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Abstract

In this work, we have explored growth-induced mechanical instability in an isotropic circular hyperelastic plate.
Consistent two-dimensional governing equations for a plate under a general finite strain are derived using a variational
approach. The derived plate equations are solved using the compound matrix method for two cases of axisymmetric
growth conditions – purely radial, and combined radial and circumferential growth. The effect of growth on the
buckling behaviour of the plate (in particular, the critical growth factor and the associated buckling mode shapes)
is investigated for different thickness values. These results are applicable to model growth induced deformation in
planar soft tissues such as skin.
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1 Introduction

Mechanical instabilities are ubiquitous in nature and often result in pattern formation in thin elastic structures. Classical
plate theories like Kirchhoff-Love theory, Föppl-von Kármán theory, and Mindlin-Reissner theory have been widely
used to study the instability behaviour of thin elastic structures (Coman and Haughton, 2006; Coman et al., 2015; Li
et al., 2010). These theories are based on apriori kinematic assumptions which are suitable for solving small strain
problems. Also, these theories when applied to plates under general loading conditions give inconsistent results due to
the underlying assumptions of displacement variation along thickness of the plate. To overcome the inconsistencies in the
classical plate theories, Kienzler (2002) developed the consistent plate theory using uniform approximation of unknown
variables based on linear elasticity. The consistent plate theory does not incorporate apriori kinematic assumptions and
all the coefficients are treated as independent unknown variables. However, small strain theories based on linear elasticity
principles are not suitable for finite strain problems. To alleviate these problems, a consistent finite-strain plate theory
was proposed by Dai and Song (2014). This approach was based on the principle of minimisation of potential energy
under general three-dimensional loading conditions. They derived the two-dimensional plate vector equation by employing
variational principle and series expansion of the independent variables about the bottom surface of a hyperelastic plate.
Wang et al. (2016) extended this approach to incompressible hyperelastic materials with extra unknown variables to
accommodate the incompressibility constraint. Mechanical instability is also a common phenomenon in morphoelastic
structures (Ben Amar et al., 2011) and soft biological tissues (Cao et al., 2012; Wu and Amar, 2015), which exhibit
non-linear mechanical response due to growth.

Growth not only changes the mass and geometry of structures but can also alter their mechanical properties and
stress state (Goriely, 2017). Growth can induce residual stresses inside the body which result in large deformations
leading to instabilities such as wrinkling, folding, creasing, and crumpling (Li et al., 2012). Residual stresses are self
equilibrating (Hoger, 1986; Ben Amar and Goriely, 2005) generally arising due to the incompatibility of growth. Goriely
and Ben Amar (2005) and Vandiver and Goriely (2009) studied the buckling of cylindrical elastic structures subjected
to differential growth and residual stresses. Dervaux et al. (2009) discussed the nonlinear behaviour of thin elastic
structures subjected to growth by considering Föppl-von Kármán plate theory. Moulton and Goriely (2011) investigated
the circumferential instability in differentially growing cylindrical elastic tube subjected to uniform pressure and evaluated
the critical pressure for buckling using an incremental theory. Papastavrou et al. (2013) investigated wrinkling in growing
surface by considering membrane with zero thickness in the derivation of potential energy. Wu and Ben Amar (2015)
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performed the bifurcation analysis of uni-directional growing disk reinforced with fibres and determined the effect of
fibre anisotropy on critical growth factor. Recently, Wang et al. (2018) derived a consistent finite-strain plate theory
for growth-induced large deformations and investigated the buckling and post-buckling behaviour of a thin rectangular
hyperelastic plate under axial growth.

Consistent plate theories with finite-strain have a wide range of applications as they incorporate bending as well as
stretching. They are suitable to approximate the behaviour of soft biological tissue such as skin (Tepole et al., 2011) and
their bifurcation properties under residual stress (Swain and Gupta, 2015, 2016). Skin undulation near the edges of wound
has been observed in healing experiments on mice (Nassar et al., 2012; Wang et al., 2013). Beyond biomedical applications,
the mechanics of instability with large deformations have important implications on wrinkling analysis of gossamer space
structures (Wang et al., 2009; Deng et al., 2019) when exposed to temperature gradients. Since the last decade, research
in understanding buckling/wrinkling instabilities during micro-fabrication in the field of flexible/stretchable electronics
such as sensory skins used in robotics and wearable communication devices (Rogers et al., 2010; Wei and Zhao, 2014)
has increased.

In this manuscript, we have used the consistent finite-strain plate theory given by Wang et al. (2018) to derive the
governing differential equations for circular isotropic hyperelastic plates. The symmetry of circular geometry allows
us to transform the resulting partial differential equations (PDEs) to ordinary differential equations (ODEs) while still
retaining the key aspects of mechanics. Our current focus is to comprehend the underlying mechanics of such systems. The
formulation is general and can be applied to other geometries by solving the resulting PDEs using numerical techniques
such as finite element method. Following the multiplicative decomposition approach proposed by Rodriguez et al. (1994),
the deformation gradient tensor is decomposed into growth tensor, describing change of mass or growth laws and elastic
deformation tensor that ensures compatibility (no overlaps) and integrity (no cavitation) (Goriely and Ben Amar, 2007).
The principle of minimum total potential energy is applied to derive the 3-D governing partial differential equations in the
polar coordinate system. These equations are reduced to two dimensions using a series expansion of unknown functions
in terms of the thickness variable. After establishing the governing equations, we study the instability behaviour of
neo-Hookean circular plates growing in radial as well as combined (radial and circumferential) direction. The traction
conditions at the bottom surface of plate is applied through a Winkler support in both the cases. The resulting system
of ODEs is stiff and standard shooting methods are not able to evaluate the bifurcation results accurately. To resolve
this problem, we have used the compound matrix method (Ng and Reid, 1979, 1985) to determine the critical point of
buckling.

The remainder of this paper is organised as follows. In Section 2, a general formulation for three-dimensional circular
plate is established using a variational formulation. The two-dimensional plate governing equations are derived by
eliminating the dependence on Z variable using Taylor’s expansion. In Section 3, we discuss two examples of growth-
induced instability in incompressible neo-Hookean circular plate. A detailed discussion of numerical results is provided
along with the comparison of existing analytical results for rectangular plate. Finally, we present our conclusions in
Section 4.

1.1 Notation used in this manuscript

Brackets: Three types of brackets are used. Round brackets ( ) are used to define the functions applied on parameters
or variables. Square brackets [ ] are used to clarify the order of operations in an algebraic expression. Curly brackets
{ } are used to define a set. Square brackets are also used for matrices and tensors. At some places we use the square
bracket to define the functional.
Symbols: A variable typeset in a normal weight font represents a scalar. A lower-case bold weight fonts denotes a
vector and bold weight upper-case denotes the tensor or matrices. Tensor product of two vectors a and b is defined as
[a ⊗ b]ij = [a]i[b]j . Tensor product of two second order tensors A and B is defined as either [A ⊗ B]ijkl = [A]ij [B]kl
or [A � B]ijkl = [A]ik[B]jl. Higher order tensors are written in bold calligraphic font with a superscript as AAA(i), where

superscript ‘i’ tells that the function is differentiated i + 1 times. For example, A(1)A(1)A(1) = ∂f(A)
∂A∂A is a fourth order tensor.

Operation of a fourth order tensor on a second order tensor is denoted as [A(1)A(1)A(1) : A]ij = [A(1)A(1)A(1)]ijkl[A]kl Inner product is
defined as a · b = [a]i[b]i and A ·B = [A]ij [B]ij . The symbol ∇ denotes the two-dimensional gradient operator. We use
the word ‘Div’ to denote divergence in three dimensions.
Functions: det(A) denote the determinant of the tensor A. tr(A) denote the trace of a tensor A. diag(a, b, c) denotes a
second order tensor with only diagonal entries a, b and c.

2 Governing equations for growing circular plate

Consider a thin circular plate with constant thickness 2h that occupies the region Ω× [0, 2h] in the reference configuration
B0 ∈ R3 and deforms to the current configuration Bt ∈ R3 as shown in Figure 1. Coordinates of a point in the reference
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Figure 1: Schematic of a circular plate under growth (a) Finite deformation due to growth (perspective) (b) Front view
of the plate in reference configuration with applied traction on the top, bottom, and side surfaces

.

configuration are given by R,Θ and Z and in the deformed configuration by r, θ and z. Radius of the plate in the
reference configuration is R0. Position vectors in the configurations B0 and Bt are denoted as X(R, Θ, Z) and x(r, θ, z),
respectively. The deformation gradient for a circular plate is defined as (Dai and Song, 2014)

F =
∂x

∂X
=
∂x

∂R
⊗ eR +

∂x

∂Θ
⊗ eΘ +

∂x

∂Z
⊗ k, (2.1a)

=
∂x

∂ζ
+
∂x

∂Z
⊗ k, (2.1b)

where ζ = ReR + ΘeΘ and k is the unit normal to the surface Ω in B0. The deformation gradient tensor can be
decomposed as (Rodriguez et al., 1994)

F = AG, (2.2)

where G represents growth tensor and A represents the elastic deformation tensor that ensures compatibility. We also
assume the plate to be incompressible and the incompressibility constraint is given by

L(F,G) = L0(FG−1) = L0(A) = det(A)− 1 = 0. (2.3)

The energy density per unit volume φ of the material is

φ(F,G) = JGφ0(FG−1), (2.4)

where JG = det(G) = det(F) describes the local change in volume due to growth and φ0(FG−1) is the elastic strain
energy density. The external work done by the traction is given as

V =

∫
Ω

q− · x(ζ, 0)dA+

∫
Ω

q+ · x(ζ, 2h)dA+

∫
∂Ωq

∫ 2h

0

q̃ · x(s, Z)dsdZ, (2.5)

where q+(respectively q−) represents the applied traction on top (respectively bottom) surface of region and q̃ represents
the traction on the lateral surface ∂Ωq × [0, 2h], ∂Ωq being the boundary along the lateral surface, and the symbol (·)
denotes the inner product. If we neglect the body force, the total potential energy functional (ψ) for incompressible plate
structure is

ψ[x(X), p(X)] =

∫
Ω

∫ 2h

0

JGφ0(FG−1)dV −
∫

Ω

∫ 2h

0

[
JG p(X)L0(FG−1)

]
dV − V, (2.6)

where p(X) is the Lagrange multiplier, associated with the incompressibility constraint. We apply the principle of
minimum potential energy and vanishing of the first variation with respect to x and p of the above functional results in
the governing equations

DivP = 0, in Ω× [0, 2h], (2.7a)

Pk
∣∣
Z=0

= −q−(ζ), Pk|Z=2h = q+(ζ), on Ω, (2.7b)

Pn = q̃(s, Z), on ∂Ωq × [0, 2h]. (2.7c)

and the incompressibility constraint (2.3). Here, n is the unit outward normal to the boundary ∂Ωq and P = JG
[∂φ0

∂A
-p∂L0

∂A

]
G−T is recognised as the first Piola Kirchhoff stress tensor. While deriving these equations, we have used the

assumption that the rate of deformation of the growth process is very small compared to the elastic deformation (Ben Amar
and Goriely, 2005; Wang et al., 2018), therefore the growth tensor G is assumed to be constant in time. Auxiliary
calculations are presented in Appendix A.
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2.1 Specialisation to two dimensions

To obtain the 2-D formulation of circular plate, we perform the series expansion of x and p in terms of Z about the
bottom surface, Z = 0 following the approach by Wang et al. (2018, 2019b)

x(X) = x(0)(ζ) + Zx(1)(ζ) +
Z2

2
x(2)(ζ) +

Z3

3!
x(3)(ζ) +

Z4

4!
x(4)(ζ) +O(Z5), (2.8)

p(X) = p(0)(ζ) + Zp(1)(ζ) +
Z2

2
p(2)(ζ) +

Z3

3!
p(3)(ζ) +

Z4

4!
p(4)(ζ) +O(Z5), (2.9)

where (·)(n) =
∂n(·)
∂Zn

∣∣∣∣
Z=0

(n = 0, 1, 2, 3, 4). Likewise, we write the Taylor’s expansion of the deformation gradient F, the

elastic deformation tensor A and the inverse transpose of the growth tensor G as

F = F(0)(ζ) + ZF(1)(ζ) +
Z2

2
F(2)(ζ) +

Z3

3!
F(3)(ζ) +O(Z4), (2.10a)

A = A(0)(ζ) + ZA(1)(ζ) +
Z2

2
A(2)(ζ) +

Z3

3!
A(3)(ζ) +O(Z4), (2.10b)

G−T = Ḡ(0)(ζ) + ZḠ(1)(ζ) +
Z2

2
Ḡ(2)(ζ) +

Z3

3!
Ḡ(3)(ζ) +O(Z4). (2.10c)

The recursion relation for the expansion coefficients in (2.10a) is expressed as

F(n) = ∇x(n) + x(n+1) ⊗ k. (n = 0, 1, 2, 3). (2.11)

Using (2.2) and (2.10a) - (2.10c) we obtain the expressions for higher derivatives of A as

A(0) = F(0)Ḡ(0)T , (2.12a)

A(1) = F(0)Ḡ(1)T + F(1)Ḡ(0)T , (2.12b)

A(2) = F(0)Ḡ(2)T + 2F(1)Ḡ(1)T + F(2)Ḡ(0)T , (2.12c)

A(3) = F(0)Ḡ(3)T + 3F(1)Ḡ(2)T + 3F(2)Ḡ(1)T + F(3)Ḡ(0)T . (2.12d)

Similarly, the expansion of the first Piola Kirchhoff stress tensor P is

P(x, p) = P(0)(x, p) + ZP(1)(x, p) +
Z2

2!
P(2)(x, p) +

Z3

3!
P(3)(x, p) +O(Z4), (2.13)

which can be written in component form ([P]ij = Pij) as

P
(0)
ij = JG

[
A(0) − p(0)L(0)

]
iα

Ḡ
(0)
αj , (2.14)

P
(1)
ij = JG

[[ [
A(1) − p(0)L(1)

]
iαkβ

A
(1)
kβ − p

(1)L(0)
iα

]
Ḡ

(0)
αj +

[
A(0) − p(0)L(0)

]
iα
Ḡ

(1)
αj

]
, (2.15)

P
(2)
ij = JG

[[
A(1)
ikαβA

(2)
αβ +

[
A(2) − p(0)L(2)

]
ikαβmn

A
(1)
αβA

(1)
mn − 2p(1)L(1)

ikαβA
(1)
αβ − p

(0)L(1)
ikαβA

(2)
αβ

− p(2)L(0)
ik

]
Ḡ

(0)
kj +

[
2A(1)

ikαβA
(1)
αβ − 2p(0)L(1)

ikαβA
(1)
αβ − 2p(1)L(0)

ik

]
Ḡ

(1)
kj

+

[
A(0) − p(0)L(0)

]
ik

Ḡ
(2)
kj

]
, (2.16)

withAiAiAi(A(0)) =
∂i+1φ0(A)

∂Ai+1

∣∣∣∣
A=A(0)

and LLLi(A(0)) =
∂L0(A)

∂Ai+1

∣∣∣∣
A=A(0)

. Further mathematical details of above calculations

are provided in Appendix B.
The two-dimensional governing system has x(·) and p(·) as unknown functions. In order to form a closed system of

equations, we write the boundary conditions (2.7b) at the bottom surface (Z = 0)

P(0)k
∣∣∣
Z=0

= P(0)(A)k = −q−, (2.17)
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and at top surface (Z = 2h)

Pk|Z=2h = P(0)k + 2hP(1)k + 2h2P(2)k +
4

3
h3P(3)k +O(h4) = q+. (2.18)

The stress equilibrium equation neglecting the body force and external traction is given by (2.7a)

DivP = 0,

∇ ·P +
∂

∂Z
[Pk] = 0,

(2.19)

where ∇ is the two-dimensional differentiation operator. Upon use of (2.13), we obtain a recursion relation for the first
Piola–Kirchhoff stress as

∇ ·P(n) + P(n+1)k = 0. (2.20)

The series expansion of unknown functions x(X) and p(X) have 19 unknowns with xn (n = 0, 1, 2, 3, 4) comprising 15
unknowns and pn (n = 0, 1, 2, 3) comprising 4 unknowns. Thus, a closed system of 19 equations for the solution of x
and p is derived from equilibrium equation, traction (bottom and top surface) boundary conditions (2.7a - 2.7c) and
incompressibility condition (2.3) as

L0(A(0)) = 0, (2.21a)

LLL(0)[A(1)] = 0, (2.21b)

LLL(0)[A(2)] +LLL(1)[A(1), A(1)] = 0, (2.21c)

LLL(0)[A(3)] + 3LLL(1)[A(1), A(2)] +LLL(2)[A(1), A(1), A(1)] = 0, (2.21d)

where LLL(0)[A(1)] = LLL(0) : A(1) = det(A)A−T : A(1). On subtracting the top (2.18) and bottom traction (2.17) condition
we obtain the equilibrium equation

∇ · P̄ = −q̄, (2.22)

where

P̄ =
1

2h

∫ 2h

0

PdZ = P(0) + hP(1) +
2

3
h2P(2) +O(h3),

q̄ =
q+ + q−

2h
.

P̄ is the average stress over the thickness, q̄ is the effective body force due to traction at top and bottom surface (see
Appendix A). Using Taylor’s expansion, the equilibrium equation (2.22) can be rewritten as (Wang et al., 2019a)

∇ ·P(0)
t + h∇ ·P(1)

t +
2

3
h2∇ ·P(2)

t +O(h3) = −q̄t,[
∇ · P̄

]
· k = ∇ ·

[
P(0)Tk

]
+ h∇ ·

[
P(1)Tk

]
+

2

3
h2∇ ·

[
P(2)Tk

]
+O(h3) = −q̄3,

 (2.23)

where the subscript ‘t’ represents the in-plane (or tangential) component of a vector or tensor, qt = q1eR + q2eΘ, q̄t =
q+
t + q−t

2h
and q̄3 =

q+
3 + q−3

2h
. Physically, Eq. (2.23) represents the balance of forces. The explicit expressions for x(2),

p(1) and x(3), p(2) in terms of x(0), x(1) and p(0) are given as

x(2) = −B−1f (2) −D(0)−1

LLL(0)
[
∇x(1)Ḡ(0)T −B−1f (2) ⊗ Ḡ(0)k + F(0)Ḡ(1)T

]
B−1LLL(0)Ĝ(0)k, (2.24)

p(1) = −D(0)−1

LLL(0)
[
∇x(1)Ḡ(0)T −B−1f (2) ⊗ Ḡ(0)k + F(0)Ḡ(1)T

]
, (2.25)

x(3) = −B−1f (3) + p(2)B−1LLL(0)Ĝ(0)k + 2p(1)B−1LLL(1)[A(1)]Ĝ(0)k + 2p(1)B−1LLL(0)Ĝ(1)k, (2.26)

p(2) = −D(0)−1

[
LLL(1)[A(1),A(1)] +LLL(0)

[
−B−1f (3) ⊗ Ḡ(0)k

]
+ 2p(1)LLL(0)

[
B−1LLL(1)[A(1)]Ĝ(0)k⊗ Ḡ(0)k

]
+ 2p(1)LLL(0)

[
B−1LLL(0)Ĝ(1)k⊗ Ḡ(0)k

]
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+LLL(0)
[
∇x(2)Ḡ(0)T + 2F(1)Ḡ(1)T + F(0)Ḡ(2)T

] ]
, (2.27)

where Ĝ(0) = JGḠ(0) and

Bαβ = JG

[
AAA(1) − p(0)LLL(1)

]
αiβj

[
Ḡ(0)k

]
i

[
Ḡ(0)k

]
j
, (2.28)

D(0) = LLL(0)
[
JGB−1LLL(0)Ḡ(0)k⊗ Ḡ(0)k

]
, (2.29)

f (2) = ∇ . P(0) +

[ [
AAA(1) − p(0)LLL(1)

] [
∇x(1)Ḡ(0)T + F(0)Ḡ(1)T

] ]
Ĝ(0)k +

[
AAA(0) − p(0)LLL(0)

]
Ĝ(1)k, (2.30)

f (3) = ∇ . P(1) +

[ [
AAA(1) − p(0)LLL(1)

] [
∇x(2)Ḡ(0)T + 2F(1)Ḡ(1)T + F(0)Ḡ(2)T

] ]
Ĝ(0)k

+

[ [
AAA(2) − p(0)LLL(2)

] [
A(1),A(1)

] ]
Ĝ(0)k +

[ [
AAA(1) − p(0)LLL(1)

] [
A(1)

] ]
Ĝ(1)k

+
[
AAA(0) − p(0)LLL(0)

]
Ĝ(2)k. (2.31)

3 Growth induced deformation

In this section, we discuss two cases of circular hyperelastic plate growing in only radial direction (Wu and Ben Amar,
2015) and combined radial and circumferential directions. We assume a constant growth function in both the cases.

3.1 Radial growth

Consider a thin isotropic circular plate which undergoes axisymmetric deformation (θ = Θ) with the position vector
x(r, θ, z) in deformed configuration. The series expansion of unknown functions r(R,Z), z(R,Z) and p(R,Z) in terms of
Z is written as

r(R,Z) = r(0)(R) + Zr(1)(R) +
1

2!
Z2r(2)(R) +

1

3!
Z3r(3)(R) +

1

4!
Z4r(4)(R) +O(Z5), (3.1)

z(R,Z) = z(0)(R) + Zz(1)(R) +
1

2!
Z2z(2)(R) +

1

3!
Z3z(3)(R) +

1

4!
Z4z(4)(R) +O(Z5), (3.2)

p(R,Z) = p(0) + Zp(1)(R) +
1

2!
Z2p(2)(R) +

1

3!
Z3p(3)(R) +

1

4!
Z4p(4)(R) +O(Z5), (3.3)

where we have used the notation r(n) =
∂nr

∂Zn
, z(n) =

∂nz

∂Zn
and p(n) =

∂np

∂Zn
.

We assume the plate to follow neo-Hookean elastic constitutive law given by

φ0(A) = C0

[
tr(ATA)− 3

]
, (3.4)

where C0 is the ground state shear modulus. On substitution of (2.2) in (3.4), the first Piola Kirchhoff stress P is obtained
as (see Appendix C )

P = JG

[
2C0A− pA−T

]
G−T . (3.5)

We can rewrite (2.23) in component form as

P
(0)
rR,R +

1

R
P

(0)
rΘ,Θ +

1

R

[
P

(0)
rR

]
+ h

[
P

(1)
rR,R +

1

R
P

(1)
rΘ,Θ +

1

R

[
P

(1)
rR

] ]
+O(h2) = −q̄1, (3.6)

P
(0)
θR,R +

1

R
P

(0)
θΘ,Θ +

1

R

[
P

(0)
θR

]
+ h

[
P

(1)
θR,R +

1

R
P

(1)
θΘ,Θ +

1

R

[
P

(1)
θR

] ]
+O(h2) = −q̄2, (3.7)

P
(0)
zR,R +

1

R
P

(0)
zθ,Θ +

1

R

[
P

(0)
zR

]
+ h

[
P

(1)
zR,R +

1

R
P

(1)
zΘ,Θ +

1

R

[
P

(1)
zR

] ]
+O(h2) = −q̄3. (3.8)

We can substitute the expression of stress from (2.22) and omit the higher order terms in h to get

2C0∇ ·
[
JGF(0)Ḡ(0)T Ḡ(0)

]
−∇ ·

[
p(0)JGF(0)−T

Ḡ(0)
]

+O(h) = −q̄. (3.9)
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Figure 2: Circular plate in reference configuration growing with growth factor λ resting on a Winkler foundation. (a)
Perspective view (b) Front view.

Consider constant radial growth given by the growth tensor G = diag(λ, 1, 1) that results in

[
Ḡ(0)

]
=


1

λ
0 0

0 1 0
0 0 1

 , [
F(0)

]
=


r(0)′ 0 r(1)

0
r(0)

R
0

z(0)′ 0 z(1)

 , JG = det(G) = λ. (3.10)

where a superposed prime denotes partial derivative with respect to R. Substituting (3.10) in (3.9) we obtain the
governing equation

2C0∇ · λ


r(0)′ 0 r(1)

0
r(0)

R
0

z(0)′ 0 z(1)




1

λ2
0 0

0 1 0
0 0 1

 − ∇ · p(0)λ
cofac(F(0))

det F(0)
+O(h) = −q̄. (3.11)

Note that for the sake of brevity, we do not explicitly represent the O(h) and O(h2) terms here but they are utilized for
calculations later in Section 3.1.2.

3.1.1 Plate supported by the Winkler foundation: Traction condition

We concern ourselves with a circular plate resting on a Winkler foundation as shown in Figure 2. Winkler foundation
models the elastic support provided to the growing plate. The top surface (Z = 0) of the plate is assumed to be traction-
free and the bottom surface, is supported by the Winkler foundation which provides a transverse load q+

3 = −K0λW0,
where K0 is the elastic constant of the foundation and W0 is the transverse (Z) component of the displacement. λ is the
growth multiplier which represents the fact that the traction is applied in the current grown configuration, as mass and
stress state of the plate changes due to growth.

For this case, the components of the effective body force (q̄) are given by

q̄1 = 0, (3.12)

q̄3 = − 1

2h
K0λ

[
z(0) + 2hz(1) +

1

2
[2h]2z(2) +

1

6
[2h]3z(3) − 2h

]
. (3.13)

The governing equations are obtained by substituting (3.13) in (3.11)

∂

∂R

[
2C0

r(0)′

λ
− p(0) r

(0)z(1)

R

]
+

1

R

[
P

(0)
rR − p

(0)

[
r(0)z(1)

R

] ]
+O(h) = 0, (3.14)

∂

∂R

[
2C0

z(0)′

λ
− p(0)

[
−r(0)r(1)

R

] ]
+

1

R

[
P

(0)
zR − p

(0)

[
−r(0)r(1)

R

] ]
+O(h)

= −K0λ

[
z(0)

2h
+ z(1) + hz(2) +

2

3
h2z(3) − 1

]
. (3.15)

Assuming simply supported condition along the edge of circular plate, the boundary conditions at the center R = 0 and
the edge R = R0 are given as

r(0)(0) = 0, r(0)(R0) = R0, r(0)(0) + [2h]r(1)(0) +
1

2
[2h2]r(2)(0) = 0, (3.16)
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where the unknown variables in terms of r(0) and z(0) are given as

r(1) = − λz(0)′

r(0)

R

[
z(0)′2 + r(0)′2

] , z(1) =
λr(0)′

r(0)

R

[
z(0)′2 + r(0)′2

] , p(0) =
2C0λ

2[
r(0)

R

]2 [
z(0)′2 + r(0)′2

] . (3.17)

The explicit expressions for r(1), z(1), p(0) are derived in Appendix C.

3.1.2 Stability analysis

The principal solution for plate deformation is given by

r(0)(R) = R, z(0)(R) = −2h[λ− 1], (3.18)

where the second equation ensures that the Z displacement of the lower surface vanishes, that is z(0) + 2hz(1) − 2h = 0

and in the homogeneous deformation we get the non zero quantity z(1) = λ (because r(0)′ = 1 and z(0)′ = 0). A small
perturbation in the homogeneous equilibrium state by a parameter ε results in

r(0)(R) = R+ ε∆U(R) and z(0)(R) = −2h[λ− 1] + ε∆W (R). (3.19)

We define

m =
q+ − q−

2
= P(0)k + hP(1)k + h2P(2)k +O(h3). (3.20)

To simplify our calculations, we eliminate the terms with P(2) in equation (2.23) by subtracting the divergence of (3.20)
from (2.23)2 (Wang et al., 2019a). We keep the terms that correspond to bending and obtain

∇ ·P(0)
t + h∇ ·P(1)

t = −q̄t, (3.21a)

∇ ·
[
(P(0)Tk)− (P(0)k)

]
+ h

[
∇ ·
[
(P(1)Tk)− (P(1)k)

] ]
+

1

3
h2∇ · [∇ ·Pt

(1)] = −q̄3 −∇ ·mt, (3.21b)

where mt is the tangential component of m. Physically, Eq. (3.20) represents the balance of moments.
We define the dimensionless quantities

ρ =
R

R0
, h̄ =

h

R0
, U =

∆U

R0
, W =

∆W

R0
, (3.22)

where ρ ∈ [0, 1] and R0 is radius of circular plate in the reference configuration. On substituting the ansatz (3.19) in
(3.14)1 and (3.21b), simplifying using (3.17), (3.22) and collecting only O(ε) terms

2

λ
[1 + 3λ4]U ′′ +

2

ρλ
[1 + 5λ4]U ′ − h̄

[
4[1 + λ4]W ′′′ +

2

ρ

[
1 + 5λ4

]]
= 0. (3.23)

2

λ
[1− λ4]W ′′ +

2

ρλ
[1− λ4]W ′

− h̄
[

4

ρλ

[
4λ5 − 4λ4 + λ− 1

]
U ′′ +

4

ρ2

[
λ4 − 1

]
U ′ − 4

ρ3

[
λ4 − 1

]
U

]
− 2

3
h̄2

[
2[1 + λ4]W iv +

1

ρ

[
3 + 7λ4

]
W ′′′

]
− βλ

2h̄
W + βλ2U ′ +

βλ2

ρ
U − h̄β[2λ4 − 1]

ρλ
W ′ − h̄βλ3W ′′

− 2

3
h̄2β

[
4

ρ

[
1 + λ4

]
U ′′ − 1

ρ2

[
2λ4 − 3

]
U ′ +

1

ρ3

[
2λ4 − 3

]
U

]
= 0. (3.24)
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where β =
K0

C0
R0 is a non-dimensional constant. The higher order derivative of in-plane displacement term is omitted

for simplification. The plate boundary conditions (3.16) is given as

U(0) = W ′(0) = W ′′′(0) = 0,

U(1) = W (1) = W ′′(1) = 0.
(3.25)

Equations (3.23) and (3.24) are coupled ODEs and can be written as a system of first order ODEs by defining

U = y1, U ′ = y2, W = y3, W ′ = y4, W ′′ = y5, W ′′′ = y6. (3.26)

The system of first order ordinary differential equations is written in the form of

Y′ = AAA (ρ;λ, h̄, β)Y, (3.27)

where Y = [∆U, ∆U ′, ∆U ′′, ∆W, ∆W ′, ∆W ′′] = [y1 y2 y3 y4 y5 y6] and AAA is given by

AAA =


0 1 0 0 0 0

A21 A22 A23 A24 A25 A26

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

A61 A62 A63 A64 A65 A66

 , (3.28)

where

A21 = 0, A22 =
λ

2(1 + 3λ4)

[
− 2

ρλ
[1 + 5λ4]

]
, A23 = 0, A24 = 0,

A25 =
λ

2(1 + 5λ4)

[
2h̄

ρ

[
1 + 5λ4

]]
, A26 =

λ

2(1 + 3λ4)

[
4h̄[1 + λ4]

]
A61 =

3

4h̄2[1 + λ4]

[
4h̄

ρ3
[λ4 − 1] +

βλ2

ρ
− 2

3

h̄2β

ρ3
[2λ4 − 3]

]
,

A62 =
3

4h̄2[1 + λ4]

[
− 4h

ρλ

[
λ[4λ5 − 4λ4 + λ− 1]

2[1 + 3λ4]

] [
− 2

ρλ
[1 + 5λ4]

]
− 4h

ρ2
[λ4 − 1]

+ βλ2 − 2

3
h̄2β

[
4λ[1 + λ4]

2ρ[1 + 3λ4]

[
− 2

ρλ
[1 + 5λ4]

]]
+

2

3
h̄2 β

ρ2
[2λ4 − 3]

]
,

A63 =
3

4h̄2[1 + λ4]

[
− βλ

2h̄

]
, A64 =

3

4h̄2[1 + λ4]

[
2

ρλ
[1− λ4]− hβ

ρλ
[2λ4 − 1]

]
,

A65 =
3

4h̄2[1 + λ4]

[
2

λ
[1− λ4]− 4h

ρλ

[
λ[4λ5 − 4λ4 + λ− 1]

2[1 + 3λ4]

] [
2h̄

ρ
[1 + 5λ4]

]
− hβλ3

− 2

3
h̄2β

[
4λ[1 + λ4]

2ρ[1 + 3λ4]

[
2h̄

ρ
[1 + 5λ4]

]]]
,

A66 =
3

4h̄2[1 + λ4]

[
− 4h

ρλ

[
λ[4λ5 − 4λ4 + λ− 1]

2[1 + 3λ4]

] [
4h̄[1 + λ4]

]
− 2

3

h̄2

ρ
[3 + 7λ4]

− 2

3
h̄2β

[
4λ[1 + λ4]

2ρ[1 + 3λ4]

][
4h̄[1 + λ4]

]]
.

We first determine the critical value of growth factor (λcr) that results in the onset of a bifurcation and then we discuss
the associated buckling modes. The system of first order ODEs (3.27) is treated as two-point boundary value problem.
This stiff eigenvalue problem is solved using the compound matrix method (Ng and Reid, 1979, 1985; Lindsay and Rooney,
1992; Haughton and Orr, 1997). Following the compound matrix approach, the system (3.27) is converted into 20 first
order equations of the form Φ′ = AAA ∗(ρ;λ, h̄, β)Φ (A detailed description of the solution procedure is given in Appendix
D)

Φ′1 = Φ2 + A22Φ1 −A24Φ5 −A25Φ6 −A26Φ7,
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Φ′2 = Φ3 + A22Φ2 + A23Φ5 −A25Φ8 −A26Φ9,

Φ′3 = Φ4 + A22Φ3 + A23Φ6 + A24Φ8 −A26Φ10,

Φ′4 = A22Φ4 + A23Φ7 + A24Φ9 + A25Φ10 + A63Φ1 + A64Φ2 + A65Φ3 + A66Φ4,

Φ′5 = Φ11 + Φ6,

Φ′6 = Φ12 + Φ8 + Φ7,

Φ′7 = Φ13 + Φ9 −A62Φ1 + A64Φ5 + A65Φ6 + A66Φ7,

Φ′8 = Φ14 + Φ9,

Φ′9 = Φ15 + Φ10 −A62Φ2 −A63Φ5 + A65Φ8 + A66Φ9,

Φ′10 = Φ16 −A62Φ3 −A63Φ6 −A64Φ8 + A66Φ10, (3.29)

Φ′11 = Φ12 + A21Φ5 + A22Φ11 + A25Φ17 + A26Φ18,

Φ′12 = Φ14 + Φ13 + A21Φ6 + A22Φ12 −A24Φ17 + A26Φ19,

Φ′13 = Φ15 + A21Φ7 + A22Φ13 −A24Φ18 −A25Φ19 + A61Φ1 + A64Φ11 + A65Φ12 + A66Φ13,

Φ′14 = Φ15 + A21Φ8 + A22Φ14 + A23Φ17 + A26Φ20,

Φ′15 = Φ16 + A21Φ9 + A22Φ15 + A23Φ18 −A25Φ20 + A61Φ2 −A63Φ11 + A65Φ14 + A66Φ15,

Φ′16 = A21Φ10 + A22Φ16 + A23Φ19 + A24Φ20 + A61Φ3 −A63Φ12 −A64Φ14 + A66Φ16,

Φ′17 = Φ18,

Φ′18 = Φ19 + A61Φ5 + A62Φ11 + A65Φ17 + A66Φ18,

Φ′19 = Φ20 + A61Φ6 + A62Φ12 −A64Φ17 + A66Φ19,

Φ′20 = A61Φ8 + A62Φ14 + A63Φ17 + A66Φ20.

The initial condition for the system of equations (3.29) is

Φ(0) =
[
Φ1,Φ2,Φ3,Φ4,Φ5,Φ6,Φ7,Φ8,Φ9,Φ10,Φ11,Φ12,Φ13,Φ14,Φ15,Φ16,Φ17,Φ18,Φ19,Φ20

]
. (3.30)

The target condition is achieved by having det(CM) = 0 in order to obtain the non-trivial solution, where matrix C
corresponds to the boundary condition at the edge of circular plate (3.25) and M is the solution matrix

C =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 and M =



y
(1)
1 y

(2)
1 y

(3)
1

y
(1)
2 y

(2)
2 y

(3)
2

y
(1)
3 y

(2)
3 y

(3)
3

y
(1)
4 y

(2)
4 y

(3)
4

y
(1)
5 y

(2)
5 y

(3)
5

y
(1)
6 y

(2)
6 y

(3)
6


. (3.31)

For the current case, the corresponding initial conditions using (3.25) are given by Φ(12) = 1 and rest all are zero. Then,
we integrate the system numerically in the interval of 0 < ρ ≤ 1 until we achieve the target condition on the other
boundary which is given by det(CM)=(1,3,5)=Φ(6) = 0 (see Appendix D). The main objective of this optimization
problem is to determine the critical value of growth factor λcr for which the target value Φ(6) is zero.

3.1.3 Results and discussion

In this section, the buckling behaviour of a circular hyperelastic plate due to radial growth rested on Winkler foundation
is presented. In order to validate our numerical scheme based on the compound matrix method, we first evaluate the
onset of buckling of a rectangular plate under uni-directional growth for which an analytical solution has been provided
by Wang et al. (2018).

a) Comparison of numerical results and analytical results for rectangular plate

Consider a rectangular plate of thickness 2h clamped at the ends X = ±1 and supported by a Winkler foundation as
shown in Figure 3. The plate grows along the X-axis with a growth stretch λ. The compression effects due to the clamped
boundary condition lead to buckling.

The governing plate differential equation is given by (Wang et al., 2018)

ψ0∆W + ψ2∆W ′′ + ψ4∆W ′′′′ = 0, (3.32)
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Figure 3: Schematic of a rectangular plate resting on Winkler foundation and clamped at X = ±1.
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Figure 4: a) Bifurcation curves for various modes of rectangular plate (Wang et al., 2018). b) Variation of the critical
value of growth factor (λcr) against thickness to length ratio (h) evaluated using the compound matrix method. c) Direct
comparison of (a) and (b).

where

ψ0 =
α

2h
,

ψ2 =
1

λ2 + 3λ6

[
λ4 − 1

[
2 + [6 + hα]λ4

] ]
,

ψ4 =
4h2

3 + 9λ4

[
3 + hα+ [2 + 3hα]λ4 + [3 + 2hα]λ8

]
,

subjected to the boundary conditions

∆W ′(−1) = ∆W ′(1) = 0, ∆W ′′′(−1) = ∆W ′′′(1) = 0. (3.33)

The analytical results of bifurcation curves for various buckling modes is shown in Figure 4a. For thick plates
(h > 0.15), the first fundamental mode dominates. As we lower the value of h, the higher modes (n = 2, 3, . . . ) are more
stable. Figure 4b represents the variation of critical value of growth factor (λcr) with respect to thickness to length ratio
(h) obtained by solving (3.32)–(3.33) using compound matrix method. Also, the numerical compound matrix method
solution of (3.21a) and (3.21b) specialized to a rectangular plate geometry provides the same result. The λcr variation is
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Figure 5: a) Variation of critical growth factor λcr with dimensionless thickness h̄ for β = 0.2. b) Enlarged part of (a).
The thickness values h̄1 and h̄2 correspond to the critical points of mode switching.
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Figure 6: Normalised bifurcation mode shapes for circular plate under radial growth (a) Normalised out-of-plane dis-
placement W . b) Normalised in-plane displacement U .

non-monotonous and has discontinuous derivatives at certain thickness values which suggests the phenomenon of mode
jumping from high energy state to a lower one associated with changes in mode shape. We conclude that the peaks in
Figure 4b that represent the transition of modes i.e., for thin plates, the higher modes are more stable than the lower
modes. In Figure 4c, we superpose the numerical results on the analytical curves for direct comparison. It can be seen
that the analytical and numerical results are in a near perfect agreement which shows the efficacy of the compound matrix
method.

b) Numerical results for circular plate with radial growth

The compound matrix method is used to compute the buckling parameter (λcr) of the circular hyperelastic plate under
radial growth condition. The variation of critical growth factor (λcr) with respect to normalized thickness is shown
in Figure 5. The results show the non-monotonous nature of λcr variation and the points at which the mode jump
phenomenon happens at certain plate thicknesses. Based on the above results, the graph can be divided into 3 regions of
thickness in which a particular mode is dominant over the other modes. In the region 3, which corresponds to lower plate
thickness, a higher order mode and for higher plate thickness, the lower order mode dominates the buckling behaviour.
Next, we determine the mode shapes corresponding to the 3 regions defined in Figure 5.

To obtain the mode shapes, the Matlab ODE package bvp4c is used for solving the equations (3.23) and (3.24)
subjected to boundary condition (3.25) at the critical point. Equations (3.23) and (3.24) are rewritten into a first order
form of Y′ = AAA Y, where Y = [y1, y2, y3, y4, y5, y6] = [U, U ′, W, W ′, W ′′, W ′′′] where AAA is given by (3.28) and
the boundary condition (3.25) is rewritten as

ya(1) = 0, yb(1) = 0, ya(4) = 0, yb(3) = 0, ya(6) = 0, yb(5) = 0. (3.34)

where ya (respectively, yb) define the centre of the plate (respectively, edge of the plate).
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The mode shape results are obtained for a thickness value in the defined regions and the results are shown in Figure
6. In the region 3, a thickness h̄ = 0.024 is chosen for which λcr = 1.0218 is used to evaluate the mode shape of the
circular hyperelastic plate. At this value of h̄, a higher order mode shape (mode 3) exists and variation of out of plane
displacement amplitude in radial direction is shown in Figure 6. Similarly, the modes in the region 2 and 1 represented
by mode 2 and mode 1 are evaluated by choosing h̄ = 0.05, λcr = 1.0350 and h̄ = 0.2, λcr = 1.0611, respectively. Thus,
we conclude that the buckling parameter (λcr) of circular plate under radial growth is non-monotonic with higher order
modes in the thin plate regime and lower order modes in the thicker plate regime.

3.2 Combined radial and circumferential growth

In this second case, we assume a constant isotropic growth function λ (i.e., λrr = λθθ = λ) in both radial and circum-
ferential direction (Wu and Ben Amar, 2015). The isotropic growth tensor G = diag(λ, λ, 1) results in the following
kinematics

[
Ḡ(0)

]
=


1

λ
0 0

0
1

λ
0

0 0 1

 , [
F(0)

]
=



∂r(0)

∂R

1

R

∂r(0)

∂Θ
r(1)

r(0) ∂θ

∂R

r(0)

R

∂θ

∂Θ
r(0)θ(1)

∂z(0)

∂R

1

R

∂z(0)

∂Θ
z(1)


, JG = det(G) = λ2. (3.35)

On substituting (3.35) in the governing equation (3.9), we obtain

2C0∇ · λ2



∂r(0)

∂R

1

R

∂r(0)

∂Θ
r(1)

r(0) ∂θ

∂R

r(0)

R

∂θ

∂Θ
r(0)θ(1)

∂z(0)

∂R

1

R

∂z(0)

∂Θ
z(1)




1

λ2
0 0

0
1

λ2
0

0 0 1

−∇ · [p(0)λ2 cofac(F(0))

det F(0)

]

+ O(h) = −q̄, (3.36)

where the unknown variables in this case are calculated as

p(0) =
2C0λ

4∣∣∇x(0)∗∗
∣∣2 , r(1) =

p(0)∇x11

2C0λ2
, θ(1) =

p(0)∇x22

2C0λ2r(0)
, z(1) =

p(0)∇x33

2C0λ2
.

The explicit expressions for r(1), θ(1), z(1), p(0) are given in the Appendix E. Here, again we use the Winkler support on
the bottom surface of the plate with traction given by (3.13).

3.2.1 Linear buckling analysis for combined growth model

We conduct the linear bifurcation analysis by perturbing the principal solution with small parameter (ε) to determine
the onset of instability by assuming the form

r(0)(R,Θ) = R+ ε∆U(R) cos(mΘ),

θ = Θ, (3.37)

z(0)(R,Θ) = −2h[λ2 − 1] + ε∆W (R) cos(mΘ).

where m = 1, 2, 3... represents the mode number in the circumferential direction. On substituting (3.37) in (3.36), making
use of (3.21b) along with (3.13) which have the updated traction component as q+

3 = −K0λ
2W0 and collecting only O(ε)

terms, we obtain the coupled differential equations for dimensionless displacement functions U and W as

2[1 + 3λ6]U ′′ +
2

ρ
[1 + 5λ6]U ′ − 2

ρ2
[m2]U

− h̄
[
4λ2[1 + λ6]W ′′′ +

2

ρ
λ2
[
1 + 5λ6

]
W ′′ +

2

ρ2
m2λ2[λ6 − 2]W ′

− 2

ρ3
λ2m2[λ6 − 1]W

]
= 0, (3.38)
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Figure 7: Variation of the critical growth parameter λcr with normalised plate thickness h̄ and β = 0.2 for different
circumferential mode number (m).

2[1− λ6]W ′′ +
2

ρ

[
1− λ6

]
W ′ − 2

ρ2
m2[1− λ6]W − h̄

[
4

ρ

[
4λ8 − 4λ6 + λ2 − 1

]
U ′′

− 2

ρ2

[
2m2λ8 − 3m2λ6 − 2λ8 + 2m2λ2 −m2 + 2λ2

]
U ′

− 2

ρ3

[
λ2
[
2m2λ6 − 3m2λ4 + 2λ6 +m2 − 2

]]
U

]

+
2

3
h̄2λ2

[
− 2[1 + λ6]W iv − 1

ρ
[3 + 7λ6]W ′′′ +

m2

ρ2

[
3 + λ6

]
W ′′

+
3m2

ρ3

[
2λ6 − 1

]
W ′ +

m2

ρ4

[
λ6m2 − 3λ6 −m2 + 3

]
W

]

− βλ2

2h̄
W + βλ4 +

βλ4

ρ
U − h̄

ρ
β[2λ6 − 1]− h̄βλ6W ′′

− 1

3
h2λ2β

[
1

ρ
[7 + 6λ6]U ′′ − 1

ρ2
[9λ6 + 2m2 − 6]U ′ +

1

ρ3
[λ6 + 3m2 − 4]U

]
= 0. (3.39)

3.2.2 Results and discussion

The compound matrix method is applied to solve the governing equations to determine variation of the critical growth
factor (λcr) with respect to normalized thickness (h̄). The variation of critical buckling parameter (λcr) for different
circumferential mode numbers are given in Figure 7. The results shows that the higher modes arise for lower value of λcr
for all thicknesses. Also, the phenomenon of mode jump is not observed here as there is no intersection of the bifurcation
curves corresponding to different mode numbers. Furthermore, we note that the mode numbers in the case of combined
radial/circumferential growth appear explicitly in the governing equations as opposed to interpretation of mode numbers
in the purely radial growth case.
The normalized out of plane and in-plane displacement amplitude variation in the radial direction corresponding to each
circumferential mode number is shown in Figure 8 for a plate thickness of h̄ = 0.1. For this plate thickness, the bifurcation
curve corresponding to m = 10 mode is more stable as we conclude by analysing Figure 7. Other mode shapes may not
be achievable but are plotted for completeness.

Analysing the mechanics of a circular plate under radial growth and combined growth shows that the buckling
configuration of the plate changes with the increase of thickness in both the cases. The higher modes are more stable in
thin regime of the plate in the former case and the bifurcation solution corresponding to higher modes are more stable
for latter combined growth case regardless of the thickness. However, the critical value of bifurcation parameter (λcr) is
low in combined growth case for higher modes as compared to the purely radial growth case.
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Figure 8: Normalised bifurcation mode shapes for circular plate under combined radial and circumferential growth
(a) Normalised out-of-plane displacement W for mode numbers m = 2, 4, 6, 10 at h̄ = 0.1. (b) Normalised in-plane
displacement U for mode number m = 2, 4, 6, 10 at h̄ = 0.1.

4 Concluding remarks

Mechanical instabilities are often observed in thin films, elastic structures and in soft biological tissues. In this paper,
we have used a consistent finite-strain plate theory to investigate the buckling behaviour of incompressible circular
hyperelastic plate subjected to growth. A 3-D governing system of PDEs is converted into 2-D plate system using series
expansion in terms of the thickness variable. We consider two examples of growth-induced instability in neo-Hookean
circular plate under a) radial growth and b) combined radial/circumferential growth conditions. In both the cases, the
circular plate is resting on a Winkler support and subjected to simply supported boundary conditions. The compound
matrix method is used to evaluate the critical buckling growth factor of the hyperelastic plate. The numerical performance
of compound matrix method is validated by comparing the results with the existing analytical solution for rectangular
plate under uniform growth.

The variation of critical growth factor (λcr) with normalised thickness (h̄) for both the cases is evaluated numerically
and the results show that the plate buckles in different modes as we increase the thickness. In thin regime of the plate,
higher modes are more stable and in thick regime, lower modes are more stable for purely radial growth case. However,
in combined growth case the higher modes are more stable independent of the thickness of the plate.

The current work can be applied in modelling of thin soft biological tissues such as skin wrinkling during wound healing
and ageing, modelling of wrinkling patterns in thin deployable space structures and stretchable electronics. Constitutive
model considered in this paper is isotropic and biological materials are generally anisotropic heterogeneous materials. An
extension of the current analysis to account for more generally applicable material models will be taken up as a future
study. We have also restricted ourselves to determine the critical buckling load, but a post-buckling analysis may provide
insights on the magnitude of the out of plane deformation and the associated mode-switching response. These avenues
are currently under investigation and we will report our results in a suitable forum at a later stage.
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A Appendix: Expression for Piola stress

The average stress is given as

P̄ =
1

2h

∫ 2h

0

PdZ =
1

2h

∫ 2h

0

[
P(0) + ZP(1) +

Z2

2!
P(2) +

Z3

3!
P(3) +O(Z4)

]
dZ,

P̄ = P(0) + hP(1) +
2

3
h2P(3) +O(h3). (A.1)

Subtracting the top and bottom surface traction condition using (2.17) and (2.18)

Pk|Z=2h − Pk|Z=0 =P(0)k + 2hP(1)k + 2h2P(2)k +
4

3
h3P(3)k−P(0)k +O(h3) = q+ + q−,

=P(1)k + hP(2)k +
2

3
h2P(3)k =

q+ + q−

2h
+O(h3) = q̄. (A.2)

Using equilibrium equation

∇ · P̄ +
∂

∂Z

[
P̄k
]

= 0, (A.3)

where

∂

∂Z

[
P̄k
]

=
∂

∂Z

[
P(0)k + hP(1)k +

2

3
h2P(3)k +O(h3)

]
= P(1)k + hP(2)k +

2

3
h2P(3)k +O(h3).

Now, the Piola stress (P) is described in terms of strain energy function (φ(F,G) = JGφ0(A)) as

P =
∂φ(F,G)

∂F
− p∂L(F,G)

∂F
= JG

[
∂φ0(A)

∂F
− p∂L0(A)

∂F

]
= JG

[
∂φ0

∂A

∂A

∂F
− p∂L(A)

∂A

∂A

∂F

]
= JG

[
∂φ0

∂Aij

∂[FG−1]ij
∂Flm

− ∂ det(A)

∂Aij

∂[FG−1]ij
∂Flm

]
= JG

[
∂φ0

∂Aij

∂Fik
∂Flm

G−1
kj − p det(A)A−Tij

∂Fik
∂Flm

G−1
kj

]
,

= JG

[
∂φ0

∂Aij
δilδkmG−1

kj − pA
−T
ij

∂Fik
∂Flm

G−1
kj

]
= JG

[
∂φ0

∂Aij
δilG

−1
mj − pA

−T
ij δilG

−1
mj

]
=

[
JG

[
∂φ0(A)

∂A

]
lj

G−1
mj − pA

−T
lj G−1

mj

]
= JG

[
∂φ0(A)

∂A
G−T − pA−TG−T

]
,

= JG

[
∂φ0(A)

∂A
− pA−T

]
G−T .

(A.4)

The series expansion for Piola Kirchhoff stress (P) is given as

P(x, p) = P(0)(x, p) + ZP(1)(x, p) +
Z2

2
P(2)(x, p) +

Z3

3!
P(3)(x, p) +O(Z4). (A.5)

Using (2.10c) and (A.5) we have

P(x, p) = JG

[
∂φ0(A)

∂A
− p∂L0(A)

∂A

] [
Ḡ(0)(ζ) + ZḠ(1)(ζ) +

Z2

2
Ḡ(2)(ζ) +

Z3

3!
Ḡ(3)(ζ) +O(Z4)

]
. (A.6)
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Substituting expansion of φ0(A) and L0(A) about A(0) we obtain

P(x, p) = JG

[
∂

∂A

[
φ0(A) +

∂φ0

∂A
[A−A(0)] +

1

2!

∂2φ0

∂A∂A
[A−A(0), A−A(0)]

+
1

3!

∂3φ0

∂A∂A∂A
[A−A(0), A−A(0), A−A(0)

]
−
[
p(0) + Zp(1) +

Z2

2
p(2) +

Z3

3!
p(3) +

Z4

4!
p(4) +O(Z4)

]
×[

∂

∂A

[
L0(A) +

∂L0

∂A
[A−A(0)] +

1

2!

∂2L0

∂A∂A
[A−A(0), A−A(0)]

+
1

3!

∂3L0

∂A∂A∂A
[A−A(0), A−A(0), A−A(0)]

] ]
[
Ḡ(0)(ζ) + ZḠ(1)(ζ) +

Z2

2
Ḡ(2)(ζ) +

Z3

3!
Ḡ(3)(ζ) +O(Z4)

]
.

(A.7)

Substituting expression for [A−A(0)] using (2.10b) and compare the terms

P(0)(x, p) = JG

[
AAA(0) − p(0)LLL(0)

]
Ḡ(0),

P(1)(x, p) = JG

[[
AAA(1)[A(1)]− p(0)LLL(1)[A(1)]− p(1)LLL(0)

]
Ḡ(0) +

[
AAA(0) − p(0)LLL(0)

]
Ḡ(1)

]
,

P(2)(x, p) = JG

[[
AAA(1)[A(2)] +AAA(2)[A(1), A(1)]− 2p(1)LLL(1)[A(1)]− p(0)LLL(1)[A(2)]

− p(0)LLL(2)[A(1),A(1)]− p(2)LLL(0)

]
Ḡ(0)

+

[
2AAA(1)[A(1)]− 2p(0)LLL(1)[A(1)]− 2p(1)LLL(0)

]
Ḡ(1) +

[
AAA(0) − p(0)LLL(0)

]
Ḡ(2)

]
.

(A.8)

where AAAi(A(0)) =
∂i+1φ0(A)

∂Ai+1

∣∣∣∣
A=A(0)

and LLLi(A(0)) =
∂R0(A)

∂Ai+1

∣∣∣∣
A=A(0)

B Appendix: Expression for Li

LLL(0)(A) =
∂ det(A)

∂A
= det(A)A−T = det(A)A−Tab ea ⊗ eb,

LLL(1)(A) =
∂2 det(A)

∂A ∂A
= det(A)

[
A−T ⊗A−T

]
+ det(A)

[
T[−A−1 � A−T ]

]
,

= det(A)

[
A−Tab A

−T
cd −A

−1
bc A

−T
ad

]
ea ⊗ eb ⊗ ec ⊗ ed,

LLL(2)(A) =
∂3 det(A)

∂A ∂A ∂A

= det(A)

[
A−Tab A

−T
cd A

−T
ef −A

−T
cb A

−T
ad A

−T
ef −A

−T
eb A

−T
af A

−T
cd

−A−Tab A
−T
ed A

−T
cf +A−Teb A

−T
cf A

−T
ad +A−Tcb A

−T
ed A

−T
af

]
ea ⊗ eb ⊗ ec ⊗ ed ⊗ ee ⊗ ef .

where,

[A⊗B]abcd =
[
AabAcd

]
ea ⊗ eb ⊗ ec ⊗ ed,

[A � B]abcd =
[
AacAbd

]
ea ⊗ eb ⊗ ec ⊗ ed,

[T[A � B]]abcd = [AbcAad]ea ⊗ eb ⊗ ec ⊗ ed.

and Tijkl = δilδjk.
Note: In this current work, we assume incompressible material thus, det(A) = 1
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C Appendix: Expression for x(1) and p(0)

For an incompressible neo-Hookean material elastic strain energy function is given as

φ0(A) = C0[I1 − 3],

φ0(A) = C0[tr(ATA)− 3], (C.1)

where I1 = tr(C) = tr(ATA) as elastic strain energy depends only on elastic deformation tensor (A) and tr(·) is trace
of a tensor (·). Using (A.4), the Piola stress (P) for incompressible neo-Hookean material is

P = JG

[
2C0[A]− pA−T

]
G−T , (C.2)

where

∂φ0(A)

∂A
= C0

[
∂

∂A

[
tr(ATA)− 3

]]
= C0

[
∂

∂Alm
(ATA)ii)

]
= C0

[
∂

∂Alm
(AijAij)

]
,

= C0

[
δilδjmAij +Aijδilδjm

]
= 2C0

[
Aijδilδjm

]
= 2C0 Alm = 2C0 A.

Now, the first term P(0) in (A.5) for neo-Hookean material is rewritten as

P(0) = JG

[
2C0A

(0) − pA(0)−T
]

Ḡ(0). (C.3)

By using bottom traction condition, P(0)k = −q− and substituting expression for A(0) we have

P(0)k = 2C0JGF(0)Ḡ(0)T Ḡ(0)k− JG p(0)F(0)−T

Ḡ(0)−1

Ḡ(0)k,

−q− = 2C0

[
∇x(0)Ḡ(0)T + x(1) ⊗ Ḡ(0)kĜ(0)k

]
− J (0)p(0)F(0)−T

k,

= 2C0

[
∇x(0)Ḡ(0)T (Ĝ(0))k +

[
Ḡ(0)k · Ĝ(0)k

]
x(1)

]
−
[
J (0)p(0) Cofac(F(0))

det(A(0))det(G(0))

]
k,

= 2C0∇x(0)Ḡ(0)T Ĝ(0)k + 2C0J
(0)
∣∣∣Ḡ(0)k

∣∣∣2 x(1) −
[
J (0)p(0) Cofac(F(0))

(1)J (0)

]
k. (C.4)

where J (0) = JG|Z=0. Traction at bottom surface is given as

−q− = 2C0∇x(0)Ḡ(0)T Ĝ(0)k + 2C0JG

∣∣∣Ḡ(0)k
∣∣∣2 x(1) − p(0)Cofac(F(0))k, (C.5)

where Cofac(F(0))k = Cofac(F (0))ijkjei. In this work, we use ∇x(0)∗ in place of Cofac(F(0))k and for deformation
gradient in polar coordinate system it is given by

∇x(0)∗ =
r(0)

R

[
∂θ

∂R

∂z(0)

∂Θ
− ∂θ

∂Θ

∂z(0)

∂R

]
e1 +

1

R

[
∂r(0)

∂Θ

∂z(0)

∂R
− ∂r(0)

∂R

∂z(0)

∂Θ

]
e2

+
r(0)

R

[
∂r(0)

∂R

∂θ

∂Θ
− ∂θ

∂R

∂r(0)

∂Θ

]
k. (C.6)

We know from (2.3)

det(A(0)) = 1 = det(F(0))det(Ḡ(0)T ),

det(F(0)) = det(Ḡ(0)−T

). (C.7)

As the definition of determinant

det(F(0)) =

[
r(1)e1 + r(0)θ(1)e2 + z(1)e3

]
· Cofac(F(0))k = x(1) · ∇x(0)∗ . (C.8)

By combining (C.7) and (C.8) we have

x(1) · ∇x(0)∗ = det
(
Ḡ(0)−T

)
. (C.9)
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Using (C.5) we obtain the explicit expression for x(1)

x(1) =
−q− − 2C0∇x(0)Ḡ(0)T Ĝ(0)k + p(0)∇x(0)∗

2C0JG
∣∣Ḡ(0)k

∣∣2 . (C.10)

To obtain the explicit expression for p(0) we substitute (C.10) into (C.9) which yields

p(0) =
2C0JG

∣∣Ḡ(0)k
∣∣2

detḠ(0)T
∣∣∇x(0)∗

∣∣2 +
[
q− + 2C0∇x(0)Ḡ(0)T Ĝ(0)k

]
· ∇x(0)∗∣∣∇x(0)∗

∣∣2 . (C.11)

D Appendix: General Description on Compound Matrix Method

Consider a two-point boundary value problem expressed in first order ordinary differential equations

dY

dX
= AAA (λ, x)Y, x ∈ (a, b) (D.1)

subjected to boundary condition

BY = 0, x = a,

CY = 0, x = b, (D.2)

where λ is the eigenvalue or critical buckling parameter, Y is 1× 2n vector, AAA is 2n× 2n matrix and B and C both are
n× 2n full rank matrices i.e., n boundary conditions are given at x = a, b. Assume{

y(1)(λ, x),y(2)(λ, x), ...,y(n)(λ, x)

}
, (D.3)

is set of n linearly independent solution (D.1) which satisfy the boundary condition at x = 0 and the general solution of
(D.1) can be written as the linear combination of its independent solution

y(λ, x) =

n∑
j=1

kjy
j , (D.4)

where k1, k2, ...kn are the constants. Solution matrix M to be 2n × n is define whose jth column is y(j) as M =
[y(1),y(2), ...y(n)], then (D.1) in terms of M is given

dM

dx
= [AAA y(1),AAA y(2), ...,AAA y(n)] = AAA M. (D.5)

The compound variables are defined as minors of M and denoted as Φ1,Φ2, ... and those are (2nCn) in numbers. For an
instance consider fourth order ODE (n = 2), then the solution matrix is

M =


y

(1)
1 y

(2)
1

y
(1)
2 y

(2)
2

y
(1)
3 y

(2)
3

y
(1)
4 y

(2)
4

 , (D.6)

and 6 minors of M

Φ1 = (1, 2) =

∣∣∣∣∣y(1)
1 y

(2)
1

y
(1)
2 y

(2)
2

∣∣∣∣∣ , Φ2 = (1, 3) =

∣∣∣∣∣y(1)
1 y

(2)
1

y
(1)
3 y

(2)
3

∣∣∣∣∣ ,
Φ3 = (1, 4), Φ4 = (2, 3), Φ5 = (2, 4), Φ6 = (3, 4). (D.7)

Using (D.1), the system of first order differential equation in terms of compound variable is

Φ′1 =

∣∣∣∣∣y(1)
1 y

(2)
1

y
(1)
2 y

(2)
2

∣∣∣∣∣
′

=

∣∣∣∣∣y(1)
1

′
y

(2)
1

′

y
(1)
2 y

(2)
2

∣∣∣∣∣+

∣∣∣∣∣y(1)
1 y

(2)
1

y
(1)
2

′
y

(2)
2

′

∣∣∣∣∣ ,
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=

∣∣∣∣∣
∑4
j=1 A1jy

(1)
j

∑4
j=1 A1jy

(2)
j

y
(1)
2 y

(2)
2

∣∣∣∣∣+

∣∣∣∣∣ y
(1)
1 y

(2)
1∑4

j=1 A2jy
(1)
j

∑4
j=1 A2jy

(2)
j

∣∣∣∣∣ ,
= A11Φ1 −A13Φ4 −A14Φ5 + A22Φ1 + A23Φ2 + A24Φ3. (D.8)

The system is now converted into (2nCn) ordinary differential equations which is in the form of

Φ′ = AAA ∗(λ, x)Φ, x ∈ (a, b). (D.9)

Subjected to initial condition at x = 0,

Φ(a) = [Φ1, Φ2, Φ3, Φ4, Φ5, Φ6] (D.10)

Now, if we consider sixth order ODE system (n = 3) then the solution matrix is defined as

M =



y
(1)
1 y

(2)
1 y

(3)
1

y
(1)
2 y

(2)
2 y

(3)
2

y
(1)
3 y

(2)
3 y

(3)
3

y
(1)
4 y

(2)
4 y

(3)
4

y
(1)
5 y

(2)
5 y

(3)
5

y
(1)
6 y

(2)
6 y

(3)
6


, (D.11)

where 20 minors of M are

Φ1 = (1, 2, 3), Φ2 = (1, 2, 4), Φ3 = (1, 2, 5), Φ4 = (1, 2, 6), Φ5 = (1, 3, 4),

Φ6 = (1, 3, 5), Φ7 = (1, 3, 6), Φ8 = (1, 4, 5), Φ9 = (1, 4, 6), Φ10 = (1, 5, 6),

Φ11 = (2, 3, 4), Φ12 = (2, 3, 5), Φ13 = (2, 3, 6), Φ14 = (2, 4, 5), Φ15 = (2, 4, 6),

Φ16 = (2, 5, 6), Φ17 = (3, 4, 5), Φ18 = (3, 4, 6), Φ19 = (3, 5, 6), Φ20 = (4, 5, 6).

The system of equation (D.9) is now numerically integrated using initial condition (D.10) which produces the solution
y(j) at x = b

Cy = C

n∑
j=1

kjy
(j)(b) = CMk = 0. (D.12)

For existence of non-trivial solution of differential equation (D.9)

det(CM) = 0. (D.13)

E Appendix: Expression for unknown variable for radial and circumfer-
ential growth

Using Eq. (C.11) we obtain the expression for p(0) as

p(0) =
2C0λ

4∣∣∇x(0)∗∗
∣∣2 , (E.1)

where ∇x(0)∗∗ = ∇x11e1 +∇x22e2 +∇x33e3 and

∇x11 =
r(0)

R

[
∂θ

∂R

∂z(0)

∂Θ
− ∂θ

∂Θ

∂z(0)

∂R

]
,∇x22 =

1

R

[
∂r(0)

∂Θ

∂z(0)

∂R
− ∂r(0)

∂R

∂z(0)

∂Θ

]
,

∇x33 =
r(0)

R

[
∂r(0)

∂R

∂θ

∂Θ
− ∂θ

∂R

∂r(0)

∂Θ

]
.

On substituting the p(0) in (C.10) we obtain

r(1) =
p(0)∇x11

2C0λ2
, θ(1) =

p(0)∇x22

2C0λ2r(0)
, z(1) =

p(0)∇x33

2C0λ2
. (E.2)
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