. BayesOpt shall be applied to optimise the signal regions used in measuring
Aθ. The description of BayesOpt is restricted to what is necessary to perform an opti-
misation of the measurement region of physics analysis. A more thorough description
of the procedure can be found in Reference [170].

Bayesian optimisation with Gaussian processes

BayesOpt shall now be formally defined and used to evaluate the maximum of an
unknown function. Consider an input space, X, and a target space, Y. Let D represent a
set of noisy data evaluated at a set of points in the input space, such that d(x) ∈ D ⊂ Y
and x ∈ X. The maxima of the unknown function that describes the data, f : x → d, is
sought. Bayes’ theorem can be used to construct an expression for the most probable
function f given the set of observed data

p(f |D) = p(f)p(D|f)
p(D) , (7.10)

where the prior, p(D), is a Gaussian Process. The posterior, p(f |D), can be used to
estimate the extrema of f(x). BayesOpt is a procedure that evaluates the posterior
function given a set of observations, and then uses the posterior to evaluate a point in
target space that increases the knowledge of the unknown function maximally.

A Gaussian Process, GP is a family of random variables, {XX}, all defined in the
same probability space, such that for any finite subset, S ⊂ X, any random vectors
drawn from the Gaussian Process, {Xs} ∈ S, have a joint Gaussian distribution [170].
Gaussian processes can be viewed as infinite dimensional multi-variate Gaussian distri-
butions, and are completely defined by a mean function, µo, and covariance function (or
kernel), Σ0. The covariance expresses the dependence of every point in the input space
on every other point in the input space, and represents how smoothly the function f

varies point-to-point in input space.
Only finite vectors drawn from a Gaussian Process are relevant for an optimisation.

Consider the value of f at a finite collection of points x1, ..., xk ∈ X. The value of the
function to be estimated at these points is f(x1), ..., f(xl) ∈ Y. Suppose the vector
[f(x1), ..., f(xk)] is drawn from a random probability distribution. This prior distribu-
tion can be constructed with a Gaussian Process. Constructing the prior corresponds
to evaluating a multi-variate Gaussian distribution, N (µ0,Σ0), with a mean function
evaluated at each point in the input vector, xi, and a covariance function evaluated for
each pair of points xi, xj. The prior distribution is therefore [171]

p(f(x1: k)) ∼ N (µ0(x1: k)),Σ0(x1: k, x1: k), (7.11)
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Figure 7.5: Four random vectors drawn from a Gaussian Process with zero mean and a
radial basis covariance, defined in Equation 7.18.

where compact notation for functions has been used: x1: k indicates the inputs x1, ..., xk,
f(x1: k) = [f(x1), ..., f(xk)], µ0(x1: k) = [µ0(x1), ..., µ0(xk)], and Σ0(x1: k, x1: k) =
[Σ0(x1, x1), ...,Σ0(x1, xk); ...; Σ0(xk, x1), ..., σ0(xk, xk)]. An example of four such ran-
domly drawn vectors across an arbitrary input space are shown in Figure 7.5 for a
Gaussian Process with a mean function of 0 for all x ∈ X.

Now suppose f(x1:n) is observed. For some n, the value of f(x) at some new point
x is desired. The posterior probability distribution can be calculated by marginalizing
the prior with respect to the observed points f(x1:n). Consider f(x) taking an arbitrary
value y in target space. The probability that f(x) = y is found to be described by a
traditional one-dimensional Gaussian distribution, N(µ, σ2), with mean and variance
set by the underlying Gaussian Process is [170]:

p(f(x)|f(x1:n)) ∼ N(µn(x), σ2
n(x)), (7.12)

µn(x) = Σ0(x, x1:n)Σ0(x1:n, x1:n)−1(f(x1:n − µ0(x1:n)))

+ µ0(x), (7.13)

σ2
n(x) = Σ0(x, x) − Σ0(x, x1:n)Σ0(x1:n, x1:n)−1Σ0(x1:n, x). (7.14)

For every point x in the input space X the probability of observing f(x) at a given
y in target space Y is described using Equation 7.12. The posterior mean function
µn(x) describes the most probable distribution of the unknown function f(x), given the
observed data. The variance function σ2

n(x) can be used to define confidence intervals
around this mean function as a function of x.

An iterative procedure to evaluate the maxima of a function using Gaussian Pro-
cesses and Bayes Theorem can now be established. An acquisition function is con-
structed to effectively select a location in input space that increases the knowledge of
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f(x) maximally. The Bayesian description of most probable values of f across all of
target space Y allows an acquisition function to be meaningfully defined. This is the
true power of BayesOpt. The form of the acquisition function is a free choice of the
method. In this analysis only the expected improvement function shall be considered,
defined as [171]

uEI(x) = En[max(0, fmax − f(x))|x1:n, f(x1:n)] (7.15)

fmax = max(f(x1:n)). (7.16)

The expected improvement acquisition function can be understood as the expected
improvement in the maximum observed value of f , given the current observed maximum
fmax. The expected improvement is largest where the posterior mean is larger than
the current largest observation. The expectation taken over probability space at point
x in Equation 7.15 has a closed form solution, originally evaluated (to the author’s
knowledge) in Reference [172] and popularised in Reference [173]. Finally, the next
point in input space that the algorithm samples, x next, is that which maximises the
acquisition function

xnext = arg max
x∈X

(uEI(x)). (7.17)

The Bayesian optimisation procedure, used to evaluate the maxima of an unknown
function f can now be summarised as in Figure 7.6 [171]. A burn-in period of n0 trial
evaluations is performed. The location of the burn-in evaluations can be chosen either
randomly or using prior knowledge of the system.

The application of this procedure to an arbitrary target function is shown in Fig-
ure 7.7. At all times the posterior mean passes through all observed values of the target
function. As the algorithm progresses, points are sampled preferentially in the vicinity
regions of local extrema, for example the points sampled in the region x ∈ [4, 7] and
x ∈ [1, 2.5]. Regions of small gradient are sampled less, as can been seen from the lack
of sampling in the region x ∈ [6, 8]. The choice of prior sets the length scale of the
exploration between evaluated points. After 14 iterations, the BayesOpt algorithm has
evaluated the maximal value of the target function. With the chosen prior, further eval-
uation of the acquisition yields points close to this evaluated maxima at x = 2.0. This
example therefore can never resolve maxima with a width � 1. The dependence of the
evaluated maximum on the length scale used to probe the input space is a fundamental
limitation of any systematic sampling of an unknown function, hence is unavoidable in
BayesOpt.

Hyper-parameters of BayesOpt

BayesOpt has found wide-spread usage as a method of optimising the hyper-parameters
in machine learning problems. Ironically, the BayesOpt procedure itself has a set of
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BayesOpt: Evaluating the maximum of unknown function f

Place a Gaussian process prior on f

Observe f at n0 initial points, some times referred to as burn-in. Set n = n0.
while n ≤ N do

Update posterior distribution on f using all available data.
Compute the acquisition function across the input space.
Evaluate the position input space, xn+1, that maximises the acquisition function.
Observe yn = f(xn)
Increment n

end while
Return either:

The maximum evaluated f(x1:n).
or The maximum of the posterior mean, µN(x).

Figure 7.6: The BayesOpt procedure for evaluating the maximum of an unknown function.
An initial burn-in period of n0 iterations is considered. The algorithm evaluates the unknown
function a total of N times.

(a) After 1 iteration. (b) After 14 iterations.

Figure 7.7: Iterations 1 and 14 of the BayesOpt algorithm for evaluating the maximum of
the (unknown to algorithm) target function shown in red. The posterior mean, µn is shown in
black and the mean µn ± 1σn and µn ± 2σn bands are shown in yellow and green respectively.
The posterior mean and standard deviation are evaluated using Equations 7.13 and 7.14. The
prior mean function, µ0 in the text, is taken as 0 ∀ x ∈ X, and the RBF is chosen as the
prior covariance function, Σ0 in the text. The star in the lower panel shows the maximum of
the acquisition function.
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hyper-parameters that must be specified. Firstly the choice of covariance must be
specified. A common choice is the radial basis function (RBF)

Σ(xi,xj) = v0exp
[
−1

2

N∑
m=1

(xm
i − xm

j )2

`m

]
+ v1dij, (7.18)

where v0 is an overall vertical scale of variation, `m are characteristic length scales
for each dimension of the input space, and v1 characterises stochastic noise in the
observation and aids numerical inversion. A choice of length scales `m specifies the
rough distance that must be crossed in input space before the function value can
change significantly. The kernel choice has a strong effect on the description of probable
values of an unknown function f across the input space X. Thus, this choice is not
arbitrary. RBF assumes a smoothly varying function f across input space. Despite
complications from reconstruction efficiencies and detector effects, the kinematics upon
which a physics region of interest are defined are generally smoothly varying functions.
Therefore RBF was chosen as the covariance for the BayesOpt applied to optimise the
signal regions in this analysis.

Another free choice of the BayesOpt procedure is the acquisition function itself.
Many other possible acquisition functions can, and are, defined [170]. The expected
improvement is most appropriate for evaluating the extrema of an unknown function,
and was therefore used and discussed in this Section.

7.5.1 Signal region definition

The aim of this analysis is to measure a variable sensitive to the dead-cone effect. The
differences in the LO Pythia 8 dead-cone on/off samples characterise the size of the
dead-cone effect for a given signal region. The naive bin-by-bin difference between the
predicted distributions is not of primary interest, as a region with large separation
might be limited by an associated increase in systematic uncertainties. The BayesOpt
procedure was used to evaluate two signal regions (SRs): one for events where the ra-
diative jet was matched to the leptonic top, and one for when the radiative jet was
matched to the hadronic top. These SRs are referred to as the leptonic SR and the
hadronic SR, respectively. In the leptonic SR, the Aθ variable is constructed using
the leptonically decaying top quark. Similarly, in the hadronic SR, the Aθ variable is
constructed using the hadronically decaying top quark. The Sci-Kit Learn python
library [174] implementation of Gaussian Processes in conjunction with the open source
BayesOpt library [175] were used to perform the BayesOpt procedure. The covariance
function chosen was RBF, the mean function was zero for all regions of the input space,
and the expected improvement acquisition function was used. The probability of ob-
serving the dead-cone off hypothesis given the dead-cone on hypothesis, or the p-value
of this observation, was calculated. The p-value was evaluated using full systematic
and statistical uncertainties. A small p-value corresponds to significant separation be-
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tween the two dead-cone on/off hypotheses. Therefore, the inverse of this p-value was
maximised.

The optimisation procedure was performed in the full analysis chain for a total of
three hundred trial signal regions before the algorithm was considered converged. A trial
signal region was defined as a list of requirements on the kinematics of reconstructed
objects. For each step in the iteration the following was performed:

1. Define a signal region through a set of cuts

2. Optimise the binning of the Aθ distribution within that region. The binning
optimisation is discussed in more detail in Section 7.6.2.

3. Predict the the unfolded relative differential Aθ distribution for this region using
the nominal MC.

4. Evaluate the systematic and expected statistical uncertainty of the measured
data on this pseudo-measurement.

5. Evaluate the expected p-value, pdc-off
0 , for observing the dead-cone on hypothesis

given the dead-cone off hypothesis using the evaluated systematic and statistical
uncertainties.

The procedure described in Figure 7.6 was modified slightly. After an initial burn-in
period of n0 = 50, batches of 50 trial regions were evaluated. Should any region in the
set have a larger inverse p-value than any evaluated so far, another batch of fifty regions
are evaluated. This repeats until the procedure has converged. Convergence occurred
after 6 batches of 50, or equivalently 300 trial regions.

The trial signal regions are defined at both particle-level and detector-level using
the following event and object-level requirements:

• ptop,min
T < ptop

T : A minimum pT cut on the reconstructed top quark.

• mtop,min < mtop < mtop,min +mtop,window: The mass of the reconstructed top quark
must be within a window.

• pg,min
T < pg

T : The minimum pT of the reconstructed radiative jet.

• θd < θmax
d : Maximum requirement on the reconstructed characteristic dead-cone

angle of the reconstructed top quarks.

The five parameters that define a signal region - ptop
T ,mtop,min,mtop,window, pg,min

T , θmax
d

- are varied using the Bayesian Optimisation procedure separately for the hadronic
and leptonic signal regions. The final values of these parameters after optimisation are
shown in Table 7.7 and are rounded to the nearest 5 GeV for reconstructed top mass
and transverse momentum, and to the nearest 1 GeV for the gluon jet pt. Although the
hadronic and leptonic signal regions were optimised independently, in both cases the
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procedure converged on θmax
d = 1.0, the maximum value allowed for θd, and therefore

this cut was not applied.
Signal regions were defined for events that satisfy the criteria described above and

listed in Table 7.7. The requirement of the pg
T/p

top
T > 0.05 is motivated in section 2.5.1.

For an example 25 GeV radiative jet this corresponds to a maximum top-quark pT of
700 GeV, consequently this cut is typically automatically satisfied due to the minimum
requirement on pg

T .

Selection Criteria Leptonic SR Hadronic SR

Dead-cone angle, θ θlep < θhad θlep > θhad

Ratio of radiative Jet pT to top quark pT > 0.05
Reconstructed Top quark mass ∈ [150, 300] GeV
Radiative Jet pT > 25 GeV > 25 GeV
Reconstructed Top quark pT > 100 GeV > 110 GeV

Table 7.7: The selection criteria for the orthogonal hadronic and leptonic signal regions (SRs)
of phase-space at detector level. Top quark kinematic properties refer to the reconstructed
leptonic or hadronic top quark for the corresponding regions of reconstruction or particle
level phase-space.

7.5.2 Signal region kinematics and yields

The total number of events estimated and measured in both SRs is given in Table 7.8.
The observed number of events agrees within statistical and systematic uncertain-
ties. The agreement between measured and predicted event yields is closer in the SRs
compared to the pre-selection yields given in Table 7.6. In the SRs, the observed re-
constructed top quark pT has a similar fractional deficit of events at high-pT compared
to prediction in the pre-selection region, as shown in Figures 7.8 and 7.9. The number
of events falls off steeply with respect to top quark pT, therefore, this deficit at high-pT

has a small impact on the total observed yield compared to the low pT regime. A ∼1%
excess of data is observed at low top quark pT in the pre-selection region. As each SR
requires moderately energetic top quarks, with a pT & 100 GeV, the excess is removed
resulting in closer agreement between prediction and observation. These differences are
well below the systematic uncertainty associated with modelling the tt̄ system.

The kinematics of the reconstructed top objects and Aθ observables relevant to each
SR are presented in Figures 7.8 and 7.9. The previously noted shape difference between
the measured and predicted top pT spectrum is observed in both SRs. The measured
top pseudo-rapidity and mass distributions are in good agreement with the prediction.
Furthermore, the shape of the measured Aθ distribution agrees well with prediction.
The agreement of all measured top quark kinematics is within statistical and systematic
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Leptonic SR Hadronic SR
Process Yield Uncertainty Yield Uncertainty

tt̄ 293060.9 29156.1 306825.0 34501.2
W+jets 16244.7 8969.0 14146.7 7843.2
Single top 11917.3 1308.2 10806.9 1302.0
Fakes 4342.5 431.1 5128.4 581.1
Z+jets 2585.9 256.5 2143.4 244.7
tt̄ +V 1316.3 135.4 1369.3 149.4
Diboson 955.4 94.5 870.6 98.8

Total Prediction 330423.1 40350.8 341290.3 44720.4
Data 333805.0 - 340077.0 -

Table 7.8: Yield table for the leptonic and hadronic SRs defined in Table 7.7 including
statistical and systematic uncertainties. The systematic uncertainties are defined in more
detail in Section 7.7.

uncertainty. The background processes and NLO tt̄ prediction accurately describe the
data. In order to probe the radiative properties of the tt̄ system to high precision, the
signal tt̄ process was isolated and the effects of the detector removed with a statistical
procedure.
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(a) Leptonic top pT (b) Leptonic top mass

(c) Leptonic top η (d) Aθ measured w.r.t the leptonic top quark

Figure 7.8: Measured and predicted kinematic distributions of physics objects in the leptonic
signal region defined in Table 7.7.
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(a) Hadronic top pT (b) Hadronic top mass

(c) Hadronic top η (d) Aθ measured w.r.t the hadronic top quark

Figure 7.9: Measured and predicted kinematic distributions of physics objects in the
hadronic signal region defined in Table 7.7.
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7.6 Unfolding Procedure

To measure the differential distribution of the Aθ observable at particle-level, the effects
of the detector must be removed. Specifically, this analysis aims to evaluate the particle-
level equivalent to the measured data. The set of statistical procedures that perform
this operation are known as unfolding algorithms. To successfully unfold an observable,
there must be a strong correspondence between the measured and the particle-level
observable, i.e the particle-level information must be encoded in the detector-level
distribution.

7.6.1 Iterative bayesian unfolding

The Iterative Bayesian unfolding (IBU) procedure [176, 177] is used extensively within
top properties measurements performed by the ATLAS and CMS collaborations [138,
139, 178, 179]. IBU shall be used to perform the unfolding of the measured Aθ distri-
bution. The method can be understood initially in the simplest case, with no complica-
tions from noise, no background contributions, and identical selection regions between
particle-level and detector-level. The estimator, ĥT, of the particle-level distribution
that causes an observed detector-level distribution, hD, is given by

ĥT,i =
n∑

j=1
P (ht,i|hD,j) · hD,j , (7.19)

where the conditional probability that an event originates from bin i of hT given that
it is observed in bin j of hD is P (ht,i|hD,j). The conditional probability can then be
rewritten using Bayes theorem as

ĥT,i =
n∑

j=1

P (hD,j|hT,i) · P (hT,i)∑
i′ P (hD,j|hT,i′) · P (hT,i′) · hD,j, (7.20)

ĥT = U0hD, (7.21)

where the matrix U0 has been implicitly defined in terms of the probability of observing
hD,j events in the j-th bin at detector-level, given hT,i events in the i-th bin of the
particle-level distribution. This conditional probability, P (hD|hT), is often referred to
as the response matrix, R. The response matrix can be evaluated using simulation. The
Bayesian prior, P (hT,i), describes the initial probability of observing hT,i events in the
i-th bin of the particle-level distribution. The response matrix mixes contributions from
different bins of the prior and measured data to provide an estimate of the unfolded
result.

Strong dependence on the prior of the unfolded distribution is undesirable be-
haviour. An iterative extension of the above procedure, where the unfolding is re-
peated and the prior updated using the posterior of the previous iteration, dampens
the dependence of the unfolded distribution on the prior. The matrix U is extended as
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follows:

Uk =
n∑

j=1

Rjih̃
k−1
T,i

Rji′h̃k−1
T,i′

, (7.22)

ĥk
T =


Uk−1hD ∀ k > 0,

P (hT) for k = 0,
(7.23)

where the summation over i′ in the denominator of Equation 7.22 is implied. The
master equation for the IBU method can now be defined as

ĥT = UkhD, (7.24)

where the two free parameters of the method are: the number of iterations to perform,
k; and the prior of the particle-level distribution, P (hT). The number of iterations
acts as a regularisation parameter. In the high k limit the unfolded distribution, ĥT ,
converges to the input particle-level distribution, hT , for all priors. However, statistical
fluctuations are enhanced in each iteration. The number of iterations must be chosen
to balance these two effects, typically done by defining a χ2 convergence criteria as
follows:

χ2
k/NDoF < 1.0, (7.25)

χ2
k = (ĥk

T − ĥk−1
T )2

σ2
stat

, (7.26)

where k is an index for the number of iterations the estimators are evaluated with, and
σstat is the statistical uncertainty of the unfolding procedure. The prior is typically taken
as the appropriately normalised particle-level distribution, as this reflects the a priori
knowledge of the system being unfolded. Naturally, the regularisation parameter k
depends upon the prior. An appropriate prior reduces the number of iterations required
for the procedure to satisfy the convergence criteria.

The IBU method described above has neglected several effects that must be account
for. Namely, it was assumed that the measured distribution hD contained no contami-
nation from background sources. Furthermore, there was an unstated assumption that
all events pass both detector- and particle-level selection criteria. To account for these
sources of complication, the correction factors can be introduced as

hD → facc · (hD − hB), (7.27)

ĥT → εĥT (7.28)

where

facc = NTrue∪Reco

NTrue
and ε = NTrue∪Reco

NReco
. (7.29)

The correction facc (ε) accounts for events that pass particle-level (detector-level) se-
lection, but fail detector-level (particle-level) selection. The distribution hB describes
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the number of events that arise from background processes, and are therefore not of
interest in the unfolding. These are evaluated in simulation and subtracted from the
detector-level distribution.

A generic formula for measuring the differential distribution at particle-level of an
observable, X, from a specific process can now be constructed. For a given integrated
luminosity L, and for a process measured in a channel with branching ratio, B, the
differential cross-section is

dσt

dX t
= 1

L · B · ∆X t
· 1
εt

∑
r

Uk
rt · facc · (N r

Obs −N r
Bkg), (7.30)

where t indicates a bin index at particle-level of the unfolding, ∆X t is the width of bin
t, and r the bin index at detector-level of the unfolding. The matrix Uk

rt is defined in
Equation 7.22, and k is the number of iterations performed with the IBU procedure.
NObs and NBkg are the number of observed events and expected number of background
events respectively.

7.6.2 Unfolding Aθ

The response matrix, Rij, convolves the probability of producing an event in bin i of
the particle-level distribution, ri, with the probability that a selected event from bin i

of the particle-level distribution is measured in bin j of the detector-level distribution,
Mij, known as the migration matrix. These two sources of observation probability can
be separated as

Rij = riMij. (7.31)

The migration matrix provides an intuitive understanding of the detector smearing on
an observable, separate from the relative production probability between bins. An ideal
migration matrix is the diagonal identity matrix.

The IBU procedure used to remove detector effects and evaluate the Aθ differen-
tial cross-section distribution in Equation 7.30 is performed by the software package
RooUnfold, where the migration matrix and correction factors ε and facc are calculated
and applied manually. The migration matrices for the Aθ variable in the Leptonic and
Hadronic SRs, evaluated using the nominal tt̄ MC sample, are presented in Figure 7.10.
The binning of the variables is chosen such that the diagonal elements of the migration
matrix have a minimum value of 50%. The binning procedure is discussed in more
detail in Section 7.6.2. A minimum value of 50% along the diagonal is taken to ensure
that each bin of the measured detector-level distribution encodes enough particle-level
information for an unfolding procedure to be justified. Furthermore, the more diagonal
the migration matrix is the fewer iterations are required before convergence. Therefore,
the more diagonal the migration matrix is, the less biased the unfolded result is by the
the regularisation inherent in the IBU procedure.
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Figure 7.10: Migration matrices for the leptonic (left) and hadronic (right) signal regions
relating the detector level angular asymmetry, Aθ, to the particle level angular asymmetry.

Figure 7.11 shows the acceptance and efficiency correction factors. The fiducial ac-
ceptance correction in both SRs is ∼ 7%, and varies slowly between bins. Therefore,
the instrumented region of phase-space is far more restrictive than the corresponding
particle-level phase-space for which the unfolding is performed in. The detector accep-
tance indicates that the event selection between particle-level and detector-level has
a correspondence of between 20% and 11% per bin of Aθ. The low correction factors
can be understood to arise from multiple sources. Pile-up is not simulated at particle-
level, and pile-up jets can mimic low-pT radiative jets. The b-tagging procedure used
at particle-level is the presence of ghost-matched B hadron, which has an efficiency of
100% compared to the 85% used at detector-level. Furthermore, the reconstructed top
quark mass at particle-level has better resolution than that of detector-level, due to ef-
fects of the jet energy scale and resolution. Finally, a low missing /ET cut was applied in
order to maximise statistics. At particle-level this can only arise from weakly interact-
ing particles, however, at detector-level, terms originating from mis-calibration of other
objects can contribute. As the measurement is focused on the shape of the Aθ variable,
the absolute size of these correction factors factorises in the normalisation procedure.
Therefore, as long as the differences between particle-level and detector-level phase-
space are well described, the low efficiency correction factor is unimportant. Before the
unfolded procedure can be applied to data, free parameters must be chosen and the
method validated.

Binning optimisation

The ability of the unfolding procedure to recover the particle-level spectra from the
detector-level spectra depends upon the choice of binning used in the observable. The
binning choice has three fundamental constraints: the amount of detector smearing, the
available data statistics, and the available Monte-Carlo statistics. For this analysis, the
Monte-Carlo statistics is much larger than the available data statistics and therefore
is not of concern. As will be shown, the data statistics is also a minor consideration
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Figure 7.11: Fiducial acceptance (red) and detector efficiency (blue) correction factors, as
defined in 7.30, for the leptonic (left) and hadronic (right) signal regions relating the measured
angular asymmetry, Aθ to the particle level angular asymmetry.

compared to the resolution of the detector and smearing of the particle-level distribu-
tion. In all of the following, the procedures described are performed separately for the
Leptonic and Hadronic selections.

The binning was chosen using a simple 3 step procedure. The procedure insists
on a maximum statistical uncertainty at detector-level of 8 %, and a correspondence
between detector- and particle-level distributions of 50% as evaluated by the migration
matrix. The algorithm starts with an initial fine-grained binning of Nbins = 80, where
the bin edges are distributed uniformly over the range [−1, 1] and then proceeds as
follows:

1. Unfold Ntoys = 300 with the current binning.

2. Starting at the right-hand-side, merge bin i with its right hand neighbour, j, if
either of the following conditions are satisfied:

N i
yield < 150, (7.32)

Mii < 0.5, (7.33)

where N i
yield is the predicted number of events expected in bin i and Mii is the ii

element of the normalised migration matrix.

3. Repeat steps 1-3 until no bins were merged in step 2.

A final pass of the algorithm applied starting from the left-hand sized is performed
to ensure the right-most bin satisfies the requirements in Equation 7.32 and 7.33.
However, these are loose requirements and do not guarantee that the unfolding is
unbiased, nor do they provide information on the optimal number of iterations.
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Figure 7.12: The evaluated µ and B values, defined in the text, for the pull tests of binning
before (right) and after (left) optimisation evaluated using 300 toys for the Leptonic SR (top)
and hadronic SR (bottom).
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Figure 7.13: The evaluated µ and B values, defined in the text, for the pull tests of binning
before and after optimisation evaluated using 300 toys for the hadronic SR before.
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Pull tests

One consideration of an unfolding procedure that must be evaluated is the bias it
introduces into the unfolded distribution. A method to evaluate this bias is a pull test,
where the full signal MC is divided into two approximately equal samples test and
train. The test sample is unfolded using the response matrix and efficiency corrections
evaluated with the training sample. The pull of the training sample upon the test
sample for bin i is defined as

P i = Ai,unfolded, test
θ − Ai,truth, test

θ

σi,unfolded
test

, (7.34)

where σi,unfolded
test corresponds to the statistical error on the unfolded test distribution.

The pull evaluates how well the differences between the unfolded detector-level spec-
trum and the particle-level spectrum are explained by the statistical uncertainty.

In this analysis, the full nominal MC signal sample is divided in half Ntoy = 300
times, where the division is performed by randomly creatingNtoy separate train and test
samples. For a given toy, the train and test samples are mutually exclusive categories,
and therefore statistically independent. For each toy the pull distribution is evaluated
for every bin i, and a Gaussian is fitted to this distribution. From this fitted Gaussian
the variables

µi
P =< P i > (7.35)

Bi = std(P i) (7.36)

are extracted. An unbiased unfolding procedure should result in µi
P , B

i = 0, 1 ∀ i.
Any deviation from these values implies a bias within the procedure. Figures 7.12
and 7.13 show the evaluated µP and B distributions for the initial and optimised
binnings in the leptonic and hadronic SRs respectively. The initial fine-grain binning
biases the unfolded distribution. In both SRs the bias, B, is less than the 1.0 ideal
case for a large range of Aθ. The difference between the test MC unfolded and truth
level Aθ distribution is less than what is expected from statistical uncertainties in the
unfolding. Therefore, the unfolding procedure is biasing the unfolding in the direction
of the particle-level Aθ distribution. Such a bias is undesired, and is indicative of a
poor choice of binning. After optimisation, the bias and mean of the pull distributions
in both SRs agrees (within statistical uncertainties) with the ideal case of 1.0 and 0.0
respectively.

Stress test

In order to make definitive statements on the agreement between data and different
Monte Carlo samples, the unfolding procedure must recover variations in prediction.
Any deviation between the nominal MC and the measured data at detector-level must
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Figure 7.14: Particle level and reconstruction level distribution of the leptonic Aθ observable
in the leptonic SR constructed from the nominal Powheg+Pythia 8 tt̄ Monte Carlo sample
with event-by-event re-weighting given by Equation 7.37, where s ∈ {5%, 10%, 15%}.
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Figure 7.15: Particle level and reconstruction level distribution of the leptonic Aθ observable
in the hadronic SR constructed from the nominal Powheg+Pythia 8 tt̄ Monte Carlo sample
with event-by-event re-weighting given by Equation 7.37, where s ∈ {5%, 10%, 15%}.
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Figure 7.16: Stressed particle level distributions (lines) compared to the stressed recon-
struction level unfolded to particle level (points) of the leptonic Aθ variable constructed from
the nominal Powheg+Pythia8 tt̄ Monte Carlo sample with event-by-event re-weighting
given by eq. 7.37 where s ∈ {5%, 10%, 15%} for the leptonic (left) and hadronic (right) signal
regions.

be recoverable by the IBU procedure. A stress test evaluates the ability of the nom-
inal IBU procedure to unfold variations in measured Aθ distributions. The nominal
Powheg+Pythia8 sample was re-weighted event-by-event based upon the particle-
level distribution of the Aparticle-level

θ observable, for both leptonic and hadronic mea-
surements using the formula:

w(Aparticle-level
θ ) = s

q99(Aparticle-level
θ )

· Aparticle-level
θ + 1, (7.37)

where s is the stress applied, typically in the range s ∈ [−100%, 100%], and q99(Aθ)
is the 99th percentile of the particle-level Aθ distribution constructed without any re-
weighting. Equation 7.37 was chosen such that the weight, as a function of the stressing
variable, is a straight line going from (−q99(Aθ), 1 − s) to (q99(Aθ), 1 + s)).

Figures 7.14 and 7.15 show the stressed distributions at particle- and detector-level
for s ∈ {5%, 10%, 15%} in the signal regions. Stressed distributions are unfolded using
the nominal response matrix, i.e without the event re-weighting given in Equation 7.37,
and a closure test is performed. Figure 7.16 show that a stress of s = 0.15 has a
non-closure of less than 1%, well below the statistical and systematic uncertainties of
the measurement. A stress of s = {±0.15} exceeds the shape variation between data
and the nominal MC the unfolding procedure is based upon, as shall become clear in
Section 7.8.

Convergence test

Finally, the number of iterations performed in the Iterative Bayesian Unfolding proce-
dure is a free parameter of the method and must be chosen. The number of iterations
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Figure 7.17: Convergence test for leptonic (left) and hadronic (right) signal regions for the
angular asymmetry Aθ variable unfolded with the iterative Bayesian unfolding method.

was fixed through the following procedure:

1. Divide MC sample randomly into two roughly equal samples: test and train.

2. Construct the Migration matrix from the train sample.

3. Unfold the test detector level distribution niteration times.

4. Measure the χ2/NDoF of the unfolded result for each iteration and toy.

5. Repeat steps 1 to 4 for 250 times.

Figure 7.17 shows the distribution of χ2/NDoF as a function of niteration. For both SRs
the χ2/NDoF converges to unity for iterations & 4. Therefore, 5 iterations were used
for both signal regions.

7.7 Uncertainties

For a typical unfolded measurement, two approaches to assess the impact of system-
atic uncertainties upon the final measurement can be taken: constructing the response
matrix, acceptance, and efficiency corrections with samples varied to account for a sys-
tematic uncertainty and then unfolding the nominal MC sample; or constructing the
response matrix with the nominal sample and varying the predicted detector level dis-
tribution in a manner that accounts for the expected size of the systematic uncertainty.
The later is generally preferred in all cases since systematic samples may be limited in
statistics and, in general, the signal MC sample has the highest statistical power. Both
methods should, modulo statistical fluctuations, give the same result, so the choice is
more technical than philosophical. The approach of fixing the nominal response matrix
and correction factors was taken for this measurement.

The assigned systematic uncertainty for a given bin i can be constructed as

σi
syst = Ai,syst

θ, truth − Ai,syst
θ, unfolded, (7.38)
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where Ai,syst
θ, unfolded is the normalized number of events in bin i for the unfolded detector-

level distribution of a systematically varied tt̄ sample and Ai,syst
θ, truth is the corresponding

particle-level distribution. The systematic uncertainty is constructed in this way to
account for changes in measured distributions that cannot be recovered by the unfolding
procedure. For the majority of systematic uncertainties examined, Ai,syst

θ, truth is degenerate
with the nominal particle-level Aθ prediction.

The uncertainties considered in this analysis all arise from one of the following
sources:

1. Detector: Understanding of the detector and the calibrations of physics objects.
These systematics can be evaluated using an additional event weight, known as
a scale-factor, that varies the effect of a working point. Furthermore, the extent
to which events migrate in and out of the selection based on the uncertainty in
calibration was evaluated by independently varying the calibrations of all objects,
and repeating event selection with these varied objects.

2. Modelling: Understanding of the modelling of the tt̄ and radiation in the MC
used to construct the unfolding matrix. This category includes uncertainties on
the PDF choice, as well as the effect of alternate nominal samples. The latter
is used to probe the modelling dependence of the measurement. The modelling
uncertainties examined through alternative tt̄ samples have correspondingly dif-
ferent particle-level predictions for the relative Aθ differential cross-section. The
associated systematic uncertainty is the difference that cannot be recovered by
the measurement after unfolding, not the difference in prediction.

3. Background: All background samples are normalised to the central value of
the cross-section prediction to the precision listed in Table 7.2. To assess the
uncertainty in background cross-section prediction, the cross-section was varied
independently for all background contributions by a fractional amount given
in Table 7.9. Due to the poorly understood nature of the fake background, a
more conservative approach was taken in estimating the associated systematic
uncertainty. The uncertainty due to lack of knowledge of the number of events
selected due to fake and non-prompt leptons within the ATLAS detector was
estimated by varying the parameterisation used within the matrix method. A
conservative approach of taking the largest variation between the nominal and
varied parameterisation was used.

4. Statistical: The statistical uncertainty due to the finite number of data events
is evaluated using pseudo-experiments. The input detector-level Aθ distribution
is Poisson fluctuated about the bin content and then unfolded. This process is
repeated 1000 times, and the standard deviation of the fluctuated results per-bin
is taken as the statistical uncertainty in that bin. This procedure was repeated for
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Process Uncertainty References

Single-top: t-channel +4.17%
−3.55% [48, 180, 181]

Single-top: s-channel +3.88%
−3.49% [48, 180, 181]

Single-top: Wt channel ±5.36% [48, 180, 181]
W/Z + jets ±

√
(5%)2 +Njets · (24%)2 [182]

tt̄ + W ±13% [183]
tt̄ + Z ±12% [183]

Diboson ±6% [159]

Table 7.9: Summary of fractional uncertainties on the production cross-section of each
background sample.

the nominal Monte Carlo distribution to evaluate the MC statistical uncertainty.
This was found to be negligible compared to all other uncertainties evaluated.

7.7.1 Detector-related uncertainties

There are over 50 sources of detector-related uncertainty. These uncertainties cover the
limitation in understanding of the reconstruction of calibrated physics objects from the
detector read-out. They are presented grouped together by source.

Luminosity: The uncertainty on the combined 2015-2018 integrated luminosity
1.7%. The total uncertainties on the integrated luminosity for each year range from
2.0-2.4%, and are partially correlated between years. It is derived, following the van
derMeer (vDM) methodology, detailed in Reference [184], from calibrations of the lu-
minosity scale using x-y beam-separation scans performed in August 2015, May 2016,
July 2017 and June 2018 [185]. As the relative differential cross-section, 1

σ
dσ

dAθ
, has

no dependence on luminosity this uncertainty was only considered during validation
studies of the unfolding and reconstruction procedures, not the final measurement.

Jets: The uncertainty on the jet energy scale (JES) is estimated by varying the
jet energies according to uncertainties derived from simulation and in situ calibration
measurements. A reduced set of 30 orthogonal components were used to assess these
uncertainties. The reduction was performed using the category reduction scheme. This
reduction procedure retains their physical meaning of the sources of JES uncertainty.
The reduced JES uncertainties were assumed to be uncorrelated and combined in
quadrature.

Mis-modelling in the JVT distribution was accounted for using scale-factor varia-
tions of simulation. Scale factors were measured in Z → µµ events, and capture the
difference between simulation and measured JVT distributions. The effect of differ-
ent MC generators and fragmentation models upon the JVT score are covered by this
uncertainty.
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The uncertainty due to the jet energy resolution (JER) is determined by smearing
the jet pT in simulation. The smearing is performed in bins of jet pT and η. As with
JES, the total JER uncertainty depends on over one hundred sources. The sources
of JER uncertainty are reduced into seven nuisance parameters which correspond to
different smearings of the jets in simulation. Unlike the JES uncertainty, the physical
meaning of the reduced JER nuisance parameters is not retained with the reduction.

Lepton: The uncertainties due to the MC modelling of the lepton reconstruction,
identification, trigger and isolation efficiencies were estimated in bins of pT and η using
scale-factor variations of simulation. The scale factors were measured using the tag-
and-probe method in Z → ee/µµ, J/ψ → ee/µµ and W → eν events.

Flavour tagging: The systematic uncertainties associated with tagging jets origi-
nating from b-quarks are separated into three categories. These are the efficiency of the
tagging algorithm (b-quark tagging efficiency), the efficiency with which jets originat-
ing from c-quarks pass the b-tag requirement (c-quark tagging efficiency) and the rate
at which light-flavour jets are tagged (misidentified tagging efficiency). The efficiencies
are estimated from data and parametrised as a function of pT and η. The systematic
uncertainties arise from factors used to correct the differences between the simulation
and data in each of the categories.

Missing transverse energy (MET): The uncertainty due to shifts in jet and
lepton resolution and scale are derived in components parallel and perpendicular to the
transverse momentum of the reconstructed hard objects in the event and applied as
function of pT and η [109]. The performance studies used to assess the MET uncertainty
are based on Z → `` , W → `ν and tt̄ Monte Carlo (MC) simulated events and data
recorded in 2015, 2016, 2017 and 2018.

Pile-up: The uncertainty on the pileup re-weighting is evaluated by varying the
pile-up scale factors by ±1σ based on the re-weighting of the average interactions per
bunch crossing.

7.7.2 Modelling related uncertainties

The nominal simulation choice was taken for consistency with historic top quark prop-
erty measurements within the ATLAS top working group. However, the choice is some-
what arbitrary. The effect of changing the free parameters of the nominal simulation
was estimated using the following set of systematic uncertainties:

Radiation uncertainties: The initial state radiation uncertainty has been evalu-
ated using the A14 var3c down weight variation in conjunction with the hadronisation
and factorisation scale re-weighted to µF,R = 2.0 [186]. The prescription for var3c up
uncertainty (in conjunction with scale and hdamp variations) was not evaluated owing
to studies which have shown this variation to disagree strongly with data. As such, the
var3 down variation was used and symmetrised instead. The A14 var2 eigentune was
used to estimate the final state radiation (FSR) uncertainty using a similar re-weighting
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prescription.
Hard Scatter Generation and matching: A comparison of NLO subtraction

schemes was performed by comparing the nominal Powheg+Pythia 8
with MadGraph5_aMC@NLO+Pythia 8. This systematic will be particularly rel-
evant to the analysis as it can change the description of the first additional jet beyond
the leading-order picture of top-pair production.

Fragmentation/Hadronisation model: The nominal Powheg+Pythia 8 tt̄

was compared to a tt̄ sample generated with Powheg for the same hard matrix element
at NLO and alternate fragmentation and hadronisation using Herwig7. It is worth
emphasising that, for an unfolded measurement such as this analysis, this uncertainty is
a statement on the model dependence of the procedure itself, as opposed to a statement
on the expected shape and normalization difference between predictions.

Parton density functions (PDFs): The uncertainty from the limited knowl-
edge of the proton’s PDF was assessed following the PDF4LHC15 recommenda-
tions [187], which evaluates the differences in three independent PDFs CT14 [188],
MMHT2014 [154] and NNPDF3.0 [189]. In addition uncertainties from the PDF choice,
PDF4LHC15 also covers the uncertainty in fitted αs used within the PDF. The nom-
inal prediction of 1

σ
dσ

dAθ
was systematically changed by 20 different event-by-event re-

weighted variations. These 20 variations were assumed to be independent and combined
in quadrature.

7.7.3 Uncertainty on Aθ

The total systematic uncertainty for each bin in the measured Aθ distribution is pre-
sented in Figure 7.18, where individual systematic uncertainties covering similar sources
of uncertainties have been combined in quadrature to provide an overview. The con-
tributions to each uncertainty are detailed in Sections 7.7.1 and 7.7.2. A complete
break-down of all individual systematic uncertainty sources for each bin is given in
Appendix A. For both signal regions the dominant source of uncertainty is the mod-
elling of the radiation in the tt̄ system. This is by construction of the measurement
and analysis design; the goal of the analysis is to measure a variable sensitive to the
radiative properties of the top quark, including the dead-cone effect. Therefore, the
experiment is expected to be limited by the best description of this radiation.

Tables 7.10 and 7.11 present a more detailed break-down of the uncertainties in
the system. The modelling systematic has been decomposed into its leading sub-
components, whereas sub-dominant contributions have been left combined. The frag-
mentation and hadronisation shower uncertainty was evaluated by examining the abil-
ity of the unfolding procedure to recover the systematically shifted detector and particle-
level distributions of the tt̄ system described by Powheg+Herwig 7. This uncertainty
is a fundamental limit on the power of this measurement, and cannot be reduced fur-
ther. The matrix element uncertainty covers uncertainties in the prediction of the hard

128



7.7. Uncertainties 7. Measuring the dead-cone

scatter process and matching to the parton shower. The measurement probes radiation
from the tt̄ system; the matrix element uncertainty covers changes in the description of
this radiation directly. Therefore, the large dependence on this uncertainty is expected,
and is also a fundamental limitation of this measurement. The uncertainties associated
with radiation and PDF choice are small compared to other modelling uncertainties
for both SRs.

The jet-related uncertainties presented in Figure 7.18 correspond to the combina-
tion of the JES, JER and JVT based uncertainties presented in Tables 7.10 and 7.11.
Across the majority of the Aθ bins, the JES and JER contribute a fractional uncertainty
of between 0.5% and 1.0%. Uncertainties in the energy scale of reconstructed jets can
change both the direction of reconstructed tops and the magnitude of the dead-cone
angle of the reconstructed top quark θd = m/E and thus have a large impact on the
measurement of Aθ. The Aθ variable is constructed entirely from jet objects in the
hadronic SR; in the leptonic SR a significant fraction of the energy is measured by
jets. The JES uncertainty is therefore expected to be a large source of uncertainty in
the measurement. Each individual JES uncertainty eigenvector contributes . 0.35%
uncertainty on average for all bins of Aθ, which is relatively small compared to the mod-
elling related uncertainties. For both the hadronic and leptonic SR, the JES modelling
uncertainties are significant contributions to the total JES uncertainty, contributing
0.28% and 0.64% respectively in the largest Aθ bin. However, the flavour response and
composition uncertainties are the most significant JES uncertainties. These charac-
terise the difference in detector response of quark jets compared to gluon jets. These
uncertainties were estimated using a conservative assumption of a 50 : 50 quark-gluon
composition of jets within an event. In principle this contribution could be reduced
further by estimating the quark-gluon composition of the measured events using the
nominal MC. However, as this is a sub-dominant systematic uncertainty compared to
Modelling of the tt̄ system, this was deemed unnecessary.

The relatively large size of the JER uncertainty in both regions can be understood
by the same argument. As discussed above, the JER uncertainty is estimated by using
MC smearing of the jet energy scale. Due to the eigenvector decomposition used to
combine correlated sources of JER uncertainty, the physical meaning of any individual
JER contribution has been lost and cannot be understood further. Leptons are well
measured by the ATLAS detector compared to jets, and they contribute < 0.37% to the
uncertainty in any Aθ bin in both SRs. The pile-up uncertainty and JVT uncertainties
are sub-percent level for all bins of both SRs.

The uncertainty in measured Emiss
T is small compared to other detector-related

uncertainties in the hadronic SR, with a typical size of < 0.55%. In the leptonic SR the
uncertainty associated with the Emiss

T is similarly small, typically ∼ 0.55%. Leptonic top
quark reconstruction uses the Emiss

T directly in calculating the direction and magnitude
of the top quark momentum, therefore the Emiss

T is expected to have a non-trivial impact
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Figure 7.18: The total systematic uncertainty (light grey) and statistical uncertainty (dark
grey) for leptonic (left) and hadronic (right) signal regions for the leptonic measurement of
the relative differential cross-section of the angular asymmetry in fiducial phase space.

on the measurement in the leptonic SR.

Event selection requires at least 2 b-tagged jets, therefore the flavour tagging un-
certainties associated with b-tagging are an important consideration. The uncertainty
is < 0.5% for the leptonic SR and < 1.1% for the hadronic SR. The largest component
of the flavour tagging uncertainty is the mis-identification of charm jets for both SRs.
At the cost of reduced statistics, this could be reduced by using a more aggressive
b-tagging requirement. As the charm jet mis-identification systematic uncertainty is
small this was deemed unnecessary.

The largest contribution to the background uncertainty is the W+jets cross-section
variation. The cross-section variation, discussed previously and presented in Table 7.9,
is ±54% for W+jets. Furthermore, the yield of the W+jets background is the largest of
all background contributions. The large normalisation variation is expected to have a
large associated uncertainty. The W+jets background peaks at high Aθ in the leptonic
SR. Consequently, the uncertainty associated with variations in theW+jets background
is largest in this region. The total uncertainty on the measured Aθ due to this source is
∼ 4.0% in the leptonic SR. The hadronic SR is less sensitive to this background source.
The W+jets background uncertainty contributes a roughly 1% uncertainty across Aθ

in the Hadronic SR. The analysis aims to examine the low Aθ region, therefore the
W+jets background uncertainty has a small impact upon the measurement.

The uncertainty of the fake estimation is ∼ 0.6% for the majority of Aθ bins. The
fake background prediction has a large conservative uncertainty in its normalisation
and shape. However, the yield of this background is relatively small compared to the
total measured data, and therefore contributes a relatively small uncertainty on the
measurement.
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7.7.4 Bootstrapping and correlations

The statistical significance and correlation of each systematic uncertainty was evaluated
for all systematics using a bootstrapping procedure with 1000 pseudo-experiments.
The bootstrapping procedure is outlined in detail in Section 5.2.6. For systematic
uncertainties derived using scale factors there is no statistical uncertainty, as these
are evaluated by an event-by-event reweighting of the nominal sample. The statistical
significance, σstat

syst, for all other systematics was evaluated as the standard deviation of
the distribution of systematic uncertainty sizes evaluated by the pseudo-experiments.
Figure 7.19a shows the evaluated uncertainty at particle-level of the first nuisance
parameter of the reduced JER uncertainty in the bin Alep

θ ∈ [−1, 0.0] as evaluated by
1000 pseudo-experiments. As expected from the central limit theory, the distribution is
approximately Gaussian, centred on the uncertainty evaluated without the use of the
bootstrapping procedure.

The standard deviation of the systematic uncertainty evaluated with pseudo-experiments,
σstat

syst, i, corresponds to the statistical uncertainty on the systematic uncertainty itself.
This was evaluated for each bin i of the unfolded Aθ distribution. Figure 7.19b shows
the standard deviation of the systematic uncertainty compared to the systematic uncer-
tainty as a function of Aθ at detector-level. For this example, the systematic uncertainty
across multiple-bins was found to be statistically significant and therefore this system-
atic was retained. Systematics were neglected when the statistical uncertainty was of
the same size, according to the criteria

σsyst,i < 1.5σstat
syst,i ∀ i ∈ {1, Nbins}. (7.39)

The bin-by-bin covariance matrix was evaluated using the bootstrapping procedure.
The covariance, Kij, between bin i and j of the unfolded distribution is defined as

Kij = E[(Ai
θ − E[Ai

θ])(Ai
θ − E[Ai

θ])], (7.40)

whereE[·] denotes the expectation value taken over all pseudo-experiments. The Pearson-
product-moment correlation coefficients

K̃ij = (Kii)− 1
2KijK

− 1
2

jj , (7.41)

can be constructed from the covariance matrix. The correlation matrix is normalised
such that K̃ij ∈ [−1, 1]. A large (anti-)correlation corresponds to a value of (-)1.

The covariance matrix for each source of uncertainty, Ksyst, describes the effect
of the uncertainty on all bins measured simultaneously, and hence characterises the
cross-correlation of the measurement. Covariance matrices were calculated using the
bootstrap procedure, and combined additively. Figures 7.20 and 7.21 show the total
bin-by-bin correlation in fiducial phase space for the leptonic and hadronic asymmetry
variables in the signal regions before and after unfolding. Before unfolding the correla-
tion is less than 4% for all off-diagonal elements of the correlation matrix in both SRs.
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Figure 7.19: The fractional uncertainty of 1000 pseudo-experiments for the jet energy res-
olution systematic uncertainty at in fiducial phase space for the bin Aθ ∈ [−1, 0.0) (left) and
the standard deviation of the distribution of systematic uncertainties for each toy compared
to size of the systematic uncertainty across the full range of measure Aθ (right). The shape
of the spread of the pseudo-experiment uncertainties (left) is representative of the shape of
all bootstrapped distributions, however the mean and variance of the distribution vary as
function of Aθ.

The observed correlation of the measured relative differential cross-section can be un-
derstood to be primarily a result of the unfolding procedure. The unfolding procedure
acts probabilistically. At least 50% of events are required to originate from bins with
the same Aθ range at detector and particle-level. Therefore, the < 50% of events that
originate from bins with different Aθ ranges at detector- and particle-level introduce
correlations. As expected, the unfolding has introduced a correlation between bins of
between 0% and 35%.
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Figure 7.20: The total bin-by-bin correlation between bins of Aθ distribution before and
after and the unfolded procedure in the leptonic SR.
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Figure 7.21: The total bin-by-bin correlation between bins of Aθ distribution before and
after and the unfolded procedure in the hadronic SR.
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7.8 Results

The unfolded measurement of Aθ in the signal regions for the hadronic and leptonic
channel is presented in Figure 7.22. The nominal Powheg+Pythia 8 prediction agrees
with the data in both SRs, given the systematic and statistical uncertainty of the
measurement. The observed data in the Leptonic SR is more compatible with the
Powheg+Pythia 8 prediction than the corresponding observation in the Hadronic
SR, however this difference is slight and not statistically meaningful. In the Hadronic
SR, more data is observed at high Aθ compared to prediction. Moreover, this dif-
ference varies smoothly across Aθ. The NLO predictions evaluated using the Mad-
Graph5_aMC@NLO+Pythia 8 and Powheg+Herwig 7 samples both agree with
the data within the statistical and systematic uncertainties of the measurement. In
particular, the disagreement between the three predictions is largest in the low Aθ re-
gion, indicating the Aθ variable is sensitive to both how the parton shower is evolved,
and the matching procedure used between the parton shower and matrix element.
The sensitivity of the Aθ variable to these effects is by design, since the measurement
aims to examine the radiation of the tt̄ system as well as the subsequent evolution of
that radiation. The Powheg+Pythia 8 prediction has been used extensively within
the ATLAS collaboration to model the tt̄ system, including radiative properties. Free
parameters, such as factorisation scales, have been tuned prior to this measurement.
Therefore, the Powheg+Pythia 8 sample has less predictive power than the other
NLO samples and it is not unexpected to find good agreement between the data and
this sample.

To quantify the agreement between prediction and data, a Pearson χ2 goodness-of-
fit test was performed [168]. The χ2 test statistic for simultaneous measurements with
non-zero correlation is

χ2 = (D − M)T
N−1 · Σ−1 · (D − M)N−1, (7.42)

where Σ is the total covariance matrix, combining additively the covariance due to sta-
tistical and systematic uncertainties. The measured distribution is normalised, hence a
degree of freedom has been removed from the system. The χ2 test statistic is calculated
with one bin removed. As the analysis has been designed for maximum sensitivity to the
extrema of the Aθ distribution, the modal bin was chosen for blinding. This amounts
to measuring the differential cross-section relative to the yield in this region of phase-
space.

From the χ2 test statistic, the p-value and z-scores can be evaluated. The p-value,
in this context, is defined as

P (χ2 > χ2
measured) = 1.0 −

∫ χ2
measured

0
p(χ2)dχ2 (7.43)

where p(χ2) is the probability distribution of the χ2 statistic [168]. The p-value corre-
sponds to the probability of observing the data given the hypothesis being tested is true.
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Therefore, low p-values correspond to poor agreement between observation and pre-
diction. The z-score, or σ-significance, is often used within the field of particle-physics
to provide an intuitive understanding of agreement between data and prediction. The
z-score represents how many standard deviations an observation is from the mean ex-
pectation. Assuming Gaussian distributed uncertainties, an assumption made implicitly
throughout this analysis and the wider particle-physics community, the p-value can be
used to evaluate the z-score from the inverse cumulative probability of the Gaussian
distribution [168].

Table 7.12 presents z-score, p-value and χ2 for the three discussed NLO gener-
ators. The global value of these test statistics has also been calculated for all the
predictions by combining the measurement in both SRs. The z-score between data and
Powheg+Pythia 8 is < 10−2. Furthermore, the global z-score between
Powheg+Herwig 7 and data is < 0.02 meaning no deviation is systematically or sta-
tistically significant. The observed p values between data and both the Powheg+Herwig 7
and Powheg+Pythia 8 predictions are > 0.95. This level of agreement between data
and these predictions is unlikely given the uncertainties associated with this measure-
ment. As previously discussed, mis-modelling of radiation in the system is a dominant
systematic uncertainty in this analysis, referred to in Section 7.7 as the modelling un-
certainty. The modelling uncertainties characterise the affect of mis-modelling on the
measurement, and are fundamentally different from experimental uncertainties which
are Gaussian noise associated with an observation. As MC modelling of the top quark
system was used extensively in performing this measurement, a conservative approach
of treating modelling systematic uncertainties as Gaussian uncertainties was used. The
uncertainty describing the measured data is typically larger than observed residual be-
tween prediction and data, because of the large modelling uncertainty. Therefore, the
modelling uncertainties contribute to the strength of the observed agreement between
data and Powheg+Herwig 7 and Powheg+Pythia 8. Of the NLO predictions, the
MadGraph5_aMC@NLO+Pythia 8 has the most significant deviation from data,
with an observed z-score of 1.38. From the difference between the Powheg+Herwig 7
and MadGraph5_aMC@NLO+Pythia 8 agreement, it can be concluded that the Aθ

variable has increased sensitivity to the matching scale between the ME and PS com-
pared to the PS evolution procedure. As previously discussed, this is by construction
of the variable.

The dead-cone effect has been implicitly included within all NLO predictions thus-
far discussed. The observed compatibility between data and NLO therefore strongly
implies the effect. However, without a prediction that explicitly factorises out the dead-
cone effect, the significance of this agreement cannot be stated.
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Figure 7.22: The relative differential cross-section of the angular asymmetry in fiducial
phase space for the leptonic (left) and hadronic (right) signal regions using data recorded
over the years 2015-2018 with the ATLAS detector.

Leptonic SR Hadronic SR Global
χ2/NDoF p-value z-score χ2/NDoF p-values z-score χ2/NDoF p-values z-score

Powheg+Pythia 8 (Nominal) 2.43/8 0.965 0.044 5.77/13 0.954 0.058 8.2/21 0.994 0.007
Powheg+Herwig 7 3.41/8 0.906 0.118 5.81/13 0.953 0.059 9.22/21 0.987 0.016

MadGraph5_aMC@NLO+Pythia 8 11.8/8 0.161 1.402 15.3/13 0.29 1.057 27.1/21 0.168 1.380

Pythia 8 DC on 18.4/8 0.0187 2.351 59.8/13 5.7×10−8 5.428 78.2/21 1.61×10−8 5.649
Pythia 8 DC off 31.3/8 1.22×10−4 3.841 73.9/13 1.5×10−10 6.405 105/21 3.43×10−13 7.276

Table 7.12: The χ2, calculated as defined in the text, evaluated between the nominal and
dead-cone on/off Monte Carlo samples and the corresponding p-value and z-scores.
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7.9 Interpretation

The dead-cone effect is factorisable from the matrix element to LO accuracy. Fig-
ure 7.23 shows the Pythia 8 prediction of the relative Aθ differential cross-section,
with and without the dead-cone effect. Unlike the NLO predictions, at LO the de-
scription of radiation in the tt̄ system does not agree with data for both SRs. In both
SRs, the SM-like dead-cone on prediction lies closer to data than the dead-cone off
hypothesis. The agreement between the two LO predictions has been quantified with
the previously discussed test statistics, and is presented in the lower half of Table 7.12.
The Leptonic SR has greater power at observing the difference between the two LO
hypotheses, as shown by a difference in z-scores of 1.49. This indicates the dead-cone
effect is a very weak effect, even in the LO picture. However, the Aθ variable is still sen-
sitive to the dead-cone effect. The hadronic SR has far weaker separation between the
LO templates, and correspondingly a smaller difference in z-score. However, data and
both LO predictions have a more significant separation in this region of phase-space
compared to the Leptonic SR. This is primarily driven by the increased resolution, and
therefore increased binning, in the region Aθ ∼ 0.5. The increased resolution of Aθ in
the hadronic SR compared to the leptonic SR is in the region where the dead-cone
effect is not present, i.e Aθ > 0.0. Therefore, strong rejection of both LO templates was
observed but poor rejection of one template compared to the other was also found. A
method to examine the significance of the observed LO dead-cone effect prediction was
sought.

Reweighting

To isolate the size of the dead-cone effect from differences between LO and NLO pre-
dictions an event-level re-weighting procedure was used. The Aθ distribution of the LO
particle-level dead-cone on hypothesis was constructed in fine bins of Aθ, as was the
same distribution for the nominal MC at particle-level. These distributions are shown
for both SRs in Figure 7.24. The re-weighting factors, wi, for an arbitrary event with
Aθ in bin i is

wi = Anom,i
θ

ADC on,i
θ

. (7.44)

The 353QH smoothing procedure1 is applied to reduce the impact of statistical fluctu-
ation in the derived weights [190]. Due to the smoothing, there is a small non-closure
at low Aθ. Assuming the LO and NLO effects factorise from the dead-cone on and
off predictions, this procedure can be used to examine the observed magnitude of the
dead-cone effect. This re-weighting procedure can be considered to be a multiplicative
method of matching LO to NLO predictions. An alternative additive method was also

1Implemented in using the scientific software toolkit ROOT, with the TH1::Smooth method.
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Figure 7.23: The relative differential cross-section of the angular asymmetry in fiducial
phase space for the leptonic (left) and hadronic (right) signal regions using data recorded
over the years 2015, 2016 and 2017 with the ATLAS detector.

considered, in which the an additive correction factor defined as

∆i = Anom,i
θ − ADC on,i

θ . (7.45)

Both procedures produced identical results, and the multiplicative re-weighting method
will be discussed exclusively herein. Figure 7.25 shows the Aθ distributions before and
after re-weighting for the dead-cone on and off samples in both SRs. The ratio between
each sample before and after re-weighting agrees well within the statistical uncertainty
of the samples. Therefore the re-weighting procedure affects both LO samples in the
same manner, whilst maintaining the differences in description of the dead-cone effect.

7.9.1 Template fit

A maximum likelihood fit was performed that aims to fit a parameter characterising the
best fractional combination of two predictions, or templates, to data. Two templates
are used to perform a maximum likelihood fit; T which corresponds to the SM dead-
cone on hypothesis and t which corresponds to the alternate hypothesis. The likelihood
function maximised is

L =
∏

i

(fDCTi + (1 − fDC)ti)di

di!
exp (−(fDCTi + (1 − fDC)ti) , (7.46)

where i is a binning index; di, Ti and ti are the number of entries in bin i for data, tem-
plate T and template t respectively, fDC is the fitted parameter of interest representing
the strength of suppression of the dead-cone effect. By construction, fDC is expected to
be in the range [0, 1]. The likelihood L was maximised by minimising its negative log-
arithm through the use of the L-BFGS-B algorithm, implemented in sklearn python
package [191], where the bounded constraints used on fDC ([−20, 20]) are much larger
than the expectation of fDC ∈ [0, 1].
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Figure 7.24: The LO Pythia 8 dead-cone on samples before and after the reweighting
procedure in the fine-grained binning used to define the weights with Equation 7.45. The
nominal tt̄ sample used in the re-weighting procedure is also shown.
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Figure 7.25: The LO Pythia 8 dead-cone on and off samples before and after the reweight-
ing procedure in bins optimised during the unfolding procedure detailed in Section 7.6.2. The
ratio shown in the lower panel is taken between the sample before and after the re-weighting
has been applied.
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The likelihood shown in Eq. 7.46 has a very low computational cost to evaluate,
therefore in addition to the use of the L-BFGS-B algorithm to evaluate the minimum
of L with respect to fDC, a fine scan of 105 points around the evaluated minimum was
performed to validate the smoothness of the likelihood.

The LO Pythia 8 templates were re-weighted to match the NLO Powheg+Pythia 8
sample using the Aθ variable at particle-level. The re-weighting was assumed to affect
both LO distributions in the same manner, resulting in a pseudo-NLO description of
a tt̄ system where top quarks radiate as if they were massless.

Figure 7.26 shows the measured values for fDC with the standard model template
T corresponding to the nominal Powheg+Pythia8 sample, or equivalently the re-
weighted LO Pythia 8 dead-cone on sample. The radiatively suppressed template, t
in Eq. 7.46, corresponds to the re-weighted dead-cone off sample. The statistical un-
certainty on fDC was evaluated through the use of pseudo-experiments. The measured
Aθ distribution was smeared bin-by-bin by a random number drawn from a Gaussian
of mean 1.0 and width equal to the size of the statistical uncertainty in that bin. 1000
pseudo-experiments were performed to evaluate the statistical uncertainty of the mea-
surement. The systematic uncertainty of fDC was taken to be the difference in fitted
fDC between the nominal and systematically shifted MC distributions.

A joint fit across the leptonic and hadronic signal regions was performed and the
measured dead-cone suppression strength was found to be

fDC = 0.527 ± 0.041 ± 0.295. (7.47)

The data measured in the Hadronic SR favours the re-weighted LO prediction, un-
like the data measured in the Leptonic SR which favours the NLO prediction. As a
result of this disagreement, the combination yields an ambiguous result. The uncer-
tainty on the measured value of fDC in the Hadronic SR is 0.50, much larger than the
0.30 uncertainty in the leptonic SR. As discussed previously, this indicates the dead-
cone effect is resolved less precisely in the Hadronic SR than the Leptonic SR. The
disagreement between the two regions indicate the FSR pattern of a top quark that
subsequently decays via the hadronic or leptonic top is measurably different, implying
the interference diagrams present in the hadronic decay of a top quark contribute sub-
stantially. The combination benefits from the enhanced statistics available from both
measurement regions, as is clear from the reduced statistical uncertainty compared to
the individual channels. However, the constraint one region imposes on another dur-
ing the fitting procedure causes an increase in systematic uncertainty in the global
measurement compared to the leptonic SR. This arises due to the large difference in
measured value of fDC . The novel method proposed in this thesis has the potential to
reject the dead-cone off hypothesis with a sensitivity of 3σ. However, due to the dif-
ferent measured values in the two observation regions, this sensitivity is not observed.
The measurement is compatible with both LO hypotheses, and lies 1.77σ away from
the dead-cone off hypothesis and 1.59σ away from the dead-cone on hypotheses.
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Figure 7.26: The fitted value of fDC in the leptonic and hadronic regions, as defined in the
text, as well as the global fit. The total statistical uncertainty of the fitted parameter, fDC,
is shown in blue and the total systematic uncertainty is shown in red.

Figure 7.27 shows how the sources and size of the systematic uncertainties affect fDC

when fitted globally. The relative importance of each systematic is consistent between
the template fit and the relative differential distribution as described in Tables 7.10
and 7.11. The background uncertainty due to the W+jets background process remains
a prominent source of uncertainty in the procedure. However, the uncertainty due
to the fake background estimation is larger in the global fit. The W+jet uncertainty
has a different shape in both SRs, therefore the global fit constrains and reduces this
uncertainty. Uncertainties arising from modelling and jets remain the largest combined
contributions.
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Figure 7.27: The sources of systematic uncertainty for the fDC evaluated in the global
template fit, grouped together by source. The quadrature sum of the 20 PDF4LHC nuisance
parameters is shown as the PDF uncertainty.
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7.10. Conclusion 7. Measuring the dead-cone

7.10 Conclusion

The relative differential distributions of the newly proposed Aθ variable, that has large
sensitivity to the dead-cone effect, have been measured and compared to a set of MC
predictions. The NLO description of the radiation in the tt̄ sample was compatible
with measured data within systematic uncertainties. The differences in NLO prediction
compared to data are understood to arise from free parameters within the matching and
showering procedures used. Therefore, this measurement provides useful information
that can be used to further improve the description of radiation from the tt̄ system.

The leading order predictions with the dead-cone on and off scenarios of Pythia8
were rejected with a significance of 5.65σ and 7.28σ respectively, as measured by a
conservative χ2 comparison. To isolate the description of the dead-cone, a binned
maximum log-likelihood fit of the fractional contribution of the dead-cone off hy-
pothesis, fDC, needed to describe the measured data was performed. For the fit, the
dead-cone off hypothesis was re-weighted to remove differences between LO and NLO
predictions of the tt̄ system. The dead-cone strength parameter was measured to be
fDC = 0.527 ± 0.041 ± 0.295, which is compatible with both the dead-cone on or off
hypotheses.
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8. Conclusion

In this thesis several novel approaches to probing QCD at the LHC have been pre-
sented. Firstly, the radiation of the top quark system was explored using an analytic
approach. Top tagging algorithms were examined using analytic-based substructure
techniques. The CMS Top Tagger algorithm was explored and found to be IRC unsafe
at order α3

s in QCD. The TopSplitter extension to this algorithm was proposed as an
IRC safe extensions. TopSplitter was found to have strong tagging performance, in
part due to the implicit jet grooming that was introduced in the procedure. Further-
more, the analytically motivated Ym splitter algorithm was proposed. The application
of the top tagging algorithms on top jets was examined with an all order calculation
and compared to MC prediction. The analytic jet mass distributions of top jets were
found to have large quantitative and qualitative differences with the MC prediction.
These arise ultimately from the neglected effect of soft gluon emissions in the analytic
calculation compared to MC. Furthermore, the description of quark-initiated jets with
a three-prong structure after the application of a top tagging algorithm was examined
with an all order calculation, and compared to MC based predictions. The MC predic-
tion was found to agree with the all order calculation in the relevant phenomenological
region. Therefore, the assumption often made across the particle physics community,
that the mass ordering of radiative prongs in a parton shower accurately captures
all-order effects, has been shown to be valid.

Furthermore, the calibration of jets in the forward region of the ATLAS detector
was studied. The dijet η inter-calibration was performed for data collected in the years
2015 and 2016. The presence of an under-correction in the dijet η inter-calibration pro-
cedure was identified. A potential iterative extension to the method was explored, and
found to be ultimately unsuccessful in removing the under-correction. A new systematic
uncertainty was introduced to account for this issue. This uncertainty was found to be
sub-dominant in comparison to the uncertainties associated with modelling. Further-
more, the bootstrapping procedure was introduced to the η inter-calibration procedure
for the first time, which led to a greater understanding and ultimate reduction of the
systematic uncertainties within the method. The statistical significance of systematic
uncertainties associated with the choice of cuts selecting a dijet event topology was
evaluated. These topology-related uncertainties were found to be statistically insignifi-
cant. The conservative approach of taking an envelope of these statistically insignificant
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8. Conclusion

uncertainties was taken, which ultimately resulted in a reduction of the total uncer-
tainty from this source compared to previous implementations of the method that did
not bootstrap the systematic uncertainties of the measurement.

As a central part of this thesis, the dead-cone effect was studied in detail. A new
analysis procedure was designed and implemented. In this novel analysis, a new vari-
able, Aθ, was constructed to have sensitivity to the dead-cone effect and the radiation
pattern from the tt̄ system. The new approach allowed for a measurement potentially
sensitive to the radiation pattern, and therefore dead-cone effect, of top quarks at the
LHC to be performed with the recorded Run 2 data-set of the ATLAS experiment. This
is a large improvement compared to the current expectation from literature, where pro-
posals require a minimum of L =300 fb−1 for a measurement. A novel application of the
machine learning tool BayesOpt was introduced as a general method to define a signal
region. The relative Aθ differential cross-section distribution was measured in regions
of phase-space determined by this procedure. Detector effects were removed using an
unfolding procedure. The procedure was extensively validated to ensure no bias was
introduced. The measured Aθ distribution was found to have excellent agreement with
NLO predictions of radiation from the tt̄ system across a range of three different NLO
predictions. The Aθ observable was found to provide information on the matching and
factorisation scale in tt̄ simulation, as examined by comparison with different NLO pre-
dictions. All NLO predictions implicitly contain the prediction of a dead-cone. However,
without a suitably high precision alternative hypothesis a definitive observation of the
effect cannot be claimed. To isolate the dead-cone effect explicitly, two leading order
samples with the dead-cone effect turned on and off were compared to data. Differences
between the LO and NLO sample were assumed to factorise with the dead-cone effect.
A re-weighting procedure was then used to produce a dead-cone off sample, corrected
for NLO effects. The strength of the dead-cone effect was parameterised using a new
observable, fDC, which characterises the amount of dead-cone like radiation suppres-
sion in the tt̄ system. The method had the potential for a 3σ sensitivity, provided that
fDC was measured to be the standard model expectation of 1.0. The strength of the
dead-cone effect was measured to be fDC = 0.527 ± 0.041 ± 0.295. which is compatible
ith both dead-cone on and off hypothesis.
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A. Full uncertainties of the Aθ

differential cross-section measurement

The Tables A.1 and A.2 show a complete break-down of the systematic uncertainties
in the measurement of the 1

σ
dσ

dAθ
for the leptonic and hadronic SRs respectively.
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A. Full uncertainties of the Aθ differential cross-section measurement
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A. Full uncertainties of the Aθ differential cross-section measurement
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A. Full uncertainties of the Aθ differential cross-section measurement
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A. Full uncertainties of the Aθ differential cross-section measurement

η
in

te
rc

al
no

n-
cl

os
ur

e
-

do
w

n
0.

08
8

−
0.

02
7

−
0.

01
1

−
0.

02
1

0.
07

5
−

0.
06

4
0.

00
3

0.
05

7
−

0.
02

7

η
in

te
rc

al
no

n-
cl

os
ur

e
-u

p
−

0.
01

8
−

0.
02

8
−

0.
03

6
−

0.
03

7
0.

05
4

−
0.

01
0

0.
01

7
0.

10
6

−
0.

00
7

η
in

te
rc

al
no

n-
cl

os
ur

e
+

do
w

n
0.

03
4

−
0.

00
6

−
0.

02
8

−
0.

01
4

0.
05

2
−

0.
04

2
0.

01
8

0.
08

2
−

0.
11

1

η
in

te
rc

al
no

n-
cl

os
ur

e
+

up
0.

04
6

−
0.

03
5

−
0.

03
6

−
0.

03
1

0.
05

3
−

0.
03

0
0.

02
9

0.
07

2
0.

03
4

η
in

te
rc

al
st

at
.

do
w

n
0.

02
6

0.
12

0
−

0.
12

2
−

0.
01

3
0.

07
1

−
0.

04
8

−
0.

02
4

0.
09

4
−

0.
09

5

η
in

te
rc

al
st

at
.u

p
−

0.
02

1
−

0.
11

2
0.

01
9

−
0.

00
5

0.
01

7
−

0.
04

9
0.

04
6

0.
10

1
0.

05
8

Pi
le

-u
p

µ
do

w
n

0.
04

2
0.

22
7

0.
18

3
−

0.
08

3
0.

11
1

−
0.

08
1

−
0.

18
2

0.
02

0
−

0.
43

8
Pi

le
-u

p
µ

up
−

0.
36

5
−

0.
16

9
0.

02
8

−
0.

01
4

0.
05

0
−

0.
00

3
0.

06
7

0.
17

7
0.

04
6

Pi
le

-u
p

N
PV

do
w

n
−

0.
06

6
0.

09
0

0.
02

9
−

0.
20

0
0.

20
0

0.
06

2
−

0.
09

4
0.

04
6

0.
11

8

Pi
le

-u
p

N
PV

up
−

0.
39

2
−

0.
10

5
0.

35
0

0.
00

3
0.

02
3

−
0.

03
9

−
0.

13
2

0.
05

1
−

0.
21

7
Pi

le
-u

p
pT

do
w

n
0.

05
2

−
0.

01
1

0.
01

2
0.

03
5

0.
05

7
−

0.
03

1
−

0.
04

0
0.

01
2

−
0.

29
5

Pi
le

-u
p

pT
up

−
0.

08
0

−
0.

01
9

−
0.

06
7

−
0.

07
2

−
0.

00
5

0.
00

6
0.

08
9

0.
20

2
0.

10
6

Pi
le

-u
p

ρ
to

p.
do

w
n

−
0.

26
1

0.
10

2
−

0.
15

8
−

0.
27

7
0.

33
9

0.
11

1
−

0.
03

8
0.

24
8

0.
06

8

Pi
le

-u
p

ρ
to

p.
up

−
0.

11
9

−
0.

10
9

0.
44

4
0.

06
9

−
0.

06
9

−
0.

06
0

−
0.

17
7

−
0.

09
7

−
0.

30
9

155



A. Full uncertainties of the Aθ differential cross-section measurement
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A. Full uncertainties of the Aθ differential cross-section measurement
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