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Convergence Behaviour of Solvation Shells in Simulated
Liquids†

Jas Kalayan,∗a and Richard H. Henchmana

A convenient way to analyse solvent structure around a solute is to use solvation shells, whereby
solvent position around the solute is discretised by the size of a solvent molecule, leading to multiple
shells around the solute. The two main ways to define multiple shells around a solute are either directly
with respect to the solute, called solute-centric, or locally for both solute and solvent molecules alike.
It might be assumed that both methods lead to solvation shells with similar properties. However,
our analysis suggests otherwise. Solvation shells are analysed in a series of simulations of five pure
liquids of differing polarity. Shells are defined locally working outwards from each molecule treated
as a reference molecule using two methods: the cutoff at the first minimum in the radial distribution
function and the parameter-free Relative Angular Distance method (RAD). The molecular properties
studied are potential energy, coordination number and coordination radius. Rather than converging
to bulk values, as might be expected for pure solvents, properties are found to deviate as a function
of shell index. This behaviour occurs because molecules with larger coordination numbers and radius
have more neighbours, which make them more likely to be connected to the reference molecule via
fewer shells. The effect is amplified for RAD because of its more variable coordination radii and for
water with its more open structure and stronger interactions. These findings indicate that locally
defined shells should not be thought of as directly comparable to solute-centric shells or to distance.
As well as showing how box size and cutoff affect the non-convergence, to restore convergence we
propose a hybrid method by defining a new set of shells with boundaries at the uppermost distance
of each locally derived shell.

1 Introduction
Quantifying the molecular structure and interactions of liquids,
solutions and mixtures is important in understanding their ther-
modynamic properties such as solubility, miscibility, colloidal sta-
bility and activity1–4 as well as answering such questions as
the range of solvent-solute interactions5–10 The molecular struc-
ture of solvated systems is complicated because of the high-
dimensional and highly variable distribution of configurations of
all the participating molecules, ranging from crystalline order all
the way to random disorder. Various methods are needed to
simplify and reduce the dimensionality of the data and make
it more comprehensible or tractable to further processing. The
most widely used structural quantities for liquids are the particle
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coordinate distribution functions. The first-order one is molec-
ular density but gives no molecular detail. The second-order
one is the pairwise radial distribution function, g(r), which ex-
presses the measured density of one species at a distance r from
another species relative to the average density.11 As well as be-
ing a highly intuitive quantity, it provides many points of com-
parison between simulation and experiment, whether it be g(r)
itself, the entropy of liquids and dilute solutions,12–15 or numer-
ous other thermodynamic properties, such as isothermal com-
pressibility or chemical potential via Kirkwood-Buff integrals of
g(r).16–21 For small, rigid, near-radially symmetric molecules,
g(r) captures much structural information of interest along the
single radial coordinate r. However, given its spherical nature,
the validity and usefulness of g(r) diminishes for non-spherical so-
lutes, and for spherical molecules it is unable to capture aspheri-
cal inhomogeneities. Partial solutions are using energy-derivative
information to improve convergence,22–25 multiple g(r)s rela-
tive to each solute atom,26 angular information,14,15 a three-
dimensional grid centred on the solute,27,28 or multiple grids lo-
calized on different solute atoms.29 However, this makes them
more complex, slower to converge, and still insensitive to inho-
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mogeneities beyond the coordinates used.
An alternative way to analyse solution structure, motivated by

the discrete size of molecules and the oscillatory structure typi-
cally seen in g(r), is to coarse-grain the distribution of the solvent
around the solute into discrete shells.30–32 Being based on molec-
ular topology rather than distance, shells have the advantages of
being statistically better defined, simpler to manipulate and in-
terpret, more adaptable to fluctuations and lower symmetry, and
better able to capture multibody effects based on molecular con-
nectivity. The topological network of molecules in shells can be
conveniently analysed using the tools of graph theory.33 All this
makes shells more amenable to complex, multi-component, flexi-
ble systems such as electrolytes, ionic liquids, liquid crystals, poly-
mers, and biomolecules. The most commonly used shell is the one
adjacent to the solute. Called the first shell or coordination shell,
it represents the immediate environment of the solute and con-
tains the solvent that is most perturbed by the solute, having the
strongest interactions with it. Beyond this lie the second shell, the
third shell and so on out to the edge of the system.

There is no unique way to define solvation shells, but two gen-
eral classes of method exist. Shells may be defined with bound-
aries at every maximum in the g(r) relative to the solute, with
multiple maxima leading to multiple shells. This is essentially a
coarse-graining of g(r) which becomes less well-defined at longer
range due to the smoother g(r). Alternatively, shells may be built
locally with the first around the solute, the second shell around
those molecules in the solute’s first shell, the third shell around
those molecules in the solute’s second shell, and so on. Because
local methods require knowing the environment of each individ-
ual solvent molecule, they are only accessible by simulation.34–37

Each shell may be constructed from the g(r)-derived first shell
of each molecule, using fixed cutoff parameters, or a fixed num-
ber of nearest neighbours.38–43 Cutoffs assume mean-field, ra-
dially symmetric structure and require either well-defined g(r)s
averaged over multiple configurations or multiple, arbitrary cut-
off parameters, features that make them less suitable for systems
of greater complexity. Alternatively, shells may be defined using
topological methods which are parameter-free and directly ap-
plicable to individual configurations.43–45 The most widely used
method, Voronoi tesselation, identifies neighboring molecules as
those that share polyhedra faces.46,47 The number of Voronoi
neighbors in the first shell of a molecule is typically overesti-
mated47,48 with respect to g(r), even for crystals because spu-
rious second-shell molecules are included. However, these may
be removed by adopting additional geometric criteria.49–51 More
recent methods based on blocking include the SANN algorithm52

(Solid-Angle Nearest Neighbor) which allows nearest neighbors
up to a solid-angle threshold 4π and the RAD algorithm (Relative
Angular Distance)53,54 which defines blocking based on collinear-
ity and inverse-square distance. RAD produces shells in close
agreement with those using cutoffs at the first g(r) minimum53

and is better able to handle the complexities of mixtures.54 The
advantages of topological methods are that they can resolve local
density fluctuations and non-spherical symmetry and a particular
property of them is that shells are always built locally rather than
solute-centrically.

Despite the practical, intuitive nature and widespread use of
solvation shells to analyse solvent structure, we encountered a
number of properties of locally defined shells relating to their
long-range convergence that are not well recognised and may
not be immediately obvious. These properties concerned the in-
homogeneity between different shells and inhomogeneity within
each shell. To make clear this behaviour, we focus on shells in
pure liquids rather than for solutes in a liquid so as to remove
the perturbing effect of solutes,5–10 which would otherwise ob-
scure perturbations arising from other causes. Two local shell
methods are used: the fixed cutoff at the first minimum in g(r)
and RAD. Five liquids are chosen differing in their degree of po-
larity, namely water, ammonia, hydrogen sulfide, methane and
argon. The properties examined are potential energy, coordina-
tion number and coordination radius, and they are analysed as
a function of both distance and shell index from the reference
molecule. Our main finding is that average bulk behaviour is not
reached with increasing shell index, contrary to what is seen us-
ing solute-centric shells or g(r). The cause of this is that molecules
with larger coordination number and radii have a higher proba-
bility to lie in lower-index shells. Our second finding is that within
each shell, molecules with a smaller coordination number tend to
lie closer to the reference molecule because of their smaller coor-
dination radii. Both deviations are stronger for RAD than for the
fixed-cutoff method but nonetheless are inherent to both meth-
ods. A third finding is that the direction of trends for potential
energy are found to depend on the hydrogen-bond propensity of
the liquid because stable energy correlates with low coordination
for hydrogen-bonded liquids but high coordination for non-polar
liquids. This non-convergence of locally defined shells shows that
they should be used with care when analysing solvent structure
in any system. To remedy this, we present a hybrid solute-centric
and local way to define solvation shells that brings about long-
range convergence. This is done by reassigning molecules to
closer local shells at a certain distance from the solute. Going
beyond the pure liquids studied here, this method can be readily
generalised to solvent structure around any solute.

2 Methods

2.1 Shell Definitions

The first shell of a designated reference molecule is assigned us-
ing two methods: Relative Angular Distance (RAD)53 and the
g(r) cutoff (GC) method with the cutoff at the first minimum in
g(r). The RAD shell of molecule i is defined as containing those
molecules j for which no other molecule k blocks that interaction
and no other closer molecule is blocked. Blocking by k occurs if

1
r2
ik

cos θ jik >
1

r2
i j

(1)

where ri j and rik are the distances from i to j and i to k, and θ jik is
the angle subtended at i by j and k. Roughly speaking, molecule
k blocks if rik is smaller than ri j and θ jik is near zero. RAD is
implemented in the symmetric version whereby each molecule
must have the other molecule as a neighbor. The GC distance cut-
offs are in line with g(r)s derived elsewhere, making allowances
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Fig. 1 Snapshot of liquid argon (5 Å thick cross-section) with atoms
colored by their shell index defined using (a) RAD, (b) GC, (c) RAD-
hybrid or (d) GC-hybrid methods (made in VMD65).

for the different temperatures, and are 3.5 Å for water,55,56 4.0
Å for ammonia,57–60 4.7 Å for hydrogen sulfide,61 5.8 Å for
methane,62 and 5.1 Å for argon.63 Molecules in the second shell
of the reference molecule are defined as all the molecules in the
first shell of those molecules in the first shell of the reference
molecule, excluding the reference molecule and any molecules
that are already in its first shell. This is repeated iteratively to
assign further shells until all molecules are assigned to a shell,
ignoring periodic molecules.37,41,43,45,64 An example assignment
of molecules to shells using RAD and GC for one configuration of
liquid argon is depicted in Figure 1a-b.

2.2 Molecular Properties

The following properties are used to assess the shells:

1. Shell index φ ranks the shells. It ranges from 0 for the refer-
ence molecule up to the maximum shell index in the simula-
tion box, avoiding periodicity.

2. Molecular distance r is between a molecule and the refer-
ence molecule, with the heavy atom of each molecule defin-
ing its position.

3. Molecular potential energy U is the sum of the potential en-
ergies of all the atoms in the molecule (see Simulation Pro-
tocol for more details).

4. Coordination number N1 is the number of molecules in the
first shell of the molecule.

5. Coordination radius r1 is the average distance between a
molecule and all its first-shell molecules using the heavy
atom as the position of each molecule.

2.3 Simulation Protocol

Molecular dynamics simulations of each of the five liquids are
conducted with 600 molecules per box. The force-field param-
eters are those of Michels at al. for argon,66 SPC/E for water55

and GAFF for hydrogen sulfide, methane and ammonia.67 Initial
molecular geometries are created using Avogadro68 and initial
box geometries are created using Packmol69, where molecules
are randomly assigned with a distance tolerance of 2 Å in cu-
bic simulation boxes with length 26 to 32 Å. Three additional
larger simulations are created for water containing 2134, 7200
and 24300 water molecules to assess the affect of box size. Sys-
tem topology files are generated using the leap module of AM-
BER 18 (Assisted Model-Building and Energy Refinement)70 and
minimised for 500 steps of steepest-descent using sander.

The simulations thereafter are conducted using LAMMPS
(Large-Scale Atomic/Molecular Massive Parallel Simulator)71

which prints out atomic potential-energy trajectories. AM-
BER topology and minimised coordinate files are converted into
LAMMPS input files using InterMol72. The system is equilibrated
for 0.2 ns at NVT conditions (Number, Volume, Temperature) and
for 1 ns at NPT conditions (Number, Pressure, Temperature), fol-
lowed by 10 ns of NPT data collection. The temperatures used
are 298 K for water, 240 K for ammonia, 213 K for hydrogen sul-
fide, 112 K for methane, and 87 K for argon. The pressure is
1 bar for all systems. Temperature and pressure are controlled
using a Nosé-Hoover thermostat and barostat, respectively. Non-
bonded interactions are truncated at 9 Å and long-range electro-
static interactions are calculated using particle-particle-particle-
mesh (PPPM)73. Atomic potential energies are calculated us-
ing the pe/atom command in LAMMPS. For the potential energy,
the two-body and three-body energy terms are partitioned evenly
over all contributing atoms and the long-range PPPM contribution
is calculated using the method of Heyes.74 The SHAKE algorithm
constrains all bonds and angles to hydrogen atoms.75 Trajecto-
ries of coordinates and potential energy for each atom are saved
at 100 ps intervals, giving 100 frames for analysis, which are suf-
ficient when averaged over 600 identical molecules, each in turn
treated as the reference ’solute’, totaling 60,000 data points for
each system. Output files are read using the MDAnalysis Python
library76 and analysed using an in-house Python program. Plots
are made with the matplotlib Python library77.

3 Results

3.1 Average Potential Energy of Shells

The average potential energy U of molecules in each shell de-
fined with RAD and GC is plotted in Figure 2. U is seen to deviate
from the average value across shells for both methods at short and
long ranges. The deviation is larger for RAD than GC, and largest
in water compared to the less-polar liquids. Supplementary Fig-
ure S1 makes clear that the trends are converged with respect to
the number of frames used, and Supplementary Figure S2 indi-
cates that the total system energy has leveled off at the start of
data collection.

This trend contrasts with the dependence of U on r, shown in
Figure 3. As expected, U shows some short-range fluctuation, re-
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Fig. 2 Potential energy U versus shell index φ (circles and dashed) and averaged over the whole system (dotted) for each liquid with shells defined
by (a) RAD and (b) GC. The circle size indicates the number of molecules in the shell and the most common shell for each system is filled in.

flecting local solvent structure, but then converges to a constant
bulk value at long range for all liquids. If we look at how U varies
within each shell as a function of distance r from the reference
molecule, U shows a strong dependence on r in all liquids, with
larger differences in U apparent in shells of more polar liquids.
For RAD shells, U increases from the closer part of the shell to
the outer part of the shell for water and ammonia, the trend is re-
versed for argon, while hydrogen sulfide and methane are more
symmetric with both edges of the shell having a higher U and with
a weaker dependence on distance. GC shells have more symmet-
ric distributions of U for water and ammonia but more monotonic
and decreasing for the other liquids. Of note is that the GC cutoff
strongly influences the U distribution within a shell, as seen in
Supplementary Figure S3, which shows that the trend for water
goes from having a negative slope with cutoff 3 Å to a positive
slope with cutoff 4 Å.

3.2 Effect of Coordination Number and Radius

To better understand the non-convergence of U , the influence of
a molecule’s coordination number and radius on potential energy
is analysed. We focus on water and methane in Figure 4 as repre-
sentative polar and non-polar liquids, with results for all liquids
being presented in Supplementary Figures S4–S7. First, as ex-
pected, the potential energy is sensitive to coordination radius,
r1 (Figure 4a). There is a stable minimum at r1 = 2.7 Å for wa-
ter and 4.1 Å for methane with higher, less favorable energy at
smaller and larger radii. The width of the minimum depends on
the strength of interactions, with water having the sharpest min-
imum due to its hydrogen bonds compared to the broader mini-
mum for methane with its weaker interactions. This sensitive de-
pendence of U on r1 for water makes clear why U deviates more
for its solvation shells. Another observation is that at larger r1 for
RAD in the sparser region beyond the GC cutoff of 3.5 Å, U varies
little for water but continues to increase for methane beyond its

GC cutoff of 5.8 Å, indicating that water’s hydrogen bonds are
less affected by the lower density than are non-polar interactions.
These trends are similar for all shells, as made clear by plots of
U versus N1 and r for each individual shell in Supplementary Fig-
ure S8 and its averaged version Figure S9.

Potential energy is also sensitive to coordination number (Fig-
ure 4b). The trend is positive for water but negative for methane.
Evidently, the lower N1 of 4–7 for water is a consequence of its
3–5 hydrogen bonds and small number of interstitial molecules.
Fewer neighbors means stronger hydrogen bonds tending to the
stable tetrahedral arrangement and lower U . On the other hand,
indicative of normal close-packed liquids, the negative trend for
methane occurs because the greater number of 7–11 neighbors
brings about more van der Waals interactions and thus a lower
U . The trends are similar for the other three liquids according to
their polarity (Supplementary Figure S5). Hydrogen sulfide and
argon are like methane, while ammonia with its weak hydrogen
bonds lies in between, with U being lowest when there are nine
neighbors. The trends are similar for RAD and GC, although RAD
better picks out the anomalous reverse behavior for water and
ammonia than GC.

Turning to Figure 4c, molecules with closer neighbours are seen
to be more common in more distant shells. This can also be un-
derstood as molecules with fewer neighbours being more com-
mon in more distant shells because we see in Figure 4d that r1

and N1 are closely correlated for all but the highest values of r1.
This trend is important to explain the non-converging U in local
shell assignment because N1 relates to connectivity and thus φ

while r1 to U , thereby relating U to φ .

The final trend of interest is r1 versus r, shown in Supplemen-
tary Figure S10. This shows a clear increase in r1 versus r for all
shells, liquids and methods, demonstrating that this appears to be
a universal property of locally defined shells. Smaller shells lie at
closer distances and larger shells at further distances.
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Fig. 3 Potential energy U of a molecule in a particular shell φ and distance r from the reference molecule for shells defined by (a) RAD or (b) GC.
Averaged energy by distance is shown with a black dashed-line. Each marker represents an r bin value of 0.5 Å that is colored and shaped according
to the shell index and sized according to its population.

3.3 Model to Explain Non-Convergence with Shell Index

We next construct a model to explain the non-convergence of
properties with shell index. Figure 5 illustrates the shells around
a solute, showing regions of molecules separated by larger and
smaller distances. When assigning shells locally, what matters is
not the separating distance to the solute, as in a solute-centric ap-
proach, but the number of intervening molecules. Molecules that
have more neighbours have further neighbours and vice versa for
fewer neighbours. Molecules with further neighbours themselves
lie further distances away from other molecules, including the
reference molecule. In addition, molecules with more neighbours
are more likely to be more closely connected by fewer shells. Thus
a region containing molecules that are more closely spaced has
more intervening shells than a region containing fewer molecules,
while molecules with more neighbours have fewer intervening
shells. Given the dependence of coordination size and number on
shell index, this makes other properties such as energy depend
on shell index, particularly for polar solvents because they have
a larger energetic dependence on the number of neighbours and
distance between neighbours.

3.4 Methods to Reduce the Non-Convergence

We finally look at how locally derived shells can be converted
into another set of shells that do have convergence in their prop-
erties. The boundaries of the new shells are placed at the upper-
most distance of each locally derived shell. The dependence of U
with shell index using the new shells is plotted in Figure 6 for all
liquids and both methods, now labelled as RAD-hybrid and GC-
hybrid. It can be seen that rapid convergence of U to the average
value occurs for all liquids and methods, similar to what is seen
for U as a function of r. Evidently, this reassignment redistributes
the molecules between and within locally derived shells to even
out their properties. This thus provides a way to define solvation
shells that have convergence of properties but without the need

for defining shell thickness. The resulting set of shells are illus-
trated in Figure 7 for both methods and all liquids. This shows
the U distribution of each locally derived shell as in Figure 3 but
coloured according to the new shell definition. It creates solvation
shells that are slightly thicker closer to the reference molecule.

Another possible way to bring about property convergence is to
vary the size of the simulation box. However, boxes with larger
side lengths of 40, 60 and 90 Å for water using RAD are seen
to still show a similar non-convergent trend (Supplementary Fig-
ure S11), but the size of the deviation is smaller in larger boxes.
Yet another possible approach to bring about property conver-
gence applicable to the GC method is to vary the GC cutoff. The
effect of this on convergence may be seen in Supplementary Fig-
ure S12 which shows the dependence of r1 on φ and r for three
different cutoffs of 3, 3.5 and 4 Å. When the cutoff is 3 Å, which
is near the g(r) maximum, the non-convergence is substantially
reduced, suggesting that having smaller shells that are more ho-
mogeneous in size makes them less susceptible to this behaviour.
However, even with this cutoff, Figure S10 shows that U is still
not converged versus φ .

4 Discussion

Solvation shells provide an intuitive model to simplify and rep-
resent the structure of a liquid around a central solute molecule.
They are especially useful for larger, intricate, flexible molecules,
for which Cartesian coordinate-based methods become too com-
plex or intractable. Shells better adapt to the flexible structure of
both solute and solvent molecules than coordinate-based meth-
ods. While the general idea is to discretise shells based on the
size of the solvent molecule, there is no unique way to define
them. Here we show that for shells defined locally in a pure liq-
uid, their properties do not converge to bulk values at long range
either in terms of distance or shell index. In particular, molecules
in more distant shells are found to have lower coordination num-
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Fig. 4 Effect of (a) coordination radius and (b) number N1 on potential
energy U , (c) r1 versus φ , and (d) N1 versus r1 for water (column 1) and
methane (column 2) RAD shells. Marker size represents the population
of molecules at each value.

Fig. 5 Schematic to illustrate the non-convergence of properties as a
function of shell index. Molecules are coloured by shell index and black
lines link molecules in each other’s coordination shells. Closer proximity
on the right brings out the two effects: it causes molecules at a given
distance to be assigned to more distant shells, and it causes molecules in
a given shell to lie at a shorter distance within the shell.

ber and radius than those in closer shells. Moreover, molecules in
the inner edge of a shell have lower coordination number and ra-
dius than those in the outer edge. The explanations for these two
trends are geometrical, as illustrated in Figure 5. The first trend
reflects a greater probability for molecules with larger coordina-
tion number and radius to end up in shells closer to the reference
molecule because their greater number of neighbours gives them
more connections with neighbouring molecules and because their
larger size means there are fewer separating neighbours between
them and the reference molecule. Conversely, molecules with
smaller coordination number and radius are more likely to end up
in more distant shells. The second trend arises because molecules
with smaller coordination number and radius are more likely to
lie closer to their neighbours, while those with larger values lie
further away. RAD is more sensitive to this effect because its co-
ordination radii are more variable than those of GC which has a
fixed cutoff, especially for water with its open structure, but even
GC is not immune. However, RAD still has the advantages that it
resolves instantaneous structure, it reveals structure beyond the
GC cutoff, and it better resolves the anomalous structure in the
hydrogen-bonded liquids.

It is interesting that the shell effect analysed here affects po-
tential energy differently, depending on the liquid. Higher coor-
dination brings about less stable energy for the hydrogen-bonding
liquids of water and ammonia but more stable energy for the
close-packed liquids of methane and argon. This reflects the
well-known behaviour of hydrogen-bonded liquids such as wa-
ter78 and to a lesser extent ammonia57–60 to have a low coor-
dination because the directionality of hydrogen bonds limits the
number of neighbors. On the other hand, molecules in close-
packed liquids are dominated by van der Waals interactions,
whose non-directional nature permits multiple interactions, so
enabling higher coordination to bring about more stable energy.
Within each shell, potential energy may increase or decrease with
increasing distance, depending on the method and liquid.

Considering possible ways to reduce the non-convergence, us-
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Fig. 6 As for Figure 2 but using the hybrid RAD and GC methods whereby boundaries are defined by the largest distances of the locally derived shells.

Fig. 7 As in Figure 3, but using the hybrid RAD and GC methods whereby boundaries are defined by the largest distances of the locally derived shells.
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ing a larger box helps somewhat (Figure S11). Going further
away from the reference molecule and including molecules in pe-
riodic images would bring about further softening but only as an
artifact of periodicity. Using a smaller GC cutoff also reduces the
effect (Figure S12). Other solutions not attempted here could be
to allocate a molecule to a new shell if more than one neighbor
belongs to the preceding shell, or to allow shells to get thicker fur-
ther away from the reference molecule, a limit of which would be
having only the first shell with the rest of the solvent as bulk, as
is commonly done. Recourse could always be made to the solute-
centric option of defining shells from multiple peaks in g(r) using
the solute as a common reference point, effectively a molecular-
level coarse-graining of g(r). This avoids the non-convergence
behaviour by angular averaging but struggles to resolve shells
at larger distances in the flatter g(r) arising from the diminish-
ing correlation with the solute, reflecting the reduced structuring
further from the solute. In contrast, there is no such reduction
of long-range structure in the graph of connections generated
locally for every molecule, but instead there is long-range non-
convergence. As one way to combine the features of both meth-
ods, we present an approach that suppresses non-convergence by
defining shell boundaries at the maximum distance of each locally
derived shell but at the cost of radial averaging. This results in
shells having converged potential energies as a function of shell
index in the same manner as solute-centric shells or g(r) itself.

5 Conclusions

An analysis of the properties of solvation shells defined locally in
pure liquids has revealed that properties do not converge to the
bulk values, either averaged over each shell or within each shell.
Coordination number and radius are found to decrease in more
distant shells and to increase from the inner to the outer part
of each shell. The reason for these trends is that the properties
of larger coordination number and radius make such molecules
more likely to lie in closer shells and at the outer part of each
shell. The shell dependence is greater for RAD than GC because
of the greater variability of RAD coordination, but RAD reveals
instantaneous structure, structure beyond the GC cutoff and the
anomalous structure in the hydrogen-bonded liquids. The effect
on potential energy differs for each liquid. Hydrogen-bonded wa-
ter and ammonia have smaller coordination and lower potential
energy whereas non-polar hydrogen sulfide, methane and argon
have larger coordination and higher potential energy. We exam-
ine approaches to reduce the non-convergence and show how a
hybrid method with cutoffs at the maximum distance of locally
derived shells restores long-range convergence. These effects for
pure liquids will inevitably carry over to solutions and complex
mixtures of larger and more flexible molecules. Our analysis re-
inforces the complexity of analysing liquid structure, which is
part-discrete, suitable to shell approaches and part-continuous,
suitable to g(r) approaches. Which approach one uses largely
depends on the complexity of the system, whether molecular dis-
tance or molecular topology is more important, and whether one
wishes to detect aspherical inhomogeneities or ensure long-range
convergence.
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