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Abstract
We describe a computationally efficient approach to resolving equations of the form
C1x2 + C2 = yn in coprime integers, for fixed values of C1, C2 subject to further
conditions.Wemakeuseof a factorisation argument and thePrimitiveDivisorTheorem
due to Bilu, Hanrot and Voutier.

Keywords Exponential equation · Lehmer sequences · Primitive divisor theorem ·
Thue equation
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1 Introduction

Ramanujan [16], in 1913, conjectured that the only positive integral solutions to the
equation

x2 + 7 = 2n

are

(1, 3), (3, 4), (5, 5), (11, 7), (181, 15).

Thiswas proven byNagell [15] in 1948, and the equation is nowcalled theRamanujan–
Nagell equation. More generally, equations of the form

C1x
2 + C2 = Cn

3 , (1)
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whereC1,C2,C3 are fixed non-zero integers are referred to as generalisedRamanujan–
Nagell equations. Various special cases of (1) have been considered by many authors
using a variety of methods (see survey papers [3] and [11]). For any such C1, C2,
C3, it is straightforward to reduce (1) to solving S-unit equations. This allows us to
conclude that the set of solutions to (1) is finite by a famous theorem of Siegel. It also
gives an effective algorithm for solving the equation.

In this paper we consider the generalisation

C1x
2 + C2 = yn, (2)

where C1, C2 are fixed, but x , |y| > 1, n ≥ 3 are unknown. Here Baker’s theory gives
astronomical bounds on the size of the solutions (x, y, n), but does not alone give a
practical method for determining them. In fact, the earliest special case of (2) appears
to be due to Victor Lebesgue [12] who in 1850 solved (2) for C1 = C2 = 1. In 1948,
Nagell [15] solved the cases C1 = 1, C2 = 3, 5, and it is now usual to refer to the
equation

x2 + C = yn (3)

as the Lebesgue–Nagell equation. In a series of papers (culminating in [7]), Cohn
solved (3) for many values of C > 0. After the appearance of the celebrated theo-
rem of Bilu, Hanrot and Voutier (BHV) on primitive divisors of Lucas and Lehmer
sequences [4], Cohn revisited (3) in [8], showing that BHV allows for an easy reso-
lution for 77 values in the range 1 ≤ C ≤ 100. The cases C = 74 and C = 86 were
solved by Mignotte and de Weger [14]. Using the modular approach based on Galois
representations of elliptic curves and modular forms, the cases C = 55 and C = 95
were solved by Bennett and Skinner [2]. The remaining 19 values were dealt with in
a pioneering paper due Bugeaud et al. [5], which combines Baker’s theory with the
modular approach. Related work which relies heavily on BHV is due to AbuMuriefah
et al. [1], and adapts Cohn’s method to the equation x2 + C = 2yn (see also [19,20]
for related equations) and also due to Ghanmi and Abu Muriefah [10] who study the
equation Cx2 + D = 2yq using BHV and properties of the Fibonacci sequence.

In view of Cohn’s work, it is natural to consider (2), which we refer to as the
generalised Lebesgue–Ramanujan–Nagell equation.We extend Cohn’smethod so that
it applies in far greater generality.

More precisely, we study equations of the form:

C1x
2 + C2 = yn, x, y ∈ Z

+, gcd(C1x
2,C2, y

n) = 1, n ≥ 3. (4)

We may assume without loss of generality that n is an odd prime, or that n = 4. We
prove the following.

Theorem 1 Let C1 be a positive squarefree integer and C2 a positive integer. Write
C1C2 = cd2 where c is squarefree. We assume that C1C2 �≡ 7 (mod 8). Let p be an
odd prime for which the equation

C1x
2 + C2 = y p, x, y ∈ Z

+, gcd(C1x
2,C2, y

p) = 1 (5)
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has a solution (x, y). Then either

(i) p ≤ 5, or
(ii) p = 7 and y = 3, 5 or 9, or
(iii) p divides the class number of Q(

√−c), or

(iv) p |
(
q −

(−c
q

))
, where q is some prime q | d and q � 2c.

In Sect. 6, we give an effectivemethod that solves (4) for a given value of n ≥ 3. Our
algorithm relies on standard algorithms for solving Thue equations and determining
integral points on elliptic curves. We implemented our method in Magma [6] which
has inbuilt implementation of these algorithms (based on [9,18,21]) and together with
Theorem 1, this determines the solutions to (4) for 2 ≤ C1 ≤ 10, 1 ≤ C2 ≤ 80 subject
to the restrictions: C1 is squarefree, gcd(C1,C2) = 1, and C1C2 �≡ 7 (mod 8). Our
results are given in Sect. 7. We point out that the case C1 = 1 and 1 ≤ C2 ≤ 100 is
completely solved in [5], which incorporates the earlier work of Cohn, Bennett and
Skinner, and Mignotte and de Weger.

The author thanks Yann Bugeaud and Szabolcs Tengely for useful conversations.
The author also extends her thanks to the referee for a careful reading of the paper and
for suggesting several improvements.

2 Primitive prime divisors of Lehmer sequences

A Lehmer pair is a pair of algebraic integers α, β, such that (α +β)2 and αβ are non-
zero coprime rational integers and α/β is not a root of unity. The Lehmer sequence
associated to the Lehmer pair (α, β) is

ũn = ũn(α, β) =
{

αn−βn

α−β
if n is odd,

αn−βn

α2−β2 if n is even.

A prime p is called a primitive divisor of ũn if it divides ũn but does not divide
(α2 − β2)2 · ũ1 · · · ũn−1. We shall make use of the following celebrated theorem [4].

Theorem 2 (Bilu, Hanrot and Voutier) Let α, β be a Lehmer pair. Then ũn(α, β) has
a primitive divisor for all n > 30, and for all prime n > 13.

A Lehmer pair (α, β) is called n-defective if ũn(α, β) does not have a primitive
divisor. Two Lehmer pairs (α, β) and (α′, β ′) are said to be equivalent if α/α′ =
β/β ′ ∈ {±1,±√−1}. Table 2 of [4] gives all equivalence classes of n-defective
Lehmer pairs for all 6 < n ≤ 30 except n �= 8, 10, 12. In particular,

• there are no 11-defective Lehmer pairs;
• every 13-defective Lehmer pair is equivalent to ((

√
a + √

b)/2, (
√
a − √

b)/2)
where (a, b) = (1,−7);

• every 7-defective Lehmer pair is equivalent to ((
√
a + √

b)/2, (
√
a − √

b)/2)
where (a, b) = (1,−7), (1,−19), (3,−5), (5,−7), (13,−3), (14,−22).
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3 Preliminary descent

Throughout Sects. 3 and 4 we maintain the following assumptions and notation:

(a) C1 is a squarefree positive integer, C2 is a positive integer and gcd(C1,C2) = 1.
We moreover suppose that C1C2 �≡ 7 (mod 8). We write C1C2 = cd2 where c,
d are positive integers and c is squarefree.

(b) (x, y) satisfies (5).
(c) p is an odd prime. Moreover, if p = 3 then we suppose additionally that C1C2/3

is not a square.
(d) p does not divide the class number of Q(

√−c).

Lemma 3.1 Let (x, y) be a solution to (5). Let OK be the ring of integers for the
number field K = Q(

√−c). Then there is some δ ∈ OK such that

C1x + d
√−c = δ p

C (p−1)/2
1

. (6)

Moreover, we have

δ p

C p/2
1

− δ̄ p

C p/2
1

= 2d ·
√−c√
C1

. (7)

Proof Let K = Q(
√−c) and OK its ring of integers. Let hK be the class number of

K and we assume that p � hK . As C1C2 �≡ 7 (mod 8) we have that y is odd.
As C1, c are both squarefree, gcd(C1,C2) = 1 and C1C2 = cd2 it follows that

C1 | c. Let C1 = p1 · · · pr where we note that the primes p1, . . . pr ramify in K .
We factorise Eq. (5) in OK as follows:

(
C1x + d

√−c
) (
C1x − d

√−c
) = C1 · y p = p1 . . . pr · y p.

Let us write pi for the prime ideal above pi where 1 ≤ i ≤ r . Let a = p1 . . . pr and
we obtain

(C1x + d
√−c)OK = p1 . . . pr · yp

= a1−p · (ay)p

= (C (1−p)/2
1 ) · (ay)p,

where ay is a principal ideal of OK . Indeed, [ay]p = 1 in the class group. Therefore
the class [ay] has order dividing p. By assumption p � hK . Thus ay is principal.

Therefore, we write ay = δOK . The unit group of OK has order 2, 4 or 6, and
is therefore p-divisible, unless p = 3. However, for p = 3 we have assumed that
C1C2/3 is a non-square and therefore K �= Q(

√−3), and so the order of the unit
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group is 2 or 4. Thus in all cases the unit group is p-divisible. Thus adjusting δ by an
appropriate unit we obtain (6). Subtracting the conjugate from (6), we get

δ p

C (p−1)/2
1

− δ̄ p

C (p−1)/2
1

= 2d
√−c,

which is equivalent to (7). This completes the proof of the lemma. 	


Remark If C1C2 ≡ 7 (mod 8), then it is possible for y to be even. In that case it is no
longer true that we can express (C1x+d

√−c)OK in the form ayp where a2 = C1OK .

4 Satisfying the Lehmer condition

Let K = Q(
√−c) as before, and consider the extension, L/K , where L =

Q(
√−c,

√
C1). Observe that L/K is trivial if C1 = 1, and is quadratic otherwise.

We write OL for its ring of integers and set α = δ/
√
C1, β = δ̄/

√
C1. Thus Eq. (7)

becomes

α p − β p = 2d ·
√−c√
C1

. (8)

For the remainder of this section, in the case −c �≡ 1 (mod 4) we let

δ = r + s
√−c, δ̄ = r − s

√−c, (9)

where r , s are integers. In the case −c ≡ 1 (mod 4) we let

δ = r + s
√−c

2
, δ̄ = r − s

√−c

2
, (10)

where r and s are either both odd or both even.

Lemma 4.1 Let α, β be as above. Then, α and β are algebraic integers. Moreover,

αβ = y,
√
C1x + √−C2 = α p,

√
C1x − √−C2 = β p.

Proof By the proof of Lemma 3.1, a2 = C1OK and so
√
C1OL = aOL which divides

ayOL = δOL . Hence α = δ/
√
C1 is an algebraic integer.

Dividing (6) by
√
C1 gives

√
C1x+√−C2 = α p and applying complex conjugation

gives
√
C1x − √−C2 = β p. Multiplying the two equations gives y p = (αβ)p. But

as α, β are complex conjugates, y, αβ are both positive, so y = αβ as required. 	


Lemma 4.2 Let α, β be as above. Then, (α + β)2 is a non-zero rational integer.
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Proof By Lemma 4.1, (α + β)2 is an algebraic integer. However,

(α + β)2 =
(

δ + δ̄√
C1

)2

=
{
4r2/C1 if − c �≡ 1 (mod 4)

r2/C1 if − c ≡ 1 (mod 4),

and thus (α + β)2 is a rational number as well as being an algebraic integer. Thus it
is a rational integer.

Next, we suppose that (α + β)2 = 0. Then δ is purely imaginary, and (6) implies
that x = 0. This contradicts our assumption that x is positive. 	


The following is immediate from Lemma 4.1.

Lemma 4.3 Let α, β be as above. Then, αβ is a non-zero rational integer.

Lemma 4.4 Let α, β be as above. Then, (α +β)2 and αβ are coprime. Moreover α/β

is not a unit.

Proof Suppose that (α + β)2 and αβ are not coprime. Then there exists a prime q
of OL which divides both. Thus, q | α, β. By Lemma 4.1, q | y and q | (2

√
C1x).

As we saw previously, y must be odd. Hence q | y and q | C1x2, contradicting our
coprimality assumption.

Finally suppose α/β is a unit. In particular α | β and β | α. We claim that α is a
unit. Suppose otherwise, and let q | α be a prime of OL . Then q | β and we obtain a
contradiction as above. Hence α must be a unit and so β is a unit. Therefore y = αβ

is a unit in Z. Thus y = ±1. This contradicts C1x2 + C2 = y p and the positivity
assumption for the solution. 	


Lemmata 4.1, 4.2, 4.3, 4.4 provide a proof to the following:

Proposition 4.5 Let α, β be as above. Then α and β are algebraic integers. Moreover,
(α + β)2 and αβ are non-zero, coprime, rational integers and α/β is not a unit.

5 Proof of Theorem 1

In this section we prove Theorem 1. We suppose p > 5 and p � hK . We would like to
show that (p, y) = (7, 3), (7, 5), (7, 9) or there is some prime q | d, q � 2c such that
p | Bq where

Bq =
⎧⎨
⎩
q − 1 if

(−c
q

)
= 1,

q + 1 if
(−c

q

)
= −1.

Let (α, β) be as above. Proposition 4.5 tells us that (α, β) is indeed a Lehmer pair. We
denote by ũk the associated Lehmer sequence. From (9), (10) we have

α − β =
⎧
⎨
⎩

2s
√−c√
C1

if − c �≡ 1 (mod 4)
s
√−c√
C1

if − c ≡ 1 (mod 4).
(11)
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Combining with (8) gives

ũ p = α p − β p

α − β
=

{
d
s if − c �≡ 1 (mod 4),
2d
s if − c ≡ 1 (mod 4).

(12)

We suppose first that (α, β) is not p-defective. Thus there is a prime q | ũ p such that
q � (α2 − β2)2 and q � ũ1ũ2 . . . ũ p−1. We claim that q �= 2. Suppose q = 2. Let q be
a prime of OL dividing q. Then

α p ≡ β p (mod q), α �≡ β (mod q).

Hence α/β has order p in (OL/q)∗. This group has order Norm(q) − 1. As L has
degree 4, Norm(q) = 2 or 4 or 16. Thus p = 3 or 5which contradicts p > 5. Therefore
q �= 2.

Next we claim that q � C1. Suppose q | C1. Let q be a prime of OL dividing q.
Then α p ≡ β p (mod q) and

√
C1 ≡ 0 (mod q). By Lemma 4.1, q | 2√−C2. Hence

q | C1 and q | (2C2). But C1, C2 are coprime and q �= 2 giving a contradiction. Thus
q � C1.

From (11), the fact that q � C1 and q � (α2 −β2)2 we deduce that q � c as required.
Let q be a prime of K above q. Then δ/δ �≡ 1 (mod q) and (δ/δ)p ≡ 1 (mod q).

If (−c/q) = 1 then Fq = Fq and so p | (q − 1). If (−c/q) = −1 then Fq = Fq2 .
However, δ/δ (mod q) belongs to the kernel of the norm map F

∗
q2

→ F
∗
q which has

order q + 1. Thus in this case, p | (q + 1). Hence p | Bq .
To complete the proof we need to consider the case where (α, β) is p-defective. By

Theorem 2 and the discussion following it, we know that p = 7 or 13.Moreover (α, β)

is equivalent to (α′, β ′) = ((
√
a + √

b)/2, (
√
a − √

b)/2) where the possibilities for
(a, b) are listed in that discussion. Recall α/α′ = β/β ′ ∈ {±1,±√−1}. Moreover,
y = αβ. Thus if α/α′ = β/β ′ = ±√−1 we obtain y = −α′β ′. However, y is
positive and α′β ′ is also positive in all cases. Thus α/α′ = β/β ′ = ±1. Hence
y = α′β ′ = (a − b)/4. When (a, b) = (1,−7), (13,−3), (3,−5), we have y = 2,
4, 2, respectively. This contradicts our assumption that C1C2 �≡ 7 (mod 8). We are
reduced to the case where p = 7, and (a, b) = (1,−19), (5,−7), (14,−22), which,
respectively, give y = 5, 3, 9. This completes the proof.

We note in passing that it is not possible to eliminate the cases p = 7, y = 5, 3, 9.
For example, for p = 7, y = 5, there are 59893 possibilities for a triple (C1,C2, x)
which satisfies C1x2 + C2 = y p = 57 and all our other restrictions.

6 Effectively determining solutions

In this section, we give an effective method that solves (4) for a given value of n ≥ 3.
We first define a Thue equation as a Diophantine equation of the form f (x, y) = m,
where f (x, y) is a homogenous polynomial of degree at least 3with integer coefficients
and m is a fixed integer. We recall Thue’s original finiteness result [21]:
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Theorem 3 (Axel Thue 1909) Thue equations have finitely many integer solutions in
(x, y).

Thue’s proof is unfortunately ineffective. However, the past century saw great
advances in the effective resolution of Thue equations, most notably Baker’s work
on linear forms in logarithms and efficiencies gained from the LLL algorithm [13].
The effective resolution of Thue equations is described in great detail in [17] and
readily implemented in Magma [6].

Let C1, C2 satisfy condition (a) of Sect. 3. Theorem 1 gives a list of possible
odd prime exponents n = p for which (4) might have solutions. As noted in the
introduction, we may without loss of generality suppose that n = p is an odd prime,
or that n = 4. In this section, we outline a practical method to compute these solutions
for fixed such value of n. We consider three cases.
Case I n is an odd prime p � hK , and if p = 3 then C1C2/3 is not a square. In this
case the conditions (a)–(d) of Section 3 are all satisfied. Let r , s be as in (9), (10). Let

d ′ =
{
d if − c �≡ 1 (mod 4),

2d if − c ≡ 1 (mod 4).

From (12) we obtain s | d ′. Thus we have only a few possibilities for s. To determine
the solutions we merely have to determine the possible values of r corresponding to
each s | d ′. We shall write down an explicit polynomial fs ∈ Z[X ] whose integer
roots contain all the possible values of r corresponding to s.

Fix s | d ′. If −c �≡ 1 (mod 4), we let

fs(X) = (X + s
√−c)p − (X − s

√−c)p

2s
√−c

− d · C (p−1)/2
1

s
.

Clearly fs ∈ Z[X ]. Moreover,

fs(r) = δ p − δ
p

δ − δ
− d · C (p−1)/2

1

s
= 0

using (7) and (9).
If −c ≡ 1 (mod 4), we let

fs(X) = (X + s
√−c)p − (X − s

√−c)p

2s
√−c

− 2p · d · C (p−1)/2
1

s
.

Again fs ∈ Z[X ] and

fs(r) = (2δ)p − (2δ)p

2(δ − δ)
− 2p · d · C (p−1)/2

1

s
= 0

using (7) and (10).
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Case II n is an odd prime p, with either p | hK or p = 3 and C1C2/3 is a square.
In this case we explain how to reduce (5) to a finite number of Thue equations. These
can be solved using standard methods for Thue equations such as in [17]. As in the
proof of Lemma 3.1, write C1 = p1 . . . pr and let pi be the unique prime ideal ofOK

above pi . Let a = p1 · · · pr . We have

(C1x + d
√−c)OK = a · yp,

where y is an ideal of OK . Let b1, . . . , bh be ideals of OK that form a system of
representatives for the class group. Then, for some 1 ≤ i ≤ h = hK , we have ybi is
principal. Therefore ab−p

i must be principal. We test the ideals ab−p
i for principality.

Fix i such that ab−p
i = εOK where ε ∈ K ∗ and write ybi = δOK , where δ ∈ OK .

Then

C1x + d
√−c = μ · ε · δ p, (13)

where μ is a unit. If p �= 3 or C1C2/3 is a non-square, then μ is a p-th power and
we can absorb this in the δ p factor. In this case we suppose μ = 1. Otherwise we also
consider μ = 1, ω = (−1+ √−3)/2 and ω2. We write δ as in (9), (10) depending on
whether −c �≡ 1 (mod 4) or −c ≡ 1 (mod 4). We then expand (13) and equate the
coefficients of

√−c and clear denominators to obtain an equation of the form

F(r , s) = t,

where t is a positive integer, and F ∈ Z[X ,Y ] is a homogeneous polynomial of degree
p ≥ 3. This is a Thue equation. In our implementation we used Magma’s inbuilt Thue
solver which is an implementation of the algorithm in Smart’s book [17, Chapter VII],
which is based on linear forms in logarithms.
Case III n = 4. We write

X = C1y
2, Y = C2

1 xy,

and note that (X ,Y ) is now an integral point on the elliptic curve

Y 2 = X3 − C2
1C2X .

We apply Magma’s inbuilt function for determining integral points on elliptic curves
which is based on linear forms in elliptic logarithms, as described in Smart’s book
[17, Chapter XIII].

7 Solutions

We are interested in solving (4) for 2 ≤ C1 ≤ 10, 1 ≤ C2 ≤ 80 subject to the
restrictions: C1 is squarefree, gcd(C1,C2) = 1, and C1C2 �≡ 7 (mod 8). Recall that
we are under the assumption gcd(C1x2,C2, yn) = 1 in (4). As noted previously, we
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may without loss of generality suppose that n = 4 or that n = p is an odd prime. For
each such pair (C1,C2), Theorem 1 yields a finite set S(C1,C2) of odd primes p for
which we need to solve (5). Thus for each such pair (C1,C2) we need only solve (4)
for n ∈ S(C1,C2) ∪ {4}, and for each such value n we may apply one of the methods
explained in Sect. 6. We implemented our approach in Magma [6]. The results of our
computation are given below.

C1 C2 x y n

2 1 11 3 5
2 5 13 7 3
2 7 19 9 3
2 13 68 21 3
2 13 41 15 3
2 19 1429 21 5
2 19 33 13 3
2 19 2 3 3
2 23 122 31 3
2 25 1 3 3
2 25 134 33 3
2 27 7 5 3
2 31 5 3 4
2 43 10 3 5
2 47 17 5 4
2 49 4 3 4
2 53 423 71 3
2 53 6 5 3
2 55 441 73 3
2 55 12 7 3
2 73 2 3 4
2 79 1 3 4
3 8 21 11 3
3 10 27 13 3
3 17 6 5 3
3 35 186 47 3
3 43 10 7 3
3 43 712 115 3
3 73 72 25 3
3 80 639 107 3
5 1 4 3 4
5 7 2 3 3
5 14 37 19 3
5 16 43 21 3
5 22 1 3 3
5 23 8 7 3
5 61 2 3 4
5 61 54 11 4
5 61 326 27 4
5 61 326 81 3
5 76 1 3 4
5 76 487 33 4
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C1 C2 x y n

6 1 20 7 4
6 17 45 23 3
6 19 51 25 3
6 29 4 5 3
6 29 185 59 3
6 31 19 13 3
6 71 3 5 3
6 71 378 95 3
6 73 390 97 3
7 13 4 5 3
7 20 53 27 3
7 20 1 3 3
7 22 59 29 3
7 29 10 9 3
7 38 21 5 5
7 53 2 3 4
7 58 9 5 4
7 62 3 5 3
7 68 5 3 5
7 71 92 39 3
7 74 1 3 4
7 78 85 37 3
10 17 1 3 3
10 29 77 39 3
10 31 83 41 3
10 37 122 53 3
10 41 2 3 4
10 43 350 107 3
10 71 1 3 4
10 73 22 17 3

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.
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