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We compute the renormalized vacuum polarization for a massless, conformally coupled scalar field on

asymptotically anti–de Sitter black hole backgrounds. Mixed (Robin) boundary conditions are applied

on the spacetime boundary. We consider black holes with nonspherical event horizon topology as well as

spherical event horizons. The quantum scalar field is in the Hartle-Hawking state, and we employ

Euclidean methods to calculate the renormalized expectation values. Far from the black hole, we find that

the vacuum polarization approaches a finite limit, which is the same for all boundary conditions except

Dirichlet boundary conditions.
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I. INTRODUCTION

The renormalized expectation value of the stress-energy

tensor operator (RSET) hT̂μνiren of a quantum field is a

quantity of primary interest in quantum field theory in

curved spacetime. In the associated semiclassical approxi-

mation to quantum gravity, the spacetime background

is classical and matter fields are quantized on a fixed

background. The RSET determines the backreaction of

the quantum field on the spacetime geometry via the

semiclassical Einstein equations. If one naively replaces

the classical stress-energy tensor with the corresponding

expectation value of the quantum stress-energy tensor, the

semiclassical equations would be

Gμν þ Λgμν ¼ 8πhT̂μνi; ð1:1Þ

where Gμν is the classical Einstein tensor, Λ the cosmo-

logical constant, gμν the metric tensor and throughout this

paper we employ units in which c ¼ G ¼ ℏ ¼ kB ¼ 1.

However, the right-hand side of Eq. (1.1) is ill defined

since, for example, if the only field present were a quantum

scalar field Φ̂, the stress-energy tensor operator T̂μν involves

terms which are quadratic in an operator-valued distribution

evaluated at a single spacetime point. In other words, the

stress-energy tensor must be renormalized and it is this

RSET hT̂μνiren that ought to appear in Eq. (1.1). The cost of

this mapping hT̂μνi → hT̂μνiren is the introduction of quad-

ratic curvature terms in the semiclassical equations (see, for

example, Ref. [1]). While the renormalization problem had

been conceptually solved by DeWitt and Christensen [2,3],

numerical implementation of the renormalization prescrip-

tion in black hole spacetimes is a practical challenge.

Moreover, the RSET involves second order derivatives

acting on the quantum field being considered, which adds

to the complications involved in practical computations. It is

therefore instructive to also consider simpler expectation

values. The simplest nontrivial expectation value for a

quantum scalar field theory is the vacuum polarization

(VP) hΦ̂2i, which does not involve any derivatives of the

field, and which will be the focus of this paper. We have

dropped the subscript hiren for typographical convenience.

Quantum effects play a major role in black hole physics

due to the emission of Hawking radiation [4,5]. Several

decades after the discovery of Hawking radiation, the

computation of expectation values of observables on black

hole backgrounds remains an active area of research. In

pioneering work of Candelas and Howard, the VP [6,7]

and RSET [8,9] were calculated on a Schwarzschild black

hole. They employed Euclidean methods, and considered a
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massless quantum scalar field in the Hartle-Hawking state

[10]. Following their work, expectation values for other

quantum fields on Schwarzschild spacetime were also

found [11–16]. Anderson, Hiscock and Samuel (AHS)

[17,18] developed a general methodology for computing

both the VP and RSET for a quantum scalar field with

arbitrary mass and coupling to the spacetime curvature, on

a static, spherically symmetric black hole background.

Their method was subsequently refined by Breen and

Ottewill [19–21] and has been applied to a variety of

spherically symmetric black holes in four spacetime

dimensions [22–25]. There has also been more limited

work on alternative approaches for nonspherically sym-

metric black hole space-times for which the AHS method is

not applicable [26–29].

In the past five years, new approaches to computations

of the VP and RSET for a quantum scalar field have

been developed [30–32]. The “extended coordinates”

method of Taylor and Breen [31,33,34], like the AHS

method, involves a Euclideanized spacetime and will be the

method adopted here. In contrast, the “pragmatic mode-

sum regularization” scheme of Levi, Ori and collaborators

works on the original Lorentzian black hole spacetime, and

has been successfully applied to quantum scalar fields in a

variety of quantum states on both static and stationary

asymptotically flat black hole spacetimes [30,35–40].

With the notable exception of [23,24,29,34], most of the

works cited above concerned either asymptotically flat or

asymptotically de Sitter black holes. Black holes which are

asymptotically anti–de Sitter (adS) are important within the

context of the adS/CFT correspondence (see, for example,

[41] for a review). Amongst asymptotically adS black

holes, the three-dimensional BTZ black hole [42–44] has

received a great deal of attention in the literature. The fact

that the geometry of the BTZ spacetime is locally adS

enables closed-form expressions to be found for renormal-

ized expectation values [45–49], in contrast to the four-

dimensional situation, where numerical computations are

required. As a result, the backreaction can be investigated

explicitly in this case [50–56].

A further richness in the theory of static, four-

dimensional asymptotically adS black holes is that they

do not necessarily have spherical event horizon topology

(see, for example, [57–66]), in contrast to the situation for

asymptotically flat black holes in four dimensions.

Moreover, while asymptotically flat Schwarzschild black

holes are thermodynamically unstable, asymptotically adS

black holes can be thermodynamically stable [58,67],

regardless of their event horizon topology. For these

reasons it is perhaps surprising that renormalized expect-

ation values for quantum fields on four-dimensional

asymptotically adS black hole backgrounds have not

received more attention in the literature.

In [68], we studied the VP for a massless, conformally-

coupled scalar field on topological black hole backgrounds.

Employing a Euclidean approach, we generalized the

“extended coordinates” method of [31,33,34] to black

holes with flat or hyperbolic horizons and hence considered

a field in the Hartle-Hawking state [10]. The qualitative

behavior of the VP was similar for all event horizon

topologies: the VP monotonically decreases from its value

on the event horizon as the distance from the event horizon

increases. Far from the black hole, the VP approaches a

finite value equal to the vacuum expectation value of the VP

in pure adS spacetime.

Quantum field theory on adS spacetime is complicated

by the presence of a timelike boundary at null infinity,

which means that adS is not globally hyperbolic. For

this reason, to have a well-defined quantum field theory,

it is necessary to apply boundary conditions to the field

[69–76]. In our previous work [68], we considered the

simplest boundary conditions for a quantum scalar field,

namely Dirichlet boundary conditions, for which the scalar

field vanishes on the boundary. However, Dirichlet boun-

dary conditions are not the only possibility. Very recently,

we have studied quantum field theory on pure adS with

general mixed (Robin) boundary conditions applied to the

field [77]. The properties of the VP for both vacuum and

thermal states depend on the particular boundary conditions

applied: for some boundary conditions it is monotonically

increasing from the origin to the boundary; for others

monotonically decreasing. As the boundary is approached,

the VP (for both vacuum and thermal states) tends to a finite

limit, which again depends on the boundary conditions.

The value of the limit is the same for all boundary

conditions other than Dirichlet, for which the limit takes

a different value. We therefore deduce that Dirichlet

boundary conditions are rather nongeneric.

Inspired by our recent work on the effect of boundary

conditions on quantum field theory in pure adS [77], in this

paper we extend our previous study of the VP on topo-

logical black holes [68] by considering general mixed

(Robin) boundary conditions. Using the methodology

developed in [68], we compute the renormalized VP for

a massless, conformally coupled scalar field on a variety of

black holes with spherical, flat and hyperbolic horizons,

paying particular attention to the effect of changing the

boundary conditions satisfied by the scalar field.

The outline of this paper is as follows. In Sec. II

we review the classical properties of topological black

holes, including their thermodynamics, before studying

the classical behavior of scalar field perturbations in

Sec. III. The methodology for computing the renormal-

ized VP is outlined in Sec. IV, following [68]. Our

numerical results for the VP are presented in Sec. V,

while Sec. VI contains our conclusions.

II. TOPOLOGICAL BLACK HOLES

Four-dimensional topological black holes are static

solutions of the vacuum Einstein equations with negative
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cosmological constant. They are described by the

metric [57–66]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2

k ð2:1Þ

where k can take the values f−1; 0; 1g, corresponding to

negative, zero and positive horizon curvature respectively.

The metric function fðrÞ is given by

fðrÞ ¼ k −
2M

r
þ r2

L2
; ð2:2Þ

where M is the black hole mass and L is the adS curvature

length-scale. The two-metric dΩ2

k is defined by

dΩ2

k ¼ dθ2 þ

8

<

:

sin2θdφ2; k ¼ 1;

θ2dφ2; k ¼ 0;

sinh2θdφ2; k ¼ −1:

ð2:3Þ

For all k, the azimuthal coordinate φ ∈ ½0; 2πÞ. The event

horizon is located at r ¼ rh, which is the single real zero of
the metric function fðrÞ (2.2), so that fðrhÞ ¼ 0.

When k ¼ 1 and the event horizon has constant positive

curvature, we have the usual Schwarzschild-adS black hole.

In this case θ ∈ ½0; π� is the usual spherical polar angle and
the event horizon is a sphere. Black holes with k ¼ 1 exist

for all positive values of the event horizon radius rh.
When k ¼ 0 or −1, the event horizon is no longer

compact (it is possible to form a compact horizon by

making identifications [58], but we do not consider this

possibility here). In both cases, the range of the θ

coordinate is θ ∈ ½0;∞Þ. For k ¼ 0, the event horizon

has zero curvature and corresponds to a flat plane. In this

case θ is the distance from a particular chosen origin in the

plane. Since the event horizon has vanishing curvature,

there is only one length scale in the geometry, namely

the adS radius of curvature L. As a result, the black hole

metric (2.1) has two scaling symmetries when k ¼ 0, which

we can describe using an arbitrary constant ρ. First, there is

the usual length rescaling

t → ρt; r → ρr; M → ρM; L → ρL; ð2:4aÞ

which leaves θ invariant. Second, we have

t → ρ−1t; r → ρr; θ → ρ−1θ; M → ρ3M; ð2:4bÞ

with L → L. All k ¼ 0 black holes are related, by the above

scalings (2.4), to a chosen reference k ¼ 0 black hole

spacetime.

For k ¼ −1, the event horizon has constant negative

curvature and hence is hyperbolic. Unlike the spherical and

flat counterparts, there is a critical event horizon radius for

the existence of hyperbolic black holes with

rh > rcrith ≔
L
ffiffiffi

3
p : ð2:5Þ

Topological black holes have a temperature T given by

T ¼ κ

2π
¼ f0ðrhÞ

4π
¼ kL2 þ 3r2h

4πrhL
2

; ð2:6Þ

where κ ¼ f0ðrhÞ=2 is the surface gravity of the black hole.
For k ¼ 0, −1, the temperature is a monotonically increa-

sing function of horizon radius and black hole mass (see

Fig. 1), all black holes have positive specific heat and hence

are thermodynamically stable [58]. Planar black holes with

k ¼ 0 exist for all temperatures due to the scaling sym-

metries (2.4). Under the first scaling (2.4a), the temperature

transforms as T → ρ−1T, while under the second scaling

(2.4b) we have T → ρT.
When k ¼ 1, we see from Fig. 1 that there is also a

minimum temperature Tmin [67]. The minimum temper-

ature for k ¼ 1 black holes occurs when rh ¼ rcrith (2.5),

and is given by

Tmin ¼
ffiffiffi

3
p

2πL
: ð2:7Þ

Larger black holes have positive specific heat and are

thermodynamically stable, while smaller black holes are

thermodynamically unstable and have negative specific

heat [67]. For a fixed temperature T > Tmin, there are two

black holes having the same temperature; one larger and

one smaller. We use the notation k ¼ 1ðþÞ to denote larger,

thermodynamically stable k ¼ 1 black holes and the

notation k ¼ 1ð−Þ to denote smaller, thermodynamically

unstable k ¼ 1 black holes having the same temperature.

As a final note in this section, we will find it convenient

for later use to introduce a dimensionless radial coordinate

ζ, defined by

ζ ¼ 4μ2 þ k

M
r − 1; ð2:8Þ

where μ is a dimensionless parameter defined by

μLð4μ2 þ kÞ ¼ M: ð2:9Þ

The utility of this particular dimensionless radial coor-

dinate is that the event horizon is located at ζ ¼ 1 for allM
and L, which renders comparison of results for different

black hole parameters particularly straightforward. Only

two of the parameters L, M, μ are linearly independent by

virtue of (2.9). Note also that for k ¼ 0, the coordinate ζ is

invariant under the scalings (2.4).
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III. CLASSICAL CONFORMAL SCALAR FIELD

ON TOPOLOGICAL BLACK HOLES

We consider a massless, conformally coupled scalar field

Φ satisfying the Klein-Gordon equation

�

∇μ∇
μ þ 2

L2

�

Φ ¼ 0: ð3:1Þ

Mode solutions of this equation take the form

Φωλmðt; r; θ;φÞ ¼ e−iωtN ωλXωλðrÞZλmðθ;φÞ; ð3:2Þ

where λ is a separation constant (whose values will

be given below), m is an integer, N ωλ is a normalization

constant, the radial function XωλðrÞ satisfies the

equation

�

d

dr

�

r2fðrÞ d

dr

�

þ ω2r2

fðrÞ − νλ þ
2r2

L2

�

XωλðrÞ ¼ 0; ð3:3Þ

with the constant νλ given by

νλ ¼
�

λþ 1

4
kðkþ 1Þ

�

2

−
1

4
k; ð3:4Þ

and the angular function Zλmðθ;φÞ takes the form

k=1 k=0 k=–1

0 1 2 3 4 5
rh

T

L = 1
k=1 k=0 k=–1

0 2 4 6 8 10
rh

T

L = 8000/861

k=1 k=0 k=–1

0.0 0.2 0.4 0.6 0.8 1.0
rh

T

L = 8/15 k=1 k=0 k=–1

0.000 0.005 0.010 0.015 0.020
rh

T

L = 1/990
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FIG. 1. Topological black hole temperature T (2.6) as a function of event horizon radius rh for fixed values of the adS radius of

curvature L. The curves correspond to k ¼ 1 spherical black holes (blue), k ¼ 0 planar black holes (red) and k ¼ −1 hyperbolic black

holes (orange). In each plot the dotted line lies at the value of rh or T corresponding to the particular black holes studied in Sec. V. The

curves are qualitatively the same in each of the four plots.

MORLEY, WINSTANLEY, and TAYLOR PHYS. REV. D 103, 045007 (2021)

045007-4



Zλmðθ;φÞ ¼

8

>

>

<

>

>

:

Yλmðθ;φÞ; k ¼ 1;

JmðλθÞeimφ; k ¼ 0;

P
jmj
−1

2
þiλ

ðcosh θÞeimφ; k ¼ −1:

ð3:5Þ

When k ¼ 1, the separation constant λ ¼ 0; 1; 2;…
and the angular function Zλmðθ;φÞ is the usual spherical

harmonic Yλmðθ;φÞ. For k ¼ 0, −1, the separation

constant λ is a continuous variable taking all values in

the interval ½0;∞Þ. When k ¼ 0, the angular func-

tion Zλmðθ;φÞ involves a Bessel function JmðλθÞ, while
for k ¼ −1 we have a conical (Mehler) function

P
jmj
−1

2
þiλ

ðcosh θÞ.
In order to have a well-defined quantum field theory,

boundary conditions must be imposed on the radial

function XωλðrÞ as r → ∞. We impose Robin (mixed)

boundary conditions, in which a linear combination of the

radial function and its derivative normal to the spacetime

boundary vanishes. The spacetime boundary at r → ∞ is

not formally part of the spacetime, so, in order to impose

Robin boundary conditions, following [77], we make a

conformal transformation to the Einstein static universe

(ESU). The conformal transformation affects the metric and

scalar field as follows:

gμν → Ω
2gμν; Φ → Ω

−1
Φ; ð3:6Þ

where Ω is the appropriate conformal factor. Let τ̄ be the

dimensionless time coordinate and r̄ be the dimensionless

radial coordinate on the ESU, in terms of which the ESU

metric takes the form

ds2 ¼ L2½−dτ̄2 þ dr̄2 þ sin2 r̄ðdθ2 þ sin2 θdφ2Þ�; ð3:7Þ

where θ and φ are the usual spherical polar coordinates.

Comparing (2.1), (3.7) for k ¼ 1, when r → ∞, we have

r̄ → π=2,

Ω ∼
L

r
∼ −

r�
L
; ð3:8Þ

and

dr̄

dr
∼
L

r2
∼

1

LfðrÞ ; ð3:9Þ

where we have introduced the usual “tortoise” coordinate

r� defined by

dr�
dr

¼ 1

fðrÞ ð3:10Þ

with the integration constant chosen in such a way that

r� → 0 as r → ∞.

Robin boundary conditions are imposed at r̄ ¼ π=2, and
take the form

½Ω−1XωλðrÞ� cos αþ d

dr̄
½Ω−1XωλðrÞ� sin α ¼ 0; ð3:11Þ

where the boundary conditions are parameterized by an

angle α ∈ ½0; πÞ. Setting α ¼ 0 corresponds to Dirichlet

boundary conditions, while Neumann boundary conditions

are given by α ¼ π=2. In terms of the “tortoise” coordinate

r�, the boundary conditions (3.11) become

X̃ωλ cos αþ L
dX̃ωλ

dr�
sin α ¼ 0; ð3:12Þ

where we have defined

X̃ωλðrÞ ¼ rXωλðrÞ: ð3:13Þ

Before we can consider a quantum scalar field, we need

to examine whether the classical scalar field is stable, that

is, whether there exist mode solutions of the Klein-Gordon

equation (3.1) which grow exponentially with time. If we

impose either Dirichlet or Neumann boundary conditions,

the classical scalar field has no unstable modes because a

massless, conformally coupled scalar field satisfies the

Breitenlohner-Freedman bound [78,79]. The situation for

general Robin boundary conditions is more complex.

In pure adS, while the initial-value problem for the

evolution of a classical scalar field satisfying Robin

boundary conditions is well defined for all values of the

angle α [75,80], there is a range of values of α ∈ ðαcrit; πÞ,
for which the dynamics is unstable. There are also unstable

scalar field modes on four-dimensional, spherically sym-

metric, Schwarzschild-adS black holes for a certain range

of values of α [81,82]. In this section we examine whether

this is also the case for topological black holes, following

the analysis in [81,82] for the spherically symmetric case.

First, using the method of [82], we show that there exists

an αcrit ∈ ðπ=2; πÞ such that there are unstable modes when

α ∈ ðαcrit; πÞ. We begin by writing the radial equation (3.3)

in terms of the “tortoise” coordinate r� (3.10):

−
d2X̃ωλ

dr2�
þ VλðrÞX̃ωλ ¼ ω2X̃ωλ; ð3:14Þ

where the potential VλðrÞ is given by

VλðrÞ ¼ fðrÞ
�

νλ

r2
þ 2M

r3

�

: ð3:15Þ

We note that VλðrÞ > 0 for all r ∈ ½rh;∞Þ. We multiply

both sides of (3.14) by X̃ωλ and integrate over r� ∈ ð−∞; 0�
to give
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ω2

Z

0

−∞

jX̃ωλj2dr� ¼
�

−X̃ωλ

dX̃ωλ

dr�

�

0

−∞

þ
Z

0

−∞

�

VλðrÞjX̃ωλj2 þ
	

	

	

	

dX̃ωλ

dr�

	

	

	

	

2
�

dr�;

ð3:16Þ

where we have performed an integration by parts. The first

term on the right-hand-side of (3.16) vanishes when

Neumann and Dirichlet conditions are imposed on the

boundary. Noting that both remaining integrals must be

positive, we find that ω2 > 0 and so all classical scalar field

modes must be stable in these cases as expected.

When we impose Robin conditions on the boundary, the

boundary term on the right-hand-side of (3.16) does not

vanish. Provided cos α ≠ 0, using the boundary conditions

(3.12) we can write

ω2

Z

0

−∞

jX̃ωλj2dr� ¼ L tan α

	

	

	

	

dX̃ωλ

dr�
ð0Þ

	

	

	

	

2

þ J ; ð3:17Þ

where

J ¼
Z

0

−∞

�

VλðrÞjX̃ωλj2 þ
	

	

	

	

dX̃ωλ

dr�

	

	

	

	

2
�

dr� > 0: ð3:18Þ

When α ∈ ½0; π=2Þ, it is the case that tan α > 0 and there-

fore ω2 > 0, giving stable modes. For α ∈ ðπ=2; πÞ, the
right-hand-side of (3.17) is not necessarily positive. In this

case Proposition 1 of [82] applies. Using a variational

method, evaluating the right-hand-side of (3.17) for a test

function X̃ωλðr�Þ ¼ exp ð−½r� tan α�=LÞ, we find that this is
negative for sufficiently large j tan αj, and hence the

Schrödinger operator on the left-hand side of (3.14) has

a spectrum containing negative eigenvalues ω2. Such

negative values of ω2 correspond to unstable modes of

the scalar field.

Having shown that there exists an αcrit such that there

are unstable modes for α ∈ ðαcrit; πÞ, we now use the

method of [81] to determine the values of αcrit for

topological black holes. We thus seek solutions of the

Schrödinger equation (3.14) when ω2 crosses zero. For a

fixed black hole spacetime, the potential VλðrÞ (3.15)

satisfies VλðrÞ > V0ðrÞ for each fixed r ∈ ½rh;∞Þ.
Therefore, in order to find αcrit, it is sufficient to consider

the modes for which λ ¼ 0.

When λ ¼ 0 ¼ ω2, the radial equation (3.3) takes the

form

d

dr

��

r2k −

�

krh þ
r3h
L2

�

rþ r4

L2

�

dX00

dr

�

þ
�

−ν0 þ
2r2

L2

�

X00 ¼ 0; ð3:19Þ

where ν0 takes the values ν0 ¼ 0 for k ¼ 1, 0 and ν0 ¼ 1

2
for

k ¼ −1, and we have written the black hole mass M in

terms of the horizon radius rh. We introduce dimensionless

variables R ¼ r=L, Rh ¼ rh=L, to give

d

dR

�

½R2k − ðkRh þ R3

hÞRþ R4� dX00

dR

�

þ ½−ν0 þ 2R2�X00 ¼ 0: ð3:20Þ

For planar black holes with k ¼ 0, this equation takes the

particularly simple form

d

dR

�

½−R3

hRþ R4� dX00

dR

�

þ 2R2X00 ¼ 0; ð3:21Þ

or equivalently, defining R̄ ¼ R=Rh,

d

dR̄

�

½R̄4 − R̄� dX00

dR̄

�

þ 2R̄2X00 ¼ 0: ð3:22Þ

There is thus a single perturbation equation to be solved

in the k ¼ 0 case. This is to be expected, since all k ¼ 0

black hole spacetimes can be related via the scaling

symmetries (2.4). The first scaling symmetry (2.4a) leaves

R, Rh (and hence R̄) unchanged, while, under the second

scaling symmetry (2.4b) we have R → ρR and Rh → ρRh,

again leaving R̄ unchanged.

To find αcrit, we solve (3.20) numerically, integrating

outwards from the horizon toward the spacetime boundary.

The value of αcrit is then the value of α for which the derived

solution X00ðrÞ satisfies the boundary condition (3.12),

which, in terms of R and X00, takes the form

X00ðRÞ cos αcrit þ R
d

dR
½RX00ðRÞ� sin αcrit ¼ 0 ð3:23Þ

as R → ∞. To derive appropriate initial conditions for the

numerical integration, near the horizon, we define a new

independent variable x ¼ R − Rh in terms of which the

radial equation (3.20) takes the approximate form

�

d2

dx2
þ 1

x

d

dx
þ 2R2

h − ν0

ðRhkþ 3R3

hÞx

�

X00 ¼ 0; ð3:24Þ

where we have ignored higher order terms. Solutions to

(3.24) take the form of Bessel functions. Using these as

initial conditions, we integrate out to a large value of R, and
evaluate αcrit from (3.23).

In Fig. 2, we show our numerical results for αcrit for all

three values of k. The blue curve for spherically symmetric

black holes (k ¼ 1) agrees with the results of Ref. [81].

As rh → 0, the value of αcrit approaches the value in

pure adS spacetime [77]. For k ¼ 0, the graph of cot αcrit
as a function of rh=L is a straight line, as expected

from the scaling symmetries (2.4) and the boundary
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condition (3.23). For very small planar black holes with

k ¼ 0, the value of αcrit approaches π=2 as rh → 0. The

curve for hyperbolic black holes with k ¼ −1 starts at the

critical event horizon radius (2.5) and lies very close to

the curve for k ¼ 0 black holes. The curves for k ¼ 0 and

k ¼ −1 are monotonically increasing as the event horizon

radius increases, while that for k ¼ 1 is monotonically

decreasing for small rh, has a minimum and then mono-

tonically increases for larger event horizon radius. As rh=L
grows, the three curves merge.

IV. VACUUM POLARIZATION ON

TOPOLOGICAL BLACK HOLES

We now turn to the VP for a massless, conformally

coupled quantum scalar field Φ̂ on topological black hole

spacetimes. We follow the methodology of [68], which is

reviewed briefly here. Further details can be found in [68].

We begin by making a Wick rotation, setting τ ¼ −it,
and work on the resulting Euclideanized spacetime. In

order to avoid a conical singularity at the event horizon, the

Euclidean “time” coordinate τ must be periodic with period

2π=κ, where κ is the surface gravity of the black hole.

Therefore we are considering a thermal state at the black

hole temperature T (2.6), in other words the scalar field is in

the Hartle-Hawking state [10].

The (unrenormalized) VP is defined as the coincidence

limit of the Euclidean Green’s function GEðx; x0Þ:

hΦ̂2iunren ¼ lim
x0→x

GEðx; x0Þ: ð4:1Þ

The Euclidean Green’s function can be found using

standard separation of variables techniques and takes the

form [68]

GEðx;x0Þ¼
κ

4π2

X

∞

n¼−∞

einκΔτ
Z

∞

λ¼0

dλP
ðkÞ
λ ðγÞgαnλðr;r0Þ; ð4:2Þ

where

P
ðkÞ
λ ðγÞ ¼

8

>

>

<

>

>

:

ðλþ 1

2
ÞPλðcos γÞ; k ¼ 1;

λJ0ðλγÞ; k ¼ 0;

λ tanhðπλÞP−1

2
þiλðcosh γÞ; k ¼ −1;

ð4:3Þ

with γ the geodesic distance on the two-surface with metric

dΩ2

k, defined by

cos γ ¼ cos θ cos θ0 þ sin θ sin θ0 cosΔϕ; k ¼ 1;

γ2 ¼ 1

2
ðθ2 þ θ02 − 2θθ0 cosΔϕÞ; k ¼ 0;

cosh γ ¼ cosh θ cosh θ0 − sinh θ sinh θ0 cosΔϕ; k ¼ −1:

ð4:4Þ

When k ¼ 1, the eigenvalue λ is an integer and the integral

in (4.2) should be replaced with a sum. In (4.3), Pλ is a

Legendre function, J0 a Bessel function and P−1

2
þiλ a

conical function.

The radial Green’s function gαnλðr; r0Þ satisfies the inho-

mogeneous equation

�

d

dr

�

r2fðrÞ d

dr

�

−
n2κ2r2

fðrÞ − νλ þ
2r2

L2

�

gαnλðr; r0Þ

¼ −δðr − r0Þ: ð4:5Þ

To solve (4.5), we write gnλðr; r0Þ as a normalized product

of homogeneous solutions of the radial equation:

gαnλðr; r0Þ ¼ Cαnλpnλðr<Þqαnλðr>Þ ð4:6Þ

where r< ¼ minfr; r0g and r> ¼ maxfr; r0g. The functions
pnλ and q

α
nλ are both solutions of the homogeneous version

of the radial equation (4.5). The normalization constant Cαnλ
is constructed using the Wronskian WfpnλðrÞ; qαnλðrÞg of

these two functions:

Cαnλ ¼ −
1

r2fðrÞWfpnλðrÞ; qαnλðrÞg
: ð4:7Þ

The radial functions pnλðrÞ are regular at the event horizon
and do not depend on the angle α which parametrizes the

Robin boundary conditions.

We impose Robin boundary conditions (3.12) on the

radial functions qαnλðrÞ as r → ∞. We restrict attention to

values of α in the interval ½0; αcritÞ, for which the classical

scalar field has no unstable modes. The radial functions

satisfying Dirichlet (q0nλðrÞ) and Neumann (q
π
2

nλðrÞ) boun-
dary conditions are linearly independent, and hence we

may write, for any α ∈ ½0; αcritÞ

qαnλðrÞ ¼ Aα
nλq

0

nλðrÞ þ Bα
nλq

π
2

nλðrÞ; ð4:8Þ

k=1 k=0 k=–1

1 2 3 4 5
rh /L

1.6

1.8

2.0

2.2

2.4

2.6

crit

FIG. 2. Critical value of α as a function of rh=L for spherically

symmetric (k ¼ 1), planar (k ¼ 0) and hyperbolic (k ¼ −1) black

holes. Unstable classical scalar field modes exist for α > αcrit.
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where Aα
nλ and Bα

nλ are arbitrary constants. As r → ∞, we

normalize the Dirichlet and Neumann solutions by

q0nλðrÞ ¼
1

r2
þOðr−3Þ; q

π
2

nλðrÞ ¼
1

r
þOðr−3Þ; ð4:9Þ

with the overall constant set by the Wronskian condition.

Substituting for qαnλðrÞ in the boundary conditions (3.12),

the ratio of the constants Aα
nλ and Bα

nλ is fixed to be

Aα
nλ

Bα
nλ

¼ L cot α: ð4:10Þ

Without loss of generality, we take Aα
nλ ¼ L cos α and then

qαnλðrÞ ¼ q0nλðrÞL cos αþ q
π
2

nλðrÞ sin α: ð4:11Þ

Using the linearity of the Wronskian, the normalization

constants (4.7) can be written as

Cαnλ ¼
C0nλC

π
2

nλ

C
π
2

nλL cos αþ C0nλ sin α
: ð4:12Þ

The renormalized VP hΦ̂2i is obtained from the unrenor-

malized expectation value (4.1) by subtracting a Hadamard

parametrix GSðx; x0Þ for the geometric singular terms in the

Euclidean Green’s function and taking the coincidence

limit, yielding:

hΦ̂2i ¼ lim
x0→x

½GEðx; x0Þ −GSðx; x0Þ�: ð4:13Þ

For a massless, conformally coupled scalar field, the

Hadamard parametrix does not possess any logarithmic

divergences and assumes a particularly simple form. In this

case the singular terms we need to consider are

GSðx; x0Þ ¼
Δ

1

2

8π2σ
; ð4:14Þ

where Δ is the Van Vleck-Morette determinant and σ

Synge’s world function. To facilitate numerical computa-

tion, a mode-sum representation of these singular terms

is required so that the subtraction in Eq. (4.13) can be

performed mode-by-mode. This is constructed using the

“extended coordinates” method of Refs. [31,33], general-

ized to topological black holes in [68]. First we take the

partial coincidence limit by setting the radial separation of

the space-time pointsΔr ¼ 0. We define new coordinates w
and s by [68]

w2 ¼ 2

κ2
ð1 − cos κΔτÞ; ð4:15Þ

and

s2 ¼

8

>

>

<

>

>

:

fðrÞw2 þ 2r2ð1 − cos γÞ; k ¼ 1;

fðrÞw2 þ 2r2γ2; k ¼ 0;

fðrÞw2 þ 2r2ðcosh γ − 1Þ; k ¼ −1:

ð4:16Þ

The singular terms (4.14) are then expanded in terms of

rational functions of w and s as follows:

Δ
1=2

σ
¼

X

2

i¼0

X

i

j¼0

DijðrÞ
w2iþ2j

s2jþ2
−
f0ðrÞ
6r

þ…; ð4:17Þ

where we have omitted terms in the expansion which

vanish as the points are brought together. The coefficients

DijðrÞ depend only on k, the surface gravity κ and the

metric function fðrÞ and its derivatives. They are given

explicitly in Table 1 in Ref. [68].

The mode-sum representation of the singular terms then

results from writing the rational functions of w and s in

(4.17) as [68]

w2iþ2j

s2jþ2
¼

X

∞

n¼−∞

einκΔτ
Z

∞

λ¼0

P
ðkÞ
λ ðγÞΨðkÞ

nλ ði; jjrÞdλ; ð4:18Þ

where Ψ
ðkÞ
ωλ ði; jjrÞ are regularization parameters given

by [68]

Ψ
ðkÞ
nλ ði; jjrÞ ¼

2i−ji!ð2i − 1Þ!!ð−1Þn
κ2iþ2jr2jþ2j!

X

nþi

p¼n−i

�

1

η

∂

∂η

�

j

×
χ
ðkÞ
pλ ðηÞ

ði − nþ pÞ!ðiþ n − pÞ! ð4:19Þ

with

χ
ð1Þ
pλ ðηÞ ¼ ð−1ÞjP−jpj

λ ðηÞQjpj
λ ðηÞ;

χ
ð0Þ
pλ ðηÞ ¼

1

2
ð−1ÞpþjIpðληÞKpðληÞ;

χ
ð−1Þ
pλ ðηÞ ¼ π

2 coshðπλÞ ð−1Þ
pP

−p

−1

2
þiλ

ð−ηÞPp

−1

2
þiλ

ðηÞ; ð4:20Þ

and

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	

	

	

	

kþ fðrÞ
κ2r2

	

	

	

	

s

: ð4:21Þ

Subtracting the resulting mode-sum representation of

GSðx; x0Þ from the Euclidean Green’s function GEðx; x0Þ
(4.2) and bringing the separated points together gives the

final expression for the VP:
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hΦ̂2i ¼ 1

4π2

Z

∞

λ¼0

dλ
X

∞

n¼−∞

P
ðkÞ
λ ð0Þ

�

κgαnλðrÞ −
1

2

X

2

i¼0

X

i

j¼0

DijðrÞΨðkÞ
nλ ði; jjrÞ

�

−
f0ðrÞ
48π2r

; ð4:22Þ

where we have defined

gαnλðrÞ ¼ lim
r0→r

gαnλðr; r0Þ ¼
pnλðrÞC0nλC

π
2

nλ

C
π
2

nλL cos αþ C0nλ sin α
½q0nλðrÞL cos αþ q

π
2

nλðrÞ sin α�: ð4:23Þ

V. NUMERICAL RESULTS

The renormalized VP (4.22) requires numerical compu-

tation. Our methodology closely follows [68], so here we

briefly summarize the key steps, and refer the reader to [68]

for more comprehensive details. All computations were

carried out using Mathematica.

First the radial functions pnλðrÞ are found by integrating

the homogeneous version of the radial equation (4.5) from

a point close to the event horizon out toward infinity.

Since we have the representation (4.11) for the radial

functions qαnλðrÞ, it is sufficient to find the functions q0nλðrÞ
and q

π
2

nλðrÞ satisfying, respectively, Dirichlet and Neumann

boundary conditions, which significantly reduces compu-

tation time. The functions q0nλðrÞ and q
π
2

nλðrÞ are found by

integrating the homogeneous version of the radial equa-

tion (4.5) inwards from a large value of r. From these, the

normalization constants C
0;π

2

nλ are computed using (4.7). The

analytic expressions for the coefficients DijðrÞ and the

regularization parameters ΨnλðkÞði; jjrÞ (both of which

are independent of the Robin angle α) enable these to be

straightforwardly computed.

We compute the VP for a range of values of α ∈ ½0; αcritÞ.
Once α is fixed, we compute the sum over n in (4.22) first.

This converges extremely rapidly (see [68] for more details

of the convergence tests employed). When k ¼ 1, we then

have a sum over λ ¼ 0; 1;…, which also converges rapidly.

For k ¼ 0 and −1, the integral over λ converges rapidly for

large λ, and the major source of error in our final answers is

the need to evaluate the integrand on a grid of values of λ

and use cubic spline interpolation between these grid

points. We use the same grid spacing as in [68], and

estimate that the final relative error in the VP is no more

than ∼10−3.

In [68], we presented plots of the VP for a selection of

black holes, with Dirichlet boundary conditions applied to

the scalar field. In this section, we present numerical results

for general Robin boundary conditions and a selection of

topological black hole spacetimes. We begin by consider-

ing a set of topological black holes with event horizon

radius rh ¼ 2 and adS length-scale L ¼ 1, for comparison

with results in [68]. We have also chosen three additional

sets of topological black hole solutions. Within each set, we

fix the adS length scale L and the black hole surface gravity

κ [and hence temperature (2.6)]. These additional black

holes correspond to points in the ðrh; TÞ-plane depicted

in Fig. 1.

The first additional set of solutions have a temperature

which is below the minimum temperature Tmin (2.7) for

spherical k ¼ 1 black holes, accordingly there are only

planar k ¼ 0 and hyperbolic k ¼ −1 black holes in this set.

In the remaining two sets of black holes, the temperature is

above Tmin and there are two k ¼ 1 black holes having the

same temperature, as discussed in Sec. II. We consider a

temperature just above Tmin, for which the two k ¼ 1 black

holes are of a similar size, and also a very high temperature,

when one of the k ¼ 1 black hole is much smaller than

the other.

The numerical computations for hyperbolic k ¼ −1

black holes are by far the most computationally intensive,

due to the need to find a large number of modes in order to

perform the integration over λ. For this reason, we have

chosen the values of L and κ such that the k ¼ −1 black

holes correspond to those considered in [68] with Dirichlet

boundary conditions applied. For planar black holes with

k ¼ 0, we also need to compute an integral over λ and

hence a large number of modes, but we only need to find

one set of modes, since all the k ¼ 0 black holes are related

by the scalings (2.4). Finally, in our numerical results we

have found it convenient to define a parameter β, related to

the angle α in the boundary conditions (3.12) by

cot β ¼ L cot α: ð5:1Þ

Dirichlet and Neumann conditions are still recovered for

β ¼ 0 and β ¼ π
2
respectively.

Table I details the various values of L, M and rh for the
black holes for which we have calculated the VP. Table I

also gives βcrit, related to the critical angle αcrit via (5.1) to

four decimal places. All the VP plots in the rest of this

section will use the dimensionless radial coordinate ζ (2.8),

so that the event horizon is located at ζ ¼ 1 for all

black holes.

We first consider topological black holes with L ¼ 1 and

rh ¼ 2. In Fig. 3 we show the VP as a function of ζ with

Dirichlet and Neumann boundary conditions applied. The

results for Dirichlet boundary conditions have previously

appeared in [68] and are repeated here for comparison.
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For both Dirichlet and Neumann boundary conditions, and

all values of k, the VP is monotonically decreasing from its

value on the event horizon to its value on the spacetime

boundary. As r → ∞, the VP approaches the vacuum value

in pure adS for either Dirichlet boundary conditions,

hΦ̂2iadS;D ¼ −
1

48π2L2
; ð5:2aÞ

or Neumann boundary conditions

hΦ̂2iadS;N ¼ 5

48π2L2
; ð5:2bÞ

as applicable. When Dirichlet boundary conditions are

applied, the VP is negative everywhere on and outside the

event horizon; in contrast, for Neumann boundary con-

ditions the VP is positive everywhere for these particular

black holes. The order of the curves in the two plots in

Fig. 3 depends on the boundary conditions applied. For

Dirichlet boundary conditions, the VP for k ¼ 0 black

holes is greater than that for k ¼ 1 black holes, which in

turn is greater than that for k ¼ −1 black holes. For

Neumann boundary conditions, the k ¼ −1 black holes

have the smallest VP, followed by the k ¼ 0 black holes

and then the k ¼ 1 black holes. This suggests that the

relative ordering between the k ¼ 0 and k ¼ 1 black holes

may change for some intermediate value of β.

The VP for these black holes with Robin boundary

conditions is shown in Fig. 4. In the left-hand plots, we

present surface plots of the VP as a function of the

parameter β ∈ ½0; βcritÞ and the dimensionless radial coor-

dinate ζ. The right-hand plots show the profile of the VP as

a function of ζ for a selection of values of β. The top plots

are for spherical black holes with k ¼ 1; the middle plots

for planar black holes with k ¼ 0 and the bottom plots for

hyperbolic black holes with k ¼ −1. In all cases we see that

the value of the VP on the event horizon of the black hole

increases as β increases, and diverges as β → βcrit. Similar

behavior was observed in [77], where the value of the VP at

the origin in pure adS also increases as the Robin parameter

α increases, again diverging as the critical value was

approached. This divergence as β → βcrit indicates a

break-down in the semiclassical approximation, as quan-

tum perturbations of the black hole are no longer small.

This is to be expected since for β > βcrit the dynamics of the

scalar field becomes classically unstable.

In the line plots on the right-hand side of Fig. 4, it can be

seen that for all values of β (except β ¼ 0, corresponding to

k=1 k=0 k=–1

5 10
1

0.0022

0.0020

0.0018

0.0016

0.0014

Dirichlet conditions, L=1

k=1 k=0 k=–1

0 5 10
1

0.0110

0.0115

0.0120

0.0125

Neumann conditions, L=1

FIG. 3. VP for topological black holes with adS radius of curvature L ¼ 1 and event horizon radius rh ¼ 2, with Dirichlet (left) and

Neumann (right) boundary conditions applied. For Dirichlet boundary conditions, the results are taken from [68].

TABLE I. Black hole parameters L, κ, M and rh for which we

present numerical results for the VP. We also give the critical

value of the parameter β, related to αcrit by (5.1). For values of β

greater than the critical value, there exist unstable classical scalar

field modes.

M rh κ βcrit

L ¼ 1

k ¼ 1 5 2 3.25 2.3166

k ¼ 0 4 2 3 2.2301

k ¼ −1 3 2 2.75 2.2412

L ¼ 8000

861

k ¼ 0 1.8262 6.8064 0.1183 2.2300

k ¼ −1 0.5 9.7561 0.1183 2.9018

L ¼ 8

15

k ¼ 1ð−Þ 0.1104 0.1948 3.5938 1.8833

k ¼ 1ðþÞ 0.1104 0.4866 3.5938 1.8998

k ¼ 0 0.5563 0.6815 3.5938 2.2301

k ¼ −1 0.5 0.8 3.5938 1.8829

L ¼ 1

990

k ¼ 1ð−Þ 0.00002 0.00003 14800.5 1.5714

k ¼ 1ðþÞ 0.00002 0.0101 14800.5 1.5747

k ¼ 0 0.5000 0.0101 14800.5 2.2302

k ¼ −1 0.5 0.0101 14800.5 1.5747
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Dirichlet boundary conditions), far from the blackhole theVP

approaches the same value, and that value equals the VP at

infinity for Neumann boundary conditions (magenta curve).

Again, we observed similar behavior for both vacuum and

thermal expectation values of the VP in pure adS [77]. We

deduce that, as the spacetime boundary is approached, the VP

in the Hartle-Hawking state on a topological black hole

background approaches its vacuum value on pure adS

spacetime. In Fig. 4, it appears that the profiles of the VP

for Dirichlet boundary conditions (red curves) are constants,

but this is due to the vertical scale used, as in Fig. 3 it can be

seen that the VP is not constant in this case. For Dirichlet

(a) (b)

(d)

(f)

(c)

(e)

FIG. 4. VP for topological black holes with adS radius of curvature L ¼ 1 and event horizon radius rh ¼ 2. Left: surface plots of VP as

a function of the dimensionless radial coordinate ζ (2.8) and parameter β, for β ∈ ½0; βcritÞ. Right: line plots of VP as a function of ζ for a

selection of values of β.
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(a) (b)

(c) (d)

FIG. 5. VP for topological black holes with adS radius of curvature L ¼ 8000=861 ≈ 9.29 and surface gravity

κ ¼ 37843=320000 ≈ 0.12. Left: surface plots of VP as a function of the dimensionless radial coordinate ζ (2.8), and parameter β,

for β ∈ ½0; βcritÞ. Right: line plots of VP as a function of ζ for a selection of values of β.

FIG. 6. VP for topological black holes with adS radius of curvature L ¼ 8=15 ≈ 0.53 and surface gravity κ ¼ 115=32 ≈ 3.59, with

Dirichlet (left) and Neumann (right) boundary conditions applied.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7. VP for topological black holes with adS radius of curvature L ¼ 8=15 ≈ 0.53 and surface gravity κ ¼ 115=32 ≈ 3.59. Left:

surface plots of VP as a function of the dimensionless radial coordinate ζ (2.8), and parameter β, for β ∈ ½0; βcritÞ. Right: line plots of VP
as a function of ζ for a selection of values of β.
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boundary conditions, theVP ismonotonically decreasing as ζ

increases and we move away from the black hole event

horizon. This is also the case for Neumann boundary con-

ditions β ¼ π=2, and for values of β > π=2. However, we see

from Fig. 4 that there is a range of values of β ∈ ð0; π=2Þ for
which the VP is monotonically increasing and has a maxi-

mum on the spacetime boundary. Again, this is similar to the

behavior seen in the pure adS scenario [77].

(a) (b)

(c) (d)

(e) (f)

FIG. 8. VP for topological black holes with adS radius of curvature L ¼ 1=990 ≈ 0.001 and surface gravity κ ¼ 29601=2 ≈ 14801.

Left: surface plots of VP as a function of the dimensionless radial coordinate ζ (2.8), and parameter β, for β ∈ ½0; βcritÞ. Right: line plots
of VP as a function of ζ for a selection of values of β.
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Next, in Fig. 5, we study the VP for low-temperature

planar and hyperbolic black holes, the temperature being

below the minimum temperature Tmin (2.7) for the exist-

ence of spherical black holes. The adS radius of curvature is

fairly large L ≈ 9.29 and the surface gravity κ ≈ 0.12. The

k ¼ −1 black holes at this temperature are rather larger

(rh ¼ 9.7561) than the k ¼ 0 black holes (rh ¼ 6.8064)

having the same adS radius of curvature. Since the temper-

ature is very low, the VP has very small values, and is much

smaller in magnitude than the VP depicted in Fig. 4. The

VP has very similar qualitative behavior to that shown in

Fig. 4. In particular, the VP is a monotonically decreasing

function of the dimensionless radial coordinate ζ except for

values of β in an interval contained in ð0; π=2Þ. On the event
horizon, the VP increases as the parameter β increases, and

far from the black hole, the VP for all values of β except

β ¼ 0 approaches the vacuum value in pure adS spacetime

for Neumann boundary conditions (5.2b).

In our remaining plots we increase the temperature of the

black hole so that, in addition to the k ¼ 0 and k ¼ −1

black holes, there are also two black holes with spherical

horizons, one (k ¼ 1ðþÞ) which is larger and thermody-

namically stable, and a smaller (k ¼ 1ð−Þ), thermodynami-

cally unstable, black hole. In Figs. 6–7 the black hole

temperature is fairly close to the minimum for the existence

of spherical black holes, while in Fig. 8 we consider black

holes having a large temperature.

First we consider black holes with adS radius of

curvature L ≈ 0.53 and κ ≈ 3.59. In Fig. 6, we show the

VP for Dirichlet (left) and Neumann (right) boundary

conditions, comparing the results for the black holes

with different k. In both cases the VP decreases monoton-

ically from the event horizon to its value (5.2) at the

spacetime boundary. The VP for the thermodynamically

unstable spherical black hole (k ¼ 1ð−Þ, light blue curve)

has significantly larger value on the horizon than for the

thermodynamically stable spherical black hole (k ¼ 1ðþÞ).
Unlike the situation in Fig. 3, here the order of the curves is

the same for both Dirichlet and Neumann boundary con-

ditions. The k ¼ 1ð−Þ curve always has the largest VP on the

horizon, followed by the k ¼ 1ðþÞ curve, then the planar

k ¼ 0 black hole and finally the hyperbolic black hole with

k ¼ −1 always has the smallest VP on the horizon.

Figure 7 shows the VP for varying β for the same black

holes as in Fig. 6. As in previous figures, these plots

indicate that, far from the black hole, the VP approaches the

Neumann vacuum value in pure adS space-time (5.2b),

except when β ¼ 0 and the VP approaches the Dirichlet

vacuum value (5.2a).

Finally, in Fig. 8 we show the VP for varying β for high-

temperature black holes. In this case the VP for the

thermodynamically unstable spherical black holes with k ¼
1ð−Þ is many times larger than the VP for the remaining

black holes (k ¼ 1ðþÞ, k ¼ 0 and k ¼ −1). Therefore in this

figure we do not show the VP for the k ¼ 1ð−Þ black holes.

For the black holes in Fig. 8, both the event horizon radius

rh ¼ 0.0101 and adS radius of curvature L ≈ 0.001 are

comparatively small, but the surface gravity κ ≈ 14801 is

very large. Due to the high temperature, we find very large

values of the VP everywhere. For spherical and hyperbolic

black holes, the divergence of the VP on the horizon as

β → βcrit is particularly marked in this case. The qualitative

features of the VP are similar to those shown in previous

plots. In particular, it appears that far from the black hole

the VP for all β other than β ¼ 0 approaches the vacuum

value in pure adS space-time (5.2b) with Neumann boun-

dary conditions applied.

VI. CONCLUSIONS

We have computed the renormalized VP for a massless,

conformally coupled, scalar field on topological, asymp-

totically-adS, black holes. The event horizon may have

positive, negative or zero curvature, corresponding to

spherical, hyperbolic or planar surfaces. Hyperbolic and

planar black holes are always thermodynamically stable.

Spherical black holes exist only for temperatures above a

minimum value, above which there are two branches of

spherical black holes: larger black holes are also thermo-

dynamically stable but smaller black holes are thermody-

namically unstable.

The scalar field satisfies Robin boundary conditions,

parameterized by an angle α. For all event horizon

topologies, there is a critical value of α, above which the

field has classically unstable modes. This critical value of α

depends on the radius and curvature of the event horizon of

the black hole. We therefore consider the quantum scalar

field only for values of α for which there are no classical

instabilities.

In order to compute the VP, we employ the “extended

coordinates”method of [31,33,68]. This approach enables us

to perform the required renormalization mode-by-mode, so

that the renormalized VP is written as a mode sum which

converges rapidly. The modes themselves are computed

numerically. The modes with Robin boundary conditions

applied are written as linear combinations of those for

Dirichlet and Neumann boundary conditions, which saves

computational effort. We have presented results for the

renormalized VP for a variety of topological black holes

(including small black holes, large black holes, low and high

temperatures), as a function of the parameter governing the

boundary conditions and the distance from the horizon.

In previous work [68], we computed the VP when

Dirichlet boundary conditions are applied to the scalar

field. We found that for all the black holes considered, the

VP was monotonically decreasing from its value on the

event horizon to that at infinity. On the spacetime boundary,

the VP always approached the vacuum value on pure adS

with Dirichlet boundary conditions applied. We also found
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that, for planar and hyperbolic black holes the VP was

negative everywhere on and outside the event horizon.

However, for black holes with spherical event horizons,

small black holes have a VP which is positive on the

horizon, while the VP for larger spherical black holes was

negative everywhere. We conjectured that the sign of the

VP on the event horizon might be related to the thermo-

dynamic stability of the black hole, with thermodynami-

cally stable black holes having a VP which was negative

everywhere.

In this paper we have extended the results of [68] by

applying mixed (Robin) boundary conditions to the scalar

field. This work was motivated by our recent study [77] of

the VP for vacuum and thermal states on pure adS with

Robin boundary conditions. The first key result of [77]

concerned the behavior of the VP on the spacetime

boundary. In particular, for both vacuum and thermal

states, and all boundary conditions other than Dirichlet

boundary conditions, we found that the VP approached the

same asymptotic limit. The second key result of [77] was

that as the parameter α in the Robin boundary conditions

approached αcrit (the value of α above which there are

classical instabilities), the VP diverged, indicating a break-

down in the semiclassical approximation.

Those two key results for the VP on pure adS are

replicated here for the VP on topological black hole

spacetimes. In all cases studied here, we find that, as the

critical value of the parameter α describing the Robin

boundary conditions is approached, the black hole VP

diverges on the horizon, again indicating that the semi-

classical approximation ceases to be valid when there are

classical instabilities. On the spacetime boundary, with the

scalar field satisfying Robin boundary conditions, we also

find that the black hole VP approaches the pure adS

vacuum value for Neumann boundary conditions, except

when Dirichlet boundary conditions are applied. Thus the

behavior of the VP on topological black hole spacetimes, as

the boundary is approached, is the same as on pure adS

spacetime. This result applies irrespective of the event

horizon topology or the temperature of the black hole.

The qualitative features of the VP as a function of the

distance from the event horizon depend on the black hole

temperature and the boundary conditions. In contrast to the

situation for Dirichlet and Neumann boundary conditions,

in general the VP is not necessarily a monotonic func-

tion of the radial coordinate. The rate at which the VP

approaches its value on the boundary depends on both the

boundary conditions and the temperature. The VP for

higher-temperature black holes converges more slowly as

a function of radius than that for lower-temperature black

holes. The VP also converges more slowly as the parameter

α approaches its critical value. Our final result is that the sign

of the VP also depends on the black hole event horizon

radius and the temperature. Contrary to the conjecture put

forward in [68] for Dirichlet boundary conditions, for

general Robin boundary conditions there appears to be no

simple correlation between the sign of the VP on the event

horizon and the thermodynamic stability of the black hole.

In this paper we have considered the simplest expect-

ation value for a quantum scalar field, namely the renor-

malized VP, and have also restricted our attention to a

massless, conformally coupled, scalar field. It would be

very interesting to extend this work to massive scalar fields,

or other couplings to the curvature, as well as to the object

of primary interest in quantum field theory in curved

spacetime, the RSET. Both these generalizations will likely

involve significant technical challenges.
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