
The University of Manchester Research

Experimenting with Big Data Computing for Scaling Data
Quality-Aware Query Processing
DOI:
https://doi.org/10.1016/j.eswa.2021.114858

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Cisneros Cabrera, S., Michailidou, A., Sampaio, S., Sampaio, P., & Gounaris, A. (2021). Experimenting with Big
Data Computing for Scaling Data Quality-Aware Query Processing. Expert Systems with Applications.
https://doi.org/10.1016/j.eswa.2021.114858

Published in:
Expert Systems with Applications

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:08. Jun. 2022

https://doi.org/10.1016/j.eswa.2021.114858
https://www.research.manchester.ac.uk/portal/en/publications/experimenting-with-big-data-computing-for-scaling-data-qualityaware-query-processing(83890c64-d43e-46d5-bcdd-3bb1230a60a6).html
https://doi.org/10.1016/j.eswa.2021.114858


Experimenting with Big Data Computing for Scaling
Data Quality-Aware Query Processing

Sonia Cisneros-Cabreraa, Anna-Valentini Michailidoub, Sandra Sampaioa,∗,
Pedro Sampaioc, Anastasios Gounarisb

aDepartment of Computer Science, The University of Manchester, UK
bDepartment of Informatics, Aristotle University of Thessaloniki, Greece

cAlliance Manchester Business School, The University of Manchester, UK

Abstract

Combining query processing techniques with data quality management approa-

ches enables enforcement of quality constraints, such as timeliness, accuracy

and completeness, as part of ad-hoc query specification and execution, improv-

ing the quality of query results. Despite the emergence of novel data quality

processing tools, there is a dearth of studies assessing performance and scalabil-

ity in the execution of data quality assessment tasks during query processing.

This paper reports on an empirical study aiming to investigate the extent to

which a big data computing framework (Spark) can offer significant gains in

performance and scalability when executing data quality querying tasks over a

range of computational platforms including a single commodity multi-core ma-

chine and a cluster-based platform for a wide range of workloads. Our results

show that substantial performance and scalability gains can be obtained by us-

ing optimized data science libraries combined with the parallel and distributed

capabilities of big data computing. We also provide guidelines on choosing the

appropriate computational infrastructure for executing DQ-aware queries.

Keywords: Data Quality-Aware Queries, Big Data Computing, Empirical

Evaluation

∗Corresponding author
Email addresses: sonia.cisneroscabrera@manchester.ac.uk (Sonia Cisneros-Cabrera),

annavalen@csd.auth.gr (Anna-Valentini Michailidou), s.sampaio@manchester.ac.uk
(Sandra Sampaio), p.sampaio@manchester.ac.uk (Pedro Sampaio), gounaria@csd.auth.gr
(Anastasios Gounaris)

Preprint submitted to Expert Systems with Applications March 6, 2021



1. Introduction

Big data computing frameworks, discussed in (Kune et al., 2016), such as

Hadoop and Apache Spark are gradually becoming the mainstream choice for

parallel and distributed processing of very large data sets in data intensive ap-

plications. Despite several empirical studies available in the literature reporting

on the performance of big data computing frameworks in a variety of appli-

cation domains, such as (Singh & Bawa, 2017; Harnie et al., 2017; Li et al.,

2016; Tous et al., 2015, October; Veiga et al., 2016, December; Cheng et al.,

2016, March; Zhang & Sakr, 2013, May; Shahrivari & Jalili, 2016), there is

only a small set of studies assessing the performance implications of big data

computing frameworks in supporting Data Quality (DQ) management tasks, for

example, (Schelter et al., 2018; He et al., 2016, July; Taleb et al., 2015, June;

Khayyat et al., 2015, June).

As key activities in DQ management, querying and data profiling (DP) allow

the collection of statistics and value assessments to build a profile for a data

set and use quality-based constraints as part of the querying process. Profiles

typically consider data properties relating to the content, structure and quality

of data, obtained via data exploration and used to unveil analysis-relevant in-

formation about the data, such as value frequencies, formats, patterns, defects,

outliers, etc. The information may involve multiple attributes and/or entities

of the target data set, relevant to a multitude of DQ dimensions, as reported in

(Pipino et al., 2002), such as timeliness, completeness, and accuracy. Similar to

any activity involving automation of data analysis, DQ-aware query processing

is a computationally demanding process, with tasks involving application of ag-

gregation operations, checking of dependencies between attributes, combination

of data using join and union operations, application of arithmetic operations,

evaluation of boolean expressions, etc. Moreover, such tasks can be executed

over complex structured and semi-structured data, frequently found in big data

applications. The integration of big data computing with DQ management ap-

2



proaches should be an important part of the data quality technology stack, as

suggested in (Loshin, 2014), since the efficient computation and scalability of

DQ processing tasks is paramount to performing data science at scale.

Recent research in DQ management for big data has focused on the following

topics: (1) automation of DQ assessment and processing, aiming at minimizing

the need for manual tasks (Schelter et al., 2018; Khayyat et al., 2015, June;

Heidari et al., 2019, June); (2) assessment of the effectiveness of automated DQ

processing (Zhang et al., 2019, April; Milani et al., 2019, April), where machine

learning approaches have had a significant impact; and (3) scaling of existing

DQ processing tools and systems for coping with a variety of big data loads

(Schelter et al., 2018, 2019, April). Topics (1) and (2) concentrate the bulk of

DQ for big data research to date, with topic (3) recently gaining prominence,

due to the need to ensure scalability of applications.

Popular and/or commercial DQ management tools such as Metanome for

data profiling, described in (Papenbrock et al., 2015), and Trifacta for data

wrangling, described in (Trifacta, 2017), have been developed with native sup-

port for execution on big data computing frameworks; however, to the best of

our knowledge, comprehensive empirical performance studies in relation to these

tools have yet to be published. Recently, both Apache and Databricks have pro-

vided their own solutions for DQ management for big data, namely Griffin1 and

drunken2, respectively, but these solutions have not been empirically assessed

from a performance and scalability point of view either. Ultimately, the success

of these tools will depend on scalability and performance characteristics.

In this paper, we investigate the scalability and performance issues associated

with a set of DQ-aware query processing tasks over large, sensor-collected traffic

data sets. Time series data sets have been selected for the empirical study due to

their prevalence in data science and the associated DQ management challenges.

Given the absence of DQ management application benchmarks focused on

1https://griffin.apache.org/
2https://github.com/FRosner/drunken-data-quality

3



specific DQ dimensions, we have chosen DQ assessment and profiling algorithms

addressing the most commonly used DQ dimensions in practice, namely timeli-

ness, completeness and accuracy, evaluating boolean expressions involving mul-

tiple attributes, arithmetic and aggregate operations, and combining large data

sets using join operations. The algorithms are executed over one of the most

widely used big data computing platforms, Apache Spark, using one of the most

popular libraries for fast data manipulation in data science (i.e., Python Pan-

das), varying data types, data set sizes and computing infrastructures (e.g.,

commodity PCs and parallel computing clusters). The algorithms are imple-

mented in DQ2S - the Data Quality Query System - which supports a SQL-

based query language and an extensible set of algebraic operators associated

with DQ dimensions, allowing data to be queried based on user-imposed qual-

ity thresholds, described in (Sampaio et al., 2015).

As part of our empirical investigation, we perform a number of experiments

based on the DQ2S code base, addressing the following issues:

• Assessing the performance and scalability of a set of DQ management

queries, ranging from simple queries involving one dimension of quality

and one input data collection, to complex queries involving the collection

of information regarding two DQ dimensions.

• Exploring two performance improvement technologies: Pandas, a pro-

gramming language library for fast tabular data manipulation in memory,

and Apache Spark, a big data computing platform for parallel execution.

• Experimenting with complex, real-world, time series traffic data sets col-

lected from road-side sensors, with different types of data, e.g., numeric,

categorical and miscellaneous, ranging from small to large, input to a va-

riety of DQ-aware queries deployed on multiple infrastructure settings,

including a commodity PC and a cluster of PCs.

In addition to performance and scalability insights, the results discussed

in this paper also show a breaking point at which commodity multi-core PCs

4



running DQ2S without the support of big data computing frameworks are no

longer able to handle very large volumes of data. This result is relevant towards

identifying data set sizes where it is necessary to apply the capabilities of big

data computing frameworks. In our experience in wrangling traffic data, re-

ported in (Sampaio et al., 2019), conventional data management tools running

on commodity PCs have significant scalability limitations when handling very

large data sets (e.g., the file size limit of 250MB in Web Office 365 Excel, or

data sets of more than 4 gigabytes in OpenRefine, described in (OpenRefine-

Organization, 2019)). Moreover, we show up to which point using Spark on a

single multi-core PC is more beneficial than running it on a cluster.

This study can also be used as a roadmap for those interested in re-purposing

and porting existing DQ management systems and tools to possibly increase

scalability and performance by exploring the features provided by the big data

frameworks (Apache Spark and Pandas). The research also contributes to the

literature by providing insights into the requirements (i.e., data volume, archi-

tecture, level and type of parallelism) over which a big data computing frame-

work starts and ceases to provide benefits, and the challenges associated with

the porting of non-parallel “small data” applications to scale and fully explore

the capabilities of big data frameworks deployed on a parallel computing in-

frastructure. Additionally, the code base used for the experiments is publicly

available in a repository to enable third parties to extend and/or re-run our

experiments.3.

The remainder of this paper is organized as follows: Section 2 provides

a literature review within the scope of big data quality processing. Section

3 describes background on the DQ2S system and the three main variations or

instances of DQ2S compared in the experiments. Section 4 presents the research

questions motivating the work, as well as the settings for all the experiments

and the evaluation criteria used in the discussion and analysis of results. Section

5 presents the experiments and corresponding results. Section 6 discusses key

3https://github.com/annavalentina/Data-Quality-Query-System

5



insights arising from this research. Section 7 concludes the article and outlines

future work.

2. Related Work

There are three major topics of related work covered in this literature review:

(1) research addressing automation (AUT) of DQ assessment and management

tasks, involving the development of languages and functionality for end-users

to express DQ requirements and constraints, minimizing the need for manual

tasks; (2) research on assessing the effectiveness (EFF) of automated DQ pro-

cessing, for example, by injecting errors into datasets and evaluating error fixing

functionality; (3) research on scalability (SCA) of existing DQ processing tools

and systems for coping with big data loads.

Table 1 provides a summary of the papers included in the literature review.

(Schelter et al., 2018) focus on automation of data quality verification.

Declarative definition of data quality constraints is supported via a number

of provided logic syntax language constructs, and these can be combined with

user-defined code via calls to external functions. The user-defined constraints

in (Schelter et al., 2018) are translated into aggregation queries, which run over

Spark.

Topics Approach Evaluation Source

AUT,

EFF,

SCA

DQ constraints in logic-based nota-

tion compiled into Spark code.

Empirical evaluation on

Spark using real-world

data.

(Schelter et al.,

2018, 2019,

April)

AUT,

EFF

Unsupervised ML for error detection.

DQ extension layered on tools such

as Excel, without big data capabili-

ties.

Empirical evaluation us-

ing real-world data.

(Wang & He,

2019, June)

6



AUT,

EFF

Accuracy constraints expressed as

data exploration queries complying

with privacy requirements. APEx

Data exploration tool supporting the

accuracy dimension via translation

of queries and accuracy bounds into

differential private preserving algo-

rithms.

Empirical evaluation us-

ing real-world data.

(Ge et al., 2019,

June)

AUT Application of ML for error detec-

tion.

Empirical evaluation us-

ing real-world data; fo-

cus on effectiveness of

error detection (recall

and precision).

(Heidari et al.,

2019, June)

EFF Application of ML and conditional

functional dependencies for detecting

missing values

Empirical evaluation us-

ing real-world data; fo-

cus on the effectiveness

of the completeness ap-

proach.

(Zhang et al.,

2019, April)

EFF Application of ML for detection of

timeliness DQ issues.

Empirical evaluation us-

ing real-world data; fo-

cus on the effectiveness

of the timeliness ap-

proach.

(Milani et al.,

2019, April)

AUT,

EFF

Application of ML for selection and

configuration of error detection algo-

rithms.

Empirical evaluation

with a focus on coverage

and effectiveness of

error detection.

(Mahdavi et al.,

2019, June)

AUT,

SCA

SQL-based DQ extension for error re-

pair layered on top of OpenRefine.

Scalability experiments

on a MacBook Pro ma-

chine scaling to 5 million

rows, without perform-

ing tests on a big data

computing framework.

(He et al., 2016,

July)

AUT Rule-based data profiling framework

focusing on data cleaning layered on

top of Hadoop.

Not available. (Taleb et al.,

2015, June)

AUT,

SCA

Execution of SPARQL queries encod-

ing DQ validation tasks.

Empirical evaluation on

a 8-node cluster using

Hadoop and SPARQL

queries.

(Bonner et al.,

2015, October)

7



AUT,

SCA

Encoding of DQ constraints both

in declarative and procedural ways;

complementary DQ component to

general data processing platforms,

such as PostgreSQL.

Empirical evaluation us-

ing both synthetic and

real-world data.

(Khayyat et al.,

2015, June)

Table 1: Summary of Related Work.

(He et al., 2016, July) propose an approach to data cleaning that uses SQL

as declarative language to repair errors. The data cleaning system interacts with

users to gradually validate a possible set of minimal SQL update queries to repair

data. The system relies on user data exploration for error identification and

manual repair. Once a user repair is made, the system is able to “guess” a set of

possible queries to fix the identified error. Optimization techniques to prune the

search space composed of possible update queries are offered, as well as the use

of multi-hop search algorithms. The system was designed as an extension to the

OpenRefine data wrangling tool, described in (OpenRefine-Organization, 2019),

and uses PostgreSQL as underlying DBMS. The experiments assess scalability

on a MacBook Pro machine scaling to 5 million rows, without performing tests

on a big data computing framework.

(Taleb et al., 2015, June) propose a framework for big data quality manage-

ment that suggests techniques for overcoming or minimising data quality issues

arising from different tasks belonging to the data preparation step in the big

data management lifecycle, with a focus on data cleaning. The proposed data

cleaning module uses a profile of the target data set as guide to the cleaning

process. This profile encompasses a list of rules to be applied over the data to

address specific data quality issues relating to a particular quality request. The

selection of rules, which is the core activity of the profile generation process,

is performed based on samples extracted from the target data set, but details

about how this activity is carried out are not included. Moreover, the authors

claim that the module has been tested using the Hadoop implementation of

MapReduce. However, experimental details about the accuracy of their results

and overall system performance are not provided.

8



(Bonner et al., 2015, October) focus on the identification of errors in pa-

tient monitoring data, by executing data validation queries over RDF medical

data sets. To achieve scalability when dealing with large data sets, the authors

proposed a method for storing and querying RDF data sets using the Hadoop

implementation of MapReduce, by which parallelism is exploited in the execu-

tion of SPARQL queries over the data, allowing better scalability than previous

approaches using the MapReduce programming model. Performance improve-

ments are achieved through mainstream optimisation techniques applied to RDF

and SPARQL, such as SPARQL joining strategies, data caching and the amal-

gamating of queries that share common join elements to avoid re-computation

of joins. Empirical results using an eight node cluster suggest that accuracy

validation of RDF data requires domain knowledge that is likely to be encoded

in both queries and RDF data.

(Khayyat et al., 2015, June) propose the BigDansing data cleaning system to

enable error detection and fixing in large datasets. The system supports encod-

ing of data quality constraints both in declarative and procedural ways, and was

designed as a complementary layer to general data processing platforms. Clean-

ing involves (1) specifying data quality rules; (2) detecting violations based on

specified rules; and (3) repairing the dataset until there are no violations to the

specified rules. Users are expected to express logic syntax rules to define DQ

constraints. The experimental work was conducted using the TPC-H bench-

mark data, both in single-node and multi-node settings, using Shark SQL and

the Spark big data computing framework, scaling to 10 million rows. The ex-

periments show significant performance improvements in the execution of repair

algorithms compared to baseline systems such as PostgreSQL.

(Wang & He, 2019, June) propose UniDetect, a unified framework to auto-

matically detect diverse types of errors in tabular data, which can be integrated

with other tools, such as Excel. To create the error detection model, unsu-

pervised machine learning and multiple data sets are used. The focus of their

evaluation is on the achieved level of automation and precision of error detection

when applied to common types of errors.

9



(Mahdavi et al., 2019, June) address the problem of selecting appropriate

error detection algorithms along with suitable configurations for each algorithm,

taking into consideration the data set at hand. As a solution, they propose Raha,

a new configuration-free error detection system, which uses a semi-supervised

machine learning approach that does not require users to provide configura-

tions for error detection algorithms, and limits the set of all possible algo-

rithms/configurations with heuristics. The focus of their evaluation is on the

coverage of the different types of error detection algorithms and the effectiveness

of error detection.

(Heidari et al., 2019, June) address the problem of improving machine learn-

ing models for automatic error detection in data sets, by showing that data aug-

mentation, considered as a form of weak supervision, can be used to improve

model training. Data properties that impact on the quality of the model, such

as heterogeneity in types of error, imbalance in the number of errors, which ac-

count for under-representation of certain types of errors, are addressed in their

solution. The focus of their evaluation is on the effectiveness of error detection,

i.e., precision and recall.

(Ge et al., 2019, June) address the problem of accuracy in query answers

when the exploration of sensitive data is performed by (externally hired) data

analysts. As a solution, they propose APEx, a system that allows data ana-

lysts to submit sequences of queries along with accuracy bounds for data explo-

ration. By translating queries and accuracy bounds into differentially private

algorithms, APEx returns query answers to the data analyst that meet the ac-

curacy bounds. The focus of their evaluation is on the level of privacy loss in

data exploration for entity resolution with high accuracy, and under reasonable

privacy settings.

(Zhang et al., 2019, April) address the problem of completeness of numerical

values in sensor-collected and heterogeneous data sets, by using conditional de-

pendencies that hold over certain tuples rather than the whole relation. These

dependencies are used for learning an individual regression model for each com-

plete tuple together with its neighbor, which helps determining a missing value

10



based on regression results by the individual models. The focus of their eval-

uation is on the accuracy of their approach compared to other existing data

imputation approaches.

(Milani et al., 2019, April) address the problem of data decay (timeliness)

by capturing space and time update patterns in a database, from query logs,

and by inferring values that are possibly out-of-date using a spatio-temporal

probabilistic model. The focus of their evaluation is on the effectiveness of their

technique to identify out-of-date values over real data, considering the accuracy

of the repaired values compared to other existing techniques.

(Schelter et al., 2019, April) address the problem of automatic DQ verifica-

tion by proposing an open source library, based on Apache Spark, that allows

users to explicitly specify DQ constraints to be verified in a declarative way,

and that provides mechanisms for the automatic validation of these constraints

on partitions of data. Optimization strategies to avoid re-reading previously

processed partitions following individual partition updates, and to verify se-

lected combinations of partitions, are also proposed and compared against non-

optimized DQ verification jobs. Their evaluation is performed on Spark, with

a focus on the efficiency of their optimization strategies with regard to runtime

and reduction on the number of Spark jobs.

(Schelter et al., 2018) is the closest work to the one reported in this pa-

per, enabling declarative definition of DQ constraints. While in (Schelter et al.,

2018) this is done via provided logic syntax constructs, in DQ2S this is done via

extensions to SQL with a special DQ syntax clause. In (Schelter et al., 2018),

external functions are combined with the provided constructs through calls,

whilst, in DQ2S, an extensible set of operations are available to all users of the

system, allowing operators to be chained to compose a solution, in a manner

resembling the combination of operators included in a relational algebra query

plan. The design of DQ2S allows the application of heuristics for automatic

performance and quality-based optimizations. The user-defined constraints in

(Schelter et al., 2018) are ultimately translated into aggregation queries, which

run over Spark. In our work, we focus on the assessment of performance and

11



scalability of different implementations of DQ2S, with and without the use of

Spark or Pandas to manipulate data in memory, store data in disk, and provide

opportunities for parallelization. We also experiment with different amounts of

memory, infrastructure settings that impact on the level of parallelism, and the

level of complexity of data quality/profiling tasks and their impact on scalability

and performance of the system. The tested algorithms are described in detail

and implement objective dimensions of data quality, beyond accuracy. In con-

trast to (Schelter et al., 2018), we also include an empirical comparison between

DQ2S and an emerging big data DQ system, namely drunken.

3. The Data Quality Query System (DQ2S)

DQ2S, described in (Sampaio et al., 2015), is a query processing and data

quality constraint enforcement system designed to facilitate the profiling and

data quality assessment of large data sets, which combines traditional data

management and data profiling techniques for data cleansing. DQ2S includes a

data model that seamlessly allows users to associate quality related properties

with data stored in a database or file system, by providing facilities for modeling

and storing those properties. As a result, the model enables the querying of not

only data, but also quality-related information associated with the data, as well

as the generation of data profiles via a declarative, SQL-like, query language

and an interface that isolates the user from the complexities of the profiling

algorithms and the data model constructs. DQ2S also allows users to request

data quality to be measured according to an extensible set of algorithms, applied

over the available quality-related information, and the ability to construct and

apply filters when querying the data based on both data quality measures and

quality-related information. Since the profiling algorithms are implemented as

algebraic operators, optimisation can be achieved in DQ2S as part of query

processing.

The expression below shows a query expressed in the query language defined

within the DQ2S system (called DQ2L) that is equivalent to the following text

12



fragment representing a DQ profiling request: “Select all purchase orders that

have ‘pending’ as status and have been waiting to be validated for more than 50%

of the maximum waiting time”. Note that DQ2L extends SQL with the WITH

QUALITY AS syntax clause, allowing users to specify data quality related

requests. Also note the use of data quality related functions in both the SELECT

and WITH QUALITY AS clauses, such as TIMELINESS, which measure the

quality of a table, tuple or attribute according to underlying implementations

of data quality dimensions.

SELECT order_No, TIMELINESS(status)

FROM Order

WHERE status = ‘Pending’

WITH QUALITY AS TIMELINESS(status) <= 0.5

Figure A.5 in Appendix A illustrates a query plan for the DQ2L query shown

above, based on a combination of both relational algebra operators, such as join,

select and project, and data quality related operators, such as timeliness. As

the timeliness operator adds a data quality score as attribute to individual

tuples, a select operator to filter tuples based on this data quality score follows

operator timeliness. Appendix A presents a description of the operators and

other language constructs that comprise the DQ2S Timeliness query. Quality-

aware optimisation is one of the types of optimisation that the framework is

capable of. For example, if multiple implementations of the timeliness operator

are available, the optimiser is able to select the most appropriate operator for

the task at hand, based on stored information about the operator and its uses

and/or collected statistics about operator choices by different groups of users.

Whilst the semantics of the relational operators is similar to the semantics of

relational algebra, the computation associated with this particular implementa-

tion of the timeliness operator is based on the data quality properties of currency

and volatility, as defined in (Ballou et al., 1998) and described in Equations 1,

2 and 3. In Equation 1, v represents a unit of data, and s represents a control

variable associated with the sensitivity of the currency-volatility ratio, which

should be calibrated according to the level of impact that volatility has over the

13



result. Calculations of currency and volatility are expressed in Equations 2 and

3, respectively. Currency represents the current age of the data based on the

time the data was stored and the age it had at that point in time, and volatility

shows a measure of time during which data is not outdated. The timeliness

result is given on a 0 - 1 scale, where the scale can be seen as 0 to 100% of

timeliness degree. The logical operator query plan for the Timeliness query in

Figure A.5 shows the order no and the timeliness score of each pending order

that has a timeliness score lower than 0.5.

Timeliness(v, s) = max[(1 −
Currency(v)

V olatility(v)
), 0]

s

(1)

Currency(v) = DeliveryT ime(v) − LastUpdateT ime(v) + Age(v) (2)

V olatility(v) = ExpiryT ime(v) − LastUpdateT ime(v) + Age(v) (3)

Although DQ2S was designed to support data quality management functional-

ity seamlessly integrated with mainstream query processing, the original DQ2S

system engine did not explore parallelism opportunities or the capabilities of big

data computing frameworks and parallelism. Preliminary experiments using the

original engine included elapsed times for complex data profiling queries over

small scale data sets using a single Intel core i5 machine with 8GB of RAM

and clock speed of 2.30 GHz, described in (Sampaio et al., 2015). Elapsed times

for the data profiling tests using a data set of 100 000 records were above 15

minutes, as reported in (Sampaio et al., 2015), which is extremely slow when

performing interactive data analytics operations. As the major performance

bottleneck identified in the original DQ2S system related to I/O processes, the

adaptation of the original algorithms towards execution over a big data comput-

ing platform provided an opportunity to increase performance and scalability

of DQ2S.

In this work, three different instances of the DQ2S engine are used to assess

and explore the capabilities of big data computing for data quality management.

A description of the implementation instances is provided as follows:

14



(I) Non-parallel or Optimised Python DQ2S: The Optimised Python

DQ2S is called “Optimised” since it makes intensive use of the functionality

packaged in the Python Pandas library (Augspurger et al., 2015), which sup-

ports data structures and methods optimised for data manipulation, specially

data in tabular form. This instance is used as a baseline for performance com-

parisons involving the two parallel instances described below. Other non-parallel

DQ2S implementations were tested and compared against the Optimised Python

instance (outside the scope of this paper), namely, a Java instance described in

(Sampaio et al., 2015), and a Python instance that does not use Pandas. Previ-

ous experiments have shown that the Optimised Python instance is more than

3 orders of magnitude faster than the other non-parallel instances, in the follow-

ing order, from the fastest to the slowest: Optimised Python, Java and Python.

Thus, the Optimised Python instance is the non-parallel instance that performs

best and was therefore chosen as baseline for comparison against the parallel

instances considered in this paper.

(II) Parallel I or PySpark DQ2S: Developed to be used under the Apache

Spark big data computing framework, the PySpark DQ2S instance utilises the

SQL Apache Spark library and the Python API, which offer capabilities to

explore parallelism, either on a single machine by using multi-threading or on a

cluster of machines. This instance is used to show performance gains obtained

solely from the exploitation of parallelism without the help of special functions

for optimising data manipulation.

(III) Parallel II or PySpark+Pandas DQ2S: This instance differs from the

previous one in that it employs Pandas along with PySpark to enable not only

parallelism exploitation but also data manipulation optimisations. As such, it

facilitates the investigation of performance gains obtained from the Pandas-

optimised data manipulations in a parallel setting.

15



4. Research Questions, Experiment Settings and Evaluation Criteria

This empirical study intends to provide answers to the research questions de-

scribed as follows. These questions are associated with gaps found in past work

involving big data frameworks, some of which were described in the related work

(Section 2), which mostly do not identify the circumstances (e.g., data volume,

machine architecture, level and type of parallelism) at which these frameworks

start and cease to provide any benefit and what programming burdens are asso-

ciated with the re-purposing of non parallel DQ components into systems that

can be executed to exploit big data computing frameworks.

1. What performance and scalability differences can be observed when using

the Non-parallel, Parallel I and Parallel II instances in Local mode4? Also, how

much data can each instance efficiently handle?

2. What performance and scalability differences can be observed when using a

single core of a machine versus when using all of its cores for the Parallel I and

Parallel II instances?

3. What performance and scalability differences can be observed when using

a single multi-core machine versus cluster-based computing environments for

small, medium and large workloads?

4. What are the performance and scalability advantages that big data comput-

ing frameworks provide to data quality management tasks?

5. What are the challenges of re-engineering the implementation of a DQ-aware

query processing system to work on top of big data computing framework?

In the following sections, the environment, settings and evaluation criteria

for the experiments performed to address the research questions are presented.

Later, we present results from experiments, in Section 5, and we answer the

above questions in Section 6.

4Local mode in this context means execution of jobs using a single server. In other words,

performance benefits are obtained from parallelisation across all the cores in a server, but not

across several servers.

16



4.1. Datasets, Queries and Experimental Settings

To answer the research questions previously described, the queries described

in Table 2 were chosen so that a broad range of DQ profiling tasks of varying

levels of complexity, and varying resource requirements is covered. It is worth

pointing out that each query uses one or more data profiling operators, designed

to provide data quality assessment considering completeness, timeliness and

accuracy. And they are named after the quality dimensions they focus on.

Query Description

Completeness

(C)

This query computes a completeness score for each record/row regarding

the fields/columns specified by the user. To establish whether a value is

missing, apart from blanks, the operator checks the content of the corre-

sponding cells against special symbols used to denote missing values (e.g.,

0 for some numeric fields). Additionally, the Completeness query encom-

passes functionality to read files and to structure the final query output

by applying a Project operator. An illustration of the execution plan for

this query is shown in Figure B.7 in Appendix B.

Timeliness (T) This query computes a Timeliness score for each input record, based on

available data quality information associated with the record. This cal-

culation is performed by means of a Timeliness operator, described in

detail in Section 3. The association between data records and their corre-

sponding quality information is materialised by means of join, making the

Timeliness query generally more costly than the C query described above.

An illustration of the execution plan for this query is shown in Figure B.8

in Appendix B.

Accuracy (A) This query calculates an Accuracy score for each input record by means

of an Accuracy operator. This operator adds a score to each record, in-

dicating its level of accuracy regarding a boolean expression defined by

the user. Examples of such expressions include the following: “shipDate >

submitDate”, “ TrafficVolume = VolumeLane1 + VolumeLane2”, etc., where

names in typewriter font denote field names in a record. Similarly to the

C query, it does not contain any expensive join operations. An illustration

of the execution plan for this query is shown in Figure B.6 in Appendix

B.

17



Timeliness-

Completeness

(T+C)

This is a more complex query that combines two data quality operators,

namely Timeliness and Completeness, incurring the application of two

potentially expensive join operations involving three input files. It is built

using the same operators and inputs as queries T and C. An illustration

of the execution plan for this query is shown in Figure B.10 in Appendix

B.

Timeliness-

Accuracy

(T+A)

This is another complex query that, similarly to the T+C query described

above, combines two data profiling operators, Accuracy and Timeliness,

incurring two join operations and three potentially large input files. An

illustration of the execution plan for this query is shown in Figure B.9 in

Appendix B.

Table 2: DQ Queries.

To be able to observe limitations or advantages in the level of scalability asso-

ciated with the target big data framework, four sizes for each of three different

datasets were chosen to be used in the experiments described in this paper,

namely 100MB, 512MB, 1GB and 10GB, covering a reasonably broad range

of sizes, from small to large. The three datasets chosen for the experiments,

described in Table 3, provide us with the opportunity to observe changes in

performance relating to the data manipulation and resource allocation made by

the framework implementation for different types of data. The datasets describe

traffic data collected via inductive loop sensors planted on the roads of the city

of Manchester in the UK5. While one of the datasets contain miscellaneous data

types, the second dataset contains numeric fields only, and the third data set

contains categorical fields.

Data Set Description

5The data files were provided by the Greater Manchester Traffic Authority, TfGM.

18



Traffic This is a real-world dataset describing traffic information collected at real-

time, including event recording timestamp, vehicle count per lane of a

road fragment within a particular time period, average speed of vehicles

detected within a time period, individual count of vehicles of a given class

detected within a particular time period (e.g., motorcycles), etc. As such,

a single record contains a variety of data types, including categorical,

numeric, timestamp/date, string, etc. In total, each record contains 17

fields.

Numeric This is a dataset derived from the Traffic dataset, by removing and map-

ping non-numeric values into numbers. In total, each record contains 14

fields.

Categorical This is a dataset derived from the Traffic dataset, by having ranges of field

values mapped into defined categories. In total, each record contains 14

fields.

Table 3: Data Sets.

Each of the datasets is composed of three files, one of which is a data file

describing traffic-related events recorded at real-time (File 1 ), a second file

describes Timeliness related quality information, as described in Section 3 (File

2 ), and the third file contains latitude and longitude information associated with

each road fragment in consideration (File 3 ). As indicated in Table 4, each of

queries A, C, T, T+A, and T+C uses a different subset of these three files, and

so, different sizes of the files are used in different experiments, making sure that

each experiment involving 10GB, for instance, uses in fact only 10GB of data,

having roughly even fractions of the 10GB of data coming from each file involved

in the query. In Table 4, the sizes and number of rows of the datasets used in

each query for the experiments with 100MB of data are presented. Tables C.8,

C.9 and C.10 in Appendix C present the same information for the data used

in the experiments with 512MB, 1GB and 10GB, respectively. Note that the

number of rows used in the 10GB dataset exceed 100M, as in (Schelter et al.,

2018).

Finally, three settings are considered in terms of the computational infras-

tructure tested, described as follows:

• A Commodity PC with the following specifications: 6 core processor, 8GB

19



Dataset

/Query

Traffic Numeric Categorical

File 1 File 2 File3 File 1 File 2 File3 File 1 File 2 File3

C, A
100.5MB

1268589 rows
- -

100.5MB

1533332 rows
- -

100.1MB

1226892 rows
- -

T
52.2MB

734328 rows

50.6MB

734330 rows
-

50MB

76998 rows

50.6MB

734330 rows
-

50.6MB

622313 rows

50.6MB

734331 rows
-

T+C

T+A

31.2MB

389999 rows

41.2MB

589999 rows

32MB

750000 rows

30.5MB

468999 rows

40.6MB

589999 rows

31.3MB

750000 rows

30.5MB

375000 rows

40.6MB

750001 rows

31.3MB

590000 rows

Table 4: File sizes (in MB) and number of rows for each query used in the experiments with

100MB of data.

of RAM. In terms of Software, this Linux machine uses Python 3.6.7, Spark

2.3.1, Scala 2.11.8, Java 1.8.0 201 and Pandas 0.24.2.

• A commodity PC, part of the cluster described below, Cluster-1node, with

the following specifications: 6 core processor, 64GB of RAM. This is also

a Linux machine, with the following: Python 3.5.3, Spark 2.3.2, Scala

2.11.8, Java 1.8.0 191 and Pandas 0.24.2.

• A shared-nothing cluster with four nodes, Cluster-4nodes, with the fol-

lowing specifications: 6 core processor, 64GB of RAM; 8 core processor,

32GB of RAM; 4 core processor, 32GB of RAM; and 8 core processor,

64GB of RAM.

Each node is a Linux machine, with the following: Python 3.5.3, Spark 2.3.2,

Scala 2.11.8, Java 1.8.0 191 and Pandas 0.24.2.

4.2. Experiment Evaluation

The performance of five executions of each of the five test queries, varying

input data, input data size and machine architecture, is measured and evaluated

using well established metrics based on execution runtime, commonly used to

measure the performance of parallel algorithms. The metrics and corresponding

formulas are described in Table 5. Since it is a parallel architecture, the follow-

ing metrics for measuring the performance of parallel algorithms, described in

(Kwiatkowski, 2001, September; Alecu, 2007; Demmel, 1995; Alexandrov, 2013;

20



Andrews, 2000; Sahni & Thanvantri, 1996), were used to support the perfor-

mance analysis described in Section 5. The following information is required for

understanding the performance metrics used in this research:

Metric Description

Serial runtime

(TS)

The measurement of the time elapsed between the beginning and the end

of the fastest known serial algorithm that solves the problem. In our work,

this corresponds to the runtime of the Non-parallel solution.

One Core serial

runtime (T(1))

The measurement of the time elapsed between the beginning and the end

of a parallel algorithm executed on a single core. We explore this metric

dealing with both Parallel I and Parallel II implementation instances.

Parallel run-

time (TP)

The measurement of the time elapsed between the beginning and the end

of a parallel algorithm executed on more than one core. This time is com-

posed of three different components: (i) the time spent on computation,

(ii) the cores communication time, and (iii) the idle time, which corre-

sponds to the periods of time when a processor is waiting for input/output

(I/O) or is in low-power idle mode.

Number of cores

(p)

The number of processing units on which the parallel algorithm is exe-

cuted. We experiment with settings of 1, 6 and 26 cores. These settings

cover the maximum capacity of a single node and the overall capacity of

the entire cluster.

Speedup (S) The main performance metric considered in this study. It measures the

performance gain of a parallel program when solving the same problem

over the corresponding sequential program. In an ideal parallel system,

speedup is equal to the number of cores (p) used, however, it is usually

lower than p.

Table 5: Metrics Description.

There is more than one approach towards measuring speedup: Relative,

Real, Absolute, Asymptotic and Asymptotic relative, as described in (Sahni &

Thanvantri, 1996; Sun & Gustafson, 1991). This study applies the ones that are

valid and entirely applicable to the design and scope of the research, as follows:

• Real Speedup (rS). This speedup requires the sequential time TS from the

fastest serial algorithm available to be compared against time obtained from the

parallel algorithm over more than one core. This speedup is calculated using

21



the following formula:

rS =
TS

TP
. (4)

• Relative Speedup (rtS). Calculates the speedup regarding TS as the parallel

execution time from the algorithm run over one core T(1). This is made to

consider the inherent parallelism of the parallel algorithm that is being assessed.

The formula utilised to calculate the relative speedup is the following:

rtS =
T (1)

TP
. (5)

4.3. Evaluation Methodology

The evaluation methodology adopted in this paper (illustrated in Figure D.11

of Appendix D) includes experiments involving all combinations of the follow-

ing: the three instances of the DQ2S system described in Section 3, among

which Parallel I and Parallel II are able to explore both intra- and inter-node

parallelisms, while Non-parallel serves as a baseline; the three computational

infrastructure settings described in Section 4.1, all composed of multi-core ma-

chines and, among which, Cluster-1node and Cluster-4nodes represent sets of

machines in a cluster; the five DQ management queries described in Section 4.1,

distinguishable by DQ dimension, complexity and resource requirements; the

three types of datasets described in Section 4.1, namely Traffic, Numeric and

Categorical ; and the four sizes for each dataset, described in Section 4.1, rang-

ing from 100MB to 10GB. The only exceptions are the combinations involving

the Non-parallel instance of DQ2S and the Cluster-4node infrastructure set-

ting, because this particular instance does not include functionality for parallel

execution, and so it is not possible to run it over multiple machines.

Additionally, to observe performance gains obtained from intra-node paral-

lelism, experiments involving all cores, as well as a single core, of each multi-core

machine were performed for each infrastructure setting. Results are discussed

with a focus on the metrics described in Section 4.2 and presented in Section

5. A total of 45 plots, organised as 3 groups of 15 plots, are shown, being each

group associated with a dataset type. In each group of plots, each individual

22



plot associates a DQ management task (i.e., a query) with an infrastructure

setting. In each plot, the horizontal axis is used to show dataset size variations,

while bars are used to show the obtained execution times for each instance of

DQ2S, in seconds. As a consequence, each plot contains 4 groups of bars, one

for each dataset size. It is worth pointing out that experimental results involv-

ing the Parallel II instance and the Cluster-4node infrastructure setting do not

appear in the plots, due to the fact that this instance does not scale well with

the increase in number of cluster nodes, as discussed in Section 5.

Moreover, in Section 5, additional experiments comparing DQ2S with the

drunken system (as explained in Section 2) are reported, as well as the main

observations obtained from all other experiments. In Section 6, a discussion of

results, in the context of the research questions posed in Section 4, is provided.

5. Experiments Description and Evaluation of Results

Although performance can take into account more parameters than just run

(or execution) time as, for example, memory usage, energy consumption, and

implementation cost, as suggested in (Kwiatkowski, 2001, September), one of

the most important motivations for parallelisation is to compute results within

the minimum possible time, as described in (Pancake, 1996; Alecu, 2007; Sahni

& Thanvantri, 1996; Sun & Gustafson, 1991). Thus, the experiments for this

study are mainly focused on execution time and are described in this section.

More specifically, this section presents the performance and scalability results

obtained from several sets of experiments. We first assess our solutions in the

context explained earlier and then we compare them against the Databricks

drunken data quality approach. We do not compare our system against Apache

Griffin, since it employs the Hive infrastructure, while we use HDFS to store

input files.

5.1. Evaluation of solutions

Each experiment was executed five times and the average running time is

presented. The results are shown in Figures 1, 2 and 3 for each of the three

23



datasets, respectively. Each figure contains a 5 X 3 matrix of subfigures, where

each row corresponds to a different query (defined in Section 4.1) and each col-

umn corresponds to a different computational infrastructure setting. Note that

the experiments with the Parallel I and the Parallel II implementation instances

encompass cases where only a single node of the cluster (or the commodity PC)

is used, and, in this node, a single core is allocated for the execution. These

experiments are denoted by symbol [1]. There are also experiments where all

cores available within a node are allocated, indicated by symbol [*]. This no-

tation is used in the first and second columns of the matrices in Figures 1, 2

and 3. Also, note from the figures that two special symbols are used, namely

X and ∞. The first one indicates that the experiment could not be performed

due to memory issues (i.e., memory exhaustion). The second one represents an

experiment that needs more than five hours to finish execution. It is also worth

pointing out that experimental results involving the Parallel II implementation

performed over the four-node cluster infrastructure were similar to the Parallel

II results obtained over the one-node cluster infrastructure, mainly because the

combination of PySpark and Pandas does not scale well on a multi-node infras-

tructure, as described in Section 6. For this reason, the Parallel II results over

the four-node cluster are not shown on the bar plots in Figures 1, 2 and 3. In

the third column of the matrices in the figures, the bar associated with ’Parallel

I[*]-1 node’ corresponds to the bar associated with ’Parallel I[*]’ in the second

column; and the bar associated with ’Parallel I[1]-1 node’ in the third column

corresponds to the bar associated with ’Parallel I[1]’ in the second column.

The main observations from the experiments are as follows:

I. The Parallel I (PySpark) solution outperforms the Non-parallel (Pandas) and

the Parallel II (PySpark+Pandas) solutions in all cases, except for queries T,

A and C on the 100MB datasets. As discussed in more detail in Section 6,

we have observed that Pandas, by default demands abundant use of memory

for efficient data manipulation, causing our Pandas-based implementations to

perform worse than our PySpark implementation (where Pandas is not used),

24



Commodity PC-C

X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-C

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-C

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Commodity PC-T

X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-T

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-T

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Commodity PC-A

X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-A

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-A

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Commodity PC-T+C

X XX X XX X XX X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-T+C

X XX X XX X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-T+C

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Commodity PC-T+A

X XX X XX X XX X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-T+A

X XX X XX X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-T+A

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Figure 1: Traffic Dataset Related Execution Times in Seconds.

25



Commodity PC-C

X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-C

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-C

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Commodity PC-T

X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-T

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-T

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Commodity PC-A

X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-A

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-A

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Commodity PC-T+C

X XX X XX X XX X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-T+C

X XX X XX X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-T+C

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Commodity PC-T+A

X XX X XX X XX X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-T+A

X XX X XX X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-T+A

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Figure 2: Numeric Dataset Related Execution Times in Seconds.

26



Commodity PC-C

X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-C

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-C

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Commodity PC-T

X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-T

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-T

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Commodity PC-A

X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-A

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-A

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Commodity PC-T+C

X XX X XX X XX X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-T+C

X XX X XX X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-T+C

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Commodity PC-T+A

X XX X XX X XX X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-1node-T+A

X XX X XX X XX

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Non-parallel

Parallel I[1]

Parallel I[*]

Parallel II[1]

Parallel II[*]

Cluster-4nodes-T+A

100MB 512MB 1GB 10GB
10

0

10
1

10
2

10
3

10
4

Parallel I[1]-1node

Parallel I[*]-1node

Parallel I-4nodes

Figure 3: Categorical Dataset Related Execution Times in Seconds.

27



having as exceptions only the cases where small datasets are input to queries

that are not significantly demanding in terms of memory.

II. In general, we observe super linear scalability when increasing the data size

for all implementation instances. For example, in the Cluster-1node setting, a

100X-increase in data size (from 100MB to 10GB) leads to increases in running

time of no more than 22X, while keeping values for all the other variables the

same for the T, A and C queries. The execution overhead associated with

these queries is then outweighed by performance benefits as dataset sizes are

increased. Nevertheless, the queries involving two joins (T+A, T+C) exhibit

quadratic complexity in dataset size, when they manage to complete, indicating

that the level of scalability associated with these queries is significantly lower.

III. The Non-parallel instance cannot effectively run the T+A and T+C queries

for the datasets larger than 100MBs, largely due to memory exhaustion during

the execution of the first of two join operations, causing Pandas to terminate the

execution. It is worth pointing out that memory problems are better handled

in Spark when Pandas is not used, because it is able to run memory demand-

ing queries for long periods of time without terminating execution, even when

memory is scarce.

IV. The benefits of using the full cluster may be exhibited only when dealing

with the datasets of 10GB; for the 1GB datasets, employing the full cluster

reveals slightly worse performance than when employing a single machine, with

exceptions being observed for the T+A query only, which is probably the most

demanding query in terms of memory and processing. For smaller datasets, the

associated overheads clearly outweigh any parallelism benefits.

V. In summary, when the datasets are no larger than 1GB, the first choice is

to employ the Parallel I implementation instance on a single machine; for larger

datasets, there is a need to resort to a cluster.

28



Parallel I VS drunken

100MB 512MB 1GB 10GB
10

0

10
5

Parallel I[1]/Cluster-1node

drunken[1]/Cluster-1node

Parallel I[*]/Cluster-1node

drunken[*]/Cluster-1node

Parallel I/Cluster-4nodes

drunken/Cluster-4nodes

Figure 4: Comparison of Parallel I and drunken using the C query and the traffic dataset.

5.2. Comparison against drunken

In this section, we compare the DQ2S Parallel I instance against the Drunken’s

data quality solution. The rationale for this comparison is the fact that Drunken’s

data quality approach presents similarities with the DQ2S approach in its set

of specific data quality operators, as described in Section 2. To compare the

two solutions, our Parallel I results for query C are compared against Drunken’s

Parallel I query C results for each data size (i.e, 100MB, 512MB, 1GB and

10GB) of the Traffic dataset, running on one node of the four-node cluster and

also on all nodes of the four-node cluster, as shown in Figure 4. Drunken’s

query C uses Drunken’s implementation of the Completeness operator, which

generally checks the presence of null values in a column of a table, but, unlike

DQ2S, Drunken does not attach a score to each data record in order to facil-

itate error detection and repair. Note that Drunken’s query C uses all other

DQ2S operators that compose query C, so that any differences in the obtained

runtimes from the two approaches relate solely to the execution of the Com-

pleteness operator. The version of Drunken used in these experiments is v4.1.1.

As it can be seen from Figure 4, the DQ2S approach is superior in performance,

achieving over an order of magnitude faster response time. Based on these find-

ings, the DQ2S implementation can be deemed as an optimized version of the

functionality provided by Drunken.

29



6. Discussion of Results

In this section, we expand on the results presented in Section 5 in the form

of answers to the research questions raised in Section 4:

1. What performance and scalability differences can be observed

when using the Non-parallel, Parallel I and Parallel II instances in

Local mode? Also, how much data volume can each instance handle?

For the commodity PC, with a total of 6 cores and only 8GB of RAM,

Parallel I can effectively run queries T+A and T+C. However, for the Non-

parallel and Parallel II instances, the execution of queries T+A and T+C does

not successfully terminate, as Pandas aborts the execution of these queries due

to lack of sufficient memory space. Parallel I can also process the 10GB dataset

for all five queries, which is not the case for the other two instances. On average,

the Non-parallel instance exhibits 1.92X higher execution time for the T, C and

A queries on the 512MB and 1GB datasets than the other instances; in the

worst case, it runs 4.4X slower. Parallel II performs better than Non-parallel,

but is still 1.57X slower than Parallel I for the T, C and A queries on the 512MB

and 1GB datasets.

An exception is noticed when using the commodity PC and the 100MB traffic

and numeric datasets, where Parallel II is up to 25% faster than the second most

efficient instance (Parallel I) for queries T, A and C; however, in absolute times,

the difference is less than half a second due to the small size of the datasets.

For the small (100MB) categorical dataset, however, the Non-parallel solution

is faster. These exceptions involving small datasets reflect the advantages of

using Pandas when memory space is sufficient for its memory demanding data

manipulations.

When comparing the Non-parallel and Parallel II instances, considering the

queries that the Non-parallel instance can handle, i.e., T, C and A for datasets

≤ 1GB, we can observe that Non-parallel is, on average, 33% slower for the

traffic dataset, 24% slower for the numeric dataset and equally fast for the cate-

gorical dataset. This reflects the advantages of the combination of Pandas with

30



the Spark framework for medium sized time series datasets under constrained

memory resources.

For the Cluster-1node setting, with a total of 6 cores and 64GB of RAM, the

Non-parallel and Parallel II instances are able to effectively execute the T, A

and C queries for the 10GB dataset, as well as the T+C and T+A queries for

the 100MB dataset, but the performance obtained from these implementations

is still inferior to that of Parallel I. More specifically, Non-parallel is 2.3X slower

than Parallel I for the 512MB and 1GB datasets and 5.24X slower for the 10GB

dataset on average. It is worth pointing out that, moving the execution of the

A query for the 10GB dataset from Non-parallel to Parallel I would allow a

speed-up higher than 8X on average. Interestingly, by doing the same for the

512MB dataset, one would obtain an average speed-up of more than 17.3X for

queries T+C and T+A. In this setting, Parallel II performs even more poorly,

being 2.54X slower for the 512MB and 1GB datasets and 5.78X for the 10GB

dataset. Note that, in general, the Parallel II instance is 11% slower than

the Non-parallel instance in this infrastructure setting. These observations,

once more, confirm the superior performance of Spark instances that are not

based on Pandas, such as Parallel I, in the presence of memory constraints;

the positive impact that the availability of larger memory spaces can make on

Pandas-based implementations; and also the evidence of better performances

from the Non-parallel instance, compared to the Parallel II instance, when more

memory resources are available. It is possible that, if running on a machine

with hundreds of GBs of memory, Pandas would show faster running times

than Parallel I, but up to a certain dataset size.

2. What performance and scalability differences can be observed

when using a single core of a machine versus when using all of the

cores of the same machine considering the Parallel I and Parallel II

instances?

The most noteworthy observation is that Parallel II does not benefit from a

multi/many-core setting in a significant way; i.e., the difference between running

31



Parallel II on a single core and running it on all cores hardly exceeds 2%. This

is not the case for Parallel I. Using all 6 cores of the commodity PC for the

Parallel I instance can speedup the execution of the T, C and A queries up

to 2.43X. However, the speedups are much lower for the two-join queries, i.e.,

between 1.7% and 62.5%. We believe the reason why Parallel II does not scale

in a significant way when running on a multi/many-core infrastructure setting

is due to the use of continuous blocks of memory by Pandas that supports its

column-oriented approach for fast analytics, preventing Spark from making a

more distributed memory allocation.

It is also worth pointing out that, for the 10GB dataset and on the com-

modity PC, the C and A queries run faster on a single core, probably because

these queries lack any expensive join operation and, consequently, in these cases

the overheads associated with a multi-core execution on a machine with limited

resources cannot be compensated. As observed from our experiments, using all

6 cores of a powerful cluster machine either yields benefits or exhibits similar

performance. For the T, C and A queries the maximum speedup is 5.37X (close

to linear speed-up, observed for the A query on the 10GB numeric dataset). For

the two-join queries, the speedups are still relatively small, i.e., between 2.7%

and 56.4%.

Note that the above mentioned speed-ups are relative speedups. Since Par-

allel I outperforms the Non-parallel instance, even when using a single core, the

real speedups are much higher. For example, for the commodity PC, it is up to

4.41X and, for the cluster-1node, it is over 21.9X (which corresponds to super

linear speedup) without considering the cases that Non-parallel cannot execute.

3. What performance and scalability differences can be observed

when using a single multi-core machine versus cluster-based comput-

ing environments for small, medium and large workloads?

From the experiments, we can observe that employing the full cluster does

not incur performance benefits, unless the dataset to be processed is the largest

one. For example, for the 10GB dataset, increasing capacity from 6 to 26

32



cores (i.e., a 4.33-fold increase in the number of cores) leads to performance

speed-ups of 2.26X. Thus, the overhead associated with the Spark executor inter-

communication can outweigh any parallelism benefits when processing smaller

datasets. Also, regarding the smaller datasets, it can be seen from the experi-

ments that the use of a single cluster machine is enough, as no signs of memory

contention were noticed when processing these datasets.

4. What are the performance and scalability advantages that big data

computing frameworks provide to data quality management tasks?

Data quality management applications, in most cases, deal with very large

datasets that stress the resources of a commodity machine. Technologies for

efficient data manipulation, such as Pandas, can offer fast response times, to

some extent, but generally fail to effectively process datasets that are not rela-

tively small (with a few hundred megabytes). In such cases, big data computing

frameworks, such as Spark, are the sensible choice, as they can handle larger

datasets, regardless of whether the execution is on a single multi-core machine or

on a cluster. When using a cluster of machines to run the application, the per-

formance gain is even more significant for large datasets at the order of several

GBs. Based on the experiments, a Pandas-based implementation is generally up

to 33% slower than the Parallel I implementation for the dataset sizes that the

former can cope with. In a machine that has enough main memory resources, a

Pandas-based implementation can handle larger datasets with more than a few

hundred megabytes, but is still up to 8X slower than the Spark-based solutions

when they both execute successfully.

5. What are the challenges of re-engineering the implementation

of a DQ-aware query processing system to work on top of big data

computing framework?

Each of the technologies used, Spark and Pandas, applies its own internal

optimization techniques and, thus, has its own independently implemented set

of functions. This means it is not possible to realise some of the functionality

of Pandas in Pyspark, due to the different data storing strategies that these

33



technologies rely on; i.e., whilst Pandas makes use of continuous blocks in main

memory, Pyspark is used in distributed scenarios. Due to this main difference,

each of the DQ management queries described in this paper was carefully de-

signed and implemented to use and benefit from the underpinning technologies,

individually. In the following, we discuss the main technical issues faced in this

implementation.

Datatype Optimisations. When analyzing big data, it is important to set

data types to the relevant data columns appropriately. In some cases, Pandas

treats numerical values as strings and performs string operations on them, using

more memory than necessary to store these values. This can also happen when

dealing with boolean and datetime columns, or with relatively small numerical

values, by using a larger number of bytes to store these values than actually

needed. Due to this phenomenon, it is left to the developer the job to explicitly

define the data types of various data columns, which, if carefully done, can result

in significant data storage reduction by an order of magnitude in most cases.

Since Pandas stores data in main memory, this reduction can be crucial for the

successful execution of data quality operators, when facing limitations in mem-

ory availability. In all our experiments, the Pandas-based solutions exploited

data type optimization benefits to the largest possible extent.

Implementation of operators for different data types. The accuracy op-

erator used in the A and A+T queries evaluates an accuracy expression that

depends on the data types used within the input dataset. For example, in the

experiments with the Traffic dataset, the used accuracy expression is the follow-

ing: “Volume = Class1Volume + ... + Class6Volume” where Volume is an

integer that indicates the total volume of traffic for a road fragment consider-

ing a given time period, and ClassiVolume represents the number of detected

vehicles, belonging to class i, that were detected on the same road fragment

and during the same time period. Examples of classes of vehicles include cars,

trucks, motorcycles, etc. The level of accuracy of traffic data can, therefore, be

assessed by checking whether the total volume of traffic is the same as the sum

34



of the individual volumes of traffic associated with each class of vehicle. On

the other hand, because categorical data represents ranges of values, e.g., High,

Medium or Low volume of traffic, for the Categorical dataset, the accuracy ex-

pression evaluated within the accuracy operator is the following: “Volume =

Class2Volume”, which checks how the level of the total traffic volume compares

to the volume of cars, which represent the vast majority of detected vehicles

for the road fragment in consideration. If the expression evaluates to true, then

the level of accuracy of volume of traffic is reasonable. To check if the different

accuracy expressions significantly differ in execution time and impact on the

experimental results, we compared the runtimes resulting from the evaluation

of the two accuracy expressions using the A query and the 512MB Categorical

and Traffic datasets. We observed that, when using the Traffic dataset and

Pandas, query A evaluating the first accuracy expression (i.e., the one that in-

volves the sum of values in multiple columns) takes 18 seconds to finish; and

when using the Categorical dataset and Pandas, the second accuracy expression

(i.e., the one that involves a simple equality comparison between two values is

separate columns) takes 17 seconds to finish. Likewise, when using Pyspark, the

obtained runtimes are 21 seconds and 20 seconds, respectively; thus, the impact

on the overall performance is not high. As a second check, we also examined

whether the use of different data types in boolean expressions would, in general,

affect query runtime; for example, we measured the runtime resulting from the

evaluation of an expression involving a comparison between two Integers against

a similar expression involving a comparison between two Strings. And so, we

executed 164,000,000 iterations of each comparison in Python, as this number

of iterations is approximately the same as the number of rows in our 10GB cate-

gorical dataset, and, consequently, the number of times a comparison expression

is evaluated when processing this dataset, and then we compared the obtained

runtimes. The difference is of approximately 1 second, with the “100==100”-

type comparison taking 11 seconds, and the “high”==“high”-type, taking 10

seconds. Again, this difference is relatively small and does not significanly affect

the overall runtime of the queries. And so, we concluded that the use of differ-

35



ent accuracy expressions in the same query for different input datasets would

not invalidate our experiment results and interpretations (as shown also in the

repository).

Column Removal. When using the Pandas framework, one is able to isolate

the data columns that are relevant to the application and discard any other.

For example, for the C query, it is possible to discard all the irrelevant columns

and deal only with the columns that have been selected to be checked for com-

pleteness, due to the fact that the Pandas framework operates in main memory

using continuous blocks for column contents and offers a variety of built-in and

ready to use data manipulation functions. On the other hand, in Spark, data

structure manipulation/extension cannot be easily done using built-in, opti-

mized functions, as Spark allocates memory to objects in a distributed manner.

Therefore, to be able to effectively discard irrelevant columns using Spark with-

out Pandas, the data would need to be indexed and/or parsed per record. Due to

the overhead this extra task generates, we decided not to discard data columns

in these experiments and execute the queries over the whole Spark DataFrame.

Koalas. Due to the limitation of Pandas regarding scalability for big data, the

need for technology to enable Pandas to effectively run on distributed settings

arises. Koalas6 addresses this need by augmenting the Pyspark’s DataFrame

API to make it compatible with Pandas. In other words, this new package com-

bines the scalability of Pyspark with the execution speed of Pandas. Although

the project is quite young and needs time to mature, the future of DQ2S seems

quite promising, as Koalas will, most likely, remove the need to decide whether

to use Pandas or Pyspark, depending on the application, size of dataset, etc.,

and will, most likely, also enable benefits from each individual technology to be

combined by the merge of functionalities from the two technologies. However,

at the time of the writing of this work, not all of the Pandas functions are im-

plemented in Koalas. Due to this fact, we were not able to implement the same

6https://github.com/databricks/koalas

36



queries using this new package.

As discussed previously, the benefits of using the full cluster (Cluster-4nodes)

mainly appear when dealing with the largest datasets used in this empirical

study (10GB). This result was expected since, at this volume of data, resources

from one machine alone for handling and processing datasets may not be suffi-

cient when deploying the workload on non-cluster based infrastructures or single

cluster nodes. For the 1GB datasets, employing the full cluster reveals slightly

worse performance than when employing a single machine, with exceptions be-

ing observed for the T+A query only, which is the most demanding query in

terms of memory and processing. For smaller datasets, the associated overheads

clearly outweigh any parallelism benefits. These observations may hold for a few

more years, since, given trends such as Moore’s law, single machine hardware

capabilities will continue to increase and allow larger datasets to be handled

efficiently when performing data quality processing tasks. Table 6 summarises

other key insights obtained from the experiments with a focus on Cluster-1

node. Insights obtained from the experiments with this infrastructure gener-

alise well the insights obtained from all experiments, particularly because the

Cluster-1node infrastructure setting shares important properties with the other

two settings, by having the same machine specification as one of the nodes of

the Cluster-4nodes infrastructure, and by being composed of a single node, as

the Commodity PC infrastructure, helping to simplify our explanations. Also,

with this infrastructure, the most complete set of results were obtained for all

scenarios.

In particular, in Table 6, we describe our main remarks about how different

dataset types impact on the execution time of each query. As dataset size and

DQ2S instance also impact on execution time, these are included in our remarks,

emphasising how the different technologies explored in the implementation of

each instance (e.g., Pandas and/or Spark) impact on execution time.

Query Key Insights

37



C The experiments with query C and the three datasets have shown that, in the Non-

parallel DQ2S instance, Numeric is the dataset with the lowest execution times. The

Traffic dataset has the second best performance, while, for the Categorical dataset,

execution times are about 30 to 45% longer than those obtained for the Numeric

dataset. The factors that have most contributed to these differences in execution

time are the following: the sensitivity of the Pandas library to availability of memory

space, which benefits the dataset with the lowest sized data record (in bytes), i.e., the

Numeric dataset; and the evaluation cost of the Completeness expression of query C,

which is at its lowest when applied over the Numeric dataset, since it involves simple

equality comparisons of small integer values.

These differences in execution time, however, cannot be clearly observed when exe-

cuting query C in the Parallel I and Parallel II DQ2S instances, using the 1GB,

the 512MB and the 100MB dataset sizes. However, for the dataset size of 10GB and

the same instances, the times obtained from the processing of the Categorical dataset

were, approximately, 23% lower than those obtained for the other two datasets. On

one hand, the negative impact of diminished memory spaces on the Pandas library,

when processing larger datasets in the Parallel II instance; and, on the other hand, the

positive impact of the Spark framework on both Parallel I and Parallel II instances,

relating to its better handling of larger datasets, have contributed to lower the times

for processing the Categorical dataset, which contains the largest sized records.

A Of all five queries, query A presents the lowest execution times, along with query

C, considering all instances, datasets and dataset sizes. However, when processing

the Categorical dataset, query A shows, on average, a 10% advantage over not only

query C, but also its own processing of the other two datasets. In particular, the

Accuracy expression evaluated in query A over the Numeric dataset incurs a slightly

higher cost, as it performs arithmetic operations involving data values in six different

columns of the input file, while the Accuracy expression applied over the Categorical

dataset evaluates a single Boolean expression involving data values in only two different

columns.

T Compared to the other two queries that involve a single DQ dimension (i.e., C and

A), query T is the one with the highest execution times (50% higher, on average),

considering all instances, datasets and dataset sizes, largely due to its expensive join

operation. Although less consistency is observed in the impact of dataset type on the

execution times of query T, in a considerable number of cases, query T shows lower

execution times when processing the Categorical dataset. The fact that this dataset is

the one with the smallest total number of records (compared to Traffic and Numeric)

has a positive impact on the execution cost of the join operation.

38



T+C Along with query T+A, query T+C is the most expensive query, considering all in-

stances, datasets and dataset sizes, largely due to the presence of two expensive join

operations. When processing the Numeric dataset, it presents its longest execution

times (by up to 31%) considering all instances (note that the Non-parallel instance is

able to process only the 100MB dataset size for this query). The fact that the Numeric

dataset is the one with the largest total number of records (compared to Categorical

and Traffic) has a negative impact on the cost of the join operations. However, from

the experimental results, it cannot be clearly observed which of the Categorical and

Traffic datasets would come in second place.

T+A The insights for query T+A are similar to the ones for query T+C.

Table 6: Key Insights.

7. Conclusions and Future Work

The research described in this paper provides a detailed account of an ex-

perimental journey to explore the capabilities of a popular big data computing

framework (Apache Spark) and a library for fast data manipulation (Pandas) to

improve performance and scalability of DQ-aware query processing. The study

also provides empirical insights for researchers interested in re-purposing and

porting existing data quality management and data wrangling systems and tools

to explore the capabilities provided by big data computing frameworks.

The issue of porting existing DQ management tools to run on top of big

data computing frameworks to exploit parallelism in the execution of DQ man-

agement tasks is of considerable importance given that the majority of tools

available to support DQ management tasks were designed and implemented

without native support for big data computing. From the perspective of big

data research, this issue is also an important and under-explored dimension, as

most work in this area focuses on the variety, volume and velocity of data, with

limited contributions addressing the veracity (data quality) dimension (Saha &

Srivastava, 2014, March; Fan, 2015).

We believe the main motivation for the so called “post-system development

parallelization” in the age of Machine Learning lies in the fact that, even though

algorithms induced from training data sets may have higher accuracy in general,

39



these algorithms may not scale well, since they are not designed with parallelism

exploitation in mind. Therefore, research in the future will increasingly involve

porting ML-trained algorithms into parallel and distributed computing infras-

tructures and, thus, face similar challenges as the ones reported in this study.

To be able to port an existing DQ management tool onto a big data frame-

work, some level of re-engineering may be necessary, to design the solution in

terms of the data structures and functions that the framework is able to use

for the purposes of parallelising the execution. This re-engineering needs to be

carefully planned if significant performance and scalability improvements are

to be achieved, by avoiding the combination of functionality for parallelism ex-

ploitation, provided within the framework, with other functionality, provided

elsewhere, which can prevent effective parallelization of the execution by the

framework. This case was noted when Pandas and PySpark were combined to

explore intra-node as well as inter-node parallelism. In other words, the em-

pirical study outlined in this paper has shown that substantial pay-offs can be

obtained by using optimized data science libraries combined with the parallel

and distributed capabilities of big data computing; however, the combination of

libraries and the usage of a cluster should be done with care.

It is also noted that, even though the size of the input data sets is the

most obvious factor impacting on the decision as to which big data platform

and infrastructure settings to adopt, data transformations performed during

execution and characteristics of the tasks have also a significant impact on the

level of scalability and performance that can be obtained from the framework

and infrastructure. For example, for the cases where medium data sets of 512MB

and 1GB were input to the T+A query, a single multi-core machine execution

performed poorly compared to the same job executing on the cluster, unlike

all other queries when processing data sets of these sizes. It has been observed

that this is largely due to the fact that query T+A generates larger intermediate

results than the other queries, and performs some extra work to transform row-

based data manipulations into column-based manipulations that the Python

functions are optimized to perform.

40



The following summarises our main observations, based on the discussion of

experimental results provided in Section 6:

• The combination of Spark and Pandas did not yield significant benefits

when moving from a single-node cluster to a multi-node cluster, due to

conflicting memory allocation strategies of these two technologies, as Pan-

das tends to make use of continuous blocks of memory in support of its

column-oriented approach for fast analytics, making it difficult, to some

extent, for Spark to make a more distributed memory allocation (refer to

the discussion on Koalas in Section 6).

• The porting of DQ management tools, originally built without native sup-

port for big data computing, to a big data computing platform can have

a significant impact on data processing performance. We have been able

to observe this when comparing results obtained before the porting was

performed, reported in (Sampaio et al., 2015), with the results presented

in this paper, where, for instance, data volumes that are three orders of

magnitude larger were processed within similar time periods.

• A key guideline for choosing infrastructure setting and engine implemen-

tation when processing medium to small datasets (e.g., of size 1GB or less)

involves the use of a single, powerful machine to exploit the performance

benefits of a big data computing framework, such as Spark, without the

exhaustive use of libraries for fast in-memory data manipulation, such

as Pandas, as observed from results involving the Parallel I implementa-

tion instance and the Cluster-1node setting. Even though experiments

with small data sizes of 100MB have shown us the advantages of Pan-

das, the provided additional benefits of the combination Pandas-Spark

are still modest, with execution times just a few seconds shorter. For

larger datasets, running Parallel I on a cluster has been observed to yield

benefits.

• The combination of multiple DQ dimensions in a single DQ management

41



task, due to requiring multiple join operations, has a tangible negative

effect on scalability.

• From the successful execution of complex DQ management tasks in all

engine instances of the target DQ processing tool, it has been observed

that speedups were of multiple orders of magnitude.

• On any infrastructure setting, the impact of dataset type on execution

time can only be observed if physical data properties, such as number of

records, and other job characteristics, such as specific data management

task, engine implementation and dataset size, are also taken into account.

Future research directions include: (i) The investigation of the performance

of an extended library of low-level constructs in line with the work in (Schelter

et al., 2018) and the user requirements described in (Krishnan et al., 2016,

June); the latter survey emphasizes also the lack of benchmarks to assess the

performance of different data quality solutions. (ii) The investigation of further

Apache Spark tuning, e.g., in line with the work in (Gounaris & Torres, 2018);

we also plan to apply Machine Learning for setting hyper-parameters towards

optimizing the choice when a portfolio of algorithms can be used for executing

a given task (Morar et al., 2017).

Acknowledgements

Financial support has been provided by the National Council of Science

and Technology (abbreviated CONACYT) to the first author (agreement n.

411896). The research of the authors from the Aristotle University has been

co-financed by the European Union and Greek national funds through the Op-

erational Program Competitiveness, Entrepreneurship and Innovation, under

the call RESEARCH - CREATE - INNOVATE (project code:T1EDK-01944)

Financial support for this research was also provided by the Alliance Manch-

ester Business School Big Data Forum research programme.

42



References

Alecu, F. (2007). Performance analysis of parallel algorithms. Journal of Applied

Quantitative Methods, 2(1), 129–134.

Alexandrov, V. (2013). Parallel scalable algorithms - performance parameters.

https://www.bsc.es/sites/default/files/public/computer_science/

extreme_computing/parallel_algorithms_bcn_prace_l1_part2_2013.

pdf. Accessed: 2019-11-15.

Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed

Programming . Addison-Wesley.

Augspurger, T., Ayd, W., Bartak, C., Battiston, P., Cloud, P., Garcia, M.,

Hayden, A., Horikoshi, M., Hoyer, S., McKinney, W., Mendel, B., Reback, J.,

Roeschke, M., Schendel, J., She, C., den Bossche, J. V., & 7.Young (2015).

Python data analysis library. http://pandas.pydata.org/. Accessed: 2019-

11-22.

Ballou, D., Wang, R., Pazer, H., & Tayi, G. K. (1998). Modeling information

manufacturing systems to determine information product quality. Manage-

ment Science, 44(4), 462–484.

Bonner, S., McGough, A. S., Kureshi, I., Brennan, J., Theodoropoulos, G.,

Moss, L., Corsar, D., & Antoniou, G. (2015, October). Data quality assess-

ment and anomaly detection via map/reduce and linked data: A case study

in the medical domain. In Proceedings of the 2015 IEEE International Con-

ference on Big Data (Big Data) (pp. 737–746). doi:10.1109/BigData.2015.

7363818.

Cheng, D. X., Golab, W., & Ward, P. A. S. (2016, March). Efficient incremental

smart grid data analytics. In Workshop Proceedings of the EDBT/ICDT 2016

Joint Conference on CEUR-WS.org .

43

https://www.bsc.es/sites/default/files/public/computer_science/extreme_computing/parallel_algorithms_bcn_prace_l1_part2_2013.pdf
https://www.bsc.es/sites/default/files/public/computer_science/extreme_computing/parallel_algorithms_bcn_prace_l1_part2_2013.pdf
https://www.bsc.es/sites/default/files/public/computer_science/extreme_computing/parallel_algorithms_bcn_prace_l1_part2_2013.pdf
http://pandas.pydata.org/
http://dx.doi.org/10.1109/BigData.2015.7363818
http://dx.doi.org/10.1109/BigData.2015.7363818


Demmel, J. (1995). Measuring Performance of Parallel Programs. http:

//people.eecs.berkeley.edu/{~}demmel/cs267-1995/lecture04.html.

Accessed: 2019-11-15.

Fan, W. (2015). Data quality: From theory to practice. ACM SIGMOD Record ,

44(3), 7–18. doi:10.1145/2854006.2854008.

Ge, C., He, X., Ilyas, I. F., & Machanavajjhala, A. (2019, June). Apex:

Accuracy-aware differentially private data exploration. In Proceedings of the

2019 International Conference on Management of Data (SIGMOD) (pp. 177–

194). doi:10.1145/3299869.3300092.

Gounaris, A., & Torres, J. (2018). A methodology for spark parameter tuning.

Big Data Research, 11 , 22–32. doi:10.1016/j.bdr.2017.05.001.

Harnie, D., Saey, M., Vapirev, A. E., Wegner, J. K., Gedich, A., Steijaert,

M., Ceulemans, H., Wuyts, R., & Meuter, W. D. (2017). Scaling machine

learning for target prediction in drug discovery using apache spark. Future

Generation Computer Systems, 67 , 409 – 417. doi:http://dx.doi.org/10.

1016/j.future.2016.04.023.

He, J., Veltri, E., Santoro, D., Li, G., Mecca, G., Papotti, P., & Tang, N. (2016,

July). Interactive and deterministic data cleaning. In Proceedings of the 2016

International Conference on Management of Data (SIGMOD) (pp. 893–907).

doi:10.1145/2882903.2915242.

Heidari, A., McGrath, J., Ilyas, I. F., & Rekatsinas, T. (2019, June). Holodetect:

Few-shot learning for error detection. In Proceedings of the 2019 International

Conference on Management of Data (SIGMOD) (pp. 829–846). doi:10.1145/

3299869.3319888.

Khayyat, Z., Ilyas, I. F., Jindal, A., Madden, S., Ouzzani, M., Papotti, P.,

Quiané-Ruiz, J.-A., Tang, N., & Yin, S. (2015, June). Bigdansing: A system

for big data cleansing. In Proceedings of the International Conference on

44

http://people.eecs.berkeley.edu/{~}demmel/cs267-1995/lecture04.html
http://people.eecs.berkeley.edu/{~}demmel/cs267-1995/lecture04.html
http://dx.doi.org/10.1145/2854006.2854008
http://dx.doi.org/10.1145/3299869.3300092
http://dx.doi.org/10.1016/j.bdr.2017.05.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2016.04.023
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2016.04.023
http://dx.doi.org/10.1145/2882903.2915242
http://dx.doi.org/10.1145/3299869.3319888
http://dx.doi.org/10.1145/3299869.3319888


Management of Data (SIGMOD) (pp. 1215–1230). doi:10.1145/2723372.

2747646.

Krishnan, S., Haas, D., Franklin, M. J., & Wu, E. (2016, June). Towards

reliable interactive data cleaning: A user survey and recommendations. In

Proceedings of the Workshop on Human-In-the-Loop Data Analytics (HILDA)

(pp. 9:1–9:5). doi:10.1145/2939502.2939511.

Kune, R., Konugurthi, P. K., Agarwal, A., Chillarige, R. R., & Buyya, R. (2016).

The anatomy of big data computing. Software Practice and Experience, 46(1),

79–105. doi:10.1002/spe.2374.

Kwiatkowski, J. (2001, September). Evaluation of parallel programs by mea-

surement of its granularity. In Proceedings of the International Conference

in Parallel Processing and Applied Mathematics (pp. 145–153). doi:10.1007/

3-540-48086-2_16.

Li, X., Song, J., Zhang, F., Ouyang, X., & Khan, S. U. (2016). Mapreduce-based

fast fuzzy c-means algorithm for large-scale underwater image segmentation.

Future Generation Computer Systems, 65 , 90 – 101. doi:http://dx.doi.

org/10.1016/j.future.2016.03.004.

Loshin, D. (2014). Understanding big data quality for maximum infor-

mation usability. https://www.sas.com/content/dam/SAS/en_us/doc/

whitepaper1/understanding-big-data-quality-107113.pdf. Accessed:

2019-11-22.

Mahdavi, M., Abedjan, Z., Fernandez, R. C., Madden, S., Ouzzani, M., Stone-

braker, M., & Tang, N. (2019, June). Raha: A configuration-free error de-

tection system. In Proceedings of the 2019 International Conference on Man-

agement of Data (SIGMOD) (pp. 865–882). doi:10.1145/3299869.3324956.

Milani, M., Zheng, Z., & Chiang, F. (2019, April). Currentclean: Spatio-

temporal cleaning of stale data. In Proceedings of the 35th IEEE International

45

http://dx.doi.org/10.1145/2723372.2747646
http://dx.doi.org/10.1145/2723372.2747646
http://dx.doi.org/10.1145/2939502.2939511
http://dx.doi.org/10.1002/spe.2374
http://dx.doi.org/10.1007/3-540-48086-2_16
http://dx.doi.org/10.1007/3-540-48086-2_16
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2016.03.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2016.03.004
https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/understanding-big-data-quality-107113.pdf
https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/understanding-big-data-quality-107113.pdf
http://dx.doi.org/10.1145/3299869.3324956


Conference on Data Engineering (ICDE) (pp. 172–183). doi:10.1109/ICDE.

2019.00024.

Morar, T., Knowles, J., & Sampaio, S. (2017). Initialization of bayesian

optimization viewed as part of a larger algorithm portfolio. https://pdfs.

semanticscholar.org/6655/7923e7538f6c52fa5a4da07a1a75056d423c.

pdf?_ga=2.258824386.917927128.1574450387-1580165763.1571312984.

Accessed: 2019-11-22.

OpenRefine-Organization (2019). OpenRefine. https://openrefine.org/. Ac-

cessed: 2019-11-22.

Pancake, C. (1996). Is parallelism for you? IEEE Computational Science and

Engineering , 3 , 18–37. doi:10.1109/99.503307.

Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., & Naumann, F. (2015).

Data profiling with metanome. Proceedings of the VLDB Endowment , 8 ,

1860–1871. doi:10.14778/2824032.2824086.

Pipino, L. L., Lee, Y. W., Wang, R. Y., Lowell Yang Lee, M. W., & Yang, R. Y.

(2002). Data quality assessment. Communications of the ACM , 45 , 211–218.

doi:10.1145/505248.506010.

Saha, B., & Srivastava, D. (2014, March). Data quality: The other face of

big data. In Proceedings of the IEEE 30th International Conference on Data

Engineering (ICDE) (pp. 1294–1297). doi:10.1109/ICDE.2014.6816764.

Sahni, S., & Thanvantri, V. (1996). Performance metrics: Keeping the focus on

runtime. IEEE Parallel & Distributed Technology: Systems & Technology , 4 ,

43–56.

Sampaio, S., Aljubairah, M., Permana, H. A., & Sampaio, P. (2019). A con-

ceptual approach for supporting traffic data wrangling tasks. The Computer

Journal , 62 , 461–480. doi:10.1093/comjnl/bxy113.

46

http://dx.doi.org/10.1109/ICDE.2019.00024
http://dx.doi.org/10.1109/ICDE.2019.00024
https://pdfs.semanticscholar.org/6655/7923e7538f6c52fa5a4da07a1a75056d423c.pdf?_ga=2.258824386.917927128.1574450387-1580165763.1571312984
https://pdfs.semanticscholar.org/6655/7923e7538f6c52fa5a4da07a1a75056d423c.pdf?_ga=2.258824386.917927128.1574450387-1580165763.1571312984
https://pdfs.semanticscholar.org/6655/7923e7538f6c52fa5a4da07a1a75056d423c.pdf?_ga=2.258824386.917927128.1574450387-1580165763.1571312984
https://openrefine.org/
http://dx.doi.org/10.1109/99.503307
http://dx.doi.org/10.14778/2824032.2824086
http://dx.doi.org/10.1145/505248.506010
http://dx.doi.org/10.1109/ICDE.2014.6816764
http://dx.doi.org/10.1093/comjnl/bxy113


Sampaio, S., Dong, C., & Sampaio, P. R. F. (2015). DQ2S - A framework for

data quality-aware information management. Expert Systems with Applica-

tions, 42 , 8304–8326. doi:10.1016/j.eswa.2015.06.050.

Schelter, S., Grafberger, S., Schmidt, P., Rukat, T., Kießling, M., Taptunov, A.,

Bießmann, F., & Lange, D. (2019, April). Differential data quality verification

on partitioned data. In Proceedings of the 35th IEEE International Confer-

ence on Data Engineering (ICDE) (pp. 1940–1945). doi:10.1109/ICDE.2019.

00210.

Schelter, S., Lange, D., Schmidt, P., Celikel, M., Biessmann, F., & Grafberger,

A. (2018). Automating large-scale data quality verification. Proceedings of

the VLDB Endowment , 11 , 1781–1794. doi:10.14778/3229863.3229867.

Shahrivari, S., & Jalili, S. (2016). Single-pass and linear-time k-means clustering

based on mapreduce. Information Systems, 60 , 1–12. doi:http://dx.doi.

org/10.1016/j.is.2016.02.007.

Singh, H., & Bawa, S. (2017). A mapreduce-based scalable discovery and index-

ing of structured big data. Future Generation Computer Systems, 73 , 32–43.

doi:http://dx.doi.org/10.1016/j.future.2017.03.028.

Sun, X.-H., & Gustafson, J. L. (1991). Toward a better parallel performance

metric. Parallel Computing , 17 , 1093–1109. doi:http://dx.doi.org/10.

1016/S0167-8191(05)80028-6.

Taleb, I., Dssouli, R., & Serhani, M. A. (2015, June). Big data pre-processing:

A quality framework. In Proceedings of the 2015 IEEE International Congress

on Big Data (pp. 191–198). doi:10.1109/BigDataCongress.2015.35.

Tous, R., Gounaris, A., Tripiana, C., Torres, J., Girona, S., Ayguad, E.,

Labarta, J., Becerra, Y., Carrera, D., & Valero, M. (2015, October). Spark

deployment and performance evaluation on the marenostrum supercomputer.

In Proceedings of the 2015 IEEE International Conference on Big Data

47

http://dx.doi.org/10.1016/j.eswa.2015.06.050
http://dx.doi.org/10.1109/ICDE.2019.00210
http://dx.doi.org/10.1109/ICDE.2019.00210
http://dx.doi.org/10.14778/3229863.3229867
http://dx.doi.org/http://dx.doi.org/10.1016/j.is.2016.02.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.is.2016.02.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2017.03.028
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-8191(05)80028-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-8191(05)80028-6
http://dx.doi.org/10.1109/BigDataCongress.2015.35


(Big Data) (pp. 299–306). doi:http://dx.doi.org/10.1109/BigData.2015.

7363768.

Trifacta (2017). Trifacta data wrangling for hadoop: Accel-

erating business adoption while ensuring security & gover-

nance. http://pages.trifacta.com/rs/172-KJH-591/images/

Trifacta-White-Paper-Accelerating-Adoption-Ensuring-Governance.

pdf. Accessed: 2019-11-22.

Veiga, J., Expósito, R. R., Pardo, X. C., Taboada, G. L., & Tourifio, J. (2016,

December). Performance evaluation of big data frameworks for large-scale

data analytics. In Proceedings of the 2016 IEEE International Conference on

Big Data (Big Data) (pp. 424–431).

Wang, P., & He, Y. (2019, June). Uni-detect: A unified approach to automated

error detection in tables. In Proceedings of the 2019 International Conference

on Management of Data (SIGMOD) (pp. 811–828). doi:10.1145/3299869.

3319855.

Zhang, A., Song, S., Sun, Y., & Wang, J. (2019, April). Learning individual

models for imputation. In Proceedings of the 35th IEEE International Confer-

ence on Data Engineering (ICDE) (pp. 160–171). doi:10.1109/ICDE.2019.

00023.

Zhang, F., & Sakr, M. (2013, May). Dataset scaling and mapreduce perfor-

mance. In Proceedings of the 2013 IEEE International Symposium on Par-

allel & Distributed Processing, Workshops and Phd Forum (IPDPSW) (pp.

1683–1690). doi:10.1109/IPDPSW.2013.143.

48

http://dx.doi.org/http://dx.doi.org/10.1109/BigData.2015.7363768
http://dx.doi.org/http://dx.doi.org/10.1109/BigData.2015.7363768
http://pages.trifacta.com/rs/172-KJH-591/images/Trifacta-White-Paper-Accelerating-Adoption-Ensuring-Governance.pdf
http://pages.trifacta.com/rs/172-KJH-591/images/Trifacta-White-Paper-Accelerating-Adoption-Ensuring-Governance.pdf
http://pages.trifacta.com/rs/172-KJH-591/images/Trifacta-White-Paper-Accelerating-Adoption-Ensuring-Governance.pdf
http://dx.doi.org/10.1145/3299869.3319855
http://dx.doi.org/10.1145/3299869.3319855
http://dx.doi.org/10.1109/ICDE.2019.00023
http://dx.doi.org/10.1109/ICDE.2019.00023
http://dx.doi.org/10.1109/IPDPSW.2013.143


Appendix A. DQ2S Constructs Description

Figure A.5: Query Plan for Timeliness query expressed in DQ2L (Sampaio et al., 2015).

Operator Description Input Output

TimelinessQuery Contains the main structure of the al-

gorithm, utilises the query engine op-

erators to produce the query result.

Names of the required datasets to

complete the query and the pred-

icates needed.

ID and timeliness score of

the tuples with timeliness

score below 0.5.

Timing Obtains the system time, allowing the

measurement of the elapsed time by

saving the system time at the begin-

ning and at the end of the query pro-

cessing.

None. Elapsed runtime in nanosec-

onds.

ScanSelect Loads the dataset from a CSV file

and fills three array lists from Tuple

Class with the appropriate informa-

tion given by the dataset values.

Comma separated CSV dataset. A tuple with three dynamic

generic arrays containing the

values, data types and name

of the attributes from a row

in the loaded CSV.

Tuple Creates a data structure containing

the data ingested by ScanSelect and

schema information (data types and

attribute names).

Two dynamic generic arrays, one

containing the data types names

and the second array formed by

the attribute names.

A data structure formed by

three dynamic generic arrays

(data values, data types, and

attribute names).

Predicate Evaluates a given predicate and re-

turns a boolean value depending on

the result of the evaluation.

A predicate made of two operands

and one comparison operator.

Boolean value telling if the

predicate evaluated to True

or False after applied on the

input data.

Join Joins two dynamic generic arrays

based on a given join predicate.

Two dynamic generic arrays and

a join predicate specifying the

joining statement to determine

which rows need to be joined.

A single dynamic generic ar-

ray with joined data.

JoinPredicate Is a support algorithm to the Join op-

erator. It evaluates the join predicate

against the input data and returns a

boolean value indicating whether the

predicate evaluation resulted in True

or False.

Join predicate. Boolean value telling if the

join predicate was true or

false after applied on a given

data.

Timeliness Calculates the timeliness score based

on the formulas presented in Section 3

of this paper.

A dynamic generic array contain-

ing the data required to calculate

the score.

The dynamic generic array

utilised as input plus a

new column with the corre-

sponding calculated timeli-

ness score.

Select Filters a dynamic generic array and

creates a new one based on the result

obtained from the Predicate class.

Filter predicate and a dynamic

generic array to apply the filter

on.

A dynamic generic array

containing the filtered data.

49



Project Extracts columns from a dynamic

generic array based on a list of at-

tributes given (name of the columns).

List of attributes and a dynamic

generic array.

A dynamic generic array

containing the data that

corresponds to the required

columns.

Table A.7: Operators comprising the DQ2S Timeliness query.

Appendix B. DQ2S Query Execution Plans

Figures B.6, B.7, B.8, B.9 and B.10 show the five query plans for each of the

queries described in Section 4.1.

Figure B.6: Execution Plan for the Accuracy (A) Query.

Figure B.7: Execution Plan for the Completeness (C) Query.

Figure B.8: Execution Plan for the Timeliness (T) Query.

50



Figure B.9: Execution Plan for the Timeliness-Accuracy (T+A) Query.

Figure B.10: Execution Plan for the Timeliness-Completeness (T+C) Query.

Appendix C. Files Sizes Used in Each Query

Tables C.8, C.9 and C.10 show the sizes and number of rows of the datasets

used in each query for the experiments with 512MB, 1GB and 10GB, respec-

tively.

Dataset

/Query

Traffic Numeric Categorical

File 1 File 2 File3 File 1 File 2 File3 File 1 File 2 File3

C, A
512.6MB

6411566 rows
- -

512.3MB

7750000 rows
- -

512.5MB

6223635 rows
- -

T
258.5MB

3240000 rows

252.9MB

3627098 rows
-

260.8MB

3959999 rows

252.7MB

3627098 rows
-

260.1MB

3164581 rows

252.7MB

3627098 rows
-

T+C

T+A

165.2MB

2075000 rows

170.3MB

2450000 rows

177.7MB

4261145 rows

165.0MB

2509999 rows

170.3MB

2450000 rows

177.7MB

4261145 rows

165.3MB

2016199 rows

170.3MB

2450000 rows

177.7MB

4261145 rows

Table C.8: File sizes (in MB) and number of rows for each query used in the experiments with

512MB of data.

51



Dataset

/Query

Traffic Numeric Categorical

File 1 File 2 File3 File 1 File 2 File3 File 1 File 2 File3

C, A
1.0GB

13381964 rows
- -

1.0GB

16320160 rows
- -

1.0GB

12243304 rows
- -

T
588.6MB

7360082 rows

514.0MB

7360083 rows
-

511.8MB

7750001 rows

514.0MB

7360083 rows
-

512.1MB

6218419 rows

514.0MB

7360083 rows
-

T+C

T+A

300.3MB

3800000 rows

300.1MB

4390000 rows

400.6MB

9604913 rows

300.4MB

4554999 rows

306.1MB

4390000 rows

400.6MB

9604913 rows

300.3MB

3653090 rows

306.1MB

4390000 rows

400.6MB

9604913 rows

Table C.9: File sizes (in MB) and number of rows for each query used in the experiments with

1GB of data.

Dataset

/Query

Traffic Numeric Categorical

File 1 File 2 File3 File 1 File 2 File3 File 1 File 2 File3

C, A
10.8GB

133819637 rows
- -

10.9GB

163201601 rows
- -

10.3GB

124016365 rows
- -

T
5.9GB

73600820 rows

5.2GB

73600820 rows
-

4.9GB

73600820 rows

5.2GB

73600820 rows
-

5.1GB

61334001 rows

5.2GB

73600820 rows
-

T+C

T+A

3.3GB

37400000 rows

3.1GB

43000000 rows

4.7GB

96074333 rows

3.0GB

44999999 rows

3.0GB

43000000 rows

4.0GB

96074333 rows

3.0GB

37028562 rows

3.0GB

43000000 rows

4.0GB

96074333 rows

Table C.10: File sizes (in GB) and number of rows for each query used in the experiments

with 10GB of data.

Appendix D. Summary of the Evaluation Methodology

Figure D.11 shows a summary of the adopted evaluation methodology. Note

that experiments were performed for all combinations of DQ2S instances, infras-

tructure settings, queries, dataset types and dataset sizes described in Section

4.2, the only exception being experiments involving the Non-parallel instance

and the Cluster-4nodes infrastructure setting, as this is the only instance that

cannot be made to execute on a cluster with multiple nodes. As a consequence,

each dot in the figure represents all dataset types considered in this work (i.e.,

Numeric, Categorical and Traffic).

52



Figure D.11: Summary of the Evaluation Methodology.

53


	Introduction
	Related Work
	The Data Quality Query System (DQ2S)
	Research Questions, Experiment Settings and Evaluation Criteria
	Datasets, Queries and Experimental Settings
	Experiment Evaluation
	Evaluation Methodology

	Experiments Description and Evaluation of Results
	Evaluation of solutions
	Comparison against drunken

	Discussion of Results
	Conclusions and Future Work
	DQ2S Constructs Description
	DQ2S Query Execution Plans
	Files Sizes Used in Each Query
	Summary of the Evaluation Methodology

