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Abstract: Human activity recognition has been an open problem in computer vision for almost two decades. In that time there 

have been many approaches proposed to solve this problem, but very few have managed to solve it in a way that is 
sufficiently computationally efficient for real time applications. Recently this has changed, with keypoint based 
methods demonstrating a high degree of accuracy with low computational cost.  These approaches take a given 
image and return a set of joint locations for each individual within an image. In order to achieve real time 
performance, a sparse representation of these features over a given time frame is required for classification. Previous 
methods have achieved this by using a reduced number of keypoints, but this approach gives a less robust 
representation of the individual’s body pose and may limit the types of activity that can be detected. We present a 
novel method for reducing the size of the feature set, by calculating the Euclidian distance and the direction of 
keypoint changes across a number of frames.  This allows for a meaningful representation of the individuals 
movements over time. We show that this method achieves accuracy on par with current state of the art methods, 
while demonstrating real time performance. 

 

1. INTRODUCTION 

Human activity recognition, defined as the challenge of 
classifying an individual’s activity from a video, is one of the 
oldest problems in the field of video processing, having been 
studied for almost two decades. In that time there has been a 
number of proposed approaches to solving this problem, with 
the majority based on either spatio-temporal features (Dollar et 
al., 2005; Laptev, 2004; Zelnik-Manor & Irani, 2001), optical 
flow (Efros et al., 2003; Guo et al., 2010; Ke et al., 2005; Schüldt 
et al., 2004; Wang et al., 2011) or deep learning (D’Sa & Prasad, 
2019; Lee & Lee, 2019; Sheeba & Murugan, 2019; Subedar et 
al., 2019). These methods have been shown to achieve high 
accuracy on common benchmark datasets but come with a 
significant computational cost. As such, their use for real time 
applications is limited.  

Feature extraction is an approach to reduce computational 
cost in image and video processing, for example, by 
compressing an image into a sparse set of interest points 
(Camarena et al., 2019). Early attempts to do this used general 
interest point detectors such as SIFT and SURF. However, these 
methods had a number of drawbacks, most notably that there 
was no agreed standard for human representation (Sun et al., 
2010). To solve these problems, specialized “key point” 
detectors were developed, which can be applied to an image and 
a set of locations of key body joints for each individual within 
the image is returned. Two of the most popular approaches are 
OpenPose (Cao et al., 2017) and AlphaPose (Xiu et al., 2018). 

Recently, (Camarena et al., 2019) presented an approach for 
fast human activity recognition, based on the method used in 
(Wang et al., 2013). In order to speed up this approach, they used 

a reduced feature set of six keypoints (those for the neck, right 
wrist, left elbow, left wrist, mid hip and left ankle), generated 
using OpenPose (Cao et al., 2017). In doing so they reduced the 
number of features used by approximately a factor of 5 and 
achieved an approximate 8 times improvement in speed over the 
original method (Wang et al., 2013), with a reduction in 
accuracy of only 1.4%. This enabled the approach to run 
sufficiently fast for real time classification, a breakthrough for 
human activity recognition.  In order to achieve this speed gain, 
their approach only sampled a small number of body keypoints. 
However, by doing this, they have a less generalizable 
representation of the individuals body pose; this may limit the 
type of activity that can be detected. For example, in a situation 
where it is necessary to detect whether an individual is kicking 
with their right leg, this approach would struggle as they have 
extracted no keypoints relating to the right leg. In contexts where 
it is necessary to detect a large range of different actions, using 
a reduced set of keypoints may not be feasible.  

Recently the work of (Reid et al., 2020) showed that by 
reducing the framerate and sample size used for keypoint based 
activity recognition, the computational cost can be reduced 
enough to perform real time activity recognition on upwards of 
14 individuals simultaneously.  However, this approach also 
comes with downsides, the most obvious of which is that by 
reducing the sample rate in this way, it may be difficult to detect 
actions which are characterized by rapid movements, such as 
clapping, where the movement may be completed between 
frames being sampled. Earlier methods for overcoming this 
issue using traditional keypoints involved measuring keypoint 
trajectories, but these approaches are limited by the fact that they 
are unable to track specific landmarks (e.g elbows, hands etc.) 
(Matikainen et al., 2009). Later improvements to such methods 



achieved impressive accuracies on a number of benchmark 
datasets but were still hampered by poor run-time performance 
(Jain et al., 2013). Due the recent breakthroughs in the area of 
human landmark detection, keypoint trajectories are once again 
coming into focus as a viable method for human action 
recognition (Choutas et al., n.d.)(Yi & Wang, 2018). 

In this paper we present a keypoint trajectories based 
approach that builds on the approach of (Reid et al., 2020), 
where the set of key points for an individual, extracted over a 
given time period, are converted into a feature set of “keypoint 
changes”. These keypoint changes encode a history of the 
Euclidian distance and the direction of keypoint movement, 
measured over time. We measure the keypoint changes using a 
reduced sample rate and reduced sample size, but we also 
measure the short term keypoint changes between concurrent 
frames.  In this way we still maintain a sparse approach of (Reid 
et al., 2020) but are also able to detect actions which are 
characterised by rapid movements. 

The remainder of the paper is organized as follows. In 
Section 2 we outline the proposed approach, and the 
experimental design. In Section 3 we present the performance 
evaluation results and discussion. In Section 4 we compare the 
results with other state-of-the-art methods. Finally, in Section 5 
we conclude the paper and discuss possible future work.  

2. METHODOLOGY 
This section will describe the proposed keypoint based 

approach for fast human activity recognition based on the 
history of keypoint changes over time in terms of the Euclidian 
distance and direction. We use OpenPose for keypoint 
extraction (Cao et al., 2017) as it provides a high level of 
accuracy with very low computational cost that remains 
constant when more individuals are detected, unlike with other 
methods such as AlphaPose (Xiu et al., 2018).  

For each individual within an image OpenPose extracts a set 
of 25 body keypoints. This method works by first using a 
feedforward neural network to predict a set of 2D confidence 
maps of body part locations and a set of 2D vector fields of part 
affinity fields (PAFs) which encode the degree of association 
between parts. Then these confidence maps and the PAFs are 
parsed by a greedy inference method to output the 2D keypoints 
for all people in the image. For more details on the model 
architecture please see (Cao et al., 2017). 

It is worth noting, however, that the novel contributions of 
this paper are not reliant on any specific keypoint estimation 
approach and can be implemented with any methods, such as 
AlphaPose (Xiu et al., 2018), Megvii (Cai et al., 2019), or 
similar techniques. Regardless of the method used for keypoint 
extraction, each keypoint is defined as:  
 

𝑘௜ = {𝑥௜, 𝑦௜} (1) 
 
where 𝑥௜  and 𝑦௜  are the image coordinates of the extracted 
keypoint. We define the Euclidian distance between two 
keypoints 𝑘𝑖 and 𝑘𝑗 as: 

∆൫𝑘𝑖, 𝑘𝑗൯ = ට൫𝑥𝑖 − 𝑥𝑗൯
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and the angle between them as: 
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where atan2 is the function which returns the unambiguous 
angle θ between the two keypoints on the Euclidian plane. We 
can then define the keypoint change between these two 
keypoints as: 
  

𝑐൫𝑘௜,𝑘௝൯ = ൛∆൫𝑘௜, 𝑘௝൯, 𝜃൫𝑘௜, 𝑘௝൯ൟ (4) 
 
 
     For two sets of keypoints L and M extracted for an individual 
at time t and t-λ defined as: 
 

𝐿௧ = ൛𝑙ଵ, 𝑙ଶ, 𝑙ଷ … 𝑙ఊൟ (5) 
𝑀௧ିఒ = ൛𝑚ଵ, 𝑚ଶ, 𝑚ଷ … , 𝑚ఊൟ (6) 

 
where 𝜆 is the time difference in seconds and 𝛾 is the number 
of keypoints that are extracted (as we are using OpenPose the 
value for 𝛾 used is 25). The set of keypoint changes between L 
and M are calculated as: 
 
𝐶(𝐿௧, 𝑀௧ିఒ) = ൛𝑐(𝑙ଵ, 𝑚ଵ), 𝑐(𝑙ଶ, 𝑚ଶ), 𝑐(𝑙ଷ, 𝑚ଷ), … 𝑐൫𝑙ఊ, 𝑚ఊ൯ ൟ(7) 
 
To compute the coarse representation of the individual’s 
movement (in our experiments this was done using a 0.2s time 
period) we calculate 15 such sets of keypoint changes in order 
to build up a temporal history. The final feature vector at time t 
is defined as: 
 
𝐶𝑜𝑎𝑟𝑠𝑒௧ = { 𝐶(𝐿௧, 𝑀௧ିఒ), 𝐶(𝐿௧ିఒ, 𝑀௧ିଶఒ), … 𝐶(𝐿௧ିଵସఒ, 𝑀௧ିଵହఒ)} (8) 

 
To compute the fine-grained representation of an individual’s 
movement, again a set of 15 such keypoint changes is used in 
order to build up a temporal history of the individuals 
movement over time.  This feature vector is defined as: 
 
𝐹𝑖𝑛𝑒௧ = { 𝐶(𝐿௧, 𝑀௧ିఌ), 𝐶(𝐿௧ିఒ, 𝑀௧ିఒିఌ), … 𝐶(𝐿௧ିଵସఒ, 𝑀௧ିଵସఒିఌ)} (9) 

Figure 1 Graph representation of an MLP. The weights are 
represented by the edges of the graph.   



where 𝜀 is defined as a short time period such that 𝜀 < 𝜆 (in our 
experiments the value for 𝜆 was 0.2 seconds and the value for 𝜀 
was 0.04 seconds). 
For the combined approach, the feature vector is simply defined 
as: 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑௧ = {𝐶𝑜𝑎𝑟𝑠𝑒௧ , 𝐹𝑖𝑛𝑒௧} (10) 
 
These features were subsequently used to train a multi-layer 
perceptron for classification.  
    Multilayer perceptron (MLP) refers to a feedforward 
artificial neural network. Arguably one of the simplest forms of 
an artificial neural network, an MLP consists of at least three 
layers of neurons, an input layer, a hidden layer and an output 
layer.  Based on the biological neural networks that make up the 
brain (Minsky & Papert, 1988), MLPs are one of the oldest 
methods for supervised machine learning. Despite this they are 
still used for a large number of problems, and serve as a 
foundation for deep learning (Lin, Liang, 2020). 
   Figure 1 shows a simple graph representation of the MLP 
algorithm, which can be briefly described at follows.  For an 
input vector of length I feeding into a hidden layer of J neurons, 
we define a set of weights 𝑤௜,௝ , where 𝑗 refers to the neuron in 
question and 𝑖 refers to the neuron in the previous layer to which 
j is connected. Formally for input vector X defined as: 
 

𝑋 = {𝑥: 𝑥 ∈ ℝூ} (11) 
 
The weights W with J rows and I columns can be defined as: 
  

𝑊 = {𝑤: 𝑤 ∈ ℝ௃×ூ} (12) 
 
and the set of biases B defined as: 
 

𝐵 = {𝑏: 𝑏 ∈ ℝ௃} (13) 
 
The net inputs to a given neuron j are then calculated as the sum 
of the inputs multiplied by their respective weights plus the bias 
value:  

𝑛𝑒𝑡(𝑗) = ෍ 𝑥௜ . 𝑤௝௜ + 𝑏௝

ூ

௜ୀଵ

(14) 

 
The net output is then calculated using an activation function F. 
In this paper we use a rectified linear activation function defined 
as: 

𝐹(𝑥) = max(0, 𝑥) (15) 
 
Therefore, the output for a given neuron j can be expressed as: 
 

𝑦௝ = 𝐹൫𝑛𝑒𝑡(𝑗)൯ (16) 
 
For a network with more than one hidden layer, the output from 
the previous layer is used as the input for the next layer. Thus, 
each hidden layer has its own set of biases and weights. The 
final layer of the network is the output layer and outputs the 
prediction of the network. A SoftMax activation function was 
used on the final layer to determine the prediction.  

   In order to train the network, the weights and biases are 
updated via backpropagation, using a stochastic gradient decent 
optimizer in order to minimize the network loss function.  In 
this paper we use a sparse categorical cross entropy loss 
function defined as: 
 

𝐶𝐶𝐸(𝑦, 𝑦ො) = −
1

𝑁
෍ 𝑦௝ ∙ 𝐿𝑜𝑔൫𝑦ො௝൯

ே

௝ୀ଴

(17) 

 
where N is the number of elements in the training set, 𝑦 is the 
ground truth, 𝑦ො is the estimate, log is the natural log and ∙ is the 
inner product. The network is trained over a maximum of 500 
epochs, with early stopping used to prevent overfitting. 

3. EXPERIMENTAL SETUP 
   For the first experiment, a coarse representation of the 
keypoint changes was used, as defined in equation 8. The value 
used for λ was 0.2 seconds. This results in an overall temporal 
history of 3 seconds, and the resulting feature vector with 750 
features.  
   For the second experiment, the fine-grained representation 
defined in equation 9 was used. The value used for λ was 0.2 
seconds and the value used for ε was 0.04. This enabled a finer 
grained representation of the instantaneous change of the 
keypoint, while maintaining a feature vector of 750 features.  
   For the final experiment, the combined approach described in 
equation 10 was used. Again, the value for λ was 0.2 seconds 
and the value for ε was 0.04 seconds. The resulting feature 
vector contained a total of 1500 features. This enabled a more 
robust representation of the keypoint changes over the given 
time period.  
   In each of the three experiments, these features were 
subsequently used to train an MLP for activity recognition.  The 
network has four hidden layers, each containing 450 neurons 
with a rectified linear activation function. These parameters 
were optimized using a grid search in order to maximize 
classification accuracy. As discussed in Section 2, the network 
was trained using a stochastic gradient descent optimizer to 
minimize a sparse categorical cross entropy loss function.  
     For our experiments, the data were split using leave-one-out 
cross validation as recommended by (Gao, Z., Chen, M. Y., 
Hauptmann, A. G., & Cai, 2010), where the set of videos for 
one individual is used for testing and the rest are used for 
training. The task therefore is to classify the activity exhibited 
by an unknown individual. The model was trained over a 
maximum of 500 epochs. In order to prevent overfitting, early 
stopping was used if the training accuracy failed to increase 
after 10 epochs. 

4. ACCURACY EVALUATION 
   We evaluated the approaches on two simple but well-known 
datasets, the KTH dataset (Schüldt et al., 2004) and Weizmann 
dataset (Gorelick et al., 2007). The KTH dataset contains short 
video clips of 6 distinct actions: Walking, Jogging, Running, 
Boxing, Clapping and Waving. For each activity there are 25 



sets of videos each containing a different individual. Each video 
set contains 4 videos, each with a different background: 
outdoors, outdoors with a different scale, outdoors with 
different clothes and indoors.  This results in a total of 600 video 
clips, with an average length of 4 seconds, recorded at a rate of 
25fps. The videos have a resolution of 160x120 pixels. Figure 
2 shows example frames from the dataset. The results were 
validated using “leave one out” cross validation, where 24 of 
the video sets were used for training and one set was used for 
testing. The OpenPose library (Cao et al., 2017) was used for 
keypoint extraction as it provides a high degree of accuracy 
with real time performance. 

 

  
Boxing Clapping 

  
Waving Walking 

  
Jogging Running 

Figure 2 Example frames of the six 
activities from the KTH dataset 

   The confusion matrix for the first experiment (coarse 
approach), where the keypoint changes were each calculated 
over a time period of 0.2 seconds, is presented in Table 1. These 
results show that this approach achieves a classification 
accuracy of > 93% for four of the six activities. The average 
accuracy across all activities for this approach was 92.7%. The 
approach did struggle to differentiate between the jogging and 
running activities as these activities appear to be quite similar. 
However, this proposed approach was still able to separate 
these two classes with over 70% accuracy. 
    The results for the second experiment (fine grained), where 
the keypoint changes were calculated over a 0.04 second time 
period, are presented in Table 2. As can be seen from Table 2, 
the accuracy of the approach decreased when the changes were 
calculated over this shorter time period and the approach again 
struggled to differentiate between the running and jogging 
activities. However, the accuracy of the three non-locomotion 
activities (Boxing, Clapping and Waving), while lower than the 
coarse 0.2 second approach, remained over 93%. The average 
accuracy of this approach was 89.8%, a reduction of ~3% 
compared to the coarse approach in table 1. We postulate that 
this slight reduction in accuracy may be due to the fine grain 
keypoint changes not encoding as much temporal information 
about the movement as the coarse representation. 
 

    Results for the third experiment (combined approach) where 
the keypoint changes were calculated over both a 0.2 second 
time period and 0.04 seconds are presented in Table 3. These 
results show that using both sets of keypoint changes resulted 
in an increase in classification accuracy for all six classes. The 
classification accuracy for the three non-locomotive classes is 
now over 96%.  
    Additionally, the accuracies for the three locomotive 
activities are all over 80%. It is still difficult to differentiate 
between the jogging and running classes. However, this 
combined approach is more accurate than both the coarse and 
fine grained approaches individually. The average accuracy for 
this approach was 94.2%. This is an increase of ~1.6% over the 
coarse approach, and ~4.6% over the fine-grained approach.    
 

Table 1 (Top) Coarse Approach, Table 2(Middle) Fine Grained 
approach and Table 3 (Bottom) the combined approach accuracy 

results for the KTH dataset 

 Coarse Approach 

 Walk Jog Run Box Clap Wave 
Walk 94.0 4.7 0.57 0.45 0.18 0.11 
Jog 10.5 78.7 10.1 0.41 0.12 0.14 
Run 4.02 22.4 72.8 0.35 0.17 0.18 
Box 1.23 0.23 0.12 96.8 1.14 0.52 
Clap 0.83 0.13 0.1 0.83 94.9 3.2 
Wave 0.63 0.12 0.08 0.41 2.68 96.1 

 Total Accuracy 92.7% 

       

 Fine Grained approach 

 Walk Jog Run Box Clap Wave 
Walk 87.9 13.0 2.33 0.88 0.36 0.12 
Jog 8.05 67.5 22.8 0.34 0.26 0.07 
Run 1.25 17.5 72.3 0.24 0.24 0.05 
Box 1.62 1.07 0.93 94.8 1.32 1.31 
Clap 0.62 0.38 0.74 1.88 93.9 3.02 
Wave 0.60 0.58 0.87 1.87 3.89 95.4 

 Total Accuracy 89.8% 

       

 Combined approach 

 Walk Jog Run Box Clap Wave 
Walk 94.3 4.49 0.65 0.37 0.12 0.08 
Jog 7.61 82.6 9.41 0.29 0.08 0.06 
Run 2.44 17.0 80.1 0.31 0.1 0.11 
Box 1.1 0.12 0.06 97.4 0.76 0.58 
Clap 0.2 0.03 0.02 0.55 96.4 2.81 
Wave 0.15 0.02 0.01 0.35 2.34 97.1 

 Total Accuracy 94.2% 
 
    It is worth noting that the approach of (Reid et al., 2020) 
achieved a total accuracy of 90.2% on this dataset. Our coarse 
approach detailed above outperforms their method by >2% and 



the combined approach improves upon that by ~4%, while still 
using a reduced sample rate for action recognition.  
To demonstrate that our proposed approach is not dataset 
dependent, we also evaluated it using the Weizmann dataset 
(Gorelick et al., 2007). This dataset contains short video clips 
of 9 distinct actions: walking, running, jumping, stepping 
sideways, bending, waving with one hand, waving with two 
hands, jumping in place, jumping jack and skipping. For each 
activity there are 10 sets of videos, each containing a different 
individual. This results in a dataset of 90 videos, recorded at a 
rate of 50fps interlaced. The videos had a resolution of 180 x 
144 pixels. Again, “leave one out” cross validation was used to 
verify the results, with one set used for testing and nine sets 
used for training.     
     The results from the first experiment (coarse approach), 
where the keypoint change was measured over 0.2 seconds are 
presented in Table 4. As can be seen, the accuracy of the 
approach for the Weizman dataset was significantly lower than 
for the previous dataset. This may be due to two factors: firstly 
the size of the dataset was significantly smaller, only 90 videos 
as opposed to 600 in the KTH dataset, and secondly the duration 
of the videos was much shorter, averaging ~2 seconds per 
activity rather than the ~4  seconds for the KTH dataset. This 
makes it difficult for our approach to build a complete history 
of the keypoint changes for the action. However, the approach 
still achieved an accuracy of ~70%, with the majority of classes 
being classified correctly.  
        Like the KTH dataset, it was difficult for the coarse 
approach differentiate between activities which were similar in 
appearance. The two waving activities, waving with one hand 
and waving with two hands, were very similar, with below 50% 
accuracy for both activities. Additionally, the three locomotive 
activities, skipping, running, and walking had a large degree of 
similarity with each other, as with the KTH dataset. The 
skipping activity also had a large degree of similarity to the 
jumping activity.  
       The results for the second experiment (fine grained 
approach) where the keypoint change was measured over 0.04 
seconds, are presented in Table 5. As can be seen, the average 
accuracy of this approach was approximately 2% higher than 
for the coarse 0.2 second approach.  The confusion between the 
two hand waving classes was significantly lower than with the 
coarse approach. However, the confusion between the skipping 
and running classes was significantly higher. These results 
indicate that the effectiveness either coarse or fine grained 
keypoint changes depends on the activities which are being 
classified.   
  The results for the third experiments (combined approach), 
where the keypoint changes were calculated over 0.2 seconds 
(coarse) and 0.04 seconds (fine) are presented in Table 6. As 
can be seen, this approach outperformed both other approaches 
by a significant margin. The average classification accuracy 
was ~7% higher than the fine-grained approach, and ~9% more 
accurate than the coarse approach. The accuracy for every 
activity was significantly higher than for either method 
individually. There is still some confusion between classes 
which are similar in appearance, with the skip class having high 

confusion with both the running and jumping classes. However, 
this was significantly lower than for the other two approaches 
individually.  
   These results show that using the combined key point changes 
can result in a significant improvement in classification 
accuracy while still maintaining a sparse representation of the 
video frame. This may be because certain activities are easily 
identifiable when observed over a long period, whereas other 
activities are more easily identified over a shorter period. For 
example, the two hand waving activities were more easily 
identified when keypoint changes are calculated over a shorter 
time period, whereas the locomotion activities were more easily 
identified over a larger time period. By calculating the changes 
over both short and long time periods, the MLP can more easily 
differentiate between both sets of activities, thus improving the 
average accuracy. 
  

Table 4 (Top) Coarse approach, Table 5(Middle) Fine grained 
approach and Table 6(Bottom) the combined approach accuracy 

results for the Weizman dataset. 

5. RUNTIME EVALUATION 
   We computed the computation time of the combined 
approach using the Weizmann dataset which consists of 5701 
frames. Experiments were conducted on an Intel XeonE5-1620 
PC running Ubuntu version 18.04.3. The GPU used was a 
Nvidia Titan Xp with 16GB RAM. This is consistent with other 
approaches such as  (Camarena et al., 2019) who also used GPU 
accelerated hardware when testing the runtime of their 
approach.  The time taken for the OpenPose library to compute 
the key points for the entire set was 227.3 seconds. This is a rate 
of 39.8ms per frame and represents the most significant 
bottleneck of this approach. The time taken to compute the set 

Bend Jack Jump P.Jump Run Slide Skip Walk Wave 1 Wave 2
Bend 85.3% 0.3% 6.3% 0.2% 0.2% 0.9% 1.9% 0.3% 1.7% 3.0%
Jack 0.3% 92.0% 0.5% 5.5% 0.0% 1.0% 0.0% 0.0% 0.4% 0.3%

Jump 1.7% 0.7% 77.9% 0.0% 0.7% 2.2% 13.3% 2.4% 0.4% 0.7%
P.Jump 0.0% 11.2% 0.7% 76.4% 0.0% 1.1% 0.0% 0.0% 0.4% 10.2%

Run 0.0% 0.2% 6.6% 0.0% 51.2% 4.4% 18.0% 19.0% 0.2% 0.2%
Slide 0.0% 0.5% 3.6% 0.0% 4.1% 84.0% 2.3% 2.9% 2.0% 0.7%
Skip 1.0% 0.2% 19.2% 0.0% 13.9% 3.1% 46.3% 10.6% 5.3% 0.4%
Walk 0.0% 0.0% 2.7% 0.0% 10.5% 1.8% 5.2% 79.7% 0.1% 0.0%

Wave 1 2.5% 1.2% 1.7% 1.5% 0.0% 2.0% 1.4% 0.5% 46.4% 42.9%
Wave 2 5.4% 3.8% 1.1% 5.1% 0.0% 2.1% 1.1% 0.0% 32.9% 48.4%

Bend Jack Jump P.Jump Run Slide Skip Walk Wave 1 Wave 2
Bend 86.5% 0.9% 0.0% 6.4% 0.0% 0.2% 1.3% 3.0% 0.5% 1.3%
Jack 0.4% 90.5% 0.0% 7.8% 0.0% 0.1% 0.7% 0.0% 0.0% 0.4%

Jump 0.0% 0.0% 60.9% 8.7% 2.0% 0.0% 24.5% 3.9% 0.0% 0.0%
P.Jump 0.6% 6.1% 0.2% 91.4% 0.0% 0.0% 0.9% 0.0% 0.0% 0.7%

Run 0.0% 0.0% 7.1% 9.8% 40.5% 0.7% 35.1% 6.8% 0.0% 0.0%
Slide 0.0% 8.8% 0.9% 9.0% 0.5% 77.9% 1.8% 1.1% 0.0% 0.0%
Skip 0.0% 0.0% 20.0% 8.2% 24.7% 0.4% 37.6% 9.2% 0.0% 0.0%
Walk 0.1% 0.0% 3.1% 5.6% 1.4% 0.6% 4.7% 84.2% 0.1% 0.1%

Wave 1 0.6% 0.0% 0.0% 6.3% 0.0% 0.6% 0.8% 2.3% 73.4% 16.1%
Wave 2 3.7% 1.9% 0.2% 8.2% 0.0% 0.3% 1.0% 0.8% 29.8% 54.2%

Bend Jack Jump P.Jump Run Slide Skip Walk Wave 1 Wave 2
Bend 90.1% 0.3% 2.2% 0.0% 0.3% 1.4% 2.3% 0.3% 1.6% 1.4%
Jack 0.3% 95.9% 0.1% 1.6% 0.0% 1.2% 0.0% 0.0% 0.4% 0.4%

Jump 1.3% 0.4% 78.6% 0.2% 2.4% 2.4% 14.0% 0.4% 0.0% 0.2%
P.Jump 0.0% 2.8% 0.2% 94.4% 0.0% 1.7% 0.0% 0.0% 0.0% 0.9%

Run 0.2% 0.0% 0.7% 0.0% 56.1% 3.2% 22.9% 16.6% 0.0% 0.2%
Slide 0.0% 0.2% 2.3% 0.0% 2.3% 92.1% 0.9% 1.1% 0.7% 0.5%
Skip 1.2% 0.0% 17.8% 0.0% 18.6% 2.4% 49.8% 9.6% 0.0% 0.6%
Walk 0.0% 0.0% 1.1% 0.0% 8.9% 2.0% 2.4% 85.6% 0.0% 0.0%

Wave 1 0.8% 0.0% 0.5% 0.2% 0.0% 3.2% 0.5% 0.2% 75.8% 19.0%
Wave 2 2.1% 2.4% 0.8% 0.3% 0.0% 3.2% 1.6% 0.0% 30.6% 59.0%

Total Accuracy 69.6%

Total Accuracy 71.9%

Total Accuracy 79.0%



of keypoint changes for the entire dataset is 1.7 seconds; 
approximately 0.3ms per frame. Additionally, it takes the MLP 
algorithm 1 second to classify the activities for the test set, 
which consists of 701 frames. Therefore, classification is 
performed at a rate of 1.39ms. The total computation time for 
the entire pipeline is 41.5ms per frame; 24.0 frames per second. 
The runtime for the KTH dataset was also calculated and found 
to be the same. Hence, the approach is fast enough to perform 
activity recognition in real time.      
  Table 7 presents comparative results for the proposed 
approach and other state of the art approaches using the KTH 
dataset. Table 7 shows that the approach of Wang et al., (Wang 
et al., 2013) achieves an accuracy of 95.7%. While this is higher 
than the proposed approach, the computational cost of this 
method prevents it from running in real time. We also compare 
our approach with that in (Reid et al., 2020) who used a reduced 
sample rate and sample size to achieve real time performance 
using body keypoints. The proposed approach performs 
significantly better, indicating that the use of keypoint changes 
is a more robust alternative to simply reducing the sample rate 
and sample size while maintaining the real-time performance.  
 

Table 7 Comparison of approaches on the KTH dataset 
Performance evaluation using the KTH dataset 

Approach Accuracy Speed/FPS 
(Wang et al., 2013) 95.7% 3 
(Reid et al., 2020) 90.2% 24 

Keypoint Changes 94.2% 24 
  

6. CONCLUSION 
   We have presented a method for human activity recognition 
based on calculating the key points changes (Euclidean distance 
and angle). We have shown that this approach achieves 
accuracy on par with current state of the art methods, while 
using a sparse representation. Further, we have conducted run-
time experiments and shown that this method is sufficiently fast 
enough for real time applications. In future work we will 
investigate how this approach performs for multi-person 
activity recognition and adapt this approach for more complex 
activities and scenes involving one or more people.  
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