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Abstract 10 

Edible oil adulteration is a main concern for consumers. This paper presents a study on the use of smartphone, 11 

coupled with image processing and chemometrics, to quantify adulterant levels in extra virgin olive oil. A 12 

sequence of light with varying colours is generated on the phone screen, which is used to illuminate oil samples. 13 

Videos are recorded to capture the colour changes on sample surface and are subsequently converted into spectral 14 

data for analysis. To evaluate the performance of this video approach, partial least squares regression models 15 

constructed from such video data as well as near-infrared, ultraviolet-visible and digital imaging data are 16 

compared in the task of quantifying the level of vegetable oil in extra virgin olive oil in the range 5%−50% (v/v). 17 

The results show that the video approach (R2 = 0.98 and RMSE = 0.02) yields comparable performance to baseline 18 

spectroscopy techniques and outperforms computer vision system approach. Since the smartphone-based sensor 19 

system is low-cost and easy to operate, it has high potential to become a consumer-oriented solution for detecting 20 

edible oil adulteration. 21 

Keywords: Olive oil adulteration; Smartphone video; NIR; UV-Vis; Computer vision; Chemometrics 22 

1. Introduction 23 

Extra virgin olive oil (EVOO), known as liquid gold, is a high-priced product of great nutritional value. It provides 24 

a good source of monounsaturated fatty acids, vitamins, antioxidants and phenolics, which is often associated with 25 

the prevention of health problems, such as obesity, diabetes, atherosclerosis, heart disease, high blood pressure 26 

and cancer [1][2]. Due to the high price and increasing demand of olive oil [3], olive oil adulteration where it is 27 

mixed with less expensive edible vegetable oils (VO) becomes a serious food fraud issue that reduces consumer 28 

confidence, ruins brand reputation and causes health problems. 29 

Well-preserved pure EVOO and VO can be easily separated by trained eyes because EVOO is richer in pigments 30 

such as chlorophylls and carotenoids compared to VO [4][5]. However, it is difficult for consumers to assess the 31 

level of VO adulteration in EVOO based on sensory analysis. Traditional techniques such as mass spectrometry 32 

[6], gas/liquid chromatography [7] and nuclear magnetic resonance spectroscopy [8] have been frequently used 33 

for quality control of olive oil. Although these methods are powerful and sensitive enough to assess the level of 34 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/388726277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

adulteration, most of them are expensive, time consuming, and require cumbersome sample preparation. Therefore, 1 

novel techniques which can quantify olive oil adulteration in a cost-effective, quick and non-destructive way is 2 

desperately desired by food industry and consumers.  3 

A state-of-the-art technique that has been successfully applied in food authentication and quality assessment is 4 

spectroscopy. It measures the interaction between chemical compounds and radiated light wavelengths using near 5 

infrared (NIR), ultraviolet-visible (UV-Vis), Raman, fluorescence and Fourier transform-infrared (FT-IR) 6 

spectrometers [9][10][11]. The obtained spectra contain useful fingerprint information and are represented as sets 7 

of light intensity values at varying wavelengths. Spectroscopy coupled with chemometrics provides a highly 8 

efficient way for the qualitative and quantitative analysis of olive oil properties, including provenance, mineral 9 

composition and adulterant level [5][11][12]. Specifically, the use of portable spectrometer even presents 10 

comparable results to traditional approaches in detecting olive oil adulteration. For example, Raman spectroscopy 11 

coupled with least squares support vector machine (LS-SVM) obtains 0.9976 of R2 value in predicting adulterant 12 

level ranging from 0% to 100% (v/v) at 10% increments [13]. Such a result is comparable to that of using gas 13 

chromatography in measuring similar adulterant level [14]. Another technique recently used for food 14 

authentication is computer vision system (CVS) [15]. It aims to replace human visual system by soft sensor and 15 

automatically gain high-level understanding of food quality through image acquisition, processing and analysis. 16 

CVS has been reported to perform well in detecting olive oil adulteration because it can effectively capture the 17 

colour level difference between olive oil and adulterated oil [16]. A brief overview of using the above techniques 18 

and chemometrics for detecting olive oil adulteration is presented in Table S1 (see Supplementary Materials). 19 

Although spectroscopy is a powerful tool in authentication of olive oil, its high cost still exceeds consumer 20 

expectation. For example, the price of a portable NIR spectrometer (NIRQuest512, Ocean Optics) is around 15600 21 

USD. Recent technology attempts to minimize the size and price of spectrometer, yielding pocket sized 22 

spectrometers such as SCIO and TellSpec [17][18]. These spectrometers can help consumers to assess food quality 23 

in a quick and convenient way when connected to a smartphone. However, the price of such hardware is still high, 24 

ranging from 950 to 1899 USD. CVS is not an appropriate method for consumers to use to detect olive oil 25 

adulteration as it requires careful setting of camera, well-defined and consistent illumination [15]. Moreover, 26 

conventional CVS needs an external camera and computer software to acquire and process image respectively. 27 

Such instrumental limitation prevents data from being obtained and analysed instantaneously. Recent studies 28 

attempt to use mobile devices such as smartphone to replace external camera for food authentication and quality 29 

assessment [19]. Consumers can upload photos to the smartphone application or cloud servers and then obtain 30 

real-time analytical results of food products. 31 

Our previous work proposed a sensor system that uses smartphone videos and pattern recognition for food 32 

authentication [20]. Spectral information was captured under coloured illuminations and processed by computer 33 

vision techniques. This sensor system coupled with locally weighted partial least squares classification (LW-34 

PLSC) obtained over 95% of classification accuracies in authenticating olive oil sampled under variable 35 

conditions. However, the use of smartphone videos for olive oil authentication still requires further investigation. 36 

On one hand, the quantitative research of using smartphone videos to detect olive oil adulteration has not been 37 
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studied, including the regression performance of low-cost video data and the minimum concentration of 1 

adulterated oil that can be effectively identified by the sensor system. If the adulterant degree can be successfully 2 

determined by way of data regression, consumers can easily assess the purity of olive oil via a smartphone. On 3 

the other hand, the performance comparison between the video approach and baseline methods such as 4 

spectroscopy and CVS has not been investigated. The hardware for video acquisition is limited to the visible 5 

wavelength range (around 380−740 nm), which is narrower than the wavelength range of UV-Vis (190−780 nm) 6 

and NIR (780−2500nm) spectrometers. Therefore, it is worthy of investigating if the video approach can achieve 7 

performance comparable to UV-Vis and NIR spectroscopy when detecting certain level of olive oil adulteration. 8 

Compared to a well-defined and consistent illumination in CVS experimental setup, the light of our sensor system 9 

is generated by smartphone screen in a less controlled environment. Nevertheless, our sensor system contains the 10 

spectral information that CVS does not have. This leads to a question: will the video approach perform better than 11 

CVS on the same detection task given that the sampling condition and camera are similar? Furthermore, our 12 

previous work did not provide a comprehensive interpretation on how variables contribute to the model used for 13 

detection/quantification of olive oil adulteration. The selection of important variables can reduce the 14 

computational time and the memory usage, thereby improving the efficiency of the video approach as a real-time 15 

system. 16 

This paper aims to quantify the adulteration levels of VO in EVOO by using a low-cost approach and compare its 17 

performance with several baseline methods. For this purpose, sample videos were recorded via a smartphone and 18 

converted into colour spectra by image processing techniques. Baseline experiments were implemented on the 19 

same samples using three methods, including CVS, NIR and UV-Vis spectrometers. Results obtained from PLS 20 

regression were compared in terms of the root-mean-square error (RMSE) and the coefficient of determination 21 

(R2). Furthermore, a variable selection process was carried out and its effect on the performance of PLS regression 22 

models was evaluated.  23 

2. Material and Methods 24 

2.1. Samples 25 

To prepare the samples, two oils were purchased from a Tesco supermarket in Northern Ireland in August of 2019: 26 

EVOO (product of Italy) and rapeseed oil (product of more than one country). The oils were within their best 27 

before date and were stored in a dry and dark place at room temperature to avoid degradation as much as possible. 28 

A total of 77 samples were prepared, including 7 pure EVOO samples and 70 adulterated samples in ten different 29 

concentrations from 5% to 50% (v/v) at an increment of 5%. Each sample was 20mL in volume, placed in plastic 30 

shot glasses (approximately 30mL), manually shaken for about 30s and scanned by smartphones, NIR and UV-31 

Vis spectrometers. 32 
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2.2. Video sensor system 1 

A sensor system based on smartphone videos was investigated to quantify the adulteration of EVOO with VO by 2 

extracting and analysing colour spectral information. A smartphone (Samsung Galaxy S6) was used to generate a 3 

sequence of colours on its screen varying from purple to red and illuminate oil samples. To ensure a uniform 4 

illumination on sample surface, the smartphone was parallelly placed about 5cm from the sample surface, with 5 

the centre of screen facing the sample surface. A 5-second video of 32-bit and 960× 720 pixels was recorded by 6 

front camera (5MP and f/1.9 aperture) and stored in MP4 format with file size of approximately 7MB. Two sets 7 

of sampling were conducted in laboratory under ambient light (6pm) and low-light (10pm) conditions, with each 8 

set lasting approximately 50 minutes for 77 samples.  9 

 10 
Fig. 1. (a) The 50th frame of a smartphone video. Oil sample was illuminated using smartphone screen (cyan colour) and the selected ROI 11 
with 70 × 70 pixels was marked in a white square; (b) a subset of ROI images and a sequence of colours varying from purple to red. 12 

The obtained videos were uploaded to a laptop computer installed with MATLAB 7.12 R2011a software (The 13 

MathWorks Inc., USA) for image processing and data analysis. Each video was automatically split into 175 or 14 

176 frames (images) and only the first 175 frames were used in the selection of region of interest (ROI). The 50th 15 

frame in a video is shown in Fig. 1a, where an oil sample was illuminated using smartphone screen with cyan 16 

colour. We divide the sample into 4 regions with uniform colour levels and sufficient areas. Region A contains a 17 

selected ROI with 70 × 70 pixels (a white square) which presents the real colour level of sample under illumination. 18 

Region B and C are darker than region A because multiple factors such as container and background can cause 19 

shadows and refraction. Region D has the same colour as screen illumination due to the reflection. If ROI is 20 

respectively selected from region A to D, the corresponding quantification performance will gradually decrease. 21 

The same size of ROI is manually selected for all sample videos in region A to prevent ROI contains noisy colours. 22 

Fig. 1b shows a subset of ROI images in which the colour illumination changes from purple to red. The ROI 23 

images were then decomposed according to red (R), green (G) and blue (B) colour channels with colour levels 24 

varying from 0 to 255. By averaging the colour level of an ROI image, the colour spectral information for each 25 

sample was represented as a 525-dimensional vector (175 frames × 3 colour channels). 26 
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2.3. Baseline methods 1 

2.3.1 NIR spectroscopy  2 

A portable NIR spectrometer (NIRQuest512, Ocean Optics, Inc., USA) equipped with an InGaAs detector was 3 

used to obtain spectra in absorbance mode, ranging from 901.06 to 1721.242 nm with a spectral resolution of 1.65 4 

nm. The experiment was conducted under ambient light condition at room temperature. A 45° diffuse reflectance 5 

probe (DR-Probe) with integrated tungsten halogen light source was used for illumination. The NIR spectral data 6 

of 512 variables was acquired with the OceanView software. Each sample was scanned for 5 times within 5 7 

seconds and the average spectrum was used as a data sample.  8 

2.3.2 UV-Vis spectroscopy 9 

Absorbance spectra with wavelength ranging from 185.5 to 666.082 nm (1.5 nm interval) were collected by a UV-10 

Vis spectrometer (STS UV-Vis, Ocean Optics, Inc., USA). The same DR-Probe was used for illumination and 11 

each sample was recorded for 5 times within 25 seconds under ambient light condition at room temperature. An 12 

average spectrum with 1080 variables was obtained by the OceanView software for further analysis. 13 

2.3.3 Digital imaging  14 

A smartphone (Huawei P30 Pro) with high-performance front camera (32MP and f/2.0 aperture) was used to 15 

acquire 24-bit digital images with 6528 × 4896 pixels spatial resolution. The image acquisition process was 16 

conducted inside a compartment in order to reduce the influence of external light and maintain the uniformity of 17 

illumination. The camera was fixed 5cm away from the sample and acquired images twice through plastic glasses 18 

under ambient light and LED illumination conditions. The obtained image was stored in JPEG format with file 19 

size of approximately 3.7MB. Fig. S1 shows ROI images (200 × 200 pixels) of pure EVOO, EVOO adulterated 20 

with VO at different levels and pure VO. The colour difference between EVOO and VO is significant, however, 21 

the level of VO in mixed oil cannot be effectively identified by naked eyes. To quantify the level of adulteration, 22 

each ROI image was decomposed into three images based on RGB channels with colour levels varying from 0 to 23 

255. The frequencies of colour levels were calculated for each channel, resulting in three histograms and a data 24 

vector with 768 variables (256 colour levels × 3 colour channels). The data matrix was then constructed by samples 25 

and variables located in rows and columns, respectively.  26 

2.4. Data analysis 27 

The obtained dataset for each instrumentation was split into a calibration set and an independent test set according 28 

to the ratio of 5:2. To maintain the same diversity in both sets, DUPLEX algorithm [21] was applied to samples 29 

of the same adulteration level. Regression model based on the calibration set was optimised by leave-one-out 30 

cross-validation and then tested on samples from the test set. 31 
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The video, spectral and image data were fed to chemometrics methods to investigate the relationship between 1 

input variables and adulteration levels. These data are usually high-dimensional and multicollinear that the 2 

regression coefficient of ordinary least squares is instable and calculated inefficiently. PLS regression is a standard 3 

method for analysing high-dimensional and multicollinear data in chemometrics, which relies on the basic 4 

assumption that the investigated system or process is driven by a set of underlying latent variables (LVs). It 5 

searches for linear combinations of predictor variables X that maximize the covariance between the LV and the 6 

response y. This procedure is iteratively conducted using deflation scheme to ensure the mutual orthogonality of 7 

the LVs. We adopt nonlinear iterative partial least squares (NIPALS) algorithm [22] for PLS calculation which is 8 

summarized in Table 1. 9 

Table 1. The PLS algorithm. 10 
Input Predictor variables X 
 Response y 
 The number of latent variables k 
Output T (X-score matrix) 
 P (X-loading matrix)  
 q (y-loading vector) 
 PLS regression coefficients b 
Step 1 Compute the loading weights: w = XT y       
Step 2 Normalize the weights: w = w / ||w|| 
Step 3 Compute the score of X: t = X w 
Step 4 Compute the loading vector of X: p = XT t / (tT t) 
Step 5 Compute the loading vector of y: q = yT t / (tT t)  
Step 6 Deflate X and y: X = X – t pT, y = y – t q 

Step 7 Store w, t, p and q in W, T, P and q respectively 
Step 8 Return to step 1 until reaching k latent variables 
Step 9 Compute the regression coefficients: b = WT (PWT)−1 Q 

In this work, the maximum number of LVs in PLS regression is set to 8 to prevent overfitting. Variable importance 11 

in projection (VIP) is a popular variable selection method which accumulates the importance of each variable 12 

being reflected by the loading weights w from each LV [23]. The VIP score of the j-th variable is defined as: 13 

 𝑉𝐼𝑃$ = &𝑀∑ (𝑤$+, 𝑞+,(𝒕+/𝒕+)/||𝒘+
,||)4

+56 /∑ 𝑞+,(𝒕+/𝒕+)4
+56   (1) 

where M is the number of variables and K is the number of LVs in PLS model. Generally, a variable should be 14 

selected if its VIP score is above 1, but a proper threshold above 0.8 is frequently used and can yield more relevant 15 

variables.  16 

To assess the accuracy of regression models, the coefficient of determination and the root-mean-square errors of 17 

calibration (R2C and RMSEC), cross-validation (R2CV and RMSECV) and prediction (R2P and RMSEP) are 18 

calculated as follows: 19 

 𝑅, = 1 −
∑ (𝑦;< − 𝑦<),=
<56

∑ (𝑦;< − 𝑦>),=
<56

 (2) 
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 𝑅𝑀𝑆𝐸 =	B
∑ (𝑦;< − 𝑦<),=
<56

𝑁  (3) 

where N is the number of samples, 𝑦;< is the predicted value of the i-th sample, 𝑦<	is the reference value of the i-th 1 

sample, 𝑦> is the average value of response. Generally, high R2 and low RMSE values indicate that the regression 2 

models are well-performing.  3 

3. Results and discussion 4 

3.1. Video, spectral and image data 5 

Two sets of video data obtained under ambient light (a) and low-light (b) conditions are shown in Fig. 2. The 6 

video data has 525 variables in RGB colour channels and are averaged according to the levels of VO for better 7 

visualization. For each channel, variables with large numerical values indicates that its corresponding ROI image 8 

has a similar colour to the channel colour. A clear distinction between the averaged samples belonging to the 9 

different VO levels can be found in specific variable ranges, such as variables 100−150 for set-a and variables 10 

240−280 for set-b. In these intervals, samples with high VO levels usually has larger values than samples with 11 

low VO levels. As the two sets of data present a significant difference in spectral shape and colour levels, the 12 

regression model based on one set is inefficient when predicting data from another set due to the restricted 13 

applicability domain [24]. The two sets of data are further plotted according to the principal component analysis 14 

(PCA) scores (see Fig. 3), which clearly present different levels of adulteration. The first two principal components 15 

accumulate 79.9% and 52.6% of the total variance for two sets, respectively.  16 

 17 
Fig. 2. Average video data of non-adulterated and adulterated EVOO samples collected under ambient light (a) and low-light conditions (b). 18 
Variables 1-175, 176-350 and 351-525 belongs to red, green and blue colour channels, respectively.  19 

The raw and pre-processed NIR spectra of 77 oil samples are respectively shown in Fig. S2a and b. The distinction 20 

between samples having different VO levels cannot be visually perceived due to the scattering effects. We 21 

investigate several pre-processing techniques as well as their combinations to correct the baseline difference and 22 

improve prediction performance. These techniques include standard normal variate (SNV), spectrum conversion 23 

(SC) from absorbance to transmittance, Savitsky-Golay (SG) smoothing and first derivative. The SG filter using 24 
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second-order polynomial has a window width ranging from 5 to 25 with an increment of 2. After pre-processing, 1 

the averaged EVOO and VO data are shown in Fig. S2c where the two samples can be distinguished around the 2 

wavelength 1200nm. Fig. S3 shows the raw (a) and pre-processed (b) UV-Vis data. The same pre-processing 3 

techniques are investigated on the raw data. The averaged EVOO and VO samples present a clear distinction, 4 

especially after wavelength 570 nm, as shown in Fig. S3c. The PCA scatter plots of the NIR and UV-Vis data can 5 

be found in Fig. S4, where the UV-Vis data is more discriminative at the adulteration levels than NIR data. The 6 

main results of NIR and UV-Vis spectral data pre-processing will be given in Section 4.2.  7 

 8 
Fig. 3. PCA scatter plot of the video data using first two principal components: data collected under ambient light (a) and low-light (b) 9 
conditions. 10 

 11 
Fig. 4. Average histograms of EVOO samples adulterated with different levels of VO. Two sets of image data were respectively collected 12 
under ambient light (a) and low-light conditions (b).  13 

Two sets of oil image data collected in ambient light (a) and low-light (b) environments are depicted as RGB 14 

histograms. The non-informative columns with zero values were removed from the image data, resulting in 145 15 

and 86 variables for two sets, respectively. Samples are averaged according to the levels of VO for better 16 

visualization as shown in Fig. 4. The difference between the averaged data with varying VO concentrations mainly 17 

occurs in red and green colour channels. With the decrease of VO concentrations, the peak (highest frequency) of 18 

eleven samples mostly shifts from low numbers of variables to high numbers of variables in red and green colour 19 

channels. It indicates that the decomposed colour of the samples having low adulteration levels tends to be red or 20 
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green. However, the frequencies of histograms do not appear in the same way for two sets due to the inconsistent 1 

sampling environments. The PCA scatter plots of the NIR and UV-Vis data can be found in Fig. S5. 2 

3.2. Quantitative analysis  3 

The main results of PLS regression model on the raw and pre-processed data from NIR and UV-Vis spectroscopy 4 

are presented in Table 2. The three parameters in SG filter function are window width, polynomial order and 5 

derivative order (0: smoothing), respectively. The model based on raw NIR data has a poor performance (RMSECV 6 

= 0.0681, R2CV = 0.8147, RMSEP = 0.053 and R2P = 0.8878) due to the scattering effects. The baseline difference 7 

is efficiently corrected after normalization, resulting in a significant improvement of R2 (~0.929) in validation and 8 

prediction. If the absorbance spectra are converted into transmittance spectra, the results of R2 can be further 9 

improved by over 3%. Data smoothing reduces the RMSECV to some extent, however it may be at the risk of 10 

increasing RMSEP. The model based on raw UV-Vis spectra can quantify the adulterant level with high efficiency 11 

(RMSECV = 0.0168, R2CV = 0.9887, RMSEP = 0.0123 and R2P = 0.994). The SNV normalization slightly improves 12 

the performance measurements, while smoothing and the first derivative will not significantly improve the PLS 13 

regression model.  14 

Table 2. Performance measurements of PLS regression model for the prediction of VO concentration, using raw and pre-processed data from 15 
NIR and UV-Vis spectroscopy.  16 

  Pre-processing LVs RMSECV R2
CV RMSEP R2

P 

NIR Raw 8 0.0681 0.8147 0.053 0.8878 
 SNV 8 0.042 0.9295 0.0421 0.9292 
 SG (17,2,1) 8 0.0663 0.8244 0.054 0.8835 
 SG (17,2,1) + SNV 8 0.0362 0.9475 0.0459 0.9156 
 SNV + SC   8 0.0298 0.9646 0.0212 0.9819 
 SNV + SG (11,2,0) + SC  8 0.0256 0.9738 0.0253 0.9744 

  SNV + SC + SG (9,2,0) 8 0.0263 0.9724 0.0245 0.9759 

UV-Vis Raw 8 0.0168 0.9887 0.0123 0.994 
 SNV 8 0.0137 0.9925 0.0101 0.9959 
 SG (23,2,1) + SNV 8 0.0136 0.9926 0.0099 0.9961 

  SNV + SG (15,2,1) 6 0.014 0.9921 0.0091 0.9967 
 17 
Table 3. The performance parameters of PLS regression models for calibration, validation and prediction of VO adulteration in EVOO by 18 
different methods. 19 

Datasets LVs RMSEC R2
C RMSECV R2

CV RMSEP R2
P 

Video-1 5 0.0125 0.9937 0.0204 0.9834 0.0192 0.9853 

Video-2 4 0.0203 0.9836 0.0237 0.9776 0.0204 0.9833 

NIR 8 0.0152 0.9907 0.0263 0.9724 0.0245 0.9759 

UV-Vis 8 0.0054 0.9988 0.0137 0.9925 0.0101 0.9959 

Image-1 8 0.0175 0.9878 0.0336 0.9548 0.0288 0.9668 

Image-2 8 0.0193 0.985 0.0357 0.9491 0.0258 0.9734 
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The calibration, validation and prediction results of PLS regression on all datasets have R2 values greater than 1 

0.94 and RMSE less than 0.04, as shown in Table 3. The optimal number of LVs for video data does not exceed 2 

5, while that for other data is 8. To graphically visualize the quantification results of video, NIR, UV-Vis and 3 

image data, the predictions and the adulteration levels based on PLS regression models are plotted for validation 4 

and prediction, as shown in Fig. S6. For video datasets, the level of adulterant in EVOO is estimated with R2CV 5 

around 0.98 and the corresponding RMSECV around 0.02. The obtained models, when applied to the prediction 6 

sets, are capable in predicting VO adulteration with similar results. The regression model based on NIR data gives 7 

a degraded performance in validation (R2CV = 0.9724 and RMSECV = 0.0263) and prediction (R2P = 0.9759 and 8 

RMSEP = 0.0245) compared to the model based on video data. The most successful model is attained on UV-Vis 9 

data with robust statistical parameters (R2CV = 0.9925, RMSECV = 0.0137, R2P = 0.9959 and RMSEP = 0.0101). 10 

For image datasets, the regression models obtain R2CV values lower than 0.955 with the corresponding RMSECV 11 

higher than 0.03. Such models yield R2P below 0.975 and RMSEP above 0.025.   12 

3.3. Variable selection 13 

PLS regression model based on video data with full variables has proved the applicability of using smartphone 14 

videos for prediction of VO adulteration in EVOO. However, it could be difficult for the sensor system to be 15 

served as an efficient real-time system, because using smartphone to handle data with over hundreds of variables 16 

takes a long time and a high computational load. Therefore, an essential task to eliminate uninformative variables 17 

of video data is variable selection. Generally, the selection of important variables may not have much influence 18 

on the results, but have practical significance when developing real-time systems [25].  19 

The statistical parameters of PLS regression on all datasets with variables selected by VIP are given in Table 4. 20 

Over half of the variables are removed with a threshold of 0.8, which cause a slight decrease in the overall 21 

performance of PLS models. For video data, R2P of 0.98 with corresponding RMSEP of 0.02 is achieved by VIP 22 

(>0.8) and PLS regression, which is close to the results based on the overall variables. Variable selection and PLS 23 

regression model based on UV-Vis data maintains a good performance with the highest R2 values (>0.99) and the 24 

lowest RMSE (~0.01), while NIR and image data coupled with VIP and PLS regression reduce R2 values by up 25 

to 0.027.  26 

Table 4. The performance parameters of PLS regression on datasets using variables with VIP scores above the threshold value. 27 

Datasets LVs RMSEC R2
C RMSECV R2

CV RMSEP R2
P Threshold No. variables 

Video-1 5 0.0171 0.9884 0.0251 0.9749 0.0228 0.9792 0.8 208 

Video-1 5 0.0248 0.9754 0.0382 0.9416 0.0481 0.9073 Frames: 89−109 42 

Video-2 4 0.0213 0.9818 0.0248 0.9753 0.0215 0.9815 0.8 176 

Video-2 6 0.0180 0.9871 0.0276 0.9695 0.0331 0.9562 Frames: 89−109 42 

NIR 8 0.0153 0.9907 0.0288 0.9667 0.0275 0.9698 0.8 129 

UV-Vis 8 0.0062 0.9985 0.013 0.9932 0.0103 0.9958 0.8 433 

UV-Vis 4 0.013 0.9933 0.0147 0.9914 0.013 0.9933 3 7 

Image-1 6 0.0245 0.976 0.0368 0.9459 0.0347 0.9518 0.8 60 

Image-2 3 0.032 0.959 0.0449 0.9195 0.0433 0.925 0.8 40 



11 

 

The important variables of the two video datasets selected by VIP are depicted in Fig. 5a and b. These variables 1 

are in red and green colour channels in most cases. We merge all colour images appeared on the screen of 2 

smartphone into a colour spectrum, copy the colour spectrum for three times corresponding to the decomposed 3 

frames in RGB channels and display the obtained colour spectrum at the top of each subplot. The interval 4 

providing a good visualization of adulteration levels (see Fig. 2) usually has high VIP scores above 1.5, for 5 

example, interval 100−150 in red channel for set-a and interval 65−105 in green channel for set-b. A total of 121 6 

variables are jointly selected for the two sets (intervals 5−21, 89−109 and 161−175 in red channel and 44−109 in 7 

green channel), which contain common frames 89−109. These frames have VIP scores around 1.5 and are 8 

corresponding to the screen colours varying from yellow to orange, as shown in Fig. 5c. PLS models based on the 9 

common frames can yield R2 varying from 0.907 to 0.97 in validation and prediction.  10 

 11 
Fig. 5. Variable selection of two video datasets using VIP (a & b). The selected variables (VIP scores > 0.8) are highlighted in yellow. A 12 
colour spectrum of illumination corresponding to the variables is displayed at the top of each subplot. The screen colours of joint frames 13 

89−109 are depicted in c.  14 

Fig. 6 shows the VIP scores of UV-Vis data, with a visible colour spectrum corresponding to wavelengths 15 

380−666 nm displayed at top. The VIP scores of wavelengths after 500 nm globally exceed that of wavelengths 16 

before 500 nm. We set the threshold of VIP to 3 and select wavelengths 592.7, 619, 614.6, 638.6, 526.6, 570.4 17 

and 349.2 nm (VIP descending order) for modelling, yielding R2CV and R2P values above 0.99.  18 
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 1 
Fig. 6. Selection of important wavelengths using VIP (score > 3) on UV-Vis spectral data. A visible colour spectrum corresponding to 2 

wavelengths 380−666 nm is displayed at top.  3 

3.4. Discussion 4 

The sensor system based on smartphone videos and PLS regression effectively quantifies the minimum level of 5 

5% VO adulteration in EVOO with R2P value higher than 98%. Although the quality of smartphone videos is not 6 

high, the regression results based on smartphone videos significantly outperforms those based on CVS by 7 

capturing colour spectral information. Such spectral information covers a narrow range of wavelengths with low 8 

spectral resolutions (~380−740 nm with ~2 nm intervals) compared to NIR (901−1721 nm with 1.65 nm intervals) 9 

and UV-Vis (186−666 nm with 1.5 nm intervals) used in experiments. However, the result of the sensor system 10 

is comparable to that of the baseline spectrometers. The colour spectrum of the sensor system covers the important 11 

wavelengths which provide useful information for PLS regression models to distinguish unadulterated and 12 

adulterated samples.  13 

Our previous study captured smartphone videos under low-light conditions to reduce the influence of external 14 

light, while this study shows that PLS regression models based on the videos recorded under normal light and 15 

low-light conditions can yield similar results. Such a finding reduces the limitation of sampling conditions for the 16 

sensor system. However, a common problem of the sensor system as well as many other methods is that the 17 

constructed model cannot be used reliably under different measurement conditions. Therefore, it is necessary to 18 

control the intensity range of background light and to construct models capable of capturing sampling diversities. 19 

4. Conclusions 20 

In this work we use smartphone videos coupled with image processing and chemometrics to quantify the level of 21 

VO adulteration in EVOO. The actual and predicted values are highly consistent, yielding R2 of 0.98 with the 22 

corresponding RMSE of 0.02. To compare the performance of the sensor system and baseline techniques, PLS 23 

regression models are constructed from UV-Vis, NIR and image data for the same task. The results demonstrate 24 

that the sensor system yields comparable performance to UV-Vis and NIR spectrometers, and outperforms CVS. 25 

Moreover, over half of the uninformative variables of these data are removed using VIP to improve the simplicity 26 

of models.  27 
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As the sensor system provides a low-cost solution for detecting and quantifying the adulteration in EVOO, it can 1 

be further developed into a real-time and online system to help consumers fight against food fraud. For example, 2 

sample videos are recorded via smartphone, uploaded to server and analysed by chemometrics models. However, 3 

there are still some technical barriers to overcome. In particular, the analysis of data measured under different 4 

conditions poses a challenge to the robustness and effectiveness of models. Our future work will optimize the 5 

sensor system for sampling, build large datasets and apply deep learning models for EVOO authentication and 6 

quality assessment.  7 
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