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Abstract

It is recognised that the majority of vegetative cover types have anisotropic 

reflectance characteristics that are largely a function of their canopy geometry. 

Several studies have made attempts at formulating methods for the use of data 

remotely sensed from off-nadir directions. The best of these methods attempt to 

utilise the "extra" information implicitly contained in off-nadir image datasets. In 

this study, an attempt is made to extract information concerning agro-physical 

parameters of a number of vegetative cover types using imagery acquired by an 

airborne sensor, the Daedalus Airborne Thematic Mapper (ATM).

It is also recognised in the literature that the nature of spatial variance in images 

is related to the size and distribution of the objects in the scene and the sampling 

characteristics of the sensor. In previous work this relationship has been explored 

by examining scenes using images of varying spatial resolutions, using a number 

of measurements of spatial variance. The underlying trend of these measurements 

is then used to interpret the nature of the objects in the scene.

No previous work exists which attempts to utilise the change in variance of images 

acquired at different off-nadir view angles. In this study, the understanding of this 

relationship is developed by examining the change in variance of a number of 

vegetative cover types from multiple view angle image datasets. The geometry of 

the ATM sensor is derived to allow an understanding of the sampling 

characteristics of the instrument. Two important geometric factors are established: 

first, the area of the ground resolution element increases with view angle, which 

effectively reduces spatial resolution at off-nadir angles; and second, overlap 

between adjacent ground resolution elements increases with view angle, increasing 

the spatial auto-correlation between these samples.

The effects of illumination, atmosphere and topography can all influence variance 

in an image. A parametric procedure for normalising multiple view angle (and 

therefore multitemporal) datasets for these factors is developed, based upon the 

production of reflectance images using a sky radiance model of the spectral and
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Abstract

spatial distributions of irradiance, ground measurements of irradiance, and a digital 

terrain model of the study site.

Finally, it is shown that image variance is likely to decrease at off-nadir view 

angles, the magnitude of this decrease being related to the sensor geometry and 

(more importantly) the geometry of the canopy. By a simple statistical analytical 

procedure it is possible to construct broad classes within which the nature of the 

canopy can be classified.
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Preface

’Space exploration has always served as a convenient whipping-boy to 
those needing money for some worthy cause, yet it is far less 
expensive than many a stuck-in-the-mud, down-to-earth technological 
failure. Unfortunately, the apologists for space science always seem 
over-impressed by the engineering trivia and make far too much of 
non-stick frying pans and perfect ball-bearings. To my mind, the 
outstanding spin-off from space research is not new technology. The 
real bonus has been that for the first time in human history we have 
had a chance to look at the Earth from space, and the information 
gained from seeing from the outside our azure-green planet in all its 
global beauty has given rise to a whole new set of questions and 
answers.’

(J.E. Lovelock, Gaia)

I  WmmWM

j

Figure 2.1: A full-swath Daedalus ATM image, band 1.
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CHAPTER 1: Introduction

1.1: Aims and objectives

• To provide a comprehensive and practicable method for the analysis and

utilisation of multiple view angle image data, to allow the application of 

these data in agriculture for crop inventory and management uses, with 

particular reference to wheat and barley crops in southern England.

• To assess the suitability of using component models of atmospheric,

topographic and illumination effects in the correction of multiple view angle 

imagery, and to move towards the development of an holistic physical 

modelling strategy for image correction in general.

• To develop a modelling strategy capable of using the ’additional* information

that may be contained in off-nadir data.

• To demonstrate that such data are useful in the context of mapping

agrophysical parameters in the United Kingdom.

1.1.1: Background

Remote sensing can provide valuable information to the agricultural community, at 

a local level to farm managers and agricultural materials suppliers (Wiegand et al., 

1986, Jackson et al., 1986), and at a regional scale to agricultural business 

conglomerates, federal and national governments, such as in this country the 

Ministry of Agriculture, Fisheries and Food (MAFF) (MacDonald and Hall, 1980, 

Heydom and Takacs, 1986, Wiegand et al., 1986, Gallo and Fesch, 1989), and 

international organisations, for example the European Community, United Nations 

Food and Agriculture Organisation (Tucker et al., 1985, Townshend and Justice, 

1986, Henricksen, 1986, Tucker and Choudhury, 1987). Each organisation will 

have its own requirements as to the nature of the information; scale, data 

presentation, accuracy, timeliness, and frequency of coverage are all considerations
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Chapter 1 Introduction

that must be made (Jackson et al., 1986). Farmers and farm managers are always 

interested in a tool which may aid them to increase yield, and therefore income 

and hopefully profitability. Remote sensing could contribute in two ways: first, it 

can help improve the statistical collection of data used in compiling regional or 

national figures for production; and second, it can be used to identify parcels 

where production is sub-optimal, and bring attention to these regions.

While a role for remote sensing in UK agriculture could be visualised, it would be 

almost impossible to realise it at the present time, considering the complex 

political and educational changes that would have to take place. In the future, 

however, farm management and government or consultative bodies could be trained 

to exploit this valuable data resource. It is in anticipation of this demand that the 

Remote Sensing community must explore the possibilities opened by new sensors, 

and in particular reference to the UK, oblique imaging sensors such as SPOT, 

NOAA AVHRR, HIRIS, MODIS-N and MODIS-T. So-called off-nadir1 geometric 

configurations provide a major advantage over other low-orbit satellite sensors, 

since theoretical imaging opportunities for locations on the Earth’s surface are 

increased. This improves temporal resolution of the instruments, an important 

factor in temperate, cloudy regions. The SPOT High Resolution Visible (HRV) 

sensor has a ±27°off-nadir pointing capability across track, and the Advanced Very 

High Resolution Radiometer (AVHRR) sensors, on board the NOAA series of 

satellite platforms, gather off-nadir data from a track 2700km wide with a 1110 

field of view (FOV) (figure 1.1). Further planned oblique imaging sensors include 

HIRIS and MODIS, to be launched in the 1990s as part of the NASA EOS 

campaign. Thus, it is no longer feasible to consider imagery to be collected under 

uniform geometric conditions.

A change of image geometry presents a challenge to the remote sensing 

community, namely to examine the nature of the reflectance of targets more 

closely, and also to examine the associated effect of view angle upon detected 

reflectance. Several studies have already been carried out with this intention 

(Salomonson and Marlatt, 1971, Barnsley, 1984a and b, 1985, Irons et al., 1987),

lItalicised terms, used for the first time, are explained further in the Glossary.

page 15



Chapter 1 Introduction

Sensor 
field of view

Figure 1.1: Off-nadir pointing and view geometries. Examples of off-nadir pointing 
sensors (left) are SPOT and HIRIS; off-nadir viewing instruments have wide fields 
of view, such as the AVHRR and the Daedalus ATM used in this study.
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Chapter 1 Introduction

and many ideas have been postulated about the usefulness of directional reflectance 

data, and about how the effects may be normalised (to preserve the current remote 

sensing paradigm) or enhanced and utilised (to examine a new dimension).

The aim of this study is to produce a practicable method for the use of multiple 

view angle data to measure agrophysical parameters for a restricted number of 

cover types. The result, the examination of change in image variance with 

increasing view angle, may not be the definitive solution, but it is a step towards 

the acceptance of the fact that off-nadir view angle data cannot be used in the 

current, conventional remote sensing framework for image analysis and 

interpretation.

1.2; Directional Reflectance

Directional reflectance is the general term used to describe the concept of angular 

reflectance properties of objects in a scene. Other specific terms are also used to 

describe this effect: ’ideal* targets may be diffuse - a property otherwise termed 

Lambertian or isotropic - or specular in their angular reflectance characteristics, 

although in reality they are usually a combination of the two properties, or 

anisotropic. Hypothetical descriptions of angular reflectance properties of targets 

are usually referenced as the Bidirectional Reflectance Distribution Function 

(BRDF) (Nicodemus, 1970) which is the theoretical description of rtfk^hfuct from a 

target over infinitesimally small solid angles, and so therefore cannot be measured 

directly. Conventional remote sensing strategies have tended to ignore the 

directional reflectance properties of targets on the Earth’s surface, because the 

geometric configuration of sensors has, in general, been of predominantly one type, 

namely nadir-pointing, and therefore only ever recorded one ’direction’, ignoring 

seasonal effects changing solar illumination geometry.

1.2.1: The interaction of directional reflectance and image geometry

Variable image geometry means variable effects on scene radiance due to 

atmosphere, illumination, topography, and canopy geometry. This must be

page 17



Chapter 1 Introduction

recognised before multi-scene analysis can be made (Moran et al.> 1988). The 

differences between any two images of the same scene can be explained by the 

temporal variation in any of these factors between data acquisition, and the 

differences in the geometry of Sun, target and sensor, the latter of which is 

detailed in chapter 3. Popular current thought assumes that given "minor" 

differences in geometry these differences can be wholly explained by time (giving 

rise to multi-temporal models, Kauth and Thomas, 1976, Pinter et al., 1981, and 

Kalayeh and Landgrebe, 1986, Campbell et al.> 1987), i.e. that image geometry has 

little effect on the radiance detected by the sensor (Curran and Williamson, 1985 

and 1987, Jones et al., 1988). This is shown to be a false assumption in chapter 4, 

by eliminating temporal variations between scenes of the same location acquired 

from different angles, such that the remaining differences in detected response are 

due to geometric differences in data collection. Chapter 5 then proceeds to analyse 

changes in image variance as a function of view angle, in an attempt to extract 

agrophysical parameters from multiple view-angle imagery. These three related 

themes constitute the major experiment in this study.

As yet, modulation of radiance due to view angle effect is not fully understood, 

despite numerous experimental measurement studies (section 2.2.2), and theoretical 

examinations and simulations of the problem (section 2.2.3). In this study, the 

differences due to view angle are identified and analysed for several canopies on a 

single farm (sections 3.1, 4.1.1), with a selection of planting dates and variety of 

topographic orientations. The radiometric differences are explained to as large a 

degree as is possible by the differences in atmosphere, illumination, topography 

and view angle (chapter 4). The remaining differences are then analysed to devise 

a strategy for the utilisation of multiple view-angle image data (chapter 5).

1.2.2: Present and future sensors

The Landsat series of sensors has a FOV of 14°; at the edge of the image data are 

acquired at a moderate view angle of 7° off-nadir. While with some illumination 

geometries (i.e. small solar zenith angles) this is unlikely to have any great effect, 

with low illumination the effect of image geometry could be greater. In general
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Chapter 1 Introduction

Landsat imagery does not present a major problem with regards to directional 

reflectance, indeed is probably the major reason for the tenacious existence of 

vertical geometry paradigms.

The SPOT HRV sensor provides a current example of off-nadir data collection. 

Although the FOV is more restricted than that of Landsat2, the ability to view up 

to ±27° (Chevrel et al.y 1981) means that off-nadir radiometric effects are more 

pronounced (for scene by scene comparison). However, some studies have claimed 

that the Sun-Target-Sensor (S-T-S) geometry for this sensor are not as bad (with 

regards view angle effect) as they could be for other future sensors (Barnsley and 

Muller, 1989).

1.2.3: Strategies for the use of off-nadir data

Two distinct strategies exist for the utilisation of multiple view angle data. The 

first, normalisation, attempts to correct data to a given "normal", usually taken to 

be the nadir view value - although occasionally the minimum value may be 

regarded as a datum. The second strategy, utilisation, emphasises that the 

relationship between view angle and data is determined by the interaction of the 

radiant flux and the canopy, summarised by the Bidirectional Reflectance 

Distribution Function of the surface, and that by understanding this process further 

information concerning the target can be extracted.

Normalisation strategies often take the form of non-parametric solutions, that is 

those that do not attempt to model the flux/canopy interaction, using knowledge of 

how reflectance is modulated by view angle, but instead concentrate on a 

posteriori predictions of the relationship between view angle and the parameter 

under investigation. Statistical techniques, such as the regression of polynomial 

functions are typical examples of these methods (Royer et al.y 1985, Morris and 

Barnsley, 1989, figure 2.7). Attempts at utilisation are usually parametric, trying to 

use an understanding of canopy geometry, and the consequent effects upon

24.3° (Baudoin and Brossier, 1983)
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reflectance, in model inversions that provide some information about the target. 

Normalisation techniques are unlikely ever to become parametric, since such 

methods would discard much of the valuable information that current remote 

sensing models can only divulge indirectly; essentially, parametric normalisation 

"throws out the baby with the bath water". The more logical approach, therefore, is 

to work towards a new, parametric, utilisation strategy that will allow the direct 

interpretation of agrophysical parameters that can be used as inputs for modelling 

of crop development and classification.

1.3: Application of remote sensing in agriculture

1.3.1: The use of remote sensing products in agriculture

Remote sensing has the capability to provide a synoptic "snapshot" of the Earth; it 

is well suited to overviews of larger areas than act as the focus for point studies, 

i.e of specific features. This is due to the quantised nature of the image, and the 

relative coarseness of the spatial resolution of most civilian sensors. Certainly with 

current satellite imagery, and to a lesser extent airborne data, the spectral and 

spatial characteristics of the sensors demand an interpretation of the data based 

upon models and inference (i.e. examination of band ratios, indices, spatial 

variations, classification) in order to extract meaningful information. High 

resolution sensors (in either spectral or spatial domain) could reduce this 

dependency upon inference, by allowing a more direct path to information 

extraction - at the expense of increased data quantities and processing times. This 

problem is discussed in chapter 6, where a new data collection strategy is proposed 

which would allow multiple view angle data to enhance the information already 

provided by remote sensing to agriculture.

On a small farm, the farm manager can inspect crops quickly and frequently, 

independent of weather conditions, programme requests etcy from the seat of a 

Land Rover. In Britain, this technique is highly satisfactory, and it is unlikely that 

any farmer should wish to exchange such a useful vehicle for a ground receiving
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station and an image processor. Crop inspection usually demands greater attention 

to detail than current sensors are capable of providing, and often indirect indicators 

(e.g. aphids, root inspections) are used to assess crop health and disease. Remote 

sensing therefore is likely to provide an interpretive tool for the consultant, perhaps 

in assessing drainage, nutrient supply, and management strategies on a farm or 

region basis. Of great significance is the type of information required for farm 

management, and the consequent timeliness of the data supply.

The exact nature of the information required by farmers and farm managers, 

therefore, is greatly dependent upon the management strategy adopted on each 

individual farm. Considering only the production of wheat or barley, for example, 

in the USA much of this crop is grown in semi-arid regions, and is heavily 

dependent upon irrigation. It is important that the farm management optimises the 

irrigation, to minimise costs and maximise yields. The timeliness of the remotely 

sensed data which could warn of water stress in a canopy is of great significance; 

for example, Jackson et al. (1986) cite a few hours as being the period of time 

after which the data has little value.

1.3.2; The need for remote sensing in agronomy

From a conventional remote sensing objective, classification, indices production and 

thematic mapping can be all carried out in an automatic or semi-automated 

manner, given ground and image data availability. These data are not of direct use 

to farmers; however, they are of great use to larger planning agencies, such as 

ministries, development agencies, or financial speculators in the agricultural 

produce market. The ability to predict and quantify future yields of crops, bought 

and sold on the global commodity market, is an extremely valuable one to certain 

groups of people. While it could help to solve, and more importantly avoid, 

regional shortages and major crop failures and their consequent devastating effects 

upon populations in marginal farming regions, the western world has also 

developed a powerful tool for the fine tuning of exploitation of these commodities, 

and the people who produce them. A final irony is that the populations most 

affected by agricultural catastrophes are usually without access to such technology,
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and therefore rely upon the generosity of the developed countries to provide them 

with forecasts or "now-casts" of impending disasters.

It is interesting, therefore, to note that economic decisions are cited as being of 

greatest importance for the development of the United States Department of 

Agriculture (USDA) LACIE program:

’International trade decisions based on inadequate information regarding 
the global food supply can have severe economic and social effects. In 
1972 and again in 1977, advance knowledge of the shortfall in the 
Soviet grain crop could have had a positive effect on the US economy, 
rather than the negative effect that resulted from the lack of good 
information.’

(MacDonald and Hall, 1980, p670)

That is, better forecasts would have resulted in more dollars. But in other cases, 

accurate, timely, agro-meteorological forecasting could be more than just beneficial 

to the US economy, and the emphasis could be shifted onto the "social", or more 

literally humanitarian, effects of disaster avoidance. Good forecasting, and even 

now-casting, can contribute effectively to the planning and execution of relief and 

aid programmes, avoiding unnecessary suffering caused often by "inadequate 

information" and delayed action. Two such examples are presented in the use of 

NOAA AVHRR data to analyse drought conditions in Ethiopia and the Sahel for 

the years 1983-1986 (Henricksen, 1986, Tucker and Choudhury, 1987). It is worth 

recalling, however, that the use of such image data demands the understanding of 

the implications of the distortions inherent in such a broad swath, high oblique 

view angle sensor.

1.3.3: Agriculturally oriented products

Until remote sensing comes to terms with understanding what farmers and 

consultants want, rather than publishing on what they can provide, remote sensing 

will remain peripheral to operational arable farming. A major stumbling block is 

the perception of a farmer’s tasks; these are complex and numerous on a large 

modem farm, the inter-relations of each decision in terms of the overall effect on
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the operability and profitability of the farm being close and fundamental. However, 

it might be noted that farms at present suffer from a substantial lack of 

management tools that could be a considerable aid; and that more sophisticated 

management tools could help the organisation of a farm, and indeed remote 

sensing could provide one of these tools.

While farmers are unlikely to take on the task of image interpretation themselves, 

they can benefit from particular products that remote sensing could offer. Among 

these that could at present be available are:

• Annually derived images showing relative productivity, or some simpler

index such as percentage cover - this would help identify areas within fields 

which are sub-optimal in production; it is likely that farmers are able to 

identify the reasons for such anomalies better than a remote sensing 

interpreter.

• Tailored data provided to farmers to help them plan more efficient use of

resources.

• Regional assessments of agricultural production, to enhance GIS database

management systems.

It is important to recall that, at the present, remote sensing seems unlikely to 

provide an automated method of crop assessment, and hence such products will 

remain too expensive for many farmers for some time. Some steps towards

automation have been made; however, the first successful systems integrating 

remote sensing (for example LACIE, cf. MacDonald and Hall, 1980, Wiegand et 

al. 1986, and AgRISTARS, May et al.y 1986) involved a considerable degree of 

manual image interpretation and person hours, and was best done by someone 

familiar with the agronomy of the region (farm and topography). While this may 

well actually be the farmer, the data, and the system used to produce it, must be 

able to produce information simple enough for the farmer or consultant to 

understand, interpret and include in their management analysis and decision 

making.
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1.4: Summary

Introduction

This chapter has briefly examined some of the requirements of agriculture for data 

collection that could, conceivably, be provided by remote sensing. In order to carry 

out these tasks in this country (and many others), full use must be made of the 

off-nadir viewing capabilities of current and future sensors. For these data to be 

applied successfully, the anisotropic directional reflectance properties of Earth 

surface materials must be better understood. Chapter 2 begins to review this 

problem, along with the associated effects of the atmosphere, topography and solar 

geometry upon image data. In conclusion, this section outlines a new strategy, 

based upon the collection of multiple view angle image data of parcels on the 

Earth surface, which attempts to utilise the anisotropic reflectance effects for 

information extraction.

Chapter 3 describes the chosen study site, in Gloucestershire, and the ground data 

collection strategy employed. Next, it is explained how the sensor used in this 

study, the Daedalus 1268 Airborne Thematic Mapper, can be used for a multiple 

view angle data collection task, and also how the geometry of the sensor is likely 

to effect such data. As well as deriving the operating geometry of the sensor, the 

chapter gives a first illustration of the relationship between view angle and image 

variance, discusses methods for geometric correction of airborne image data, and 

describes the method of radiometric calibration applied to the imagery.

In chapter 4, the use of reflectance images to remove the effects of different 

atmosphere, illumination geometry and topography between the different flightlines 

of data is explained and developed. It is demonstrated that the relationship between 

view angle and image variance is the same before and after conversion to 

reflectance data, indicating that the method used in this study to measure image 

variance - the coefficient of variation of parcels - gives a normalised measure for 

the sites used here. The problems of quantisation and the resultant corruption of 

sample population distributions is highlighted.

In the following section, chapter 5, the effect of scene variance and the sampling 

frequency of a sensor is discussed. A framework of models is outlined, derived
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from work by Woodcock (Woodcock and Strahler 1987, Woodcock, 1985), within 

which the results of the variance analysis can be interpreted. The effect of 

differing spatial resolutions upon image variance is tested for the data used in this 

study, prior to the analysis of the relationship between view angle and the coeffi­

cient of variation of test parcels for a number of different vegetative cover types. 

It is found that canopy structure has a significant effect upon the variance of an 

image when viewed from different angles, and a simple model is developed 

relating the general canopy type to this relationship, based upon the non-linear 

regression of these two variables. Possible extensions and improvements to this 

model conclude this chapter.

Chapter 6 discusses the possible application of multiple angle image data analysis 

using current and future sensor data. While most current sensors are not capable of 

providing data of adequate quality, in the future two sensors on the NASA EOS 

platform should provide high quality data that represent a significant improvement 

over current instruments for such analysis. Finally, chapter 7 summarises the 

findings and main conclusions of this study.
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CHAPTER 2: Remotely sensing directional reflectance
properties of Earth surface materials 

2.0: Introduction

Previous work has highlighted the importance of understanding the radiometric 

effects of viewing vegetation canopies at various angles if such data are to be used 

effectively for reflectance, classification or indices studies (Barnsley, 1984a, 

Wardley, 1984). Despite this, image data are frequently used without correct 

reference to, or acknowledgement of, these effects (see Curran and Williamson, 

1987, Callison et al.y 1987, Jones et al., 1988, and Williamson, 1989). With some 

remotely sensed data, it may be very apparent from the raw image data that the 

intensity of any pixel is a function of its sample number (i.e. related to view 

angle), as is the case with airborne MSS imagery (figure 2.1, 2.2). However, while 

the effects can be severe on a full scene scale, they may not be readily appreciated 

at a subscene level. For example, the field of view (FOV) of Landsat TM is 

approximately 14°; thus, 512x512 subscenes from either side of the full scene are 

not only 7° off nadir, but ±14° of each other. It is therefore unreasonable to 

expect detected radiance from similar cover types in these two subscenes to be the 

same.

SPOT-HRV data provide a more extreme example of the same problem. Although 

the FOV is more restricted (4.3°, Baudoin and Brassier, 1983), the ability to view 

off-nadir by up to 27° (Chevrel et al., 1981) means that off-nadir radiometric 

effects are (for a scene by scene comparison) worse than that for Landsat TM. 

Data acquired using scanners with a broad FOV, such as the NOAA-AVHRR 

series or airborne instruments like the Daedalus ATM, represent another level of 

image data attenuation and modulation (figure 1.1). All the problems experienced 

with SPOT-HRV data will be evident in a single image, since the sensor geometry 

for broad swath scanners causes each sample in a line to be acquired at a different 

view angle over a wide range of off-nadir angles. A greater understanding of these 

view angle effects, and how they are manifested in the image, must be obtained 

for off-nadir multispectral data to be used effectively.
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Figure 2.1: (see Preface, page 11) View angle effects in Daedalus ATM data, band 
1. Differences in contrast and mean DN values are evident across the swath, 
mainly as a result of atmospheric effects in this short waveband. Illumination from 
right of diagram. Flightline direction in all images is up the page.

Figure 2.2: (above) View angle effects on vegetation indices; field 29 going 
through changes in tone between view angles -28° (top left, viewing towards the 
Sun), -19° (top right), 5.5° (bottom left), and 27° (bottom right).
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In this study, a Daedalus ATM sensor (sec. 3.3) is used to examine the effects of 

broad-swath geometric configuration in a controlled field experiment. It is intended, 

as a result of these analyses, to demonstrate one possible strategy for the 

utilisation of anisotropic characteristics of canopy reflectance. This is a complex 

and, as yet, unsolved problem. As a result, much previous work has concentrated 

on the description of the factors affecting the radiance detected at the sensor, and 

several correction or normalisation (c/. 1.2.3) procedures developed. Section 2.1 

gives a general overview of the correction methods used, and the breakdown of 

these methods into "component" factors, while the following sections (2.2-2.5) will 

deal with each of these components in turn.

After this review, however, it will become apparent that image correction, based 

upon physical modelling, demands a high level of understanding of the processes 

that cause the anisotropic reflectance characteristics of most Earth surface 

materials. If this understanding is achieved, then it is a logical step to utilise this 

information, rather than ignore the extra dimension represented by such an 

advancement in image interpretation (Kimes, 1984, Kimes et al., 1984, 1986, 

Gerstl and Simmer, 1986, and Goel and Reynolds, 1989).

2.1: Image correction methods

Many general image correction strategies have been presented in the remote 

sensing literature. These range from non-parametric methods (Holben and Justice, 

1981, Crippen, 1987, 1988) to more physically-based analytical models (Woodham 

and Gray, 1987). As the understanding of the processes modifying scene 

reflectance has developed, there has been a move toward the latter approach 

(Woodham, 1989). An early paper, incorporating this ideology and perhaps 

instigating a move towards an holistic understanding of the general image 

correction problem, was published by Teillet (1986), and describes a general 

method for radiometric scene correction, based upon "component" physical models. 

These component models describe sensor characteristics, atmospheric transmittance 

and attenuation to light energy, reflectance characteristics of Earth surface 

materials, and modifications caused by topography. Other information may be
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Figure 2.3: Wavelength dependent and view zenith angle dependence of 
bidirectional reflectance factor for wheat at boot stage, for solar zenith and azimuth 
angles typical for NOAA-6 (AVHRR sensor) ephemeris. Negative view zenith 
angle is down-Sun. (From Duggin, 1985)
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required to complete the models, such as component models upon climatological 

effects (wind speed, Lord et a l , 1985, precipitation Hinzman et al., 1986).

Although such "component" models are inter-related (Teillet, 1986), for the purpose 

of this chapter it is convenient to assess the earlier work, leading to the 

development of a more integrated approach to image correction, in four major 

topics; reflectance effects (sec. 2.2), atmospheric effects (2.3), topographic effects 

(2.4) and view angle effects (2.5). All these factors have a common link through 

the geometry of the sensor and the image. Thus it is, in reality, difficult to model 

one factor without controlling any, or all, of the others. This is the basis for the 

requirement of a more holistic strategy to account for these problems in image 

correction.

2.2: Reflectance properties of Earth surface materials

2.2.1: Anisotropic characteristics of Earth surface materials

The anisotropic nature of Earth surface materials should be related to 

characteristics of the object under observation, as well as a number of other factors 

(such as illumination angle and topography, which will be discussed below). As an 

illustration of the kind of directional reflectance patterns that are presented later in 

this study, figure 2.3 indicates the relationship between view angle and reflectance 

for the red and near-infrared spectrum, of wheat at boot stage (pre-flag leaf 

emergence) for NOAA-6 AVHRR data with a 45° solar elevation (from Duggin, 

1985, page 9). This type of view-angle related response is typical of the results 

presented in this study and elsewhere.

A initial summary of the anisotropic behaviour of targets is made by Duggin 

(1985), and includes experimental evidence of directional reflectance characteristics 

of materials (Kriebel, 1978, Ranson et a l, 1985a and b), theoretical calculations 

and hypotheses (Suits, 1972a), and experimental confirmation of these models 

(Kimes et a l, 1986)., Salomonson and Marlatt (1971) investigated the reflectance of
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solar radiation over soils and vegetation in an early airborne study (1965/6). This 

investigation was prompted by a more general requirement, namely for radiation 

balance measurements to account for the anisotropic reflectance of various land 

surfaces. This need was highlighted because:

’...the majority of satellite radiometers have a limited field of view 
and, as a result, a prior knowledge of the anisotropy in reflected solar 
radiation must be combined with measurements by these instruments 
from a single direction in order to determine the total energy reflected 
in all directions.’

(Salomonson and Marlatt, 1971, pi)

This simple but general observation has many implications. Although in this case 

the measurements are being used for radiation balance calculations, any 

interpretation of data based upon single directional measurements of radiance must 

take into account the effect of canopy anisotropy if they are to be consistent 

between one experiment and the next. This basic assumption, reported by 

Salomonson and Marlatt nearly 20 years ago, has not always been recognized by 

many more recent authors. This is almost certainly due to the dominance through 

the 1970’s of fixed geometry satellite sensors, typified by the Multispectral 

Scanning System (MSS) on-board the early Landsat satellite platforms. The data 

collected by these instruments are characterised by a restricted field of view, low 

spatial resolution, and static, nadir-pointing geometry. As a result, Earth scientists 

did not have the means by which to measure surface anisotropy from space, and in 

any case greater emphasis was placed upon the development of numerous models 

which quasi-quantitatively related radiance measurements with, for example, leaf 

area index (LAI) or biomass.

Such non-parametric models originating in this era have provided some significant 

results, for example, MacDonald and Hall (1980), Tucker et al. (1985), Townshend 

and Justice (1986), on global vegetation mapping, although in many cases the 

results were still of an unacceptably low accuracy for operational purposes1. The

JTucker et al. (1985) were only able to validate their results against 
supposedly inaccurate maps - no field checks were used initially in the presentation 
of this work.
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limitation of this paradigm, which makes little reference to the "real world" of 

non-homogeneous, systematically distributed vegetation canopies which exhibit 

anisotropic reflectance, is acknowledged by Tucker and Sellers (1986). More 

recently, other sensor data with different image viewing geometry have become 

commonly available, including aircraft data (with broad swath view angle effects) 

and SPOT variable geometry data. Nevertheless, researchers have continued to 

apply these models, without consideration for what were once recognised as 

fundamental understandings of plant/radiation canopy interactions.

2.2.2: Characterising the directional reflectance properties of vegetative 

surfaces

Many researchers have measured the directional reflectance properties of various 

vegetation canopies over the last two decades, primarily as an empirical basis upon 

which to build and elaborate physical reflectance models. As well as Salomonson 

and Marlatt’s (1971) study, Kimes and co-workers have measured directional 

reflectance distributions of forest canopies (Kimes et al. 1984, 1987, Kimes and 

Newcomb, 1987) and homogeneous vegetation canopies (Kimes et al., 1980). 

Different strategies have been employed in obtaining such datasets. Middleton et 

al. (1987) examined surface anisotropy for semi-arid cover types, using specialised 

ground based instrumentation (the PARABOLA sensor). Airborne scanner studies 

include Barnsley (1984a), who assessed the effect of view angle on the detected 

spectral response for a number of complete and partial canopies, and Irons et al. 

(1987), who made multiple angle observations of reflectance anisotropy from an 

airborne sensor, again using bespoke equipment. Most recently, Goel and Reynolds 

(1989) have measured bidirectional canopy reflectance for soybean, shinnery oak, 

orchard grass and com, and tried to relate these data to vegetation type and growth 

stage. At a micro-vegetation scale, Grant (1987) summarises the processes and 

characteristics of anisotropic leaf reflectance. All these studies have contributed to 

the growing evidence of the importance of considering anisotropic reflectance 

properties, and begun to identify routes to solve the ’problem* that it causes.
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2.2.2.1: External factors affecting reflectance anisotropy

Much work has taken place to measure canopy directional reflectance distributions 

and build reflectance models for various Earth surface cover types. For example, 

Kirchner et al. (1981) simulated directional radiance of vegetation from satellite 

platforms using a stochastic model, accounting for off-nadir viewing, canopy 

effects, solar geometry and atmospheric conditions in two wavelengths (0.68pm 

and 0.80pm). Polar plots were used to describe trends for different view and zenith 

angles; effects were found to be more pronounced in the red than infrared, canopy 

geometry (in particular leaf orientation distribution) being a critical factor. 

Atmospheric haze was established as attenuating anisotropy for the targets, but the 

use of multiple view-angle imagery was noted as a potential method for measuring 

and correcting atmospheric conditions. Holben and Fraser (1984) examined the red 

and near-infrared (i.e. similar to Kirchner et al. above) sensor response to off-nadir 

viewing, using simulated NOAA AVHRR data. Both view and illumination 

geometry were varied. Variable response to a range of soil and vegetation targets 

were found as a function of view and illumination geometry. Sensor response to 

atmospheric path length was substantial for normalised difference vegetation index 

(NDVT) values as well as individual channels. These could be minimised by high 

Sun and clear atmosphere viewing. Holben et al. (1986) again examined directional 

reflectance response with particular reference to AVHRR data, for bare soil, 

orchard and fescue grass surfaces. Vegetation indices were found to be more 

reliable than the response from individual channels. The inclusion of scan angle 

data improved interpretability. It was recommended that atmospheric optical 

thickness data also be collected on a global basis for operational vegetation indices 

extraction.

Models that relate simple measurements of detected radiance to canopy parameters 

(Hatfield et al., 1985, Asrar et al., 1986) without incorporation of other factors 

impinging upon the scene will produce invalid results. Many studies exist which 

indicate the significance of such factors in the use of models to interpret image 

data. For example, Pinter et al. (1985) undertook field experiments, measuring 

canopy spectral reflectance over six cultivars of spring wheat, at 30-45min intervals 

over a day, simulating Landsat MSS and TM bands. Major differences were
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observed between the measurements despite similarities in green leaf area and 

green biomass; erectophile canopies varied more with Sun zenith and azimuth 

angles than planophile ones. It was concluded that spectral reflectance was strongly 

dependent upon the direction of incident radiation. Ranson et al. (1985a and b) 

also compared spectral responses of soybean and com canopies with respect to 

illumination, view and canopy geometry, finding greater anisotropy with incomplete 

canopies and in the red (0.6-0.7 J im ) wavelength band. For incomplete maize 

canopies, a decrease in contrast between soil and vegetation (due to shadowing) 

was the major cause of change in reflectance factor. Shibayama and Wiegand 

(1985) also examined winter wheat canopies over the second to sixth growth 

stages, making five daily measurements on four dates. Although 70% of the 

variation in NIR was explained by a simple regression model, most error occurred 

with large solar zenith angles. Other studies have also attempted to incorporate 

these external factors into the reflectance modelling. Walthall et al. (1985) 

developed a simple three term equation modelling bidirectional reflectance of some 

vegetation canopies and soil surfaces as a function of view and solar azimuth and 

zenith angles. Clear sky (isotropic atmospheric) conditions were assumed.

Such studies again confirm the complexity of characterising the directional 

reflectance properties of Earth surface materials, and the unsatisfactory results that 

might be derived from attempts to produce general descriptions. Thus, a non- 

parametric, non-physical process modelling strategy would be unlikely to produce 

an acceptable method for the correction of image data for anisotropic reflectance. 

This is one of the major reasons for moving towards other, parametric, strategies 

that consider the physical processes more holistically in their approach to 

extracting information from remotely sensed images.

2.2.2.2: Effect of canopy geometry upon reflectance anisotropy

Suits (1972a) indicated that changing canopy geometries would cause variations in 

reflectance of that target; inverting this argument, changes in reflectance, from 

either an expected level or over a sequence of dates, could be inferred to be the 

result of differences in canopy architecture and geometric distribution of canopy
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components (Jackson and Pinter, 1986), ceteris paribus. Alterations to canopy 

structure are often associated with canopy stress (Jackson et al., 1986), and 

therefore such an interpretation could have a useful purpose. The major problem 

with Suits’ hypothesis is that there are many causes of canopy stress, often with 

similar symptoms; water, biological and salinity stress all produce similar 

geometrical canopy response (wilting, leaf curl), which would, again, not enable 

the cause to be determined without considerable knowledge of the ground 

conditions. This, combined with the problem of the timeliness of data, may cause 

such information to become of limited value for crop management This 

strengthens the case therefore of taking account of the canopy geometry when 

interpreting reflectance data.

A second problem is that, in order to identify whether or not the detected radiance 

from a parcel of land is that of a healthy or stressed crop, a standard expectation 

or reference must be established. This reference is extremely dependent upon local 

environmental conditions and farm management practices, to the point where not 

even the same field can be expected to give consistent results at similar dates, year 

after year. For example, how many years a field has been given over to a single 

crop, or at what stage in a rotation cycle it is in, will greatly determine the 

development of a crop, and hence its reflectance. It will, therefore, be impossible 

to distinguish background variations from actual stress artifacts, leading to 

difficulties of interpreting image data correctly in the assessment of canopy 

characteristics.

2.2.3: Earth surface reflectance modelling

It is recognised that in order to understand remotely sensed images and extract 

quantitative information about the object under consideration, hypotheses and 

methods must be developed to relate scene characteristics to the image. Several 

works illustrate the construction of models defining the effects of illumination, 

topography and view angle in a scene (Temps and Coulson, 1977, Pinter et al., 

1985, Hugli and Frei, 1983, Justice et al., 1981). Often a general descriptive 

reflectance model of the surface is used, i.e. Lambertian, non-Lambertian (Justice
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et al. 1981, Jones et al., 1988) for sand, snow etc. The choice of such models for 

correcting for these effects, and the implicit assumptions that are made to justify 

their use, has been questioned (Smith et al., 1980), and shown to be valid only 

over a restricted range of illumination and slope angles (for a given cover type).

The choice of reflectance model is obviously critical to the success or failure of 

the attempt to correct data, particularly for view angle, since diffuse reflectance 

models, or even simple anisotropic models, bear little resemblance to the 

reflectance distributions common to the majority of land cover types.

While the use of general reflectance models for image corrections is limited, there 

are also problems when cover type-specific models are applied. An empirical, non- 

parametric, model based upon measurements of one cover type is unlikely to work 

when applied to a different cover type (Jones et al., 1988, Morris and Barnsley, 

1989). Paradoxically, if the application of specific directional reflectance models 

can be cover-type specific, then the scene is already classified, or other data are 

available to describe the spatial distribution of cover types within the scene (for 

example ground survey data). It is a frustrating but inevitable fact that a detailed 

description of the bidirectional reflectance distribution function (BRDF) is required ^ 

to understand target reflectance in a scene (and hence predict detected radiance at 

the sensor) (see Hugli and Frei, 1983). Goel and Reynolds (1989) also highlight an 

important concept, postulated much earlier by Suits (1972a); that is, remote sensing 

is hardly ’remote* if numerous ground measurements of leaf angle distributions 

need to be made for modelling, as indeed would have to be made for the 

operational application of models like Suits’. If such detailed information exists a 

priori, then what new information can be obtained from such an image?

2.2.3.1: The use of vegetation canopy reflectance models in image understanding

The conceptual starting point for the understanding of vegetation canopy directional 

reflectance is the Suits* model, originating with his work published in the early 

1970’s (Suits, 1972a & b, Suits and Safir, 1972). Suits developed his model from 

earlier work by a chain of other researchers, beginning with Kubelka and Munk 

(1931), through Duntley (1942), ending with Allen, Gayle and Richardson (1970).
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His resulting three-dimensional model is well known and understood, and treats the 

canopies as infinitely extended horizontal layers, the components of which are 

randomly distributed and homogeneously mixed. Each component is ’idealised as a 

combination of vertically oriented and horizontally oriented flat diffusely reflecting 

and transmitting panels.* (Suits, 1972a, p 118.) The distribution of these 

components is derived from field or laboratory measurements, and used to calculate 

reflectance. Suits* major extensions to the earlier body of work were to incorporate 

canopy layers comprised of different biological components (commonly stalks, 

leaves, ears), to take into account laboratory measurements of scattering and

absorption coefficients, to permit consideration of the canopy *hot spot* and, most 

importantly, to allow the calculation of non-Lambertian canopy reflectance.

The main thrust of this work, therefore, is to allow an understanding of the 

processes that cause directional reflectance anisotropy, and to invert such models 

that may be developed as a result (Woodham, 1989); this would allow the

estimation of canopy parameters solely from the remotely sensed data. For 

example, Suits (1972a, p. 118) makes the tentative suggestion that for crop 

monitoring purposes, plant stress inducing changes in canopy geometry could be 

detected by measuring directional reflectance changes, given no change in other 

factors affecting reflectance. In general, though, it would be desirable to identify 

agro-physical parameters for a whole range of purposes (Woodham, 1989).

2.23.2: The use of models to extract agro-physical parameters from image data

Other workers have been more ambitious in attempting to extract useful, 

quantitative, agro-physical parameters. Li and Strahler (1985, 1986, 1988) have 

modelled bidirectional reflectance of a conifer forest, utilising simple geometric 

figures casting shadows on a planar surface (from an idea by Egbert, 1977).

Inversion of this three-dimensional model yields predictions of tree size and

density within 10% of actual values (Kimes et al. 1986) for sparse forest in 

northern California. In turn, the model was adapted by Franklin (Franklin and 

Strahler, 1988) and inverted to provide (less satisfactory) estimates of average tree 

size and density for regions of semi-arid Acacia woodland in Mali, using Landsat
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TM data. These results are compared with those of a coniferous forest in Oregon, 

U.S.A., by Strahler et al. (1988), where better results were obtained. Prince (1987) 

also modelled the canopy interception of sparse Acacia woodland in Sudan, using 

a three-dimensional canopy model incorporating sensor view direction, with relation 

to primary production estimates (of great importance in estimating firewood 

reserves and production on the continent). However, while none of these studies 

explicitly examines the directional reflectance properties of such canopies, they do 

initiate the use of an understanding of the physical processes involved in 

determining reflectance.

Several attempts at inverting canopy reflectance models, in order to extract canopy 

parameters, have been made. Goel and Deering (1985) used the SAIL model (cf. 

Badhwar et al., 1985, Verhoef, 1984, 1985, Reyna and Badhwar, 1983) to estimate 

LAI for soybean and orchard grass canopies, following earlier work by Goel and 

Thompson (1984a) to estimate agronomic variables. Clevers (1986, 1988) adapted 

the SAIL model to account for illumination of the substrate when estimating 

canopy parameters such as LAI. Goel et al. (Goel and Strebel, 1983, Goel and 

Thompson, 1984a and b) inverted the Suits model (Suits, 1972a) to produce similar 

estimates. Much of this work is reviewed by Goel (1988), and a derivation of the

Suits’ model, named TRIM, is outlined to model radiative transfer in

heterogeneous three-dimensional canopies, to cope with the problems presented by

orchards and other similar canopies (Goel and Grier, 1986, 1987, 1988).

In the application of remote sensing for quantitative studies, these papers represent 

an important step, albeit one that is hindered by the complex problems of

determining directional reflectance. Most agronometric modelling requires inputs of 

two parameters which (it is postulated) can be derived from remote sensing; area 

estimates (mostly from classification and thematic mapping) and canopy 

parameters, such as growth stage, height, total biomass, percentage cover. Both 

estimates are distorted by anisotropic reflectance (Barnsley, 1984a and b, 1985), 

but in this study the effect of anisotropy upon estimated canopy parameters will be 

the main area of discussion.
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2.3: Atmospheric effects

Reflectance of materials

Corrections to images for atmospheric effects are among the most complicated 

attempted in remote sensing. Atmospheric corrections are a prerequisite to proper 

scene radiometric corrections (Teillet, 1986). The task of collecting valid data for a 

continuously varying medium, both spatially (in three dimensions) and temporally, 

is virtually impossible given current technology. This problem is compounded by 

the scale of remote sensing projects, often covering regions or even continents. For 

these reasons, many of the correction strategies used are based upon estimates, 

assumptions and point data, sampled at the Earth’s surface.

2.3.1: Atmospheric effects on incoming radiation

It is assumed here, for the purpose of clarity, that we are dealing with a plane, 

level, target, viewing a hemispherical sky. This facet on the ground receives 

energy, or flux, radiated from the sky. Given no atmosphere, the sky irradiance 

would be related to the energy emitted from the Sun, the Sun-Earth distance, and 

the zenith angle of the Sun, modified with respect to the band-pass that we are 

concerned with.

The Earth, however, is enclosed by a thin atmosphere made up of a number of 

mixed gases, including N2, 0 2, CO, C 02, CH4, N20 , unmixed gases such as H20 , 

0 3, H N 03, and includes considerable quantities of aerosols (Prasad et al., 1987). 

The proportion of the unmixed gases in the atmosphere and of the aerosols is 

neither vertically nor horizontally constant (Steven and Rollin, 1985, 1986, Prasad 

et al., 1987), and can vary considerably over short time periods. The main 

controlling factor of the relative proportion of direct to diffuse flux is the content 

and particle size of aerosols in the atmosphere, as well as the spectral absorption 

caused by the unmixed gases.

The atmosphere, therefore, scatters and absorbs radiation, attenuating the direct 

illumination component, and causing diffuse skylight to impinge upon a target. 

Both these processes are wavelength dependent, molecular (Rayleigh) scattering
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Sensor

Path
Radiance

Target Radiance

Adjacency Radiance

Adjacent
target

Figure 2.4: Component modelling of sky radiance - direct sky component FD, 
diffuse sky component Fd, direct ground component F^ , diffuse ground component 
Fgd. (After Woodham and Gray, 1987.)
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varying as f4, aerosol scattering between Z1 and f3 (Kaufman, 1988). Absorption in 

clear sky conditions in the visible spectrum and out to 0.8|im is negligible (Slater, 

1980), but in hazy or polluted atmospheres aerosols also act to absorb radiation in 

this spectrum. Absorption due to ozone takes place below 0.29|xm, and a number 

of absorption bands arise in the infrared spectrum due to water vapour and carbon 

dioxide. Combined with the problems of temporal and spatial variability of the 

atmosphere, atmospheric scattering and absorption affects the multi-spectral 

classification of surface features, and also the extraction of vegetation indices 

(Holben and Fraser, 1984, Fraser and Kaufman, 1985).

Several attempts to classify target irradiance have been made (for example, Temps 

and Coulson, 1977), but essentially four components can be identified (Woodham 

and Gray, 1987) (figure 2.4). First, the attenuated direct solar beam illuminates the 

target; second, radiation scattered by the atmosphere, that is diffuse skylight; third, 

radiation reflected directly to the target from adjacent terrain; and fourth, radiation 

reflected skyward from adjacent terrain that is scattered back from the atmosphere 

onto the target. It is apparent that in areas of low reflectance that these last two 

factors will become less significant, and that in areas of low slope the third will 

become minimal (Woodham and Gray, 1987, Hall-Konyves, 1987, 1988).

2.3.2: Atmospheric effects on the radiance detected by the sensor

The detected radiance at the sensor from a target is attenuated and augmented by 

the atmosphere in three ways (figure 2.4). First, direct radiance from the target is 

scattered and absorbed by the atmosphere. Second, radiation from adjacent 

resolution elements is scattered into the IFOV of the sensor (the adjacency effect). 

Third, incoming radiation from the Sun is scattered into the IFOV of the sensor 

(path radiance). These three factors are a function of the optical density of the 

atmosphere and the path length through it. Hence, while low altitude2 airborne data 

may be considered to minimise atmospheric effects, this is an oversimplification

2With respect to satellite sensors.
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since most of the aerosol content of the atmosphere is in the bottom 1000m, and 

also aircraft data do not have constant path length due to the large FOV’s in use.

The most commonly observed effect of atmosphere upon image data then is 

contrast reduction. For vegetative cover types, this is most important in the visible 

part of the spectrum (Slater, 1980); first because scattering is greatest in this part 

of the spectrum, and second because reflectance is low (by comparison with the 

near infrared). The simple explanation for contrast reduction in this part of the 

spectrum is a combination of reduced dynamic range of the data, due to increased 

"noise" from the scattered flux (Woodham and Gray, 1987).

It has been reported that the angular distribution of the surface reflectance 

measured remotely (through the atmosphere) is smoother than at the surface (Lee 

and Kaufman, 1986). Atmospheric effects are of particular relevance to off-nadir 

data (Gratzki and Gerstl, 1989), and although strong local extremes such as the 

hotspot are retained through the atmosphere, observations with varying view zenith 

angles are most affected due the varying path lengths of the radiation through the 

atmosphere to the sensor (Simmer and Gerstl, 1985). It is recognized that this 

attenuation is wavelength dependent (Barnsley, 1984a and b). In the visible 

(shorter) wavelengths, the angular pattern of reflectance, due to the anisotropic 

nature of the target, may be degraded near to extinction; in longer wavelengths 

(near-infrared and beyond) the higher reflectance of vegetative canopies ensures 

that the angular effects are retained (Simmer and Gerstl, 1985). This implies that 

the offset ratio strategy suggested by Crippen (1988), proposed for a wide selection 

of image corrections (see 2.4 and 2.5 below), would not be applicable to the 

solution of atmospheric effects caused by differing path lengths within a scene (i.e. 

as is the case with airborne data such as used in this study), since attenuation of 

radiance with view angle is not identical in all bands. It may however work if a 

selection of bands is made, for example only the NIR/MIR bands, or for selected 

cover types (Lee and Kaufman, 1986).

Lee and Kaufman (1986) also report that the dominant modifications to the 

detected radiance are a result of the atmosphere, not target anisotropy, a conclusion 

made elsewhere (Kirchner et al.t 1981, Holben and Fraser, 1984, Holben, 1986),
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when considering three cover types (savannah, pasture and coniferous forest). They 

conclude that the use of the Normalised Difference Vegetation Index would 

eliminate most of these effects, a point reiterated by Fraser and Kaufman (1985), 

although this is also due to the sampling strategy devised for the compilation of 

Global Vegetation Maps (Tucker and Sellers, 1986).

2.3.3: Empirical measurements and modelling

As with the development of plant canopy directional reflectance models, spatial 

and spectral sky radiance models have relied heavily on empirical data input. Even 

the more sophisticated models, such as the 5S algorithm used in this study (Tanr6 
et al.y 1986), depend upon large matrices of data from which interpolated estimates 

of sky radiance can be made. In many respects, there is also a distinction between 

the modelling of direct and diffuse sky radiance, and this is reflected in the studies 

made to understand the problem.

Direct solar radiance can either be measured (Hamalainen et al.y 1985) or modelled 

using scattering and absorption data (derived from meterological measurements), 

for example SOLTRAN (Bird, 1982, Bird and Hulstrom, 1983). Diffuse skylight 

radiation is a more complicated problem. In cloudless conditions (i.e. those optimal 

for visible and infrared remote sensing), the diffuse solar flux contributes around 

15% of the total incoming radiation (Prasad et al .y 1987). The distribution of this 

diffuse sky radiance, however, is not isotropic, nor is it a constant proportion of 

the measured flux with respect to wavelength (otherwise the sky would be white, 

not blue). Empirical studies have been carried out to address this problem, using a 

variety of instruments such as those listed in Oke (1978), or more specialised 

instrumentation such actinometers (spectral pyranometers) and custom built 

instruments (Hamalainen et al.y 1985, Ahmad et al.y 1987). Early work, such as 

Kondratyev (1969), records measurements of both spectral and angular distributions 

of clear sky conditions. Steven (1977) attempted to measure and standardise 

angular distributions of clear sky radiance in Britain, based upon a series of 69 

measurements over a year long period; Hamalainen et al.  (1985) designed a 

multisensor pyranometer to allow measurements of the direct component and the
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angular distribution of solar radiation in Finland. Both of these studies examined 

broad spectral categories; but Ahmad et al. (1987), and Deering (1987, 1988) used 

the PARABOLA instrument to make rapid hemispherical scans of upwelling and 

downwelling flux in three selected wavebands, validating the results for the 0.65- 

0.67|im and 0.81-0.84jim bands. McDowell (1974) measured spectral irradiance 

upon a horizontal plane for total sky radiance and diffuse radiance alone, for two 

types of atmosphere (’hazy* and ’clear*3); results indicate that the ratio of diffuse 

to total radiation varies by nearly an order of magnitude (=0.75 to =0.08) over the 

350nm-1100nm wavelength range. The ratio is more variable for clear sky 

conditions, although it is markedly wavelength dependent across the full measured 

spectrum, but is fairly constant for the wavelength range 0.7|im -l.lpm .

Several solar spectral data sets have been published; for example Kondratyev 

(1969), Dave (1978), Bird and Hulstrom (1983), Riordan et al.  (1989). These can 

go into considerable detail; some focus specifically upon diffuse sky radiance (eg 

Forgan, 1980, Zangvil and Aviv, 1987, and Sir6n, 1987). Such measurements are 

useful for radiation engineers applying models to assess insolation on tilted 

surfaces for building purposes (for example Lewis, 1987, Kouremenos et al.  1987, 

Ineichen et al.y 1987, Gueymard, 1987). These datasets, however, are not of great 

relevance to remote sensing, since they are presented over a limited spectral 

coverage (usually no longer than 0.9|im wavelength) and record measurements for 

particular days and times, often with specific atmospheric conditions (including 

cloud cover, for example Riordan et al.y 1989).

Solar engineers, moreover, are not usually concerned with spectral distributions of 

sky radiance nor of spectral reflectance (c/. albedo), whereas for remote sensing 

purposes an understanding of atmospheric properties at a minimum of band-pass 

resolution is required. While estimates of exoatmospheric irradiance have been

3The first, ’hazy’, measurement ’was made in Rochester, New York, on 
August 14, 1970, under extremely hazy but cloudless conditions. The
measurements were made at 2:45 p.m., which corresponds to a sun angle of 55°.’ 
[Probably elevation angle, though this is not clear from the text.] The ’clear’ 
measurement ’was made at the White Sands Missile Range in New Mexico on 
October 30, 1970, 12.06 p.m. The sun angle was 43° and the atmosphere was 
extremely clear’. (McDowell, 1974, p. 569)
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published for individual sensors (Markham and Barker, 1985, 1987, Woodham and 

Gray, 1987), the data to modify these for particular atmospheric conditions are not 

so easy to find. One solution is to measure spectral profiles of irradiance at times 

of imaging (Baret et al.y 1987). This presents a further data collection problem, 

virtually impossible to resolve with the collection of satellite data on a regular 

basis since it demands contemporaneous fieldwork.

2.4: Topographic effects

2.4.1: Identification of radiometric effects of topography in images

Several investigations have been carried out on radiometric effects of topography 

on various cover types (e.g. Holben and Justice, 1980, 1981, Justice et al.y  1981, 

Hugli and Frei, 1983, Hall-Konyves, 1987). In the first of a series of articles, 

Holben and Justice (1980) indicate that a single cover type may have a wide range 

of associated pixel values, due solely to variations in slope and aspect throughout 

the scene. The magnitude of this effect was found to vary as a function of the 

solar elevation, azimuthal orientation of the terrain facet, and the terrain facet 

inclination (slope). This is a result of variations in the irradiance incident on facets 

of different orientations and inclinations, and the geometric relation between the 

illumination source and sensor.

Holben and Justice (1980) also found that the lowest solar elevations were found 

to produce the greatest contrast in radiance values, and greatest variations in sensor 

response were found for slopes oriented in the principal plane (i.e. in the plane 

defined by the zenith, the Sun and the target, figure 2.5). This is due to the effect 

of the surface being illuminated up- or down-Sun4, and the associated anisotropic 

behaviour of natural surfaces. For example, a grass surface is composed of many 

individual leaves, usually with a preferred orientation. Given a description of this

Respectively looking towards and away from the Sun when viewing the 
target.
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Figure 2.5: Sun target sensor geometry
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orientation distribution (say, mostly vertical, erectophile), the surface will be 

composed of a distribution of illuminated or shadowed leaves. This distribution 

will not change for any terrain facet oriented perpendicular to the principal plane, 

whatever the inclination, but for all other facets the proportions of the illuminated 

surfaces and the shaded surfaces on a facet will alter, hence altering the radiance. 

For a nadir-viewing sensor, zenith illumination would of course produce no 

topographic effect (the principal plane cannot be defined). Indeed, for a Lambertian 

type surface, no topographic effect will be perceived if the sensor has the same 

orientation as the Sun.

2.4.2: Non-parametric corrections for the radiometric effects of topography

Holben and Justice (1981) examined the use of spectral band ratioing to reduce 

the topographic effect. Red and photographic infrared data were collected using a 

ground radiometer, and ratios of these wavebands were found to reduce the effect 

by more than a factor of six. Band ratios (typically Landsat MSS 5/7) are 

commonly specified as a simple solution to reducing topographically induced 

radiometric distortion (Lillesand and Kiefer, 1979, Schowengerdt, 1983). This is 

because reflectance in each band is assumed to be proportionally related to the 

strength of illumination. It is noted, however, that such a technique is likely to be 

less successful when applied to airborne or satellite data because of problems with 

sensor calibration, quantization effects, additive wavelength-dependent scattered 

atmospheric effects and radiation from adjacent facets. These introduce, additive 

rather than multiplicative effects on the received signal (Crippen 1988), which are 

difficult to determine empirically. Crippen (1988) also considers band ratioing to 

be the optimum method for minimizing image effects attributable to topography, 

provided that correct adjustments are made for data offsets (Crippen 1987).

Dymond (1988) attempted to model radiance in hilly terrain using training datasets 

to characterise the radiance over the range of topographic conditions in the scene. 

Target irradiance was factorised as proportional to the cosine of the solar incident 

angle and the proportion of sky and neighbouring hills that is "seen" by the target 

(diffuse sky radiance component). Reflectance, therefore, was a function of
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topography, the BRDF of the target and viewing geometry. Mistakenly, Dymond 

includes the slope vector as part of the geometry describing the reflectance 

function - in the same manner as Jones et al. (1988) (cf. 2.4.3). Mis-classification 

was reduced from 23% to 13.5% for classes of forest and pasture. Dymond (1988) 

notes that non-parametric techniques are capable of modelling a variety of spatially 

variable effects, provided that there are sufficient training sets for each category to 

characterise the model, and that visual interpretation of the imagery permits their 

accurate identification.

The problem of using non-parametric techniques for the correction of topographic 

effects is that the proportion of diffuse and direct illumination is not constant for 

all wavelengths. If the proportions of diffuse and direct flux are altered (as they 

will be in undulating terrain), so the topographic effect will be dependent upon the 

waveband in use. Woodham and Gray (1987), for example, illustrate this effect of 

topography upon the spectral shift of peak detected response; the Minnaert function 

was modelled to show that changing facet orientations (but not slope angle) will 

alter the spectral composition of the target reflectance. Diffuse sky radiance 

compounds the problem, since the spectral distribution of skylight is different from 

that of the direct beam. This spectral shift is identified as being towards the blue 

as the target faces further away from the sun, since a greater component of the 

irradiance is made up of diffuse (scattered) flux (Woodham and Gray, 1987). 

These sort of effects cannot be dealt with effectively by non-parametric techniques, 

such as band ratios, alone. They demand explicit analytical solutions to the 

problems of sky radiance spectral and spatial distributions.

2.4.3: Parametric corrections for the radiometric effects of topographic

Non-parametric solutions to topographic correction produce, in general, normalised 

data. Apart from such products being inconvenient to work with (Hook and 

Donoghue, 1988, sec. 2.5.2), other methods of correction can produce more 

effective results (Holben and Justice, 1981, Woodham 1989). The application of 

terrain and reflectance modelling may prove a more sensible, parametric, approach. 

This has been attempted by Justice et al. (1981), Sjoberg and Horn (1983), and
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Franklin et al. (1986) over a variety of terrain types, with some success. With the 

increased availability of digital terrain data, and the software to process it, such 

techniques are now more practicable. Geocoded data, however, are a prerequisite 

for this method, in order to identify topographic parameters.

Jones et al. (1988) attempted to follow the method of Justice and Holben in using 

Lambertian and non-Lambertian functions (in particular the Minnaert function) and 

a DTM to correct SPOT-HRV multi-spectral imagery of semi-natural upland 

vegetation in North Wales for topographic effects. The results showed that the 

Lambertian adjusted scenes over-compensated for shadowing (and presumably also 

highlighting). This can be explained by the absence of a model of the sky radiance 

distribution {cf. 4.2.3, and Kay, 1989), since the Lambertian function only 

incorporates a direct component factor related to the solar incidence angle. The 

Minnaert-corrected imagery was judged to be more successful, by improving 

classification accuracies by the greatest margin. Four criticisms, however, can be 

levelled against this work. First, the method of adjusting the function using an 

empirically-determined constant is questionable, so far as generality of the model is 

concerned (i.e. with regard to different cover types or different scenes, or even 

different topographic regimes). Second, the inclusion of the exitant angle in the 

function should allow for viewing geometry, although it is not clear that this is 

taken into account. Third, the function is used as an approximation to the BRDF 

for all the cover types within the scene5, and fourth, the exitant angle is modified 

by the slope angle for each pixel.

Leprieur et al. (1988) attempted to utilise digital terrain data to examine the 

relationship between reflectance, forest stand parameters, and the local 

Sun/target/sensor (STS) geometry, in multi-date Landsat TM imagery of Vosges, 

Eastern France. The major aim of the work was to generate reflectance maps based 

upon a knowledge of standardised illumination parameters, terrain modelling and 

sensor radiometric calibration. A 30m resolution DTM was derived from 1:50,000 

scale 100m interval contour maps, smoothed and interpolated to produce separate

5The inherent weakness of this approach will be discussed in section 4.1
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images of slope angle, aspect, and cosine of the solar incident angle6. Illumination 

effects and also, more unusually for the application of Landsat TM data, 

directional effects dependent upon view angle were accounted for in the 

radiometric processing. They observed correctly, however, that trees do not grow 

perpendicular to the slope, as is often assumed in the implicit use of a DTM to 

orient a BRDF (c/. Jones et al., 1988). Leprieur et al. (1988) conclude that S/T/S 

geometry is significant for forestry sites, particularly in the middle-infrared part of 

the spectrum.

The correct interpretation of the way in which slope and aspect modulate the 

BRDF of a surface is made by Strahler (Strahler, 1988, Strahler et al., 1988). He 

concludes that it is not possible to assume that a sloping vegetated surface has the 

same BRDF as a flat surface with the same vegetation cover, since plants grow 

upright and the three-dimensional structure of the canopy will become a function 

of topography (figure 2.6).

Jones et al. (1988) conclude that ’models for the correction of multispectral data 

for terrain effects are not independent of the nature of the ground cover.* (p. 677). 

This is hardly surprising. The assumption by Jones et al. (1988, 1989), however, 

that one function can describe the angular reflectance characteristics of a scene, 

made up of many cover types, contradicts with their own conclusions. Angular 

reflectance distributions cannot be corrected without knowledge of what canopy is 

being corrected for. This is one cause of the low classification accuracies recorded 

in their work.

Other ecological factors may also prevail that are indirectly associated with 

topography. Franklin et al. (1986) used a transformation to adjust image data for 

aspect using a DTM, by shifting the azimuth axis; this is based upon observations 

of increased productivity of forests on north-west slopes when compared to south­

east slopes, due to increased moisture availability, by Hartung and Lloyd (1969). 

Strahler (1977, 1978). also conducted similar biogeographic studies, using binary 

discriminant analysis to assess relationships between tree species to topographic

6The Solar incident angle is defined as the angle between the surface normal 
and the incident beam.
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Illumination

Canopy on flat ground - 
only shadows understorey krk'k

Orienting the BRDF according 
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upon this canopy is more subtle

Figure 2.6: Effect of topography upon the BRDF of a surface.
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site factors, finding significant stratification by elevation. These relationships, of 

ecological association of topography and plant development, are often over-looked 

by the remote sensing community, in an attempt to construct image correction 

techniques. It may well be the case, in some instances, that two regions have a 

different spectral response, despite being dominated by the same species, as a 

result of local environmental conditions (such as slope, aspect, and therefore 

indirectly light and water availability) pertaining plant canopy development.

2.4.4: Methods for topographic correction - comments and conclusions

Because the topographic effect can be visualised as a problem of the distribution 

of irradiance in the scene, and not therefore necessarily determined by any surface 

reflectance properties, independence from cover reflectance model should be 

maintained if at all possible in devising a method for the radiometric correction of 

topography in an image. Cover type will not alter the perceived topographic effect, 

although sensor/Sun geometry will. Since the anisotropic reflectance of most 

natural targets is also affected by sensor/Sun geometry, these two separate effects 

(of topography and directional reflectance) upon images are often confused. This 

can be illustrated more clearly if the construction of a target is considered; a 

coniferous forest, for example, grows in a nominal vertical direction, not at a 

normal to the facet on which it is located. Consequently, given distant sensor and 

illumination sources (or a fixed view angle to the target from the sensor), no 

significant change in Sun-target-sensor geometry will take place due to topography, 

and hence no topographic effect will be manifested in the image because of a 

’non-Lambertian’ target. It is, therefore, incorrect to use a reflectance model in the 

description of the topographic effect, since this effect is a product of different 

spatial distributions of irradiance within a scene7 and not the directional reflectance 

properties of the cover types within it. The correct modelling of these spatial 

distributions, for example with parametric illumination algorithms (Woodham and 

Gray, 1987, Kay 1989, Dozier and Frew, 1989), combined with the use of 

reflectance imagery (Kay, 1989, Yang and Vidal, 1989, Woodham, 1989), is a

7Although the angular distribution is constant, measured from the illumination 
source
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better and more effective procedure, since these techniques will isolate the 

anisotropic reflectance properties of the targets, allowing further analysis of the 

physical properties of the targets to take place.

2.5; View angle corrections

2.5.1: Identification of view angle effects

The conventional remote sensing strategy governing the application of off-nadir 

image data relates to the paradigm that remote sensing is about the collection, 

interpretation and application of multispectral measurements of radiance reflected or 

emitted from a remote object The ideal remote sensing system for this strategy 

gathers a constant signal (in a given wave-band) for a target as a function of view 

angle (Kimes et al., 1984). The community has been provided with this type of 

system by Sun-synchronous nadir viewing satellites such as the Landsat series. 

However, the desire for sensors with increased spatial and temporal resolutions has 

led to the development and launch of SPOT-1, which partially resolves these 

problems by collecting data off-nadir. Such a capability does not provide data that 

can be used easily within the current strategy of the remote sensing community, 

because of the view angle effects (Barnsley, 1984a and b, Foody, 1988).

2.5.2: Non-parametric corrections for view angle effects

There have been several attempts to develop non-parametric corrections for view 

angle effects, which are manifested as systematic differences in detected spectral 

radiance across the image (Hook and Donoghue, 1988, figure 2.1). Most of these 

attempt to model this variation in radiance by some ratio procedure, or by fitting a 

polynomial to the image data (figure 2.7).

Ratio techniques considered to be suitable to correct for view angle effects are the 

conventional band ratios (Holben and Justice, 1981) and the more refined offset
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Figure 2.7: Fitting a polynomial to multiple view angle data (from Morris and 
Barnsley, 1989).
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ratio method of Crippen (1987, 1988), both of which are normally used to correct 

for topographic effects (sec. 2.4.2). The major disadvantage of these techniques is 

that the products cannot be related to reflectance directly, limiting the scope of 

their application (Hook and Donoghue, 1988). A further difficulty is that the 

implicit assumption of this technique - i.e. the view angle effect is spectrally 

constant, at least over small parts of the spectrum - is plainly incorrect. Inspection 

of almost any dataset, including those presented in this work, indicates that this is 

false (for example, figure 2.8, section 4.1, Barnsley 1984a, 1985, Foody 1988).

Corrections using a polynomial fit (Irons and Labovitz, 1982, Royer et al., 1985) 

have proved useful in image classification. Hook and Donoghue (1988) found 

improvements in classifications of ’30%’, Danson (1987) up to ’85%’. In some 

cases, however, this was because classifications were extremely poor to begin 

with8. The moderate success of these techniques is easier to explain; polynomial 

fitting assumes that the view angle effect is systematic across the image, and thus 

independent of cover type. The anisotropic reflectance, however, is dependent upon 

cover type, and therefore if no attempt is made to model explicitly anisotropic 

canopy reflectance, the spatial distribution of these parcels (with different 

reflectance characteristics) within the scene will have an important impact upon the 

polynomial fit (Morris and Barnsley, 1989).

An objective test of these methods was carried out by Morris and Barnsley (1989), 

in which three polynomial correction methods proposed by Royer et al. (1985), 

plus a further method based upon proportional distance of column means from the 

calculated polynomial values, were implemented on a Sun workstation. Each of 

these methods was tried on the basis of calculating column means for the full 

image, and also for sections of the image defined by specifying a range of scan 

lines over which the column means would be calculated. This has the effect of 

improving the sensitivity of the technique to the spatial distributions of the 

different land cover types in the image (Morris and Barnsley, 1989). Accuracy 

improvements of the . order of 2-10% points are typical, although accuracies are 

still very low unless view angle is restricted. A major reason for this is that class

8For example, Danson’s (1987) most marked improvement is from 8% to 25% 
for identification of percentage canopy cover in a coniferous woodland.
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Figure 2.8:Column mean values for flightline 4, bands 1-10, in this study. The 
figure above illustrates the relationship between sample number and DN for the 
visible bands; overleaf, the top graph gives the relationship for the NIR bands, and 
the lower graph for the MIR bands.
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discrimination is degraded by the inclusion of multiple view angle training data, 

since the variance of the training data sets will increase, increasing the likelihood 

of overlap in feature space of different classes (Barnsley, 1985, Foody, 1988). A 

second factor is that while non-parametric corrections account for changes in mean 

value of training sets, they can make no correction for the distribution of these 

datasets. Kay and Barnsley (1989) and Barnsley and Kay (1989) have demonstrated 

that the variability of data is likely to decrease (for spatially heterogeneous cover 

types) towards the edge of the image (due to sensor and canopy geometry, cf. sec. 

4.1). Thus a training set from the edge of an image (off-nadir) will tend to 

produce more errors of omission, and one from the centre (nadir) would produce 

more errors of commission. This has important implications for the application of 

multispectral classification algorithms to wide angle sensor data (such as AVHRR, 

MODIS-N and MODIS-T) (Morris and Barnsley, 1989), and for the inclusion of 

variance data in classification routines (such as the Coefficient of Variation, for 

example Williamson, 1989).

Non-parametric models can provide a useful solution to some sensor geometry 

radiometric effects. The technique, however, is limited by the different anisotropic 

reflectance properties of different canopies within the scene (polynomial fitting), or 

by the fact that the view angle effect is dependent on the choice of spectral 

channels (band ratios). Holistic approaches to these problems, taking into account 

an understanding of the mechanisms behind the effects, while holding little hope 

for improving simple image correction for view angle effects, will allow the 

development of alternative strategies for processing off-nadir data sets. In this 

instance it is the residual ’noise* remaining after the ’corrections’ that is the 

information of interest, since this can only be explained by canopy geometry

effects if all other effects are normalised. It is this information that is /Sort) after in
A J

this study, in an attempt to extract canopy agro-physical parameters from multiple 

view angle image data.
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2.53: Approaches to utilising canopy reflectance anisotropy for information 

extraction

Some workers (e.g. Hugli and Frei, 1983) have examined which view angles 

optimise the advantages of off-nadir viewing given differing Sun and view azimuth 

and zenith angles. Two options are presented: the first utilises a vertical view 

angle, with a small FOV to avoid both hotspot and specular reflectance peaks. The 

second uses high oblique views. In this case the view angle would be so great as 

to give unfavourable geometric distortions and increased atmospheric attenuation 

and scattering. Others have been bolder and more forward in thought. In an 

important paper, Kimes et al. (1984) show how multi-angle data are useful when 

considering the effect of view angle. A new strategy is outlined for the gathering 

of such data, to provide additional information about the physical characteristics of 

the target. The choice of view angles would reflect not the desire to minimize 

these effects, but to maximize the information gained from a particular target. The 

strategy is analogous to the multispectral strategy in that the additional information 

increases as the number of view angles increase and the number of data sets 

collected under different Sun angles increases.

A further approach is the analysis of the canopy ’hotspot’; this is the peak 

radiance value measured (in a multidirectional dataset) at a view angle equal in 

both the zenith and azimuth planes to the illumination angle. When the view and 

illumination angles are the same, shadowed components within the canopy and 

background will not be visible, and thus are not included in part of the scene. As 

the viewing angle moves away from this position, an increasing proportion of 

shadowed components will contribute to scene radiance, and net radiance from the 

surface diminishes (Strahler, 1988). It is considered that the rate of decrease in 

radiance with view angle is a direct function of size, shape, and spacing of leaves 

in the canopy, and that analysis of this change could reveal information about the 

geometry of the canopy. Indeed, this has been attempted, and to some extent 

verified, by Goel and various co-workers (for example, Goel and Strebel, 1983, 

Goel and Grier, 1988, Goel, 1988).
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Ideally, a multiple view angle strategy would require (near) simultaneous imaging 

of a target from different positions, with a spatially constant (or predictable) 

atmospheric component. SPOT-1 is unable to provide such a capability, giving rise 

to problems of atmospheric modelling (Moran et al., 1988) and variations in target 

characteristics over time, for example precipitation events and lodging (Hinzman et 

al., 1986), different wind (Lord et al., 1985) and illumination regimes, and even 

canopy architecture changes due to growth and maturity of the target (Pinter et al., 

1985). Looking to the near future, ERS-1 with the Along Track Scanning 

Radiometer (ATSR) will provide a capability of two near-simultaneous images of 

the same target, but without the high frequency of coverage that SPOT provides, 

and of course with only seasonally related alterations of Sun azimuth and zenith 

angle. The EOS platforms, however, with the pointable MODIS-T and HIRIS 

image spectrometers will provide a much more valuable source of data in the 

1990’s (NASA, 1986, 1987, chapter 6).

2.6: Summary and conclusions

This review of previous work, in fields related to the directional reflectance 

properties vegetative canopies, reveals that normalisation strategies are only useful 

for a paradigm that continues to demand the application of current modelling 

techniques for information extraction. In order for better, quantitative, information 

to be collected using current and planned remote sensing instruments, new 

strategies which make allowances for, and utilisation of, off-nadir capabilities must 

be developed. Additive, component or piece-meal approaches to image- 

understanding are unlikely to produce very successful results; however, current 

knowledge and the status of technology demands relatively simple non-parametric 

procedures for the development of these new, holistic, methods. Thus, a strategy 

which accounts for the integrated effects of atmosphere, topography and 

illumination will allow the artifacts of directional reflectance to be isolated. New 

methods can then be derived to analyse these artifacts to extract information 

concerning agro-physical parameters of the target
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Several major paradoxes arise in the development of new multiple view angle 

strategies. These new data analysis and processing procedures cannot be dependent 

upon extensive ground "truth". More complex techniques and models, however, 

often demand more complex and comprehensive data. In order to preserve the 

advantages of remotely sensed data collection strategies, these new model inputs 

must also be collected remotely whenever possible. Examination of the procedures 

used to extract information concerning the physical properties of the target also 

brings into question the validity of the current paradigm for data collection.

In chapter 3, it is recognised that conventional image corrections (such as 

radiometric calibration of the data) must be made and the sensor geometry derived 

before more complicated image analysis can be made. Some of the special features 

of the ATM sensor (evident in other sensors also) provide the continuity and 

development to Chapter 4. In this section, after an introduction to the view angle 

artifacts in this data set, an attempt at devising a practicable preprocessing system 

for multiple view angle imagery, in order to isolate these artifacts, is made; the 

resultant combined sky and terrain, spectral and spatial, illumination model is 

applied to the experimental data set. The aim of this section is to isolate 

directional effects of the canopy, which are then examined in greater detail in 
chapter 5.

Once it is possible to identify view angle artifacts in the image data with certainty, 

analysis of what causes them and what importance the canopy has in controlling 

them can be made. Chapter 5 attempts to identify relationships between image 

variance in a qualitative way to achieve this understanding. The chapter then goes 

on to explore a new method for extracting information, by examining the 

coefficient of variation of parcels in the image, concerning basic physical 

parameters for a number of cover types. In chapter 6, the suitability of current 

remote sensing instruments is explored with regard to their capability for collecting 

multiple view angle data sets. The options for the development of new data 

collection strategies opened by the use of planned sensors, such as MODIS-T and 

HIRIS, are also examined.
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3.0: Introduction

In chapter 2, the factors which influence the directional reflectance properties of 

Earth surface materials measured by spacebome and airborne sensors were 

examined. A suitable approach for the remote sensing of these surfaces, attempting 

to utilise the additional information given by observing the target from different 

view angles, was outlined. One of the prerequisites of such a method is suitably 

processed input image data, in which corrections for radiometric calibration, 

geometric corrections, and some sensor geometry artefacts are made, in order to 

isolate those artefacts due to the physical properties of the target.

\

In this chapter the study area is described (section 3.1), techniques for the 

collection of ground and remotely sensed data outlined (3.2), and details of the 

operation and geometry of the Daedalus ATM scanner discussed (3.3). In 

particular, the correct derivation for the view angle for a given sample in ATM 

imagery obtained with the S-bend system correction is given (3.4), in order to 

identify accurately view angle dependent relationships, and the effects of view 

angle upon image data in this study introduced (3.5). Section 3.6 discusses 

geometric problems and corrections to airborne imagery, explaining how this can 

become a limiting factor on the quality of data, and section 3.7 details the method 

of radiometric correction applied to the data.

3.1: Study area

The chosen field site for the study is Bemborough Farm, near Guiting Power, 

Gloucestershire (Lat. 51 56* 30" N, Long. 1 50’ 30" W) (figure 3.1). This is a 

large homogeneous farm cropping mainly wheat and barley, with occasional fields 

of rye and triticale, and some winter crops such as sugar beet (Langer and Hill, 

1982). Several varieties of the dominant crops are sown as an insurance against 

varietal epidemics. As well as 800 acres of these crops, Bemborough also has 250 

acres devoted to sheep pasture, and several large stands of deciduous, coniferous
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Figure 3.1: Location of study site
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study site

Direction of 
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Figure 3.2: Map of study site, including field index (see Appendix 1)
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and mixed woodland. The predominant agriculture on neighbouring farms is the 

same.

The farm is situated on a large (270m altitude) downland ridge, running 

approximately NW-SE (figures 3.2 and 3.3), the solid geology comprised in 

general of sandy oolitic limestones, with some calcareous sandstones (Chipping 

Norton Limestone, Inferior Oolite, and Great Oolitic Limestone (Stonesfield 

formation) (Geological Survey of Great Britain, 1:50,000 series, 1981)). A major 

surface fault, running north-south, divides the farm in two, and is easily identified 

on the imagery. The soils also follow the division of this fault line; to the east 

they are classed as Elmton 1 !, to the west as Sherborne 2. Annual precipitation for 

the region is 32.5" (827mm), of which 45% falls during the summer months (April 

to September)3. Precipitation distribution is not influenced greatly by season, and is 

of low variability.

Full cooperation with the farm managers in terms of permission for overflight, 

facilities for instrumentation, and information relating to sowing dates, varieties, 

application of fertilizers etc. was obtained at an early stage.

3.2: Ground data collection 

3.2.1: Automatic Weather Station

An automatic weather station (AWS) collected data from early April through until 

late August 1988 (figure 3.2). The variables measured were wet and dry bulb

Elmton 1: subdivision 343a, shallow well drained brashy calcareous fine 
loamy soils over limestone. Some similar deeper soils and some non-calcareous 
and calcareous clayey soils. Associated landuse: Cereals, sugar beet and potatoes; 
winter cereals and dairying in South West. (Soil Survey England and Wales, 1983)

2Sherbome: subdivision 343d, shallow well drained brashy calcareous clayey 
soils over limestone, associated with permeable clayey soils. Associated landuse: 
cereals, short term and permanent grassland with dairying and stock rearing. (Soil 
survey England and Wales, 1983)

3Precipitation estimates based upon annual averages between 1916 and 1950, 
as published by the Ordnance Survey, 1967.
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Figure 3.3: Wire frame DEM of study area, viewed from South-West.
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temperature, wind run, wind direction, precipitation (using a tilting bucket rain 

gauge), and irradiance (using a pyranometer) (Oke, 1978). The collection interval 

was set to 5 minutes, in order to guarantee a measurement close to a SPOT image 

collection time, since this was the original image data that the study was intending 

to use. The meteorological data, stored by the automatic logger, were supplemented 

by manual readings on the day of the aircraft data collection that was actually 

used in the study.

The main purpose of the AWS was to provide data concerning the ground-level 

meterological conditions at the time of imaging, although it was acknowledged in 

advance that extrapolation from point to area for these measurements would 

present difficulties. Vegetation canopy reflectance is known to be affected by wind 

(strength, gusts) (Lord et al., 1985), and soil reflectance affected by the time 

elapsed since the last precipitation event (Richardson and Wiegand, 1977, Huete et 

al., 1985, Escadafal et al., 1989). The meteorological data would, however, also 

provide important information regarding the development of crops; this had 

originally been one of the main intended study topics. For example, the major 

limiting factor in crop development (especially on thin, well drained, limestone 

soils, such as at Bemborough) is precipitation amount and frequency.

3.2.2: Management records

Farm records provide all the management decisions concerning care and 

development of crops. Dates and details of spraying, fertilizer applications and 

yields are recorded on a per field basis. Historical records for this farm extend 

back 15 years. However, the data referenced most frequently by this study were 

the variety, sowing date and sowing density of each field, as well as the final 

yield. Consideration of external factors4 is also made when assessing crop 

productivity. These records are used in conjunction with other field observations, 

outlined in section 3.2.3 below.

4For example infestations of brome grass, which significantly reduce yields, 
and are usually restricted to individual fields.
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3.2.3: Other ground data

Data collection and preprocessing

In addition to the meteorological data, and the use of farm management records, 

detailed observations of crops were made. These have been carried out in three 

ways. First, regular measurements have been made of crops in four sample fields; 

these data are most relevant to the airborne image data. Second, an assessment of 

the growth stage of the crop in each field on the farm was also made regularly 

throughout the summer until harvest Third, observations and discussions with the 

farm managers and a visiting consultant were made at intervals over this period. 

This final source has been of great importance, much being learnt about the 

complexity of decision-making that takes place on a modem farm.

The ground data relevant to the ATM data comprised both simultaneous field 

measurements, and data collected subsequent to the aircraft overflights. The 

simultaneous measurements were restricted to a point location, using the 

instrumentation at the AWS site (3.2.1). A limited number of observations were 

made for one field (number 10) on the day of the overflight, more extensive 

observations were carried out the next day.

After the success of the over-flight was confirmed, the scene "quick-looks" were 

collected to allow identification of suitable fields for study. These could not be 

chosen until after the over-flight had been completed, as it was critical that they 

should be viewed from as many different flightlines as possible. As a result, four 

fields were chosen. Measurements of parameters in these fields could not be made 

until the following day, by which time some precipitation had occurred, and the 

general meteorological conditions had changed (overcast, wet, quite windy). 

Measurements of crop plant height, flag leaf length and crop cover were made at 

three sample locations in each field. Ten measurements were made of each 

parameter at each location. Percentage ground cover was assessed using a 50x50cm 

quadrat Photographic measurements were also made, along and across the 

flightline direction, to allow analysis of leaf angle distribution. Photographs of 

individual plants were also taken to provide a record of plant physiology.
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The crops in the sample fields were harvested to provide an estimate of biomass, 

again at three locations within each field. The area harvested in each case was 

lm 2. Because of the precipitation during the day and between the flights and the 

data collection, only dry biomass has been estimated. Larger harvest areas were 

required to overcome the spatial variability of the cover in the field; this is a 

function of the row spacing and the efficiency of germination. Results are 

summarised as follows:

Table 3.1: Field data, Bemborough Farm, April 27 1988

Leaf length Leaf width

Field mean sd mean sd cover sd

10 156.50 15.32 14.07 1.55 58.17% 10.63

21 169.50 20.57 13.27 1.53 21.67% 7.58

29 183.17 19.76 15.07 2.43 56.00% 8.14

30 77.80 19.26 5.73 0.83 6.17% 3.13

Plant

Field height spacing orientation

10 307 104 260780°

21 275 104 270790°

29 415 104 3507170°

30 90 104 987278°

(measurements in millimetres)

Other data were also collected over the summer for use with the anticipated SPOT 

image data. In addi;ion to measuring the same variables on two further occasions 

for the same four fields over the period, more frequent observations were made of 

all of the grain fields on the farm. Each round of observations took a full day. 

The assessment of crop growth was made using the MAEF standardised growth 

stage chart. This does not always provide a precise definition of the crop state, as
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variability will exist within a single field in terms of both the maturity and the 

health of the crop, but it does provide an objective standard of comparison. 

Varietal differences would also have to be considered in the final analysis of these 

data.

3.2.4: Map data

Map data were obtained from several sources:

• Farm sketch maps, providing information on field names, and referencing the 

farm records to fields.

• Ordnance Survey (OS) 1:10,000 maps for the area were used to produce a 

digital ground control point data set for the geometric correction of the 

airborne imagery (sec. 3.6). OS 1:25,000 and 1:50,000 maps were used in 

the field and for the ATM flightline planning.

• Geology, soils and precipitation maps were referenced for site description 
purposes (sec. 3.1).

• Digital terrain data were acquired from the OS, originally derived from 

digitised 1:50,000 Landranger contour map series. These data were used to 

calculate the illuminated terrain models produced as part of the Terrain Lite 

algorithm, developed in chapter 4.

3.3: The Daedalus Airborne Thematic Mapper (ATM)
simulator

3.3.0: The use of airborne remote sensing devices

Airborne scanner development often precedes the development of space borne 

sensors in order to test design and technology (for example, AIS, AVIRIS, HIRIS).
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Sensor field 
of view

Test parcel

Figure 3.4: Multiple view angle data collection strategy using the ATM.
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They are, however, also useful in their own right as sources of data. An aircraft is 

directly under the control of the researcher, and as such, small specialised sites 

may be imaged at short notice and under conditions dictated by the scientist. The 

airborne scanner may have a greater number of spectral channels than its airborne 

counterpart, often as a result of no telemetry of data being required. Moreover, 

higher spatial resolutions may be obtained, by controlling the flying height. For 

these reasons it is ideal for research applications.

New airborne data were collected, as part of the NERC 1988/9 airborne campaign, 

in order to develop and test the methods described in this study (chapters 4 and 

5). These image data provide several useful functions:

• ability to simulate SPOT wavebands

• relatively precise control over view angle

• repeated passes over one cover type within short time

• greater number of view angles than current satellite sensors

Several passes from different view angles over sample test areas were made in

order to assess the effect of viewing a canopy from different zenith angles (figure

3.4).

3.3.1: Characteristics of the Daedalus ATM sensor

The Daedalus A ADS 1268 Airborne Thematic Mapper (ATM) is the sensor which 

has been chosen by the Natural Environment Research Council (NERC) for the 

past eight years (1982-89) of airborne campaigns. The ATM is an eleven channel 

digital system, covering the spectral bands used by Landsat TM, and (by 

combinations of bands) also Landsat MSS, SPOT-HRV, and NOAA-AVHRR. The 

multispectral scanner system is a passive sensor collecting and recording data 

ranging from the visible blue to the thermal infra-red (see table 3.2).
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Table 3.2: ATM and TM specifications

ATM Bandwidth (pm’s) Equivalent
Landsat band

Channel 1 0.42 - 0.45
Channel 2 0.45 - 0.52 (TM Channel 1)
Channel 3 0.52 - 0.60 (TM Channel 2)
Channel 4 0.605 - 0.625
Channel 5 0.63 - 0.69 (TM Channel 3)
Channel 6 0.695 - 0.75
Channel 7 0.76 - 0.90 (TM Channel 4)
Channel 8 0.91 - 1.05
Channel 9 1.55 - 1.75 (TM Channel 5)
Channel 10 2.08 - 2.35 (TM Channel 7)
Channel 11* 8.50 - 13.00 (TM Channel 6)

‘Not used in this study

Channels 1 to 5 are in the visible part of electromagnetic spectrum, 6 to 8 near 

infrared, 9 and 10 the short wave infrared and channel 11 the thermal infrared. 

(Source Huntings Technical Document, and Williams, 1984).

Simulation of other sensors can be achieved by combining several channels of the 

ATM sensor, although this does not take into account the difference in the spectral 

response curves of the sensors in question. For example, simulation of the SPOT- 

HRV channels can be achieved as follows:

Table 3.3: Simulation of SPOT-HRV channels using Daedalus ATM

SPOT channel ATM Channel

51 3

52 4+5

53 7

PI 3+4+5+6
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3.3.2: Image data

Data collection and preprocessing

Daedalus Airborne Thematic Mapper 11 channel data, at 5m nominal EFOV were 

requested as part of the NERC 1988 airborne remote sensing campaign. Eight 

flightlines were flown (date 26 April 1988), the spacing of which resulted in a 

nominal 80% overlap. These gave multiple view angle on sites on the farm within 

a 40 minute period. The airborne data acquired are of excellent quality, nearly 

cloud free and excessive roll. Although the day was only average visibility (approx 

10-15km visibility on the ground), the image is clear and of high contrast in each 

band. However, the flightlines were not always in the same parallel, and are 

certainly not simultaneous observations of the sample test areas from different view 

angles, as they should be ideally. This apart, the airborne data provide the key 

data input to the study, especially since no SPOT data were acquired as was 

initially intended for the study.

Panchromatic aerial photography was acquired for the site, simultaneous with the 

Daedalus imagery, on three of the flightlines. These photographs provide a useful 

reference for interpretation and familiarisation with the imagery. Some schemes for 

using the photographs to orient the airborne data have been suggested, and these 

are discussed elsewhere (3.6).

No SPOT data have been acquired. It is understood that no cloud free days 

occurred when the sensor was available for pointing at the study area. Cushnie 

(1988) reports that only one or two images per scene per year can be expected 

from the present system. This is despite the off-nadir pointing capability, which 

should allow 11 opportunities to sample every 26 days. Cushnie calls for a more 

efficient method of obtaining cloUd free cover (using SPOT), either through 

systematic coverage or the use of meteorological data to help predict cloud free 

areas. In any case, the ability of SPOT to produce data with the qualities of 

’reliability, timeliness, adequacy of coverage, efficiency and effectiveness’ 

(MacDonald and Hall, 1980, p.671), must certainly be questioned here.
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3.3.3: Geometric properties of ATM image data

Aircraft data suffer from severe geometric distortions due to the instability of the 

platform, as well as due to the geometric configuration of sensors designed to 

operate (relatively) close to the object. This is mainly because the aircraft is flying 

through an unstable medium (heated air) and in order to keep the aircraft on track, 

corrections to yaw, pitch and roll must be made continuously by the pilot. These 

distortions are exaggerated by the geometric configuration which, in particular the 

wide FOV (74°), is extreme. Relief displacement is also increased, since this is 

inversely proportional to altitude of the sensor (cf. 3.6.2), and also because the 

view angles with aircraft imagery are larger since the FOV is greater (see 3.6). 

Airborne scanner data distortions can be classified as follows:

Table 3.4: Airborne scanner geometric distortions

Platform movement: orientation
position

Sensor operation: panoramic effect
rotation of mirror
non-linearity of mirror movement

Imaging geometry: oblique view angles
relief

(Adapted from Dowman, 1985, pl06)

With ATM data, all of these parameters can be considered to be effective at all

times, and constantly changing. For this reason, airborne scanner data geometry is 

particularly hard to model parametrically (cf. 3.6 below). It should be noted that

airborne data is unique in combining the worst elements of distortion in a single

geometry.

Each line in an ATM image is scanned using a rotating scan mirror which 

traverses the FOV of the sensor. Line scan rate can be set at 12.5, 25 or 50 lines 

per second, depending upon flying height and speed of the aircraft used as a
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Figure 3.5: S-bend curve; sample number vs view angle. The S-bend correction 
makes this relationship linear.
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platform. The IFOV of the sensor is 2.5 mrad. A typical configuration such as that 

normally flown on the NERC campaigns is a flying height of 2000m, 25 scans per 

second, at a velocity of 150 knots. This gives a GRE of 5x5m at nadir, and a 

pixel size of 4.21m by 3.29m (Table 3.5).

Table 3.5: Configuration of NERC ATM scanner used in this study

Instantaneous field of view (IFOV) 2.5 mrad

FOV after S-bend correction 74°

Scan rate 25 scans s*1
Nominal flying height _ 2000m above ground level

Nominal ground track velocity 82.22 m.s'1
Pixel size (across track) 4.21m

Pixel size (along track) 3.29m

(From Barnsley and Kay, 1989)

However, several factors must be taken into consideration when examining the

geometry of ATM imagery:

• First, a degree of overlap between successive scan lines is desirable, to 

ensure that there are no gaps.

• Second, a system geometric correction (known as ’S-bend’ correction) is 

applied in flight to preserve scale across track in the image (figure 3.5).

• Third, aircraft motion (change in velocity and altitude, roll, yaw and pitch) 

must all be taken into consideration. Roll correction up to ±6° is applied 

automatically using a gyro mechanism linked to the digitizer unit.
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Figure 3.6: Ground Resolution Element (GRE) area increase with sample number. 
Samples 358/359 are nadir viewing.
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A further complication of ATM data is that the very wide FOV of the sensor 

distorts the GRE of the IFOV at the edge of the image, so that the GRE increases 

in both dimensions, and therefore area (figure 3.7, table 3.6) for samples towards 

the edges of an image. This has considerable effect on the overlap between 

adjacent IFOV’s and the spatial autocorrelation between pixels in the image (cf. 

3.4 below).

Table 3.6: Size and area of the GRE for the NERC ATM scanner used in this 

study

GRE Nadir 10° 20° u> o o 37°

Across 5m 5.16m 5.66m 6.67m 7.84m

Along 5m 5.08m 5.32m 5.77m 6.26m

Area 25m2 26.21m2 30.11m2 38.49m2 49.08m2

(From Barnsley and Kay, 1989)

Nominal overlap between successive lines is easily calculated with reference to the 

parameters above. Oversampling increases from 15.8% at nadir to 46.3% at 37° 

(off-nadir) in the across-track direction, and from 36.2% to 47.4% in the along- 

track direction (Barnsley and Kay, 1989). This will be affected by changes in 

velocity and pitch. It is impossible to calculate the exact overlap between any two 

lines in an image, since not all the information required is available5.

5Exact modelling of the ephemeris of the aircraft is not possible given the 
system corrections to. the ATM imagery; these render the normal use of ground 
control to construct a parametric model (space resection) of the aircraft’s path 
useless. The simultaneous photography could be used to define a generalised 
model, but is not frequent enough to provide high enough quality data for the 
correction of the digital data (only one photo-pair every 250 lines). Inertial 
navigation may have provided the data necessary, and has been used for such 
purposes.
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Figure 3.7: GRE increase with view angle; geometry of the ATM sensor.
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3.4: S-Bend correction

Data collection and preprocessing

The S-bend system correction is a hardware adjustment unique to the Daedalus 

ATM scanner system. None of the effects of applying this correction, other than 

the principal intention of preserving image scale across the swath, have been 

considered in previous published work with these data. This section, therefore, will 

examine in greater detail the exact mechanism, nature and effects of this correction 

on the data used in this study.

If the sampling rate of the ATM scanner was a constant angular rate, the image 

would suffer from compression towards the edges, since a greater area on the 

ground would be represented by one pixel. This is because the dimensions of the 

GRE increase towards the edge of an image (figure 3.7, table 3.6). By default the 

sensor is operated with the S-bend system correction in operation. This functions 

by restricting the field of view of the sensor to 74°, and controlling the sampling 

interval using a Read-Only Memory (ROM) chip in the instrument. This has the 

angular position for each sample already determined, and preserves the scale in the 

across-track direction, assuming no other external distortions (such as relief, 

changes in aircraft altitude). However, it also provides for a (variable) degree of 

over-sampling between IFOV’s along the line; the angular difference between the 

centre of IFOV’s at nadir being 2.1 mrad, as against 2.5 mrad for the full IFOV. 

This over-sampling increases towards the edge of the image, as the angle between 

the centre of IFOV’s reduces, while the GRE increases.

3.4.1: Definitions

The correct calculation of the ground resolution element and sensor geometry for 

the Daedalus ATM scanner, in a standard configuration6, is outlined below (3.4.2) 

and in Barnsley and Kay (1989). The results of these calculations are used to

‘The common configuration of the Daedalus ATM scanner on NERC 
campaigns has been a flying height of 2000m, an IFOV of 2.5 mrad, and with S- 
bend correction applied.
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Figure 3.8: Daedalus ATM geometry used in this study. Flying height h, view 
angle V, sample number Sn, plane distance from nadir Dp.
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indicate the variation in the GRE with changing sensor view angle. Before 

proceeding to the calculation of the GRE for the ATM scanner, it is important to 

give some definitions of standard concepts which are frequently used imprecisely 

in the remote sensing literature.

The field of view (FOV) of the sensor is the angle subtended by one scan line, 

while the geometric instantaneous field of view (IFOV) is defined as an angle 

which is a function of the detector size and the focal length of the system 

(Townshend, 1981). The IFOV can be used to determine the dimensions of the 

ground resolution element (GRE), which is the projection of the IFOV onto the 

Earth’s surface (Slater, 1980). For a constant IFOV, the GRE varies as a function 

of the platform altitude and the sensor view angle (Barnsley and Kay, 1989).

Pixel size across track is equivalent to the ground distance between the centres of 

successive GRE’s (Schowengerdt, 1983), which is controlled by the mirror angular 

velocity (constant on the ATM) and the sampling interval of the instrument (Slater, 

1980, Swain and Davis, 1978). The implication of this, for a sensor sampling over 

a swath at a constant angular rate, is that pixel size would also become a function 

of view angle (Swain and Davis, 1978), and would thus increase towards the edges 

of the image. For this reason, the S-bend system correction is often applied to 

Daedalus ATM data to maintain a constant pixel size in the across track direction, 

by varying the sampling rate with view angle. This ensures that scale along an 

image scan line is constant. Pixel size in the along track direction is controlled by 

the scan rate of the sensor and the speed of the aircraft over the ground 

(Townshend, 1981).

3.4.2: Derivation of the ATM sensor geometry

When the NERC ATM instrument is operated in the S-bend correction mode, the 

FOV of the sensor is 74° (figure 3.8). Since there are 716 pixels in an ATM scan 

line, half a scan line (358 pixels) corresponds to 37°. Given the flying height of 

the aircraft (/t, 2000m in this study), the dimension of a pixel across track (P^), 

ignoring terrain effects, is:
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P.c = foan(37°)/358 Equation 3.1

Which gives P*. the value of 4.21m in this instance. The dimension of a pixel 

along track (P J  equals the ground-track velocity of the aircraft divided by the scan 

rate of the sensor (Townshend, 1981).

The plane distance (Dp) from the nadir to a given sample number (Sn) is, therefore, 

given by:

Dp = P J S n - 0.5) - Man(37°) Eq. 3.2

This gives Dp a value of -1505.00m and +1505.00m for samples 1 and 716 

respectively.

The view angle (V) for any value of Dp is:

V = atan(Dp//z) Eq. 3.3

The dimension of the GRE along track (G J at any view angle is a function of the

IFOV (<j>) and h:

G* = (h.(l>)/cosV Eq. 3.4

Assuming the distance on the ground between each scanline is constant, an

increase in G., will increase the overlap between adjacent GREs in that direction.

The dimension of the GRE across-track (G>c), at any view angle, is given by:

Gm = h [tan(V-K)>/2) - tan(V-H)>/2)] Eq. 3.5

Once again, G*. varies as a function of sensor view angle. Now, by definition, the

S-bend correction maintains a constant distance on the ground between centres of 

adjacent GREs in the across track direction (c/. 3.4 above). Therefore, an increase
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in the size of G*. with view angle results in greater overlap between adjacent 

GREs towards the edges of the swath.

Finally, the area of the GRE ( G .J  (figure 3.6, table 3.6) is approximated by:

G«. = Gk.G.! Eq. 3.6

3.5: ATM view angle effects - some observations on image 

variance

With all sensors, several factors change as a result of changing view angle. First, a 

different profile of the target(s) is imaged. This will alter the ratio of 

shadowed/illuminated parts of the crop, and the perceived cover of the canopy over 

the substrate. Second, a different atmospheric component is acting upon the energy 

detected at the sensor, due to changing path lengths. Third, the sensor-target-sun 

geometry is altered. Detected canopy radiance at the sensor becomes a complex 

problem, concerning the radiative transfer interactions of the plant canopy, radiant 

flux and the illumination and viewing geometry (Barnsley and Kay, 1989).

With the ATM scanner, the level of oversampling between adjacent pixels 

increases, along and across track, towards the edge of the image. This has 

important implications concerning the resolving power of the sensor, and also the 

probability of two adjacent pixels having similar DN (the spatial autocorrelation 

between pixels), and therefore reducing the variance of the image. This reduction 

should be evident, in the image data set used in this study, when the same class 

occurs at different view angles within an image or a series of images. It has been 

possible to test this hypothesis with the ATM data presented here, since the 

flightline configuration has given five or six "looks" at individual fields, allowing 

the analysis of the DN within each field (sec. 5.2).

page 84



Chapter 3 Data collection and preprocessing

(•un peuoa) NO 

8 8 R 8 8

o
IIIQC
<cc
u .
z
•cc

<LU
Z

eoCM O CD<0

(eun Plios) (%) AO

(eun peuoa) no ueaw 

8 8 R 8 8

aHI
cc

J3

Oo CMCD

(eun p||os) (%) AO

Figure 3.9: Variation of mean and CV with view angle for an apple orchard, for 
ATM bands 5 (red) and 7 (NIR).
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Figure 3.9 shows the variation of mean DN and coefficient of variation for one 

sample area at a number of sensor view angles (from Barnsley and Kay, 1989). A 

noticeable decrease in image variance7 occurs towards the edge of the swath. This 

results both from an increase in the area of the GRE and from the increased 

overlap between adjacent GRE’s in the along and across track directions. In 

addition, at oblique view angles, the understorey becomes obscured, and thus 

reduces the range of scene elements detected.

This brief examination shows that sensor view angle has an effect not only upon 

the absolute value of the radiance detected by the sensor (Barnsley, 1984a and b), 

but also on the variability of the detected response. This results from three 

interacting (geometric) factors (Barnsley and Kay, 1989):

• An increase in area of the GRE towards the edges of the image.

• The consequent increased over-sampling between adjacent IFOV’s with 

increasing view angle.

• For tall, spatially heterogenous cover types, a decreased proportion of 

understorey/soil will be viewed by the sensor at off-nadir angles, and 

therefore the spatial variability of the detected radiance will also decrease.

First-order correction algorithms designed to normalise image radiance to the nadir 

value do not take account of these effects (Morris and Barnsley, 1989). By 

implication, even where such corrections are applied, image data processing such 

as multispectral classification algorithms and vegetation indices will be affected by 

the position in the image of the target or land cover parcel. Attempts to extract 

information about the canopy geometry from multiple view angle imagery (Gerstl 

and Simmer, 1986) will need to isolate the effects of sensor geometry from those 

of the canopy (Barnsley and Kay, 1989).

7c/. sec. 5.1 for definitions and techniques for measuring image variance.
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Figure 3.10: Overlay of digitised field boundaries on a false colour subscene of the 
study site (bands 7/red, 5/green and 4/blue). Mean error of fit of transformed 
boundaries was <10m.
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A further important factor, when considering the effect of view angle upon image 

variance, is the scale of the discontinuities in the cover compared with their 

distribution and the size of the GRE (Strahler et al., 1986). The exact relationship 

between sensor geometry and image variance is strongly dependent upon the 

interaction between the spatial variability of the surface under investigation and the 

spatial resolution of the sensor (Barnsley and Kay, 1989).

3.6; Geometric corrections and terrain distortion

The airborne data used in this study were difficult to geocode, mainly because 

non-parametric solutions had to be used. Geometric accuracy with airborne data is 

notoriously poor, and thus integration with DTM data, derived from 1:50,000 

maps, proved to be of only moderate quality (figure 3.10). Also the resolution of 

the data (5m) was higher than that of the DTM (20m), since this was the highest 

resolution that could be justifiably generated from the digital contour data (10m 

contour interval). This means that) the true variations in the terrain would not be 

modelled precisely enough for either parametric corrections for geometric distortions 
or the illumination algorithm described in chapter 4.

i

The ATM data required geocoding before research into radiometric modelling was 

able to take place. This rectification could have been attempted in several ways, 

although the problems inherent in airborne data probably prohibit any single 

method from being entirely successful. This is because airborne data have all the 

usual characteristics of geometric distortion that satellite imagery has, such as 

produced by pitch, roll, yaw, variations in altitude, relief displacements, velocity 

variations, side slip etc, at a considerable high rate of change and sometimes 

seemingly unpredictable frequency (for example when flying through turbulent air).

3.6.1: Magnitude of relief displacement

With nominally vertical-imaging satellite data (such as Landsat MSS and TM), 

relief displacement is not normally considered to be a significant problem because
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the off-nadir view angles are small, the platform altitude high, and spatial 

resolution low (compared to relief displacement in the imagery) (Welch et a/., 

1985, Bryant et al., 1985, and others). However, the following expression helps 

illustrate two important relationships:

5r = r.h
H Eq. 3.7

Where 8r is the image displacement due to relief, r  is the radial distance of the 

pixel from the nadir point, h the height of the Earth’s surface above a datum, and 

H the altitude of the sensor above that same datum (Dowman, 1985, Kay,

1988).This shows that relief displacement is inversely proportional to sensor

altitude, and directly proportional to magnitude of relief and position in the image 

(which, for many sensors, equates to view angle). For example, given a flying 

height of 2000m, relief of 100m and a position in the image 1000m from the nadir 

point/ground track, relief displacement would be of the order of 50m, or 12 pixels

in the case of the data used in this study. At the edge of the image this figure

would become 75m.

3.6.2: Param etric techniques

At first consideration, a parametric solution to the problem of geometric distortion 

would seem the most sensible approach (Kay, 1987, 1988), since complex 

polynomials (the alternative, non-parametric strategy) would be required to describe 

the geometric corrections. This modelling technique, however, is prohibited by 

three factors, (a) the mirror scan mechanism, (b) system corrections introduced by 

the instrument gyro, which delays or advances sampling (to preserve nominal nadir 

centre image position while the aircraft rolls up to ±6°), (c) across track sampling 

adjustments which preserve a standard pixel size on the image, such as the S-bend 

system correction.

Aerial photography, acquired simultaneous to the digital imagery could be used in 

a number of ways to assist geometric correction. Since, however, Daedalus makes
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system corrections for roll that cannot be removed, the two datasets are essentially 

being collected in a different reference system. Also, since the periodicity of 

distortions (i.e. roll etc) is small and of unpredictable length and amplitude, the 

photo data may be a poorer source of control than the digital imagery, since it is 

relatively infrequent (one photo every 8-10 seconds). This precludes the use of the 

photography in a direct parametric solution of the orientation and resection of the 

digital image data to extract parameters of the instantaneous sensor position and 

attitude.

A second, indirect, use of the photography has been suggested by Muller et al. 

(pers. comm.y 1988) which uses the imagery to match and resample each pixel in 

the digital data with the (digitized) aerial photographs. Since the aerial photography 

is simple to model parametrically, a complete parametric model can be devised 

describing the correct geometric position for each point on the photograph; 

matching features on the image to the photographs, therefore, allows geocoding of 

the ATM imagery. However, this solution was still under development and 

therefore was not able to be used in this study.

3.6.3: Non-parametric transformations

For the reasons outlined above, non-parametric transformations become more 

appropriate to geometric correction in this study. Only affine and polynomial 

transformations, however, can provide the degree of accuracy required with such 

complicated geometric distortions (Dowman, 1985). Second-order polynomial 

transformations will correct first-order® and second-order* distortions. The only 

practicable method available in this study was to use the "WARP" algorithm on 

the PS. This uses either method, depending upon the number of available control 

points. In this study, a data set of 90 control points was digitised from OS 

1:10,000 map sheets, and used to rubber-sheet the DTM images to the ATM data.

®Scale differences in along and across track directions, non-orthogonality, 
rotation and translation (Dowman, 1985)

^ ilt ,  sub-platform track curvature, scan line convergence, some attitude 
variations of platform (Dowman, 1985).
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Usually, between 20 and 30 control points were used, and average standard errors /
-"X

of less than pixel achieved.

The ATM image data have not been resampled; instead, the DTM image data have 

been transformed to fit to the ATM data. There are two main reasons for this.

First, ten bands of image data exist for each DTM that has been processed (see 

chapter 4), so there are one tenth the number of images to transform this way. 

Although the problem of sampling strategy applies equally to both, with respect to 

corrupting the DN values in each of the data sets, the DTM image data are 

synthesised anyhow, and resampling is of less significance than for the original 

radiance values from the ATM data. The warp was carried out using the VAX 

CPU, rather than the PS hardware, since the latter also introduced dropouts (with 

DN of zero). Unavoidably, this increased processing times, so the nearest 

neighbour resampling algorithm (Lillesand and Kiefer, 1979) was employed, since 

this provided the fastest means of generating the transformed images.

3.7: Radiometric calibration of the ATM data

Each channel on the scanner has an individual gain setting and calibration 

coefficient in order to utilise fully the 0-255 DN intensity range. However, band- 

to-band comparisons, ratios, or even classifications based on raw data can be 

misleading or absolutely incorrect, and in any case radiance image data must be 

used for the purposes of constructing reflectance images (see chapter 4). For this 

reason, calibration to equivalent units of radiance between bands is essential, and 

for multitemporal or multiple view imagery data sets, between image calibration is 

necessary (Wilson, 1986).

3.7.1: Method and data requirements

In the scanner, twelve analogue video inputs are digitized to 8-bit accuracy and 

recorded-on board on high density digital tape (HDDT). The twelfth channel is a 

result of the thermal infrared channel (11) being recorded twice with different gain
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settings and band widths; these thermal bands are not considered in this study. 

Each channel has a gain switch of 0.5, 1, 2, 4 or 8 to that channel. The gain 

selection is made by the operator prior to the scanning flight on board the aircraft, 

and chosen to prevent saturation or under-exposure of sensor and to utilise fully 

the dynamic range of the DN. These gain settings, as well as the calibration data 

made on a test bench before and after each campaign, are essential to the 

construction of reflectance maps and the correct interpretation and use of band 

combinations (Wilson, 1986), for example vegetation indices, multispectral 

classification, and removal of topographic and atmospheric effects (Crippen, 1988, 

Holben and Justice, 1981).

Table 3.7: Sensor calibration figures, 19/4/88

setting .5 1 2 4 8
band gain base g b g b g b g b

1 5.33 0.83 2.66 1.86 1.43 3.90 0.72 8.13 0.38 17.22
2 3.78 1.66 1.89 3.71 0.95 7.68 0.48 15.74 0.24 31.74
3 4.41 2.50 2.20 4.99 1.11 9.86 0.56 19.58 0.28 39.23
4 8.02 1.66 4.04 3.84 2.04 8.06 1.03 16.45 0.52 33.41
5 4.10 1.86 2.02 4.35 1.02 9.28 0.51 18.94 0.26 38.34
6 4.36 2.62 2.15 5.06 1.08 9.79 0.54 19.14 0.27 38.08
7 2.40 2.37 1.19 5.06 0.60 10.18 0.30 20.48 41.22
8 3.39 2.05 1.68 4.48 0.84 9.28 0.42 18.88 38.08
9 0.87 2.05 0.43 4.03 0.22 7.81 0.11 15.36 30.59

10 0.21 2.62 0.11 5.12 0.05 9.98 19.78 39.36

Note: not all of these figures are available as the sensor was saturated at higher 
illuminations in certain bands.

3.7.2: Image processing

The algorithm to convert the NERC Daedalus ATM image data from raw DN to 

units of radiance outlined by Wilson (1986) is implemented locally on the PS, 

where the only inputs required are the base and gain values, calculated from bench 

calibration tests, made before and after the campaign. The individual channel and 

gain setting values were calculated using the formulae listed by Wilson (1986), and 

used as input parameters to the PS. These are listed in table 3.7 above; the values
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in bold refer to those used for this dataset (gain settings were constant for each 

band on each flight line). Missing values exist because not all gains are calculated 

on the bench. One of the major problems is that, given the radiometric resolution 

of the sensor and the reflectance properties of the terrain, conversion to radiance 

units with this data set always resulted in a reduction in dynamic range, and a 

consequent loss in information caused by the quantisation effects of the PS (sec. 

4.4).

3.8: Summary and conclusions

By deriving the geometry of the ATM scanner used in this study, we have shown 

that multiple view angle data give rise to a series of effects which may be a cause 

of the complex radiative transfer interactions of the plant canopy and radiant flux. 

Standard image pre-processing has been carried out to prepare the image data for 

further analyses, also carried out in chapters 4 and 5, of these view angle effects. 

In chapter 4, the importance of using data which has been geometrically and 

radiometrically corrected to a high standard, is emphasised. In these later sections, 

reference back to the original ground data and the geometric characteristics of the 

sensor, both detailed in this chapter, will be made.
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CHAPTER 4: The use of reflectance images to process and

correct ATM image data 

4.1: Introduction to method

Modelling directional reflectance of Earth surface materials is, by implication, a 

complicated task. Terrestrial cover types are diverse, often spatially heterogenous at 

common scales of remote sensor instrument resolution, and have varying degrees 

of reflectance anisotropy, even for individual species or varieties. These 

characteristics may depend upon the organisation, development and arrangement of 

the cover in its environment.For example, arable crops have certain row spacing, 

orientation and growth stage for a given date, dependent upon the climate, soils 

and management strategy of the farmer.

There are perhaps then as many descriptions of directional reflectance as there are 

identifiable cover types; and this is the main problem with modelling such a 

phenomenon. The use of non-parametric techniques, where the behaviour of all 

cover types is used to describe an approximation of reflectance anisotropy for the 

whole image, is inappropriate when consideration of the directional reflectance 

characteristics of individual cover types is required. It is probable that the response 

(reflectance, radiance value etc.) of all cover types within the image will be 

modelled badly, since no one model could really be regarded as behaving in a 

’mean* or average way, unless the image genuinely consists of one homogenous 

cover1. Similarly, crude models applying a theoretical description of (an)isotropy, 

such as diffuse (Lambertian) or specular models or even a combination of the two, 

will fail for the same reason. Canopy reflectance anisotropy is a problem too 

dependent upon specific cover type characteristics for general image descriptions to 

be effective.

Although this technique could be adapted to account for specific segments 
within an image; the segmentation could be generated from other data (map data, 
GIS environments etc.). Even so, it demands a comprehensive multiple view angle 
data set if polynomial fitting is to be applied.
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Parametric methods already exist for the correction of image data for atmospheric, 

sky radiance, topographic and view angle or canopy effects. The major limitation 

of these methods, however, is that the models can demand complex input data to 

determine the necessary correction. For the first three types of model, listed above, 

these data could be collected from a variety of sources, including field 

measurements, such as with an Automatic Weather Station (AWS) to measure

irradiance at a point source, or computed data, output from a sky radiance model, *

or digital terrain data. Plant canopy models, however, demand less tangible 

information. These data are often cover type specific, for example leaf orientation 

and inclination distributions of a plant species or variety, and also vary both 

spatially and temporally, demanding parcels of homogeneous species, variety and 

development. Fortunately, some of these conditions are closely approximated in 

some forms of agriculture.

These specific requirements, of being able to describe in some detail the 

characteristics of a canopy for modelling purposes, have usually necessitated the 

undertaking of a considerable quantity of field work. The major problem is that 

this ground sampling must include and describe all cover types of interest that are 

to be examined in the image, since each parcel in the image demands an accurate 

description of the parameters required to model it; that is, it is important to know 

not only what the cover type is at a specific location in the image, but also the 

model parameters relating to that cover type. This is a difficult and time 

consuming task for areas where there are organised parcels of homogenous cover 

(farmland) and virtually impossible where cover types are basically complex, 

mixed, or highly spatially variable (natural/semi-natural rangelands). In this latter 

case, the image would have to be modelled on a per-pixel basis, and thus the 

ground sampling strategy would also have to cover each pixel on the ground.

Strategies which apply general, no^parametric, models can never work in this A fl

circumstance because there is no systematic organisation of cover types in the
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image2. This demand for ground data would negate the use of remote sensing 

instruments for this application using such a strategy.

It is desirable, therefore, to develop a strategy that overcomes this problem of 

excessive fieldwork; one that derives input data for the models remotely, preferably 

using the same sensor as by which the radiometric data is collected. To achieve 

this, two modifications must be made to the conventional method. First, a strategy 

for the collection of the input data must be devised, identifying what data can be 

collected feasibly, given current instrumentation and analysis facilities. Second, the 

models must be adapted and simplified to allow modest data inputs, compatible 

with realistic data collection strategies. These ideas are developed later in this 

thesis, in chapter 5 and 6.

It is evident that the data input to the new generation of invertible canopy models 

must not be dependent upon view angle, since it this effect that we are most 

interested in being able to overcome. Ideally we need to devise a strategy that 

circumvents the effects of view angle, for example on mean detected radiance. The 

strategy chosen in this study requires that a multi-angle dataset is available, since 

it is by using this extra dimension of data collection that the input data are to be 

generated.

The geometric properties of images, as regards the statistical description of cover 

types3, allow the evaluation of a limited description of canopy parameters, as will 

be demonstrated further in chapter 5. The ATM sensor has significant artifacts 

within the image that are related to view angle, sensor geometry, and canopy 

parameters (Barnsley and Kay, 1989), and independent of atmospheric (in longer 

wavelengths), topographic and some, but not all, solar/target geometry effects.

2For example Jones et al. (1988), where the application of models was 
discussed and conclusions highlighting the paradox of requiring detailed data 
raised. However, it is obvious that in non-segmented datasets it would be 
extremely difficult to apply parametric models, because of the impossibility of 
identifying which model and what parameters should be applied to each parcel in 
the image - unless this information is acquired by another means.

3For example, examination and modelling of spatial variance by Li and 
Strahler (1985, 1986).
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However, these latter effects can often be eliminated or modelled independently 

(for example row effects), since they can be identified in the imagery.

This chapter then, will illustrate, with examples from previous studies as well as 

this one, the response of a particular selection of cover types to view angle, and 

identify possible paths for the extraction of canopy information from geometric and 

statistical information in the imagery. It will then detail the method to remove 

other artifacts from the imagery, such as those due to differing topography and 

illumination, and explain the process by which reflectance maps can be used to 

analyse imagery for view angle effects. After assessing the performance of the 

topographic, atmospheric and illumination correction model, it will demonstrate that 

view angle artifacts are still dominant in the imagery and will identify the method 

by which canopy parameter extraction might proceed. Some of the preliminary 

results published in this chapter have been published previously in Kay (1989), 

Kay and Barnsley (1989) and Barnsley and Kay (1989).

4.1.1: Examples of change in detected vegetation canopy response with sensor 

view angle

Examples of vegetation canopy response have been acknowledged by remote 

sensing scientists for two decades. Salomonson and Marlatt (1971) examined the 

detected response of several cover types as a function of sensor view zenith angle, 

while Suits (1972a, Suits and Safir, 1972), in his early model of canopy 

reflectance, made particular reference to the change in reflectance with, among 

other parameters, view zenith and azimuth angles. Kimes (1984, 1987) examined 

directional reflectance of homogeneous coniferous woodland and, in this country, 

Barnsley (1984a and b) made a further detailed examination of detected spectral 

response of a variety of cover types with view angle. Foody (1988) summarises 

the results of these and other studies.

Data are presented here to illustrate the expected variation of detected radiance 

with view angle for a number of cover types, as derived from two airborne 

campaigns, both using a Daedalus ATM sensor. The effects of change in
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Figure 4.1: Variation of CV with view angle for an apple orchard, bands ATM 5 
(red) and 7 (NIR). Solid lines CV, dotted lines mean DN. (From Barnsley and 
Kay, 1989)
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Coefficient of Variation (CV) are also illustrated, as are changes in measures of 

spatial autocorrelation (see 3.5, 5.1).

Figures 4.1 to 4.3 show the variance of Apple Orchard, sugar beet, and bare soil 

(Barnsley and Kay, 1989), for ATM bands 5 (red, 0.63-0.69pm) and 7 (NIR, 0.76- 

0.9pm) using data from a flat, fenland test site (Gedney Hill, Lincolnshire, cf. 

Barnsley, 1984a). The orchard consists of trees around 2.5m high and spaced at 

10m intervals, with a mature grass understorey; the sugar beet is greater than 95% 

cover. Both the vegetative covers exhibit a similar response of detected radiance 

with view angle, a general increase in radiance with down-Sun view. Such a trend 

is typical of that found for green vegetation in the NIR, as will be apparent from 

the presentation of further results.

Of great interest to this study, however, is the variance of the DN in the parcels, 

when viewed from different angles. Variance of the datasets is represented here as 

the Coefficient of Variation (CV):

CV = 100(Standard Deviation/mean) Equation 4.1

and represents a normalised measure of image or parcel variance; hence it is not 

related to the magnitude of the mean. It can thus be used with equal relevance 

upon scaled data (DN), radiance data, and different wavebands, or for data 

acquired under differing irradiance - as is the case for multiple flightline datasets.

The orchard is mostly highly variable of the three cover types, as might be 

expected since the trees are not continuous in their cover. The sugar beet and bare 

soil cover types exhibit almost no change of CV with view angle. This contrast is 

extremely important, since it may allow the inference of canopy parameters at a 

qualitative level or even quantitatively. The change in CV due to view angle is a 

result of three interacting geometric effects (see sec. 3.5, Barnsley and Kay, 1989):

• An increase in the area of the GRE towards the edge of the image.
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• The consequent increased over-sampling between adjacent EFOV’s with 

increasing view angle.

• Changes in the proportions of different canopy elements visible to the sensor. 

This is particularly pronounced for tall, spatially heterogeneous cover types.

The first two effects are directly related to the sensor geometry, and are detailed 

for the Daedalus ATM sensor in Chapter 3. However, it is apparent from the 

results presented here that there must be variance within the scene for these effects 

to be manifest in the image at all; if there is little or no spatial variance in the 

cover, then there is nothing to be modulated by the geometry of the sensor. Hence 

we might expect the degree to which this modulation takes place to be an 

indicator of the spatial variance within a scene. For this reason, we will examine 

further the causes and mechanisms of spatial variance, and its co-existing concept 

of spatial autocorrelation, in greater detail in section 5.1.

It is also observed, in the case of bare soil (figure 4.3), that while a medium 

degree of variance is measured for the parcel as a whole (6-7% in the NIR), this 

variance does not change substantially with view angle. Note that the CV at off- 

nadir angles is the same as for the apple orchard in the NIR. The geometric 

effects of the sensor, increasing the area of the GRE and oversampling towards the 

edges of the swath are the same for both datasets - so the different trends 

observed are due solely to the third effect, that of the changing proportions of 

the canopy observed at off-nadir angles.

It is also important to note that the constant, significant level of variation in the 

soil parcel data implies that attenuation effects of the atmosphere are negligible at 

these longer wavelengths (in this dataset). Atmospheric attenuation would be 

expected to reduce image contrast at off-nadir view angles, due to an increased 

atmospheric path length, thereby reducing variance at the edges of the swath. This 

is observed, however, in only the shortest wavebands (ATM 1 and 2, see tables 

5.3 to 5.11).
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Examples of the response of mean and CV of detected radiance for all ten bands 

used in this study, and for three cover types, are presented in figures 4.4 to 4.6.

Field 29 (figure 4.4) (winter barley, 56% cover, growth stage 32 - see table 3.1)
v i ' 1 'J  ? (_£.< r  (

illustrates how the pattern of response can be broken down into three spectrums - 

visible bands, near infrared (NIR) and middle infrared (MIR). From a visual 

inspection, the shorter visible bands have a shallow curved response, with a weak 

relationship between view angle and CV. This response appears to become stronger 

in bands ATM 4 and 5, although the level of variation remains similar, between 

3% and 5%. Band ATM 6, a transitional band between red and NIR, and the NIR 

bands ATM 7 and 8, show a second pattern, exhibiting even weaker view angle 

related responses, or in the case of bands ATM 7 and 8 and inverted response - 

CV increases with view angle. No explanation can yet be offered for this trend.

Note the markedly changing mean response of the cover type in these bands.

Finally, bands ATM 9 and 10 return to the expected response of view angle and 

CV, at a somewhat increased base level of variance.

Field 21 (winter wheat, table 3.1) illustrates similar view angle related trends of 

CV; again, it is convenient to classify the pattern of response into visible, NIR and 

MIR regions of the spectrum. Base levels of CV are in some cases higher than 

those recorded for Field 29 (winter barley). These two fields represent, therefore, 

an intermediate level of response somewhere between the pattern observed for the r> 

apple orchard, bare soil and sugar beet parcels described above.

Finally, the response of a sparsely vegetated surface, field 30 (spring barley, 6%

cover, growth stage 12, table 3.1), is presented. At the time of image acquisition 

this field was virtually bare soil, since the plants were at the tillering stage of 

development and very small. For this reason, response of both mean DN and CV 

is similar to that of the bare soil parcel above; no significant view angle related 

trend of CV is observed, in any of the bands. Fields 29 and 30 are included to

allow comparison with the processed data at the end of this chapter.
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Figure 4.7: Reflectance image construction method. An irradiance map, or 
"potential radiance" image, was produced using measurements of sky radiance, a 
sky radiance model and the DTM. This was ratioed with the calibrated ATM 
radiance image to produce reflectance images.

page 110



Chapter 4 Reflectance image production

4.2; Radiometric image corrections

4.2.1: Construction of reflectance images

The method used to correct the image data used in this study for illumination, 

topographic, sensor and sky radiance effects is most simply explained as the 

production of reflectance images, made by ratioing the "potential radiance" for a 

pixel in a synthesised image with the measured radiance value for the 

corresponding pixel in the ATM image (figures 4.7 and 4.8) (Kay, 1989). The 

standard procedure for the production of a reflectance image is to use simultaneous 

(or more likely contemporaneous) ground radiometer measurements to calculate 

reflectance for particular cover types within an image. This technique is limiting if 

many view angles are being considered, since this requires a similar range of 

ground measurements. Scales of variation of cover can also vary considerably 

between ground and airborne measurements, and this may affect the interpretation 

of the data. Large numbers of ground measurements may also be required to 

characterise reflectances for fields (Curran and Williamson, 1985, Atkinson, 1988).

In this study, irradiance data were recorded at a single ground location (using a 

pyranometer, see 3.2.1) and are combined with terrain model data to produce an 

irradiance image. A model of the angular distribution of sky radiance (4.2.3.1) has 

been used to improve upon the results obtained using a simple direct source 

illumination procedures. The resultant irradiance image, with the application of 

spectral sky radiance model (4.2.3.2), is used to produce an image of "potential 

radiance" for a specific bandwidth, in particular those of the ATM sensor. This 

procedure is carried out for each of the flightlines in the data set. These images
i

express the maximum radiance that could be reflected in the direction of the 

sensor from each facet; they make no assumptions concerning the BRDF of the 

cover type. Hence the resulting reflectance images, produced by combining the 

"potential radiance" images with the remotely sensed data, contain the full 

compliment of reflectance anisotropy. However, because the effects of topography, 

solar zenith and azimuth angles, and sky radiance distributions have been
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normalised between each flightline, the differences can be explained purely in 

terms of the canopy geometry.

4.2.2: Atmospheric corrections

Solar radiation detected at the Earth’s surface is modified considerably by the 

atmosphere (section 2.3). Basically the atmospheric corrections are to adjust the 

detected radiance at the sensor for effects which occur between the exoatmospheric 

estimates of irradiance (derived from literature datasets), the target and the sensor. 

The main atmospheric problems come from the downward solar radiance being 

attenuated spectrally by an atmosphere (of unknown parameters), the upward target 

radiance being attenuated by the atmosphere of varying thickness, depending upon 

view angle, and the increased (asymmetric) backscatter at greater view angles. This 

first problem makes estimates of ground irradiance in discrete wavebands difficult 

to calculate, and the second two problems introduce errors into the image 

measurements of detected radiance.

The problem of modelling the effect of atmosphere on the flux between the target 

and the sensor is hard to quantify and resolve. Since the aircraft data are obtained 

at low altitude, the data could be considered to be only affected marginally by 

atmospheric attenuation. However, examination of the image data used in this 

study reveals that the major problem lies in the angular dependence of this 

attenuation, especially in the shorter wavebands. No method was developed to 

overcome this special problem in this study. Instead, the method used here relies 

upon the properties of the statistical test (CV) used, and the restriction of the data 

analysis to the longer wavebands (bands 5 to 10, red to infrared). While this may 

be a useful assumption here, it is acknowledged that this does not constitute a 

practicable method for general correction of all image data for this effect.
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Figure 4.8: Component modelling of sky radiance - direct sky component FD, 
diffuse sky component Fd, direct ground component F^, diffuse ground component 
Fgd. (After Woodham and Gray, 1987.)
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4.2.3 Sky radiance corrections

Reflectance image production

4.2.3.1: Spatial sky radiance distributions

The total flux of radiant energy (symbolised here as F) on a facet of ground is the 

simple addition of four components, direct radiation (FD), diffuse sky radiation (Fd), 

the direct reflected ground component (F^), and a diffuse reflected ground

component (Fgd) (figure 4.8 ) (adapted from Temps and Coulson, 1977, and

Woodham and Gray, 1987).

F = FD + Fd + F ^  + Fp, Equation 4.2

The significance of each component depends upon the state of the atmosphere, the 

terrain around each facet, and also the cover types associated with the

neighbouring facets. Temps and Coulson (1977) estimate the importance of the 

diffuse sky element (in clear sky conditions) to be around 15% of the total 

irradiance; but this is a broad estimate, better estimates exist such as those given 

by McDowell (1974), Kondratyev (1969) and the 5S atmospheric modelling

algorithm (cf\ 4.3.1). The reflected ground component is recognised as influencing 

the anisotropic distribution of sky radiance, particularly near to the horizon, but 

contributes much less directly to the facet under consideration4.

Precise modelling of the direct ground component (F^), given full terrain and local 

cover type characteristics, is extremely difficult for a number of reasons. First, an 

integration of the areas of all the terrain facets, and calculation of their relative 

orientations, that are visible from the GRE being modelled must be made. This is 

an extremely complicated and time-consuming task, even given the use of DTM 

data (Dozier and Frew, 1989). Second, the component cannot be calculated without 

the irradiance being modelled for each of these neighbouring components, so an 

iterative method is called for. Third, the implicit assumption is that the component 

is a reflected proportion of the total incident radiance, and that this proportion is 

computed by estimating the albedo of the surface (in Temps and Coulson’s model).

4Temps and Coulson (1977), although this is not the opinion of Woodham 
(1989) or borne out by the model developed here - see 4.4
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Figure 4.9: DTM facet geometry, used by the TL model. Facet slope 0, , solar 
azimuth a , solar zenith angle (J), and horizon brightening factor T.
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This has several problems. While albedo may be a suitable estimate for the 

proportion of total radiation reflected, when considering discrete spectral bands this 

is not so. Albedo is not consistent for different cover types; so a variety of covers 

will introduce a variety of spectral reflectance types5. Lastly, the directional 

reflectance of each neighbouring facet will have to be taken into consideration, to 

determine how much radiance is to be derived from each facet. This finally 

renders the inclusion of a ground component at best impracticable given present 

computing capabilities.

In order to devise a practicable method, simplifying assumptions must be made. FD 

is computed using the DTM (4.2.4):

Fd = ( l-8).Ecosi Eq. 4.3

Where E is the total incoming radiation, 8 is proportion of diffuse to total 

incoming flux, determined from the spectral radiance model (c/. 4.2.3.2), and i is 

the incident angle between the Sun and the surface normal (c/. 4.2.4). This is 

equivalent to the standard cosine correction carried by many previous workers.

The distribution of Fd is assumed isotropic, and hence proportional to the area of 

sky in view to the facet, sloping at angle 0:

Fd = 8.E(7C-0)7t 1 Eq. 4.4

If the relief is not great, and slopes moderate, it may be assumed that F ^  is 

derived from a hemispherical field, extending only up to the horizontal in the field 

of view from the facet (see 4.2.5 for discussion of model assumptions) (figure 

4.9). The proportion of the terrain in view is therefore given by 0/7t. This 

hemisphere is assumed to have average characteristics; that is it behaves as a 

Lambertian reflector and that its reflectance properties (a) are given by a global

5For a large number of neighbouring facets this may cancel out, since the 
average albedo of other facets impinging upon the scene would approach the 
global average. However, this is unlikely in areas where there is a systematic bias 
towards particular cover types, such as in a farm landscape of near mono­
cultivation.
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(or locally derived) value for albedo. Hence the estimate for the direct ground 

component is:

Fju = Eccos<J>(0/ti) Eq. 4.5a

Where <|> is the solar zenith angle, and a  is the relative azimuth of the Sun and the 

facet.

The model can be extended further by scaling F *  by [ 1 -sin<J>cos(cx/2)], in order to 

account for shadowing, low-lighting and high-lighting. This is achieved by the 

combination of two scale factors (Equation 4.5b). The first, sin<|>, accounts for the 

solar zenith angle. At the zenith, the Sun will cast no shadows, and as the solar 

zenith angle increases, shadowed components are more dominant, until all the 

surface is in shadow when it reaches the horizon; at this point sin<J>=l, and F ^  will 

be zero. The relative azimuth of the facet is also critical. This is accounted for by 

the second scale factor. Given the concept of an Egbert (1977) or Li and Strahler 

(1985) landscape, where the scene is made up of shadowed or non-shadowed 

(opaque) components, the proportion of illuminated terrain is very dependent upon 

the direction in which the terrain facet is oriented - looking down-Sun, mainly 

Sun-lit components will be observed, looking up-Sun, shadowed components will 

be dominant. Obviously, the shadowing will be dependent upon the solar zenith 

angle (a Sun at the zenith casts no shadows in this landscape), so the two scaling 

factors are combined. The a/2 value is modified by the cosine of this angle, to try 

to allow for the fact that the facet views a segment of a 180° field of view and, 

in fact, never sees all shadowed or Sun-lit components; rather, this factor should 

account for low- and high-lighting effects.

F ^  = Eocos<I)(0/7c)[l-sin(J)cos(a/2)] Eq. 4.5b

If all four of the components are to be modelled, including then (4.4) is 

actually equal to the total ground radiance (which we will term F^), and:

F„, = (1-8)F, Eq. 4.6

page 117



Chapter 4 Reflectance image production

again where 8 is the proportion of diffuse to total incoming flux. Since it is only 

a fraction of the total incident radiation on any surface, simplifying assumptions 

are made to allow for easier computation of the diffuse ground component. Fgd is 

assumed to be derived from a cylinder extending x above the horizon (since x is 

small, <10°), and is isotropic with respect to azimuth and zenith angles6:

Fgd = 8.Fg[l-tan0(7ttanx)'1] {for 0<x) Eq. 4.7a

or

Fgd = 8.Fg[l-(7itanx)'1{tan0-(tan20-tan2x)

+tanxcos'1(tanx/tan0)}] {for 0>x} Eq. 4.7b

Equation 4.7b approximates to

F^ = 8.Fg [ 1+(2V 2/37itanx). tan0. (1 -tanx/tan0 )3/2

{for 0>x} Eq. 4.7c

In this study, a number of factors allow the ground components to be computed in 

this way (Hall-Konyves, 1987, 1988), namely:

• the relatively low reflectance of the cover types

• the low, undulating relief (75% of facets sloping less than 10° (fig. 4.10)) 

and

• the elevation of the sun (approximately 45°), resulting in the lack of 

shadowed facets in the DTM.

6I am grateful to Paul Schooling, Department of Geography, UCL, for helping 
to prove equations 7a-7c.
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Figure 4.10: Distribution of slopes in the DTM dataset.
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These formulae were programmed in Mapics7 to allowing terrain model processing 

and image map generation. The algorithm and the program is called Terrain Lite 

(TL); several versions of this algorithm exist, and arc outlined in 4.4.2.

4.2.3.2: Spectral sky radiance distribution

The optimum technique to evaluate irradiance data for each band is to make 

contemporaneous measurements of sky radiance intensities using a spectro- 

radiometer, integrating the values for each bandwidth, to simulate the endo- 

atmospheric irradiance values for the sensor in use. Ideally, these measurements

should enable temporal spectral adjustments to the data, since changing

atmospheric conditions will alter the spectral profile of the sky radiance. They 

should also measure the angular distribution of sky radiance over the hemisphere, 

rather than producing an integrated hemispherical measurement such as that

obtained when using a pyranometer. Such measurement specifications demand 

specialist instrumentation, such as the PARABOLA instrument used by Ahmad et 

al. (1987), Middleton et al. (1987), and Deering (1988), or the multi-sensor 

pyranometer developed by Hamalainen et al. (1985). However, since such 

instruments and the capability to carry out such field work over a long field 

season (4 months) were unavailable, broad-band pyranometer measurements,

combined with literature calculations and software modelling of the atmosphere 

were used to calculate and balance the total flux for each flightline.

Spectral irradiance was estimated in two ways; first, from published measurements 

and calculations of exo-atmospheric irradiance from the literature, and second using 

the 5S atmospheric transmittance model (Tanrg et al.y 1986), based upon the 

LOWTRAN code (Prasad et al.y 1987).

In the first method, the ground measurements from the AWS pyranometer were 

converted to W.m^.sr'1, and then the calculations from Woodham and Gray (1987) 

and Markham and Barker (1987) used to estimate the percentage of total incoming

7Mapics is a raster-based worksheet and mapping package.
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radiation for each TM waveband. It is assumed that the measurement made by the 

pyranometer is equal to the total incoming radiation across the full spectrum of 

irradiance, since no detailed data upon the bandwidth and sensitivity function of 

the sensor is available. This will, in fact, produce a slight under-estimate of 

irradiance, since the bandwidth of the instrument is known to be not as broad as 

the full solar irradiance spectrum.

The transformation from measured irradiance to synthesised "potential radiance" is 

finally completed by dividing the value by the bandwidth, in pm, to produce 

standard units of the total incoming spectral irradiance E, in W.m'2.pm'1.sr'1. 

Atmospheric attenuation to incoming flux was assumed to be a constant proportion 

across the entire spectrum, instead of being spectrally dependent In otherwords, 

the exoatmospheric estimates, in percentages of the total flux, were applied to the 

measured flux on the ground. While this is obviously a gross over-simplistic 

assumption, without some model of what absorption and scattering is taking place 

in the atmosphere it is not possible to calculate the attenuation for each band. The 

effect of this will be to over-estimate the value of E in the equations above. This 

error will, in part, compensate for the under-estimate of the irradiance measured by 

the pyranometer.

The estimated spectral irradiance is then broken down for the TL models into 

proportions of diffuse to total spectral irradiance (the ratio 8), calculated from data 

recorded by McDowell (1974) and the 5S algorithm (c/. 4.4.1 below, Table 4.1), 

these being the two best sources available to the study. These values are essential 

for the calculation of Fd, F^, and F^. The second method calculates direct flux, 

diffuse flux, and "environmental" radiance (i.e. F*. but with no knowledge of the 

topography) for a flat, horizontal target. The program estimates detected radiance 

for off-nadir viewing sensors, which would implicitly make some assumptions 

about the directional, as well as spectral, reflectance properties of the target. In 

this instance the algorithm was used to calculate the proportions of direct and 

diffuse flux for each waveband, for specific irradiance, solar geometry and 

visibility conditions, corresponding to each flightline of the image data. The 5S 

program can also be used calculate absolute values of irradiance at ground level; 

these values have been compared to those estimated by method one (cf\ 4.4.1
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below), and exo-atmospheric calculations (Woodham and Gray, 1987, Markham 

and Barker, 1987).

4.2.4: Topographic corrections

Previous studies have concentrated upon topographic shading algorithms for digital 

terrain models, and methods of defining the reflectance characteristics of a target 

to model their behaviour, and hence correct them for image analysis (section 2.4). 

This method is inherently flawed in its logic. In order to make a useful and 

accurate correction, detailed characteristics of the target, including a descriptions of 

the BRDF of the target, are required. If this is so, then other useful knowledge of 

the target exist a priori, eg type, percentage cover, height, leaf orientation, and 

moisture content. Thus further analysis of the image data will reveal little more 

about the target than is already known.

A second misconception is that the target orientation, in particular the zenith 

direction for the BRDF, is achieved by calculating the normal to the terrain facet. 

This assumes that the directional effects of canopy reflectance are related to 

topography. The relationship is more complicated than may at first appear. Plant 

canopies do not organise themselves at a normal to the facet upon which they are 

located; rather they grow "upwards", although the packing of the individual 

components in the canopy may affect the macro-scale response of the canopy in a 

complicated manner (Leprieur et al., 1988, Strahler et al., 1988, Strahler, 1988). 

Thus it is not sufficient for the terrain model to be used simply to orient the 

canopy reflectance model.

The emphasis of the use of terrain information, in this study, has been to generate 

image maps determining irradiance, using DTM data calibrated with irradiance 

measurements. Three sources of terrain data were considered, 1:10,000 standard 

paper mapping, digital contour data digitised from 1:50,000 OS Landranger series 

(10m contour interval), and DEM data (on a 50m grid, generated to the nearest 

metre) derived from the digital contour data by the OS. Although digitised from 

the Landranger series, the digital contour data in fact originate from the 1:10,000
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mapping, since it is this 5m contour dataset that is generalised in the production of 

the 1:50,000 series. No information upon the method used by the OS to derive the 

DEM was provided, although some estimates of accuracy were included with the 

data.

The algorithm employed here requires slope and aspect data to calculate the 

orientation of each terrain facet. This is used, in turn, to determine the iiTadiance 

on each facet. In order to achieve this, a DTM8 dataset was computed from the 

digital contour data, using Mapics software package. Height-Gradient Grid files are 

computed, containing the necessary gradient information in East GG)and North 

(nG) directions for each point (cell) in the model. A scaling value for each facet is 

determined by calculating the angle between the illumination vector and the normal 

vector for each facet. First the direction cosines9 (/, m, n) for the normal to the 

facet are calculated:

And the dot product of the illumination vector and the facet normal is found to 

give the cosine of the incident angle, i:

where a  and <J> are the solar azimuth and zenith angles, respectively.

Once this basic scaling factor has been determined for each facet (pixel) in the 

DTM image, it is then modified according to equations 4.2-4.7 above (4.2.3.1), and 

converted into potential radiance values by scaling the estimate of spectral 

irradiance, E (4.2.3.2).

8A DEM only models elevation as a function of position; a DTM models 
gradient information which can be used to derive slope and aspect information.

9Three dimensional vector describing the orientation of the normal

l  = -.G/Vl+.G^.G2 

m  = -nG/Vl+.G2+„G2 

a  = 1/Vl+.G2+„G2

Eq. 4.8 

Eq. 4.9 

Eq. 4.10

cosi = /sina + mcosa + wcos<)> Eq. 4.11
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4.2.5: Model assumptions

Reflectance image production

In order for the model to function, several assumptions concerning the type of 

cover, topography, sky radiance, and the image data must be made; those 

assumptions concerning the development of the model have already been discussed 

in sections 4.2.1-4 above. The use of the reflectance images also requires some 

careful consideration about what exactly is taking place in the scene.

The use of reflectance images, generated by the method outlined in this study, 

normalises the variation in scene radiance due direcdy to topography. However, 

some indirect topographic artifacts may still remain, since some environmental 

factors, such as differential drainage conditions, or variable sunlight availability on 

steeper, north-facing slopes, may have an impact upon the canopy development. 

This may be manifest either as some difference in "health" of the plant, such as 

leaf development and (eventually) crop yield, or in the macro-canopy structure, for 

example the packing of each plant in the crop. While some reflectance models do 

recognise such differences (for example Franklin et al., 1986, and Strahler et al., 

1988, who allows for shadowing changes in forest stands), few scientists consider 

that plant canopies would be altered significantly by such factors. It is evident, 

both from aerial photography and ground observations, crops such as wheat and 

barley are very sensitive to environmental factors, and that topographic effects may 

not be restricted purely to illumination differences, but could include physiological 

alterations in the plant canopy as well.

A further assumption that has to be made is that the flux from the target detected 

at the sensor is collimated, i.e. that it is derived from a common angular position 

with respect to the BRDF. Over a full image this is obviously not the case, since 

the ATM scanner has a very broad FOV. For individual parcels this is not such a 

poor assumption, since their extent across the imagery is usually limited to a few 

degrees. Consequently, changes in reflectance within a parcel can be attributed 

primarily to target parameters. The description of the reflectance of any parcel in 

an image can therefore be made using the statistics derived from the pixel values 

in the reflectance images. Multiple observations of fields, from several flightlines,
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can then be compared on the basis of these statistics, and differences between 

datasets attributed to view angle effects alone.

4.3: Model performance 

4.3.1: Parameter selection

Two important parameters have to be determined for the spatial and spectral sky 

radiance model: spectral albedo or reflectance, and the ratio of diffuse to direct 

flux, for each spectral band.

It is assumed (and observed) that for the season in which the image was obtained 

(spring), and that for a rural area, the surrounding cover type will be dominantly 

green leaf vegetation. Values of spectral reflectance estimated from Lillesand and 

Kiefer (1979) and Kondratyev (1969) for each band of the ATM sensor are given 

in Table 4.1. The 5S model (Tanre et al., 1986) calculates average spectral 

reflectance for the pertinent sensor bandwidth from a "typical” green vegetation 

dataset; these values are included in the table. Estimates for spectral reflectance by 

Kondratyev are, for the longer wavebands, in the order of 5 percentage points 

lower than those from the 5S model, the values used in this study.

Table 4.1: Terrain Lite model parameters

ATM Band 1 2 3 4 5 6 7 8 9 10
Spectral reflectance 
G(%)‘ >5 10 15 10 12 25 45 42 30 15
G(%)+ n/a 10.4 11 n/a 13.2 n/a 52.7 n/a 37.3 21.3
Diffuse irradiance 
50VF*) 18 10 7 6 5 4.2 3-4 3 n/a n/a
80VF+) n/a 39.1 31.2 n/a 25.5 n/a 17.5 n/a 6.6 4.5

‘From Kondratyev (1969), and Lillesand and Kiefer (1979) 
+Output from the 5S model, Tanr6 et al. (1986)
"From McDowell (1974)
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Values for 8, the ratio of diffuse sky radiance (Fd) to total flux (F), were estimated 

from results measured by McDowell (1974), in which study sky conditions were 

stated to be "clear” and solar zenith angle similar to this experiment, around 45°. 

The 5S model, for the demonstration data presented here, was given parameter 

values of 45° for the solar zenith angle, 160° solar azimuth, 15km visibility. These 

values were, again, those used for the computation of the reflectance images.

It is important to remember that while the use of such parameters is essential to 

the functioning of the model, they do not in fact account for a large proportion of 

the flux incident on any facet. Hence any error introduced at this stage is likely to 

be reduced by a large amount (around an order of magnitude) when applied to the 

model. The gross differences between the 5S and McDowell estimates of diffuse 

sky radiance are likely to be a result of extremely clear skies at the "clear" test 

site used by the latter. Although it is impossible to tell exactly, or even to 

estimate, the state of the atmosphere when McDowell’s observations were made, it 

would seem likely that such a test site (White Sands missile range) would produce 

very clear conditions.

Table 4.2: Potential radiance, TM bands 1 to 7, W.m*2.sr1.pm'1

Band 1 2 3 4 5 7

Flightline

1 182.429 161.191 137.716 96.580 20.657 7.419

2 176.607 156.046 133.321 93.498 19.998 7.182

3 182.429 161.191 137.716 96.580 20.657 7.419

4 172.726 152.617 130.391 91.443 19.559 7.024

5 190.192 168.050 143.577 100.690 21.536 7.735

6 176.607 156.046 133.321 93.498 19.998 7.182

7 178.548 157.761 134.786 94.525 20.218 7.261

Calculations were made for the potential radiance for each band, based upon the 

literature values of the percentage of the total exoatmospheric irradiance for each 

band of the Landsat TM sensor (Woodham and Gray, 1987, Markham and Barker, 

1985, 1987). No such literature values exist for Earth surface measurements or
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estimates, since these would be dependent upon changing atmospheric conditions. 

Such measurements would be preferable, but are dependent upon the opportunity to 

carry out further fieldwork at the time of imaging, and the availability of more 

sophisticated instrumentation, such as a spectrometer (cf. 4.2.3.2). Neither of these 

two options were available for this experiment, nor are they likely to be in most 

large area or long timescale studies, particularly those utilising satellite-borne 

sensors. The assumptions concerning this method are detailed in 4.2.5 above; in 

brief the method provides an over estimate of the potential radiance for each 

flightline, since it assumes equal attenuation across the entire spectrum. While this 

makes comparison with other studies difficult, it is acceptable for this study, in 

particular between flightlines. since the instrumentation and method is standardised. 

The actual values of potential radiance will in fact be over-estimates, but this is 

preferable to an underestimate, which could result in reflectance values greater than 

1 being calculated.

Table 4.3: Solar azimuth and zenith angles used in TL runs

Local time* FAine Azimuth Zenith
09:47:30 4 133.66° 46.32°
09:52:30 1 135.16° 45.76°
09:58:30 3 137.00° 45.22°
10:04:30 2 138.87° 44.50°
10:10:30 5 140.77° 43.90°
10:14:30 6 142.07° 43.51°
10:20:30 7 144.03° 42.96°

’Local solar time = GMT- *7.4 mins. Since each flightline takes between 40 and 
50 seconds to image, these are approximate values. Position of the site was taken 
as 51.93°N 1.85°W. (Solar zenith and azimuth angles computed using an algorithm 
developed by J. Pearson, UCL)

4.3.2: Solar azimuth and zenith angles

Table 4.3 lists the values for solar azimuth and zenith angles calculated for input 

to the TL models. Over the 35 minute period of the imaging of the first seven
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M  Miii

■®S3sS

Figure 4.11: Laser print of the DEM used in the study; bright values correspond to 
high elevations, ranging up to 270m.
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flightlines, the solar azimuth changed by 10.5°, and the zenith angle by around 

3.5°; the former would likely be the more significant parameter.

4.3.3: Model results

Eight algorithms, of increasing complexity, were programmed in order to test the 

performance of the TL models. The description of each version is given in table 

4.4 below.

Table 4.4: Terrain Lite algorithms

v l Calculation of FD alone, corrected by cosi only.

v2 Fd + Fd; isotropic sky, proportion visible dependent upon facet

slope, F /F  given by table 4.1

v3 As v2, but additionally F^, proportion visible determined by

facet slope, surface reflectance from table 4.1.

v3a As v3, but solar zenith and azimuth corrections applied to F ^

v4 As v3, additionally accounts for Fgd; scattering given by table 4.1.

v4a As v4, but solar azimuth and zenith corrections applied to F^.

v4x/xa Fast algorithms to calculate Fgd by approximation.

Using the 20m resolution DTM, generated from the OS digital contour and point 

data covering the study site (figure 4.11), potential radiance images were generated 

using each of the versions of the TL algorithm in turn, up to version TL4x. A 

standardised solar geometry was used, with a solar zenith angle of 45°, and an 

azimuth o^d.60^ The ratio of diffuse to total flux was taken from McDowell 

(1974), and spectral reflectance of the surrounding terrain from Kondratyev (1969) 

(Table 4.1)10. Tables 4.5 to 4.10 and figures 4.12 to 4.16 show mean, standard 

deviation, minimum, maximum and median values of potential radiance for these 

images. The number of pixels in each image was 50,451 (201x251). Figure 4.17 

shows the resulting synthesised potential radiance images for TL versions l-4a.

10In the final production of the reflectance images, values of FJF and c  
produced by the 5S model were used.
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Table 4.5: Band TM1 TL results

Mean SD Min Max Med
vl 122.700 7.110 43.110 159.400 123.240
v2 127.340 6.480 49.750 158.080 128.020
v3 127.850 6.370 58.690 161.840 128.260
v3a 127.590 6.290 55.230 159.230 128.120
v4 127.840 6.380 58.250 161.670 128.260
v4a 127.610 6.300 55.140 159.320 128.130

Table 4.6: Band TM2 TL results

Mean SD Min Max Med
vl 108.410 6.280 38.090 140.850 108.890
v2 111.280 5.890 42.200 140.030 111.850
v3 112.410 5.720 57.690 148.330 112.390
v3a 111.850 5.490 54.310 142.560 112.080
v4 112.390 5.720 57.390 148.070 112.390
v4a 111.870 5.510 54.170 142.710 112.100

Table 4.7: Band TM3 TL results

Mean SD Min Max Med
vl 92.620 5.370 32.540 120.330 93.040
v2 94.370 5.130 35.050 119.830 94.840
v3 94.760 5.050 41.800 122.670 95.020
v3a 94.570 4.990 39.190 120.700 94.920
v4 94.760 5.060 41.630 122.610 95.020
v4a 94.580 4.990 39.150 120.740 94.920

(All values in W.m2.sr1.pm'1)
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Table 4.8: Band TM4 TL results

Mean SD Min Max Med
vl 64.960 3.770 22.820 84.390 65.250
v2 65.820 3.650 24.050 84.140 66.680
v3 66.900 3.550 36.230 92.110 66.680
v3a 66.360 3.290 35.660 86.580 66.350
v4 66.890 3.550 36.080 91.980 66.680
v4a 66.370 3.300 35.600 86.640 66.360

Table 4.9: Band TM5 TL results

Mean SD Min Max Med
vl 13.890 0.810 4.880 18.050 13.960
v2 13.950 0.800 4.960 18.040 14.010
v3 14.090 0.780 6.750 19.100 14.080
v3a 14.020 0.750 6.510 18.360 14.040
v4 14.090 0.780 6.750 19.090 14.080
v4a 14.020 0.750 6.510 18.360 14.040

Table 4.10: Band TM7 TL results

Mean SD Min Max Med
vl 4.990 0.290 1.750 6.480 5.010
v2 5.010 0.290 1.780 6.480 5.030
v3 5.060 0.280 2.420 6.860 5.060
v3a 5.030 0.270 2.340 6.590 5.040
v4 5.060 0.280 2.420 6.860 5.060
v4a 5.030 0.270 2.340 6.590 5.040

(All values in W.m2.sr1.pm’1)
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Figure 4.17: Laser print of potential radiance images from TL1 (top left), TL2 (top 
right), TL3a (bottom left) and TL4a (bottom right). North is up the page, 
illumination was from the bottom right corner.
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In some previous uses of terrain modelling, to correct for differential illumination 

and reflectance map production, shaded or low-lit areas are in general under- 

illuminated, resulting in over-estimates of reflectance in these zones (for example, 

Jones et al., 1988). This trend is counteracted by the more sophisticated versions 

(v3 onwards) of the TL model. While maximum values, particularly those from 

v3a and v4a, remain close to those calculated using v l, minimum values rise, as 

expected, when the diffuse sky component is included (v2), and further still for v3. 

The effect is most significant for bands where atmospheric scattering is strongest 

(i.e. short wavelengths) and terrain reflectance greatest (i.e. the NIR waveband). 

The addition of the F^ component (v4 onwards) makes little significant difference 

to potential radiance, suggesting that sky anisotropy is not a significant factor in 

this of study. This is a result of the moderate relief in the study area. Mean and 

median values (figures 4.12, 4.16) increase slightly for v2, but remain stable for 

further versions of the model.

The correction factor for facet aspect and shadowing appears to function 

favourably, moderating both maximum and minimum values. It does not greatly 

influence potential radiance values, the value of is never large, contributing at 

most around 30% of the flux incident on the darkest facets. The aspect correction 

factor always slightly reduces the mean, SD, minimum, maximum and median 

values for the potential radiance images. This because the function, which we may 

recall is [l-sin<|>cos(a/2)], always returns a value of less than 1, except in the 

special cases of the solar zenith angle (<|>) being equal to zero or the relative 

azimuth angle being equal to 180°.

Of note, however, is the fact that the direct ground component does contribute 

rather more than the indirect ground component (back-scattered by the sky, 

manifest as horizon-brightening in the TL models TL4, TL4a). This is in contrast 

to the findings of Prasad et al. (1987), but similar to conclusions by Woodham 

(1989). It is sensible to recognise that the importance of this indirect component 

will be spectrally dependent, and be more significant in the shorter part of the 

spectrum; Prasad et al. (1987) were considering the full solar spectrum, and 

therefore made no spectral considerations regarding the relative importance of 

different components. In the red and NIR spectrum, the direct ground component
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will be much more significant than the diffuse ground component, depending upon 

the reflectance properties of the local terrain.

As a result of this preliminary investigation, TLv3a was selected for all further 

analyses, as a compromise over computation time and the effectiveness of the 

algorithm in modelling the illumination of the terrain.

4.4; Reflectance image analysis and assessment

4.4.1: Analysis of the relationship between view angle and reflectance

Using reflectance images for two fields in the study area11, the mean, minimum, 

and maximum pixel values, as well as standard deviation (SD) and coefficient of 

variation (CV) were calculated for five view angles and the six ATM bands 

corresponding to TM sensor bands (ATM 2, 3, 5, 7, 9 and 10). The data were 

analysed for trends that it was assumed would now be due solely to view angle - 

in particular, the relationship between view angle, mean pixel value, and CV of the 

samples in the parcel.

In section 4.1.1 the relationship between view angle and the detected response of 

various canopies is illustrated. In this section, the relationship between view angle 

and mean value of reflectance is compared with the earlier section. It would be 

expected that the trends evident in the raw DN data would remain in the 

reflectance data, since the major effect of reflectance image production is the 

removal of data scaling and offsets, achieved by data calibration.

A second comparison, that of the variance of the two datasets, is also made. There 

are two reasons why the relationship between view angle and CV, in this 

experiment at least, should be similar for both raw DN and reflectance data. CV is 

a measure of the ratio of the SD of a data set, assumed to be distributed normally,

"Fields 29 - winter barley, 56% cover - and 30 - spring barley, 6% cover.
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Figure 4.18: Field 30 reflectance, bands TM 1 to 7. Solid lines are CV, dotted 
lines mean DN.
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to the mean. First, scaling the data, such as by converting the data values to 

radiance units, will not change the CV of the sample, excepting effects resulting 

from quantisation. Second, the act of ratioing radiance images with the potential 

radiance images, to produce reflectance images, will alter the distribution of the 

samples where the orientation of the facets is varied and extreme; the range of DN 

in parcels of single cover type in reflectance images will tend to be reduced. 

However, since parcels in managed agriculture are on moderate terrain, and are 

often a function of geomorphological and topographical units, the CV may be 

expected to remain similar, since over small areas the effect of generating 

reflectance images becomes approximately a scalar transformation.

4.4.1.1: Qualitative comparison

Figures 4.18 and 4.19 present the results of the reflectance data for two fields, 30 

and 29 (see section 4.1.1, table 3.1). By comparison with figures 4.4 and 4.6, it 

can be seen that for field 30 (spring barley) the trend of both CV and mean 

reflectance for the visible bands shows a similar pattern, although the response of 

CV is a little more erratic. For the infrared bands, particularly band TM7, data 

reliability becomes doubtful. This is most evident in the measure of CV, which 

increases for several of the flightlines and bands. This is a direct result of the 

quantisation, caused as a result of the processing, corrupting the distribution of the 

data.

In figure 4.19, presenting the reflectance data for field 29 (winter barley) the 

pattern of response for the visible and NIR bands (TM1 to 4) is broadly the same 

as for the raw data; in TM4 even the inverted relationship noted in band ATM 7 

(figure 4.4) is evident. The low radiance in the MIR bands (TM 5 and 7), 

however, causes serious quantisation problems when using calibrated data. As a 

result the statistical reliability of these bands is again doubtful (see section 4.4.2 

below). A second problem is evident with TM4 - the high reflectance values (of 

greater than 100%) indicate that the gain setting on the instrument was incorrectly 

recorded during data collection. A gain setting of half this value would produce 

more acceptable results.
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Figure 4.19: Field 29 reflectance, bands TM 1 to 7. Solid lines are CV, dotted 
lines mean DN.
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4.4.1.2: Quantitative comparison - regression analysis

A further comparison is made between the raw and reflectance data, using the 

method outlined in the next chapter. Regression analysis is used to describe the 

trends of CV with view angle, and it is shown that for the shorter TM wavebands, 

no major differences in statistical explanation of the data are evident. For bands 

TM5 and TM7, however, corrupted data distributions do not allow the use of these 

bands in analysis. For a full explanation of the method, refer to the later sections 

(5.2 and 5.3).

The results of the regression analysis are presented in tables 4.11, 4.12, 5.3 and 

5.4. For field 30 reflectance data (table 4.11), non-linear regression fit is not 

significant when tested at a 90% confidence level for all six TM bands; and in no 

case does non-linear regression produce a result with >70% significance when 

compared with linear regression. Linear regression also produces poor results, but 

this is to be expected since i2 values are also low, and the b coefficients in the 

regression equations (indicating the gradient of the regression line) are also small. 

For bands TM5 and TM7, the assumptions concerning the normal distribution of 

the data do not hold, so in fact these results are probably invalid in any case. For 

the other four bands, however, the results are similar to those derived from 

analysis of the raw data (see section 5.3, table 5.3).

In the case of field 29 reflectance data (table 4.12), non-linear regression provides 

a significantly improved explanation of data variance12 for bands TM3 and TM4; in 

both cases the fit is significant at the 95% confidence level when compared to the 

linear regression results. Of note is that the c coefficients for TM4/ATM7 are both 

positive, an anomaly peculiar to this kind of vegetation cover in this study. Again, 

results for bands TM5 and TM7 are invalid due to corrupted data distributions. 

Results for TM1 and TM2 are similar to those obtained with raw data, although 

only significant at a lower confidence level.

12Note: this is a measure of the variance of the observed dependent variable 
from the predicted value - and in this case our dependent variable is, perversely, 
also a measure of variance, CV.
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Table 4.11: Field 30, reflectance - linear and non-linear regression of view 
angle and coefficient of variation

Band TM1 TM2 TM3 TM4 TM5 TM7

Linear Regression
a 3.79 4.07 5.25 6.38 7.24 5.81
b 0.014 0.038 0.043 0.017 0.013 0.315
r2 0.143 0.295 0.340 0.030 0.057 0.680
t-test 40% 60% 60% 20% 30% 80%

Non-linear Regression
a 3.14 3.45 4.93 6.69 6.70 7.98
b -0.023 0.002 0.025 0.034 -0.018 0.439
c 0.002 0.002 0.001 -0.001 0.002 -0.007
r2 0.590 0.419 0.368 0.046 0.206 0.729
f-test ns ns ns ns ns ns

Significance of use of non-linear regression
t-test 70% 40% 20% 10% 30% 30%

Table 4.12: Field 29, reflectance - 
angle and coefficient of variation

linear and non-linear regression of view

Band TM1 TM2 TM3 TM4 TM5 TM7

Linear Regression
a 4.59 4.92 6.32 3.89 9.48 3.57
b 0.042 -0.015 0.009 -0.011 -0.065 0.019
i2 0.247 0.068 0.008 0.246 0.561 0.025
t-test 60% 30% 10% 60% 80% 10%

Non-linear Regression
a 6.18 6.35 9.11 3.31 9.95 4.27
b 0.034 -0.023 -0.007 -0.008 -0.067 0.015
c -0.004 -0.003 -0.006 0.001 -0.001 -0.002
r2 0.618 0.766 0.922 0.951 0.591 0.062
f-test ns ns 90% 95% ns ns

Significance of use of non-linear regression
t-test 70% 80% 95% 95% 20% 10%

Notes: ns= not significant at 90%; r2 is a measure of explained variance; f-test is a 
comparable significance test to the t-test.
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Where non-linear regression provides a better explanation, it may be noted that the 

b and c coefficients of the equation are not always the same in the analysis of raw 

and reflectance data. Such changes are almost certainly due to the corruption of 

data distributions in the image correction processing. In this data set, the effect is 

least evident for band TM413, and for this band the coefficients are virtually 

identical. Reducing the number of grey levels in the reflectance image, without 

reducing the overall dynamic range of the image commensurately, appears to result 

in spuriously large values of CV (c/. data for bands TM5 and TM7). The net 

result of this process, therefore, is to increase the value of the c coefficient in the 

regression equation; this effect is observed in band TM3.

4.4.2: Quantisation problems and data set distributions

Despite promising a useful means of determining reflectance properties for a wide 

range of surfaces and applications (Yang and Vidal, 1989, Woodham, 1989, Dozier 

and Frew, 1989), the reflectance images produced in this study do not provide the 

quality of data that are required for further analysis in the context of this 

investigation (see Chapter 5). The main problem is the effect of quantisation upon 

the images at different stages of the correction.

The first problem arises with the radiometric calibration of the data. In all bands 

imaged by the ATM sensor in this experiment the gain setting was 1 or greater, 

enhancing the dynamic range of the DN values in the image. The effect of 

calibrating the data to radiance, and still displaying and manipulating these data on 

an image processor that will only operate with integer values, is a net decrease in 

the dynamic range of the data. In some bands, particularly ATM9 and ATM 10 

(TM5 and TM7), this may have a dramatic effect of reducing the dynamic range 

by a factor of 4.

\ ' \13This band ;was had) a gain setting of near unity, so little dynamic range was 
lost in conversion to radiance units
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Table 4.13: Data distributions before and after conversion to reflectance

column minimum maximum median count

DN, tm3 57.00 81.00 68.50 24
Reflectance,
tm3 (%) 18.00 31.00 24.50 14
DN, tm7 44.00 95.00 66.50 46
Reflectance,
tm3 (%) 17.00 33.00 25.00 2

This table shows that the distribution of the image data for a vegetative parcel (Field 
29) is severely corrupted during the conversion to reflectance values. In particular, band 
TM7 is reduced from 46 grey levels to just two.
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The second effect is a result of the terrain model potential radiance images also 

being integer, for example, band TM7 has a maximum DN of 6, although 4 is a 

more common value. This means that the calculation of reflectance can only 

produce values of 0%, 17%, 33%, 49%, 51%, 83%, and 100%14, for pixels with a 

radiance value of 6.

The same effect can arise in the calculation of reflectance values. While this is 

done using real arithmetic, in a FORTRAN program developed to do this, the 

conversion of the reflectance values to byte data for display and image processing 

means that the nearest integer value must be chosen for the value written out by 

the program. Since reflectance values are also represented in terms of percentage, 

the most convenient system to display images is using a possible 100 grey levels, 

each level representing one percent. Obviously, making better or full use of the 

grey level range on the image processing system could reduce this problem (for 

example see Yang, 1989, who used 256 grey levels), but this does not solve the 

problem of the radiometrically corrected image data being essentially 2-bit. Such a 

system is also/ a/ less convenient to work with.

The combined effect of these two quantisation stages is to produce an image with 

a reduced dynamic range, and in some cases only 4 or 5 different grey levels. The 

effect is the reduction of integrity of the data, especially when it is to be used for 

the calculation of variance, since this measure relies upon assumptions concerning 

the normal distribution of the data. Quantisation, and in particular reducing the 

number of available grey levels used in an image, can alter data distributions 

dramatically (table 4.13).

Reflectance images, however, can provide a valuable method for the removal of 

illumination, atmospheric and topographic effects in remotely sensed data, and 

could become essential elements of multitemporal and multiple view angle data set 

analyses (Yang, 1989, Woodham, 1989). It has been shown, in this study, that the 

main limitation in the production of such images is the computational facilities 

available; for accurate, quantitative analysis, access to a floating point processing

14In fact even these values are not calculated exactly, due to rounding errors 
with both the image processor and the use of byte arithmetic in FORTRAN.
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system, such as is usually the case with software rather than hardware systems, is 

essential.

4.5: Conclusions on the use of reflectance images for further 

analysis

An attempt has been made here to show that production of reflectance images can 

provide a useful, and indeed in some cases necessary, method for the analysis of 

view angle effects. A method of production that simplifies some of the more 

difficult conceptual problems has been derived and introduced, and some results 

analysed. In particular, the response of coefficient of variance (CV) of DN within 

parcels with view angle has been investigated, and found to be similar for both 

raw image and reflectance image data.

The development of a simplified sky radiance model, incorporating both angular 

and spectral characteristics, has been a key factor in this section. A version of the 

model that attempts to account for illumination differences according to the aspect 

of each terrain facet relative to that of the Sun was introduced and used in 

analysis. It is interesting to note that such an idea has been published elsewhere 

(Dozier and Frew, 1989; subsequent to the work here)

The major disadvantage of the use of the reflectance images produced in this study 

is the effect of quantisation and reduction of dynamic range in the intermediate 

images that are generated in the process, namely the radiance image and the 

synthesised potential radiance image. The use of an image processing system that 

could compute such transformations in floating point format would evade such 

difficulties. Ideally, the final image should have more than 100 grey levels to 

display the reflectance image. This would preserve DN data distributions, allowing 

statistical analysis of the reflectance images to proceed with a greater level of 

confidence concerning the integrity of the data.

It has also been ascertained, however, that the view angle effect of greatest interest 

to this study, namely the coefficient of variation of DN in parcels, is not affected
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significantly by atmosphere, topography, and instrument calibration; at least not so 

far as they apply to this study. With this in mind, and the justification of 

maintaining the statistical integrity of the data so far as is possible, further analysis 

to understand the relationship between view angle and image variance (undertaken 

in Chapter 5) has been carried out on the raw, uncorrected data.
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CHAPTER 5: Measures of spatial variance in remotely sensed

digital images as a new method for information extraction

The analysis of image statistics has been shown to allow the numerical inversion 

of models to extract characteristics of scene components, in particular for forestry 

applications (for example, Li and Strahler, 1985, 1986, Franklin and Strahler, 

1988). In the first section of this chapter, the concepts underlying one such 

statistic, scene variance, are reviewed, and the interaction of scene variance and 

image resolution assessed in an experiment (section 5.1.4) using ATM imagery of 

the study area. In section 5.2, a new method for the extraction of agrophysical 

canopy parameters from imagery, using the relationship between view angle and 

image variance, is explained. Section 5.3 presents the results of this method when 

applied to Daedalus ATM data, in particular the general description of the canopy, 

correct interpretation of the regression analysis, and the influence of crop row 

geometry. The final section discusses new options that could be explored using 

such a method and other techniques of measuring image variance.

5.1: Theoretical background to modelling and measuring 

spatial variance in images

5.1.1: Spatial variance in scenes

Remotely sensed data represent a discretely sampled model of the Earth’s surface, 

measured at a sampling interval determined by the geometry of the sensor. For any 

one region of the Earth’s surface, many scales of examination and evaluation could 

possibly exist. For example, at a "global" scale, an image of the whole earth may 

be described as a combination of like areas that are logically defined (segmented) 

by the human observer: oceans, continents fiand or ice) and cloud (weather 

systems). By enlarging the scale at which the examination takes place, more 

subdivisions may be distinguished; for example at a continental scale, mountain 

ranges, plains, river systems.
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By moving to a regional scale, one commonly associated with remotely sensed 

data, more complicated spatial relationships become apparent With a scene 

comprised of agricultural components, that is fields or parcels of homogeneous 

land cover types separated by boundaries, the predominant factor determining 

whether or not a field may be distinguished is the relationship between the size of 

the field and the sampling interval. That is, if the size of the ground resolution 

element is smaller (perhaps several times smaller) than the field, then the field will 

be identifiable. But it is wholly possible that at such a sampling scale, spatial 

variations in other components of the scene, such as soil moisture variations or 

variations in canopy density, will also influence measurements. If the size of 

ground resolution elements is reduced further, other factors will also become 

important. Plant row structure, individual plants, plant components (leaves, stalks, 

ears), and cells will in sequence become identifiable.

It can, therefore, be argued that we use variance in an image to help us to identify 

scene characteristics, at all scales of examination. Some of this interpretation is 

based upon textural analysis, but statistical analogies are hard to formulate. This is 

an important area of information extraction in image understanding that has long 

been recognised; in this chapter, we attempt to follow one strategy for the 

extraction of canopy parameter characteristics, based upon the evaluation of image 

variance, in a multiple view angle dataset.

5.1.2: Measures of spatial variance

Several measures of spatial variance have been proposed (Woodcock and Strahler, 

1987, Curran, 1987, Atkinson, 1988). The simplest, used in this study, is to extract 

pixel values (DN) from a parcel within an image, and calculate the statistical 

measure of the coefficient of variation (CV) (4.1.1, Eq. 4.1) of the total population 

of pixels in that region; we shall refer to this technique as the coefficient of 

variation method, or CV method. This has the advantage of being simple to 

implement on an image processing system. Results from this technique, using 

ATM data collected at the Bemborough Farm study site, are given in figure 5.7
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:.... ....... . A—..—..

Figure 5.1: Assumptions concerning the distribution of objects in a scene for the 
CV method. These two parcels have the same CV, but the left one is variable at a 
higher frequency. The CV method assumes that objects are distributed as in the 
left parcel for results to be comparable. The regression strategy described in 
sections 5.2 and 5.3, however, explains how this assumption can also be used to 
identify the nature of the distribution of the objects in the scene when using a 
multiple view angle dataset.
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below, and in greater detail in section 5.2. A basic assumption is made when using 

this technique, however, that the spatial distribution of DN is random within the 

parcel, or that it is described by a periodic function of similar spatial frequency to 

the sampling frequency of the sensor1, i.e. that despite the parcel being classified 

as a single cover type the likelihood of a pixel having the same value as its 

neighbour is normally distributed. Spectrally pure parcels, that is DN of a single 

cover type, will have a narrow distribution of values; those from a less pure 

sample area will have a broader, perhaps even bimodal distribution. In regions 

where the distribution of DN does not meet these criteria, the assumptions 

concerning the assessment of spatial autocorrelation, using the surrogate of CV, 

would be false (figure 5.1).

A further reason for using the CV to measure image variance is that measures 

such as the Standard Deviation (SD) are sensitive to differences between the 

mean values of sample populations. Since the analysis of the data was taking place 

upon non-calibrated, or raw, image data, it was important that fluctuations in the 

mean values of sample datasets - of the same parcel on the ground - from each of 

the flightlines would not effect the analysis of variance.

Woodcock and Strahler (Woodcock, 1985, Woodcock and Strahler, 1987) measured 

local variance by passing a 3x3 kernel over an image, calculating the SD of the 

pixels within the kernel, and averaging the SD of all positions of the kernel within 

the image to produce a measure of variance for the whole image. This technique 

(which we will term the Woodcock SD method) provides a better measurement of 

the spatial autocorrelation and variance of neighbouring pixels in an image than the 

CV technique, since it does not make any implicit assumptions concerning the 

distribution of pixels within an image. It also has the advantage of providing a 

measurement of variance for each pixel in the image, rather than one based on 

parcels that appear spectrally homogeneous. Several examples of images processed 

in this manner are presented here (figure 5.3).

lrThis case will later be termed an M-resolution model case, in section 5.1.5
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The Woodcock SD method actually emulates the action of a high-pass filter (e.g. 

Laplacian) on an image by identifying pixels which fall upon or near to edges. 

However, whereas convolving an image to produce a high-pass filtered image 

produces a graphical representation of variance or spatial autocorrelation 

characteristics of the original image, Woodcock’s method quantifies variance 

exactly. A second difference is that the magnitude of all edges is represented in 

the same (positive) direction, i.e. the stronger the edge, the greater the statistical 

measure of local variance. Nevertheless, it is marginally harder to implement this 

technique on an image processor than the CV method, and an interpretation of the 

significance of the results still demands further understanding of the effect of scene 

structure upon image variance. As will be seen, moreover, some of the results 

presented here output using this algorithm (implemented in FORTRAN 77, not on 

the image processor) produced some surprising results (see 5.1.4).

Woodcock (1985), Curran (1987), Atkinson (1988) and Atkinson and Danson 

(1988) have proposed the use of semi-variograms as a means of characterising the 

spatial variability of scenes. This more complicated computational technique 

permits the identification of the "optimal" sampling strategy for remote sensing of 

different cover types, and should indicate the general level of variability of that 

cover at differing scales of measurement. It would be difficult, however, to build  ̂

the oversampling and canopy effects produced by the ATM sensor in to such a 

modelling mechanism. For these reasons the modelling of image variance using 

this technique has not been attempted.

5.1.3: The role of models in evaluating scene spatial variance

It is important, for the purpose of this study, to establish terms and concepts which 

can be used to describe and classify the interaction of scene spatial variance and 

image sampling. This has been attended to, in great detail by other workers (Jupp 

et al., 1988, 1989, Woodcock et al. 1988a & b, Woodcock and Strahler, 1987, 

Cliff and Ord, 1973), and in a general biogeographical (and specifically remote 

sensing) context by Strahler et al. (1986) and Woodcock (1985). This paper 

reviewed and discussed the derivation and application of scene and image spatial
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variance models in general use in remote sensing. Much of this understanding and 

knowledge is used as a background to applications of invertible models, used to 

estimate parameters of forest canopies (Li and Strahler 1985, 1986, 1988, Franklin 

and Strahler, 1988, Strahler et al. 1988). Of most relevance here is the following 

review of the paper (Strahler et al., 1986), as applied to the modelling of the 

behaviour of parcels of land planted with wheat or barley crops.

5.1.3.1: Definitions based upon sampling scale

Scene models can also be classified depending upon the relationship between the 

size of the elements in the scene model and the resolution cell size. H-resolution 

models are defined as being those in which the scene elements are larger than the 

resolution cells, and are thus detectable; conversely, L-resolution models are those 

where the elements are smaller than the resolution cell, and so cannot be 

distinguished in the image. With regard to spatial autocorrelation, for //-resolution 

models it is likely that each resolution cell will have a similar reflectance to its 

neighbour, since adjacent cells are likely to be imaging the same element. With L- 

resolution models, there is no reason to suppose that neighbouring cells will 

resemble each other since the scene elements are smaller than the cells. However, 

in extreme cases of L-resolution models, where elements are much smaller than the 

resolution cell, high spatial autocorrelation is likely due to the effect of resolution 

cell integrating over a large number of individual elements. Even in scenes of 

diverse cover types, if the scene element size is small then many cover types will 

be integrated over one resolution cell, and hence cells are likely to be correlated.

High spatial variance is likely to be observed, therefore, when the element size 

approximates2 the resolution cell size. Strahler et al. (1986) do recognise such a 

circumstance, but only acknowledge the difficulty of characterising such a model; 

in this study we will term such a model M-resolution.

2Probably 0.5-2 times the size of the resolution cell.
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5.1.3.2: Model definitions incorporating considerations of scene components

At a low level, scene models can be considered as either discrete or continuous. In 

the former case, the scene is considered to be made up of two or more different 

types of object, each of which interacts in a unique way with the energy 

impinging upon it. For this reason, it is assumed that detectable boundaries exist in 

the spatial pattern of flux exiting from the scene; hence, it may be possible to 

identify the objects in the scene, given suitable sensor resolution. In this study, the 

concept of a discrete model is most appropriate, since in the image we are able to 

distinguish between features at the sampling scale of the sensor.

Continuous models consider the spatial variation of flux, as measured in the image, 

to be continuous; while this is unrealistic when considering natural surfaces at all 

scales, for images where the scene objects are much smaller than the sensor 

resolution cell it may be a suitable assumption to treat the model as continuous. 

For example, atmospheric models which consider the interaction of gases with 

incoming radiation could be considered as discrete models (they are made up of 

different gaseous molecules) but when allowing for the scale of spatial variation 

they are more straightforward to treat as continuous.

A simple model is one which considers the scene to consist of one class of 

element (or type of object) partially obscuring another, spatially continuous or 

homogeneous, element, termed the background. Complex models assume that more 

than one class of element exist in the scene. In mono-cultivation, however, this is 

an unnecessary concept, and we can consider the parcels in the scene to be 

modelled adequately using the concept of a simple model.

Nested models are useful when examining the composition of objects at different 

scales (5.1.1 above). For example, a cultivated field fits the structure of a simple, 

discrete model; it consists of a single vegetative species, (partially) obscuring a 

continuous soil background. But, at increasingly higher scales of examination, the 

vegetation, although predominantly barley or wheat, could include weeds, the crop 

is systematically arranged in rows, each plant is also regularly spaced and 

identifiable as an object, and comprised of physically unique objects (leaves, stalks,
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ears) which are capable of having identifiable interactions with irradiant energy 

fluxes. The soil substrate, too, could breakdown further to stones and soil, moisture 

differences, mineral discontinuities etc. The structure of canopy models at most 

levels, therefore, are best described by the concept of a nested model.

5.1.4: Testing the effect of spatial resolution and scene structure on the spatial 

variance of images

5.1.4.1: Literature background and tests using synthesised images

Townshend (1981) concluded that increasing spatial resolutions did not necessarily 

equate to improved classification accuracies, the reason being that increased within- 

class variance diminishes the ability of spectral algorithms to distinguish between 

classes (Woodcock and Strahler 1987). Thus while increased spatial sampling 

frequencies will reduce the effects of adjacent parcels of dissimilar cover types, 

they will also reveal greater heterogeneity within each parcel.

Strahler et al. (1986) and Woodcock and Strahler (1987) have also examined the 

issue of scale on remotely sensed imagery. In the latter paper, simulated images of 

a sparse forest, made up of non-overlapping canopies generated using a simplified 

Li-Strahler conifer forest canopy model3, were assessed for their local variance at 

differing scales of measurement. The results indicated that variance peaked when 

the sampling interval was 0.5 to 0.75 that of the size of the objects within the 

scene. But in their experiment, as the sampling interval increased, the scale of the 

objects or elements remained constant, i.e. it did not progress from tree, to branch, 

to leaf etc. Thus the spectral definition of an entity remained intact throughout the 

experiment, and the complications caused by the constant need to redefine an 

"entity", as is the case in real scenes, were not introduced.

3This treats conifers as cones casting shadows on a contrasting background; 
the scale at which the model operates is essentially at the level of individual tree 
scale, since no account is made of variations in canopy or background structure. 
(Li and Strahler, 1985, 1986.)
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In reality, therefore, variance within an image is complex interaction of sensor 

resolution, or more precisely size of ground resolution elements, and the scale and 

distribution of the objects that make up the scene. Scene element scale is not just 

determined by the physical dimension of the element, but also by the spectral 

contrast between the element and the background. This will vary from one region 

of the electromagnetic spectrum to another, as is shown with the response of 

different cover types in this study to different wavebands.

The second factor, distribution of objects within the scene, is also important, 

especially if there is some systematic arrangement (at the scale of the GRE) that 

may bias the spectral response of individual scene element. A natural forest acts as 

a good example; it is made up of trees (which are made up of leaves, branches, 

trunk and gaps) and understorey (grass {leaves, stalks), soil, and litter), both of 

which (and all of their composite components) can be sunlit or in shadow. We can 

consider these two major components (tree, understorey) to be spectrally t 

distinguishable from each other. However, if we consider the examination of this 

scene at the scale of the treet these components are systematically arranged to 

form trees, and understorey. Assuming a GRE somewhat smaller than the tree (say 

at the scale of the Nyquist4 frequency or slightly smaller), then it is likely that a 

pixel in our image will represent either "tree" or "understorey" - because of the 

systematic arrangement of the components in the scene - and image variance will 

be relatively high, since adjacent pixels will represent different spectral classes. But 

at smaller image scales, i.e. where the GRE is much larger than a tree, 

approaching the size of or larger than the average spatial period between trees, and 

the distribution of components is no longer systematic, image variance would be 

reduced.

Woodcock and Strahler (1987) considered the sequence of scene elements with 

reference to sparsely-stocked Pine forest (Pinus Jeffreyi and P. Ponderosa). They 

anticipated a peak of image variance at image scales smaller5 than tree scale due

4The Nyquist sampling theorem indicates that the sampling frequency must be 
double the frequency of the spatial variation in the scene for it to be resolved in 
the image - in practice, higher sampling frequencies are preferable. (Slater, 1980)

5That is, for a GRE between 20 and 100m.
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Figure 5.2: ATM subscene at four (nominal) spatial resolutions: 5m (top right), 
10m (top left), 20m (bottom left) and 40m (bottom right).
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to the systematic clustering of trees in "stands". They found that because stand size 

varied widely there was not one size class dominant enough to generate such a 

peak. However, it is apparent that peaks could occur in some scenes, either where 

stands have a narrow size range or where the trees are arranged systematically, 

such as in a managed forest. Examples of repetitive or cyclic measures of spatial 

variance of different scales can be observed in the data presented by Atkinson and 

Danson (1988).

5.1.4.2: Method

ATM image data for the Bemborough study site were examined to analyse the 

spatial variance of data acquired by this sensor, and to see if they fitted the 

expected trends reported in the literature. Examination of the variance of individual 

fields has already been made, and discussed in earlier sections (4.1.1); in this 

instance the images were analysed to see if any "peaks" in variance were evident, 

as reported by Woodcock and Strahler (1987). In addition, thereby, an estimate 

could be made of the spatial dimensions of the phenomena causing such an effect.

Bands 5 (red), 9 and 10 (MIR) were chosen for evaluation, although only the 

results for band 5 are presented here6. It was noted from section 4.1.1 that these 

bands show the typical relationship between view angle and image variance. Figure 

5.2 is a laserprint of the section of the image used in this experiment. The spatial 

dimensions of the image are 512x512 pixels, at a nominal GRE of 5x5 metres at 

nadir. Individual fields can be seen clearly, and a number of different cover types 

identified.

The effect of lowei sensor spatial resolution has been simulated by the simple 

process of averaging groups of 2x2 pixels, to form a single value representing 

twice the area in the original image. This technique does not take into account the 

point spread function7 of the sensor, or the effect of differences in the signal-to-

6Bands ATM9 and 10 also showed similar results in this experiment.

7Not available for the ATM scanner used by NERC
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Figure 5.3: Laser print of SD (Woodcock method) filtered 5m resolution subscene.
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Figure 5.4: Laser print of SD (Woodcock method) filtered 10m resolution
subscene.
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-noise ratio at different spatial resolutions (Townshend, 1981). It is easy to 

implement, however, and the same technique has been used by Woodcock and 

Strahler (1987) and indeed by Townshend (Townshend and Justice, 1989). Thus it 

is a useful technique for the analysis of the relationship between variance and 

spatial resolution for a particular image, although the extrapolation of the results 

derived from these data, to other scenes and sensors, should only be made with 

caution.

5.1.4.3: Results

Figure 5.3 shows the result of SD filtering, using the standard 3x3 kernel, of the 

original image. Bright values indicate high local variance. Obvious marked contrast 

exists on roads and other distinct boundaries, such as between fields (hedgerows) 

and other cover types exhibiting spectral contrast, as would be expected. Within 

fields of higher percentage cover, much of the row structure caused by the 

tramlines is apparent, as well as some aliasing8. There is some evidence to show 

that for certain field orientations, row structure in the image is better preserved. 

Fields with rows parallel to the scanline (left to right in the image) show a better 

patterned row structure than those oriented perpendicular to the scanline. This may 

be explained by the increased oversampling between scan lines, as compared to the 

across-track direction, on ATM data.

The woodland and pasture areas are of particular interest, exhibiting high and low 

spatial variance, respectively. These results confirm some of the findings of 

Woodcock and Strahler (1987). In the bare soil parcels, highly complicated 

structural patterns are visible that are not distinguishable on the original (digital) 

image. Of particular significance is the division down the centre of the *D’ shaped

“Aliasing is the interference pattern caused by the interaction of the spatial 
variation of features in the scene and the sampling pattern of the sensor. It is 
usually manifested in the image as a periodic pattern which is of lower frequency 
than the true scene spatial frequency.
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Figure 5.5: Laser print of SD (Woodcock method) filtered 20m resolution
subscene.
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Figure 5.6: Laser print of SD (Woodcock method) filtered 40m resolution 
subscene. Note how this image begins to resemble the original image as the spatial 
resolution of the sensor approaches the size of the objects (fields are increasingly 
dominant).
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field9 in the comer of the image, visible on figure 5.2 as a tonal

difference in soil colour. This boundary follows that of a geological fault line, and

separates two slightly different soil types overlying similar oolitic limestones (see

section 3.1).

Figures 5.4 to 5.6 show a continued decrease in complexity of variance for most 

cover types with further degradation of the image resolution. By degrading spatial 

resolution to 20x20m (figure 5.5), row structure, whether direct or caused by

tramlines, is not evident in any field, bar one (Big Ground, field 2 on figure 3.2,

highlighted on figure 5.5). This implies a row structure of higher period than in 

other fields, or a more pronounced aliasing produced by the spatial resolution of 

the sensor and the scene variance interacting. The structure of variation in most 

fields, in the simulated 20x20m image, does not appear to be related directly to 

the tramline structure. Significant variance, however, is still evident in most fields.

Table 5.1: Aggregate variance, fields 18 and 2

Field 18 Field 2

Res- Mean SD Pop21 Mean SD Pop*

5m 57.024 3.110 3775 67.617 4.104 6992

10m 56.630 2.844 846 67.940 3.783 1608

20m 56.940 2.674 200 67.788 3.726 400

40m 56.157 1.735 57 67.675 3.145 74

Table 5.1 and figure 5.7 show the change in variance, resulting from a degradation 

of image resolution, obtained by calculating the SD of DN for two fields, both 

winter barley. A near-linear relation between "resolution” and SD can be 

observed. While these results can indicate the strength of the relationship, they are 

not entirely reliable since only four pairs of data are available. However, it is not

9D Ground and Long Ground, fields 30 and 31 on the sketch map at end of 
document.
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possible to degrade the imagery further, because of the increasing influence of 

integration of boundaries and adjacent parcels, producing "mixels", would also 

result in increased variance.

No peaks of the kind reported by Woodcock and Strahler occur. This may be for 

two reasons. First, a peak in variance may occur at a resolution higher than that 

included in this dataset, i.e. it results from a scene element of period less than 5m. 

Second, defining scene variance at any particular scale is, in reality, impossible 

since the scale of the objects within the scene is continuously variable (see 5.1.1 

and 5.1.4).

Table 5.2: Average local variance, fields 20, 18, 29, 2, and whole image

Full resolution (5m) Degraded (10m) Degraded (20m)

Field Mean SD {SD}10 Mean SD (SD) Mean SD {SD}

20 11.50 5.286 7.84 2.7 6.88 2.436

18 9.04 6.826 10.79 9.0 10.79 8.127

29 9.99 4.258 9.31 4.4 8.02 4.382

2 13.04 4.844 12.69 4.4 12.15 4.319

whole 28.32 31.85 33.15 34.9 37.45 35.89

Table 5.2 and figure 5.8 describe local variance calculated by the Woodcock SD 

method for four fields (all winter barley) and the 512x512 scene containing these 

fields as a whole. The "mean" value in the table refers to the mean of the SD 

values for every pixel in the SD filtered images. The SD value in table 5.2 refers 

to the distribution of these values. The sample population, in fact, will not be 

normally distributed, since the program calculates positive values of variance; it is 

more likely that the data will approximate a Poisson distribution. This will also be 

distorted because the filtered image is scaled for display, so areas of high variance 

are represented as grey level 255. For restricted parcels where variance is relatively

10Note: this is SD of the values in the SD image.
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Figure 5.8: Variance measured by the Woodcock method for fields 20, 18, 29, 2 
and the whole subscene.
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low, however, this will not be a difficulty, but should be taken into account when 

considering the significance of the SD of these values. This, and the fact that SD 

is correlated to the mean value of the DN in the original image, is also an 

example of why such data arc difficult to interpret.

Field 20 exhibits high variance initially, at 5m resolution, falling to half its 

original value by 20m degradation. However for fields 2 and 29, little decrease in 

mean SD is observed, nor is there much change in the distribution of these values 

(SD). The pattern of spatial variance in the sequence of images is maintained. 

Field 18 shows a slight increase in variance, but this is caused by a patch in the 

parcel11 which becomes increasingly significant on the sequence of images. For the 

image as a whole, variance increases as the images are degraded. This is 

understandable since the dominant features in the image are a tessellation of 

parcels, divided by distinct, narrow boundaries - indicated in the SD images as 

high frequency, variable features - which become more significant as the number 

of pixels in the image decreases (as a function of degradation). As the resolution 

cell size approaches that of the field, there is a suggestion that peaks in variance 

do occur, as identified by Woodcock and Strahler.

5.1.5: Conclusions - modelling scene spatial variance for ATM imagery

The major criticism of the concepts outlined by Strahler et al. (1986) is that any 

scene could be considered to fit any of the //, M, or L-resolution scene models 

simultaneously, as the discussion in 5.1.1 implies. The data presented here can be 

modelled as //-resolution if fields are described as entities, L-resolution if the 

elements are treated as individual plant canopies, and probably M-resolution if the 

row structure of the crop is defined as the unit in the model. Examination of the 

relationship of local variance per field and as a whole image (figure 5.8) reveals 

quite simply that within a field, local variance is probably similar at all scales, 

once //-resolution has been attained; and that for the image as a whole, if a 

systematic structure is present (fields, boundaries) then the important factor is the

"Probably water-logging retarding plant development
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proportion of boundary pixels as a fraction of the whole image. This will achieve 

a maximum depending upon the spatial frequency and distribution of boundaries, 

and thus the topology of the land cover units making up the landscape 

(Townshend, 1981).

Figure 5.7 illustrates these conclusions effectively. Reduced within-class variance is 

to be expected with decreasing resolution. This is supported by Townshend’s work 

(1981) on resolution and classification accuracies. Local variance, however, can 

increase with degraded resolution (for this dataset) so far as this is tested here. To 

an extent, this confirms observations by other workers (Woodcock and Strahler 

1987), with the caveat that their conclusions are far from complete, since scant 

consideration is made of scales outside an artificial minimum definition (say, a tree 

as an entity or finite element), and do not consider images where the cover types 

are not conceptually infinite in extent (i.e. the images are of one class only). This 

limits the complexity apparent in more normal images, where nested models should 

be applied to describe any object in the scene. The effect of reducing image scale 

on these images is likely to enhance a cyclic pattern of alternating spatial 

autocorrelation and variance, depending upon the scale and configuration of 

features within the scene.

Finally, it has been shown (with reference to section 4.1.1 and 5.3) that the effect 

of degraded spatial resolution on image variance is far outweighed by other 

geometric effects of off-nadir viewing by the ATM scanner - namely, the enhanced 

autocorrelation caused by the increased overlap between adjacent GREs, and view 

geometry affecting the canopy components in view, as well as the larger area of 

the GRE, at the swath edges (section 4.1.1).

5.2: Alternative strategies: Coefficient of Variation 

5.2.1: Introduction

In Chapter 3, the effect of view angle upon image variance was hypothesised; 

Chapter 4 illustrates this effect, showing that it is a positive manifestation of view
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angle; section 5.1 explains the effect of scale of elements in a scene and image 

variance in greater detail. In this section the method of evaluating image variance 

using the coefficient of variation (CV) is described, sampling strategies outlined, 

and regression analysis explained.

5.2.2: Method

Data from several overlapping flightlines, providing up to six views of any area on 

the ground, were used to calculate image variance for seven different parcels. In 

addition, two further parcels were chosen from a second dataset (Kay and 

Barnsley, 1989), a complete sugar beet canopy, and an apple orchard planted in a 

regular lattice, to provide two extremes of canopy architecture not present in the 

main study site. The view angle for each sample area was taken to be that to the 

centre of the parcel on the respective flightline. Parcels in the raw image were 

analysed by calculating the mean and standard deviation (SD) of DN within each 

area of apparent homogeneity of cover. The coefficient of variation (CV) was 

calculated for each parcel (see sec. 4.1.1), to provide five or six pairs of view 

angle and CV, between which the degree of correlation was tested statistically 

using linear and non-linear regression analysis (Croxton et al.y 1967). The results 

of these analyses were tested for statistical significance using the Student t-test and 

the F-test. These two tests take into account sample size in the calculation of 

degrees of freedom for the sample, in this case between 2 and 4.

5.2.2.1 Sampling

Parcels were identified in the images by visual inspection and knowledge of field 

boundaries acquired from ground observations, aerial photography, farm maps and 

1:10,000 OS mapping12. In most instances, these did equate to fields in the scene,

12It could be a valid strategy to use automated image segmentation techniques, 
particularly where image variance (as a surrogate perhaps for texture, and 
implicitly cover type and characteristics) was used in the algorithm. This would 
enable some of the assumptions made above (section 5.1.2) concerning distributions

(continued...) 
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except for the samples of sugar beet and apple orchard, which were a standardised 

24x24 pixels. Headlands and field boundaries, where inconsistent applications of 

fertilizer, pesticides and regulators, would have irregular effects upon crop 

development, were excluded as a result of this method. "Mixels", pixels containing 

boundary elements or an unpredictable number of model elements, were also 

excluded by this process.

Each parcel contained, in general, between four and five thousand pixels. The 

number varied, however, between flightlines because the geometric properties of 

each image varied as a function of flight parameters (height, speed, yaw etc.; see 

section 3.3.3). The data collected included the number of DN, minimum and 

maximum values in each sample population. Mean, median, standard deviation and 

CV values were calculated for all ten bands used in this study (ATM1 to ATM10).

5.22.2 Regression analysis

After visual inspection of the data, paired values of view angle and CV were 

analysed. Three tests were applied to each dataset. First, the data were tested for 

linear fit to a regression model of the form:

y  = a + bx Equation 5.1

and the t-test value for significance of fit calculated. Second, the data were 

analysed for the fit of a non-linear (2nd-order polynomial) regression model, of the

"(...continued)
of DN within a parcel, and how this affects variance, to be applied rigorously.

type:

y  = a + bx + cx1 Eq. 5.2
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and the F-test value13 for overall significance of the regression line computed. 

Third, the significance of the improvement in fit of the use of the non-linear 

regression equation was tested, using the t-test - but note that non-linear regression 

will always produce a result as good as, or more likely better than, that of linear 

regression. It is this result that is often of greatest interest in this study.

The coefficients for the equations, and the results of the various tests are presented 

in tables 5.3 to 5.11. Figures 5.9 to 5.17 illustrate the fit of the regression lines to 

the CV data for bands 5, 9 and 10. By the perspicacious inspection of these 

coefficients and their associated significance test results, it is possible in certain 

cases to deduce information concerning the nature of the cover type.

Notes to tables 5.3-5.11: ns= not significant at 90%; nt=not testable; a, b, and c are coefficients of the 
regression equations; r2 is a measure of explained variance; f-test is a comparable significance test to 
the t-test.

Table 5.3: Field 30 - linear and non-linear regression of view angle and coefficient of variation

Band 1 2 3 4 5 6 7 8 9 10

Linear Regression
a 4.65 3.49 4.57 4.26 5.00 5.12 5.95 4.91 5.51 5.38
b -0.026 -0.001 0.004 0.016 0.010 -0.017 -0.036 -0.028 -0.008 0.010
r2 0.897 0.047 0.209 0.52 0.224 0.677 0.806 0.774 0.312 0.191
t-test 98% 20% 50% 80% 50% 90% 95% 95% 60% 50%

Non-linear Regression 
a 4.85 3.51 4.42 3.95 4.62 5.17 5.94 4.91 5.31 4.95
b -0.015 0.000 -0.004 -0.002 -0.011 -0.014 -0.037 -0.028 -0.019 -0.014
c -0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.001
r2 0.977 0.075 0.635 0.823 0.691 0.687 0.81 0.774 0.584 0.708
f-test 95% ns ns ns ns ns ns ns ns ns

Significance of use of non-linear regression 
t-test 80% <20% <75% <80% <80% <20% «10% «10% 70% 80%

13The F-test is a comparable test to the Student T-test, but simpler to calculate 
(Croxton et al., 1967).
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CV symbols, solid line gives regression equation fit. Negative view angles are up- 
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Table 5.4: Field 29 - linear and non-linear regression of view angle and coefficient of variation

Band 1 

Linear Regression

2 3 4 5 6 7 8 9 10

a 4.69 3.26 3.31 3.52 4.07 2.84 4.035 3.85 5.40 8.74
b 0.000 0.022 0.019 0.011 0.004 0.008 -0.012 -0.018 -0.003 0.014
r2 0.000 0.132 0.155 0.108 0.008 0.310 0.257 0.492 0.010 0.080
t-test nt 40% 40% 40% 10% 60% 60% 80% 10% 30%

Non-linear Regression
a 5.35 4.28 4.47 4.42 5.42 2.65 3.43 3.28 6.45 10.05
b -0.003 0.016 0.013 0.006 -0.003 0.009 -0.008 -0.015 -0.009 0.006
c -0.001 -0.002 -0.003 -0.002 -0.003 0.000 0.001 0.001 -0.002 -0.003
r2 0.293 0.431 0.751 0.856 0.924 0.487 0.998 0.983 0.983 0.845
f-test ns ns ns ns 90% ns 99% 97.5% 97.5% ns

Significance of use of non-linear regression
t-test 50% 50% 80% 90% 95% 50% 99.5% 98% 99% 90%

Table 5.5: Small stand, mixed woodland - linear and non-linear regression of view angle and 
coefficient of variation

Band 1 2 3 4 5 6 7 8 9 10

Linear Regression
a 4.75 3.07 4.64 3.85 5.55 9.60 11.23 10.02 9.87 10.43
b -0.011 0.001 0.009 0.011 0.008 0.000 -0.021 -0.034 0.000 0.025
r2 0.248 0.001 0.051 0.117 0.023 0.000 0.070 0.188 0.000 0.113
t-test 50% nt 20 40% 10% nt 30% 50% nt 40%

Non-linear Regression 
a 5.19 3.57 5.53 4.54 6.74 11.13 12.96 11.65 11.63 12.09
b -0.003 0.010 0.025 0.023 0.029 0.027 0.01 -0.005 0.031 0.055
c -0.001 -0.001 -0.002 -0.001 -0.002 -0.003 -0.004 -0.003 -0.004 -0.003
r2 0.964 0.924 0.969 0.982 0.976 0.959 0.967 0.985 0.997 0.994
f-test 95% 90% 95% 97.5% 97.5% 95% 95% 97.5% 99% 90%

Significance of use of non-linear regression 
t-test 97.5% 95% 98% 98% 98% 97.5% 98% 99% 99.5% 95%
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Figure 5.10: Field 29 regression analysis, bands 5, 9 and 10. Mean DN dotted line,
CV symbols, solid line gives regression equation fit.
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Table 5.6: Field 21 - linear and non-linear regression of view angle and coefficient of variation

Band 1 

Linear Regression

2 3 4 5 6 7 8 9 10

a 4.86 4.04 4.58 5.90 6.92 5.14 7.30 6.26 7.82 13.20
b -0.019 -0.015 -0.004 0.012 -0.019 0.008 -0.014 -0.022 -0.006 0.009
r2 0.342 0.237 0.013 0.112 0.131 0.133 0.260 0.575 0.015 0.048
t-test 60% 50% 10% 40% 40% 40% 60% 80% 10% 20%

Non-linear Regression
a 5.38 4.60 5.35 6.64 8.01 5.10 6.95 5.94 8.86 14.06
b -0.011 -0.007 0.007 0.023 -0.003 0.007 -0.019 -0.027 0.010 0.022
c -0.001 -0.001 -0.002 -0.002 -0.002 0.000 0.001 0.001 -0.002 -0.002
r2 0.847 0.833 0.962 0.929 0.945 0.140 0.568 0.837 0.978 0.948
f-test ns ns 95% 90% 90% ns ns ns 97.5% 90%

Significance of use of non-linear regression
t-test 80% 80% 98% 95% 95% nt 60% 75% 98% 95%

Table 5.7: Field 10 • linear and non-linear regression of view angle and coefficient of variation

Band 1 2 3 4 5 6 7 8 9 10

Linear Regression
a 4.29 2.72 3.10 3.29 3.96 3.40 4.97 4.91 4.40 6.65
b -0.011 0.009 0.019 0.122 0.005 0.016 -0.003 -0.001 0.012 0.015
r2 0.181 0.084 0.281 0.192 0.017 0.388 0.010 0.051 0.080 0.068
t-test 60% 40% 70% 60% 20% 80% 10% 30% 40% 30%

Non-linear Regression 
a 4.85 3.37 4.09 4.16 5.42 4.05 5.52 5.62 5.93 8.956
b -0.009 0.011 0.023 0.015 0.011 0.018 -0.001 -0.007 0.017 0.023
c -0.001 -0.001 -0.001 -0.001 -0.002 -0.001 -0.001 -0.001 -0.002 -0.003
r2 0.475 0.372 0.704 0.763 0.747 0.787 0.168 0.232 0.874 0.970
f-test ns ns ns ns 90% 90% ns ns 95% 99%

Significance of use of non-linear regression 
t-test 70% 60% 80% 90% 90% 90% 40% 50% 97.5% 99.5%
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Table 5.8: Field 3 - linear and nonlinear regression of view angle and coefficient of variation

Band 1 

Linear Regression

2 3 4 5 6 7 8 9 10

a 3.83 1.69 1.49 1.42 1.52 1.99 2.55 2.43 2.65 2.43
b -0.007 0.012 0.003 0.009 0.009 -0.004 -0.009 -0.011 0.009 0.012
r2 0.685 0.287 0.160 0.601 0.670 0.157 0.479 0.573 0.551 0.868
t-test 90% 60% 40% 80% 80% 40% 80% 80% 80% 97.5%

Non-linear Regression
a 3.845 1.29 1.34 1.29 1.43 2.02 2.65 2.57 2.75 2.51
b -0.007 0.024 0.007 0.013 0.011 -0.005 -0.012 -0.015 0.006 0.011
c 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
r2 0.697 0.902 0.873 0.828 0.807 0.187 0.591 0.757 0.672 0.947
f-test ns 90% ns ns ns ns ns ns ns 90%

Significance of use of non-linear regression
t-test 10% 95% 90% 75% 60% 10% 40% 60% 50% 75%

Table 5.9: Field 27 - linear and non-linear regression of view angle and coefficient of variation

Band 1 2 3 4 5 6 7 8 9 10

Linear Regression
a 4.49 3.61 5.09 5.84 7.35 5.43 6.00 5.19 6.89 8.18
b -0.010 0.021 0.029 0.030 0.014 -0.001 -0.015 -0.011 0.000 0.001
r2 0.605 0.738 0.853 0.968 0.883 0.004 0.523 0.879 0.017 0.053
t-test 80% 90% 97.5% 99.5% 98% nt 80% 98% 10% 20%

Non-linear Regression 
a 4.73 3.79 5.26 5.91 7.39 5.59 5.94 5.21 6.90 8.16
b -0.007 0.023 0.025 0.031 0.015 0.001 -0.016 -0.011 0.000 0.001
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
r2 0.833 0.776 0.888 0.971 0.888 0.209 0.527 0.883 0.071 0.064
f-test ns ns ns 95% ns ns ns ns ns ns

Significance of use of non-linear regression 
t-test 75% 30% 40% 30% 20% 40% nt 10% 20% 10%
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Table 5.10: Sugar beet - linear and non-linear regression of view angle and coefficient of variation

Band 1 

Linear Regression

2 3 4 5 6 7 8 9 10

a 2.04 1.40 1.30 1.25 1.16 1.78 2.00 1.64 2.85 2.19
b -0.003 -0.005 0.000 0.003 0.003 -0.001 0.000 0.002 -0.008 0.018
r2 0.107 0.058 0.000 0.051 0.052 0.012 0.004 0.336 0.692 0.744
t-test 40% 30% nt 30% 30% 10% nt 75% 90% 95%

Non-linear Regression
a 1.96 0.99 1.00 0.97 0.909 1.95 2.08 1.66 2.99 2.46
b -0.001 0.003 0.007 0.009 0.008 -0.005 -0.001 0.001 -0.011 0.012
c 0.000 0.001 0.001 0.001 0.001 -0.000 0.000 0.000 0.000 -0.001
r2 0.235 0.515 0.609 0.885 0.552 0.431 0.866 0.430 0.956 0.982
f-test ns ns ns 95% ns ns 95% ns 99% 99%

Significance of use of non-linear regression
t-test 40% 80% 80% 98% 80% 75% 98% 40% 97.5% 99%

Table 5.11: Apple orchard - linear and non-linear regression of view angle and coefficient of 
variation

Band 1 2 3 4 5 6 7 8 9 10

Linear Regression
a 2.58 1.93 2.58 2.39 3.36 8.70 10.78 10.30 12.81 10.40
b -0.017 -0.023 -0.004 0.000 -0.001 0.021 0.010 0.019 0.014 0.041
r2 0.689 0.552 0.038 0.000 0.000 0.033 0.006 0.025 0.022 0.255
t-test 97.5% 90% 30% nt nt 30% 10% 20% 20% 75%

Non-linear Regression
a 2.74 1.47 2.71 2.44 .4.49 12.48 15.23 14.24 15.94 12.62
b -0.019 -0.019 -0.005 0.000 -0.009 -0.008 -0.024 -0.012 -0.010 0.024
c 0.000 0.001 0.000 0.000 -0.002 -0.007 -0.008 -0.007 -0.006 -0.004
r2 0.741 0.757 0.076 0.006 0.630 0.981 0.983 0.986 0.955 0.908
f-test 90% 90% ns ns ns 99.9% 99.9% 99.9% 99% 99%

Significance of use of non-■linear regression
t-test 50% 80% 20% 10% 90% 99.9% 99.9% 99.9% 99.9% 99%
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Figure 5.16: Sugar beet parcel, regression analysis, bands 5, 9 and 10. Mean DN
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5.3; Results

Measures of spatial variance

5.3.1: Introduction

In this section we will first examine, for two distinct cover types, the relationship 

between CV and view angle, and then evaluate one technique, regression analysis, 

to characterise and quantify this relationship. Results for nine different cover types 

are presented in tables 5.3 to 5.11, for each band of the raw DN data, and figures 

5.9 to 5.17 show how image variance (represented by the CV of the DN in each

field) varies with view angle, for bands 5, 9 and 10; these bands show the str^est

and most consistent relationship between view angle and image variance. No 

radiometric corrections of any kind have been made to these data.

The main findings of this section are that view angle has a significant effect upon 

the variance of ATM data. Three interacting factors - namely the increased area of 

the GRE, the increased overlap between adjacent GREs, and the changed canopy 

components viewed by the sensor (section 4.1.1) - act to modify the spatial

variance as measured by the coefficient of variation. Extending the conclusions

from the previous section (5.1.5) it is shown here that this effect is a direct result 

of the canopy geometry, by comparing the relationship between homogeneous and 

non-homogeneous cover types of various canopy structures. It is concluded that 

such a relationship may be inverted to deduce information concerning the structure 

of the canopy, given image variance data for a number of different view angles.

5.3.2: General description of the results

The two major trends which can be observed are best illustrated by fields 30 

(spring barley, mostly bare soil) and 29 (winter barley) (tables 5.3 and 5.4). For 

field 3014, linear regression produces good results in bands 1, 6, 7 and 8. Non­

linear regression is only significant for band 1; this is probably due to view angle-

,4Spring barley, 6% cover, growth stage 12; this field is essentially bare soil.
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dependent atmospheric path radiance reducing image variance in the shorter 

wavebands. The t-test result, of whether the relationship between view angle and 

CV is better explained by non-linear regression than linear regression, is not 

significant at the 90% confidence level for any of the ten channels. The low t-test 

values for linear regression are a result of low i2 values and the b coefficient in 

the regression equation; a coefficient of zero would produce an i2 value of zero - 

and thus the significance of the result would be very low. By inspection of the 

data, however, it is apparent that a linear fit is acceptable for field 30; and that 

there is no significant relationship between view angle and image variance for this 

field.

For field 2915 the results are very different Linear regression produces consistently 

poor results. Non-linear regression, however, explains a significant degree of the 

relationship between view angle and CV, and is also a significant improvement 

over linear regression for bands 5, 7, 8,9 and 10 (although this is in part due to 

the poor results from linear regression in these bands). Fields 21 (winter wheat, 

22% cover, growth stage 32) and 10 (winter barley, 58 %, 37) show similar 

results.

The differing response of these two densities of cover (spring barley and winter 

barley) indicate, therefore, that there could be a mechanism for information 

extraction based upon the effect of view angle on the CV of a sample of DN from 

a parcel. Importantly, this relationship appears relatively unaffected by topography 

or by the atmosphere in the longer wavebands (ATM 5-10, cf. 4.4). If these factors 

had been important they would be manifested as an asymmetric relationship of CV 

with view angle, or some displacement of the parabola (determined by the 

regression analysis) origin with respect to the nadir view angle. The b coefficient 

in the non-linear regression equation is the factor determining this position, and in 

most cases this is small, causing a displacement of just a few degrees. Much of 

this displacement could be the result of the limited size of the dataset used to 

construct the parabola.

15Winter barley, 56% cover, growth stage 32.
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5.3.3: Description of results for further cover types

Further analysis is restricted to the longer wavelength bands (ATM 5-10), since it 

is recognised that atmospheric effects are less likely to alter image contrast, and 

thus mask scene variance, in these wavebands. Bands ATM 1-4, nevertheless, are 

included in the tables for the purpose of comparison. It is essential also to 

ascertain which bands are most suitable for the analysis of variance of the data. 

Bands 5, 9, and 10 have been chosen to illustrate the relationship between view 

angle and CV, since in these channels the spectral contrast between the element 

(the canopy) and the background (soil, except for the apple orchard where it is 

grass) (section 5.1.3) is great, the background having a higher reflectance than the 

element in these wavebands. This configuration is significant, because the 

architecture of the element controls the amount of background "seen" at any view 

angle. If the background has low reflectance then there would, therefore, be a 

weaker relationship between view angle and any measured dependent variable 

based upon detected radiance, since the background will not be seen at any view 

angle.

Dividing the results in terms of non-homogeneous or homogeneous canopies, the 

results can be listed as follows:

i) Non-homogeneous: for field 29, bands ATM 5, 7, 8 and 9 are better 

explained by a non-linear model. Field 10, with similar canopy parameters to 

field 29, also shows a significant non-linear relationship between view angle 

and CV for bands ATM 5, 9 and 10. Field 21 has significant explanation of 

variance by non-linear regression for five bands; as does the area of mixed 

woodland for all ten bands. The apple orchard produces significant non-linear 

modelling for bands ATM 6-10.

ii) Homogeneous: For field 30 non-linear regression does not provide a 

significantly better explanation of image variance than a linear model for any 

band. Field 3 has a similar response to modelling as field 30, although the a 

coefficients for each band are lower. Field 27 has no band for which non­

linear regression is significant at more than the 75% confidence level.
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The results, then, fall into two categories: types of cover where non-linear 

regression provides a significant explanation of the relationship between view angle 

and image variance, and those where it does not and a linear fit to the data is 

good16, because there is only a poor relationship between view angle and image 

variance. Into the first category fall fields 29, 21, 10, the area of mixed woodland, 

the apple orchard, and (exceptionally, since it is nearly 100% cover) the field of 

sugar beet. Into the second category fall fields 30, 27, 3. This group is 

characterised by low spatial frequency of variance in the scene, by comparison 

with the sampling frequency of the instrument. The description of soil and grass 

cover types in the scene may therefore be considered as a continuous, single 

element, //-resolution model, using the terminology introduced in 5.1.3 above. 

The former group, where the interaction of the sensor sampling frequency and the 

spatial variance of the cover in the scene is manifest as a significant relationship 

between view angle and CV, are best described by discrete, simple (two-element), 

M-resolution models.

The parcel of sugar beet produces a more complex result. Non-linear regression 

appears significant, notably for bands ATM 9 and 10, but in fact the c coefficients 

are small or nearly zero (meaning shallow curves). This trend is also very weak 

when compared with other data, for example the apple orchard. The parcel is 

virtually 100% cover, and therefore may be thought to be single element, like field 

3 (grass). But the large leaf structure may provide a condition in which in fact a 

two-element description is preferable, since larger areas of illuminated and 

shadowed leaves would be apparent at some wavelengths. This implies, more 

importantly, that the scale of the spatial frequency of the variation is approaching 

M-resolution. But the sugar beet canopy has a very low base coefficient (a), and it 

therefore is not, indeed, highly variable within the parcel - a characteristic of the 

M-resolution case. Also, the significance of the non-linear fit is exaggerated by the 

low r2 values for the linear regression, where the b coefficient is low. It is 

therefore most suitable to consider this cover type as continuous, //-resolution.

16This, however, does not imply that linear regression produces a significant 
result.
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Figure 5.18: Variance characteristics of a developing crop. Initially the predominant 
variance of the parcel characteristics are //-resolution; as the crop develops it 
becomes M-resolution; and finally, as it nears maturity, it becomes L-resolution, 
when complete vegetative cover is obtained. At this stage, however, it may also be 
possible to describe the parcel as //-resolution, depending upon whether the objects 
in the scene are taken to be plants (by definition then, L-resolution) or variations 
at a broader scale, say due to moisture or soil differences (therefore //-resolution). 
These states can be determined by analysing the regression coefficients.
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5.3.4: Parameter evaluation

Measures of spatial variance

By distinguishing which resolution model (see 5.1.3) is best applied to describe 

parcel variance, parcel characteristics can be inferred. The most direct measurement 

is crude - whether the cover type is mostly soil (such as the spring barley fields), 

100% uniform cover (sugar beet, grass), or some intermediate stage (winter wheat 

and barley, woodland and orchard). Attempts have also been made to identify 

further methods for extracting other canopy parameters, such as row orientation, 

percentage cover, crop height or spacing.

5.3.4.1: Crude inferences

Valuable information regarding the structure of the scene can be inferred from the 

combined analysis of the a and c coefficients of the non-linear regression models. 

Each of the three scene variance models, described in section 5.1.3, should produce 

a particular combination of the two parameters. A high value for a, combined with 

a low value17 for c, would imply an //-resolution target, with greater variance of 

radiance values within the parcel, albeit of low spatial frequency - typically soil in 

this dataset. High a and c coefficients imply a canopy or target spatially variable 

at around the scale of the resolution cell, as illustrated by the orchard and winter 

crops in this study, modelled as M-resolution. Finally, a low value for a and c 

would imply an L-resolution canopy, with little variance in radiance values within 

the parcel; this would typically be a high-density, closed, vegetative canopy. This 

is the first step toward classifying and assessing cover type using image variance 

alone.

As well as a method for deducing the type of canopy under investigation, analysis 

of CV could be used in much the way that Kauth and Thomas (1986) developed 

the tassled-cap model of arable crop development. This is because at each stage of 

growth the scene will have particular spatial variance characteristics, and will

17Low value in this description implies a value near to zero - the relationship 
between c and view angle is in fact negative, a large negative number being 
referred to as a large number here.
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follow a trajectory through the variance "feature space". Figure 5.21 illustrates this 

hypothesis with relation to a developing winter barley canopy. Because of the 

limited number of dimensions (two) applied in this analysis, however, it would be 

sensible to apply this technique with other, conventional spectral techniques, 

synergistically.

5.3.4.2: Interpretation of magnitude and scale of variance (ia and c coefficients)

It has been noted in 5.1.2 above that the spatial distribution of the DN in the 

parcel is critical in determining the variance of the sample population. For this 

reason, CV can only be used indirectly as a measure of the spatial variability of 

elements within a scene. High values of CV do not necessarily equate with 

variability of high spatial frequency. Of greater importance, however, is the 

relationship between view angle and CV. A significant, non-linear, model - i.e. 

with a large c coefficient - implies that the scene is spatially variable (at the scale 

of the resolution cell), because there is changing interaction between the sampling 

frequency of the resolution cell, the sensor geometry, the canopy geometry.

By examining three of the fields in the dataset, each of the three resolution models 

can be illustrated.

i) //-resolution: Field 27 (newly sown spring barley, virtually bare soil) 

produces quite high values of CV (a coefficient) between 7.39 and 8.16, but 

values for c are all <0.001 (table 5.9).

ii) M-resolution: Field 29 results show values of a varying between 5.42 

and 10.05, and c between -0.002 and -0.003 (table 5.4, bands ATM 5, 9, and 

10). The marked change in CV with view angle indicates that the parcel is 

more spatially variable (measured at the scale of the resolution cell) than 

field 27, as well as the more obvious comparison of the magnitude of a, 

which would otherwise give a similar interpretation if made on this basis 

alone.
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iii) L-resolution: Field 3 (grazed permanent pasture) has a low CV value 

(the coefficient a, between 1.43 and 2.65) for bands ATM 5-10, and c 

coefficients of <0.001 (table 5.8); i.e. there is no change of CV with view 

angle. Low CV values would be expected, as there is very little within field 

variation of DN.

Thus, while the sample populations of the //-resolution models have a (relatively) 

high variance, as measured by the CV, the distribution of the sample values is 

such that no significant change in variance is measured by the sensor at different 

view angles. It is likely, therefore, that adjacent pixels will have similar values, 

and that the image will be dominated by clusters or blocks of like pixels, forming 

groups that are significantly larger than the ground resolution element. This is 

confirmed by inspection of the image (figure 5.2).

Rather than presenting a further complication, testing for the relationship between 

view angle and image variance through the magnitude of the c coefficient allows 

sampling strategies to be more relaxed. In effect, it normalises for the sampling 

strategy; while the magnitude of the a coefficient is likely to give a measure of 

the spatial variability of the cover type (when the assumptions made in 5.1.2 are 

met), it is the value of c that gives a full insight into the spatial autocorrelation of 

the scene, as measured at the (changing) sensor sampling frequency.

5.3.4.3: Influence of crop row geometry on image variance

Two fields, 18 and 20, were analysed for cover type characteristics. Bands ATM 5, 

9 and 10 were used, since these presented the greatest spectral contrast between 

the model element (canopy) and the background (soil). The results for regression 

analysis are given in table 5.12 below.

We are able to state, based upon the argument presented in 5.3.4.2 above, that the 

spatial scene variance in both these fields is explained by the M-resolution model; 

i.e. they are an intermediate developing canopy, not soil, or continuous uniform 

cover. This is despite the fact that the base coefficient a is somewhat different for
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the two populations. In fact they are both parcels of winter barley (variety 

Plaisant), planted on the same day, arc adjacent fields, and yielded a harvest 

within 50kg per hectare of each other. The row orientation of the crop in the two 

fields arc perpendicular to each other; in the case of field 18 the rows are parallel 

to the flightline direction. The effect of row geometry on these data is instantly 

recognisable, since no other major differences in the canopy exist between these 

two fields.

Table 5.12: Fields 18 and 20, regression analysis

Field 18 Field 20

Band 5 9 10 5 9 10
Significance

non-linear
regression

97.5% 97.5% 97.5% 97.5% 99% 97.5%

comparison 
with linear

98% 99% 99% 99% 99.5% 99%

Coefficients:
a 5.37 8.77 13.25 3.14 4.26 5.65
b -0.010 0.012 0.013 -0.008 -0.002 0.000
c 0.0017 -0.0032 -0.0033 -0.0009 -0.0011 -0.0015

To an extent, the observations of these two fields are complicated by the 

differences in relative solar azimuth of the rows in the two parcels. This may 

cause some of the differences in the magnitude of the coefficients calculated in the 

analysis (table 5.12). Two conclusions may be inferred, however: first, the row 

orientation of the crop, relative to the Sun, for field 20 restricts the illumination of 

the background, which in turn affects image variance; and second, that some 

target-sensor geometry effects, in particular the increased over-sampling between 

adjacent GRE’s, are also in operation. If the sensor is viewing along the crop row 

direction (i.e. crop row and scanline directions are parallel), then the proportions of 

background and canopy elements, in resolution cells across the swath, are likely to 

be similar for whatever view angle is chosen. The reduction in image variance at
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increased view angles will be a function more completely of the sensor geometry, 

i.e. the increased oversampling resulting from the S-bend system correction.

For a scan line direction perpendicular to the crop row orientation, canopy 

components will become increasingly dominant with increased oblique view angle. 

Thus, image variance will decrease at a greater rate than in the former case, since 

more than one of the geometric factors will be in operation. This hypothesis is 

confirmed by inspection of the analysis of fields 18 and 20.

Row orientation, therefore, becomes a limiting factor when attempts to infer 

canopy characteristics from image variance are made. In extreme cases, where Af- 

resolution scene models apply and viewing geometry is parallel to row orientation 

(for example, viewing straight down the rows of the apple orchard presented in 

this study), the effect of view angle upon canopy geometry may be diminished to 

a completely insignificant level by comparison with the sensor geometry effects on 

image variance (increased oversampling and GRE area). In such a case, however, 

it would be possible to identify the row orientation from the imagery, and this 

information must be used if the image variance (and therefore canopy structure) is 

to be determined correctly.

The illumination geometry of the target may become as important as the relative 

canopy-sensor geometry in determining image variance. Diurnal variations, 

represented as changes in solar zenith and relative azimuth angles, will have a 

marked effect upon image variance. Interestingly, these two factors are represented 

in the second-order polynomial equation coefficients. Changing solar zenith angle 

will affect the magnitude of image variance; for example, at low illumination 

angles the increased likelihood of incoming flux being intercepted by part of the 

canopy will cause the background element to be in more shadow than at near 

zenith illumination angles.

Modifications to the relative azimuth of any regular structure in the parcels, such 

as rows, will be also be manifest in the a and c coefficients, because again 

different proportions of the canopy and background element will be illuminated; as 

the relative azimuth approaches 90°, less background would be illuminated and the
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image variance would be reduced, since image variance relies upon the significance 

of spectral contrast between the element and the background. This would reduce 

the magnitude of both the coefficients. To an extent, therefore, the factors of 

(relative) solar azimuth and zenith angles, and the row orientation with respect to 

the sensor, are inter-related. In this mono-temporal dataset, however, it has not 

been possible to test for this relationship.

5.4: Discussion and conclusions

5.4.1: Extensions to crop modelling

While crude inferences from variance data are a significant new step toward 

extracting information from multiple view angle image datasets, for this technique 

to be generally applicable more specific and detailed information must also be 

surmised. The time available to this study has not permitted the further 

development of the areas, listed below, but they are included to give an insight to 

the information that might be forthcoming from such an analytical procedure.

5.4.1.1: Extracting crop height and spacing parameters

The most straightforward parameter, after the determination of the best scene 

resolution model (//-, A/-, or L-resolution), is the ratio of crop height to row 

spacing. If the crop row structure is perpendicular to the view direction, then this 

ratio becomes:

R = s/h Eq. 5.3

Where s is the effective row spacing, h is the average effective canopy height 

(figure 5.19), and R is the ratio of these two values. This ratio is important, 

because from it we can calculate the view angle, V0 at which the sensor effectively 

sees no background element:
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Effective 
canopy 
height, /?

Space "occupied" 
by canopy

Effective canopy 
spacing, s

Background

Figure 5.19: "Effective" canopy spacing. The variable that it may be possible to 
determine would be the gap between the canopy elements, in this case a tree, and 
not necessarily the spacing between the planting of the trees. Similarly, canopy 
height may also be affected in the same way. Knowledge of the typical 
morphology of the canopy must be available in order to determine factors such as 
planting density with any degree of accuracy.
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V0 = tan \R ) Eq. 5.4

Where the row orientation is not perpendicular with the view direction, V0 is 

modified by the relative azimuth, a , of the view and row orientations to become:

At this angle, we could expect the introduction of an asymptotic relationship 

between view angle and CV. If we extend the observations of continuous cover 

type (for example, field 3 and sugar beet parcel), beyond V0, CV will not decrease 

significantly in the manner observed for intermediate M-resolution parcels for view 

angles within V0. Rather than the parabolic second order polynomial function used 

to model the view angle/CV relationship in the analysis above, a higher order 

equation, of the form:

y = (a + bx + cx2) 1 Eq. 5.6

could be used to describe an asymptotic bell-shaped curve. The position of V0 
could be ascertained by identifying the point at which the curve tends towards the 

asymptote. This would demand a greater number of data values, since the 

polynomial has a larger number of coefficients, and would probably demand a 

greater FOV, in order to actually record an image where view angle was 

guaranteed to exceed V0.

In order to extract either s or h, however, the complementary parameter must be 

known. In some cases of M-resolution modelling it may be possible to estimate s 

from the image data; alternatively, two orientations of multiple view angle 

flightline datasets could be used to produce simultaneous equations, which could 

then be solved to produce estimates for both parameters.

V0 = tan’Wsincx) Eq. 5.5
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5.4.1.2: Estimating percentage cover using variance analysis

It is evident from the results presented here that as percentage cover increases, 

distinct trends in the values of the a and c coefficients of the regression equations 

can be identified (figure 5.18). Without external knowledge of the phenology of 

the crop, however, it may prove impossible to estimate percentage cover from the 

variance statistics alone. For this reason, it has not been attempted in this study. 

Given that CV is a valid means of comparing the spatial variance of two remotely 

sensed datasets, and that all other factors are equal between the two parcels, then 

the values of the coefficients should indicate the relative cover of the two parcels.

5.4.1.3: Inverse relationships between view angle and image variance

Examination of tables 5.4 and 5.6 reveal that for bands ATM 6^ 7 and 8 fields 29 

(winter barley) and 21 (winter wheat) have a positive c coefficient; i.e. spatial 

variance increases as a function of sensor view angle. This relationship is difficult 

to explain, since all the geometric factors considered in this study have the effect 

of attenuating image variance. It is also apparent that these two parcels are the 

only two giving such a result in this dataset. Possibly, therefore, these examples 

represent unreliable data, or give an indication as to the accuracy of the technique 

used to compute image variance in this instance.

5.4.2: O ther techniques for measuring image variance 

5.4.2.1: Local image variance; Woodcock and Strahler

Woodcock and Strahler (1987) measured image variance by passing a 3x3 kernel 

over an image, computing the SD of the kernel matrix (see 5.1.2 above). This 

algorithm was implemented in FORTRAN 77, to enable some analysis of the 

imagery in a similar manner to Woodcock and Strahler (1987) (section 5.1.4). The 

results depend upon two factors: first, the magnitude of the difference between DN 

in adjacent pixels,, the greater the difference the greater the calculation of
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’variance’ for the image or parcel; and second, the proportion of these variable 

features in the image or parcel as a percentage of the total number of pixels. It 

can be expected that greatest variance will be recorded when the frequency of 

spatial variance in the image is close to the Nyquist frequency.

In this case, again, the aim is to estimate the spatial autocorrelation characteristics 

of the parcel. When averaged, the processed pixel values in the parcel should 

correspond to the degree of autocorrelation - higher mean values would correspond 

to lower autocorrelation. The significance that can be read into such figures, 

however, is extremely dependent upon the proportion of the ’edge* pixels in the 

parcel as a whole, as well as the magnitude of the edge - an extremely strong 

edge in a small parcel would give the (wrong) impression of an extremely variable 

cover type.

5.4.2.2: Formal measures of spatial autocorrelation

For the reasons explained above, both the CV and Woodcock methods fall short of 

producing formal measurements of spatial autocorrelation in images. In order to 

achieve some surrogate estimate, measures of image variance are used instead 

which can only be allowed if certain criteria are met. It would be more useful, and 

more generally applicable, if formal measures were developed which allowed the 

true autocorrelation characteristics to be quantified. A major advantage of such 

techniques would be that results from different sensors, dates and of different 

cover types would be directly comparable. It is apparent, however, that the use of 

such statistical measures (Cliff and Ord, 1973) is a complex task which has not 

been attempted in this study.

5.4.3: Conclusions

In this chapter, the effect of scene structure upon image was hypothesised, and a 

number of models to describe this interaction defined. Several studies using 

synthesised degraded data were used to illustrate the relationship between spatial
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resolution and image variance. It was found that image variance decreased with 

resolution within specific classes, or parcels; but for whole images, comprised of a 

number of different objects, image variance increased18 as a result of the boundary 

pixels in the images becoming an increasing proportion of the total pixels in the 

image. These results were as expected from some of the available literature. 

Section 5.1 concluded that despite the general within-parcel decrease in variance, 

the decrease in image variance observed for some cover types in multiple view 

angle datasets could not be explained by decreased spatial resolution alone. Indeed, 

it is reasonable to conclude that the remaining factors, of increased over-sampling 

of the sensor and changed proportions of canopy elements viewed by the 

instrument at off-nadir angles, are much more dominant

By comparing the response of different cover types imaged in a multiple view 

angle dataset, sections 5.2 and 5.3 explain how canopy geometry has a significant 

effect on the relationship between view angle and image variance, as measured by 

the technique developed in this study, termed CV (5.1.2). This relationship is 

analysed using linear and non-linear regression analysis, and a method for 

interpreting the regression equation coefficients outlined. This is used to interpret 

the results according to the model definitions made in the opening section (5.1.3). 

A number of extraneous factors, namely row orientation and illumination geometry, 

are discussed to identify the factors that may effect image variance not accounted 

for by differences in canopy structure.

In the final section (5.4), practical extensions to the extraction of canopy 

parameters (crop height and spacing, percentage cover) are discussed briefly, along 

with other techniques for improving upon the measurements of image variance.

In conclusion, it has been shown that a formal approach to the analysis of image 

variance, in a multiple view angle dataset, allows the extraction of valuable 

information that could enhance conventional, non-parametric, techniques of image 

analysis for estimating agro-physical canopy parameters.

18Up to the resolution tested - 40m
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CHAPTER 6: Capabilities of current and future sensors for

use in multiple view angle image strategies 

6.1: Introduction and criteria

In this chapter the feasibility of a multiple view angle image strategy for the 

extraction of agrophysical parameters is assessed on the basis of the capabilities of 

current and future sensors. In this first section, the demands of such a strategy on 

sensor design, and some general design considerations are outlined. A list of 

criteria, upon which assessment of various instruments can be made, is then 

constructed. The second and third sections match these criteria to current and 

future sensors, respectively, attempting to identify which instruments can be used 

as data sources and to what degree of effectiveness, cost and efficiency. Finally, in 

the concluding section, the practicality of this strategy is reviewed.

6.1.1: Application of image variance analysis

It was identified in Chapter 1 that economic demands and the need for regional, 

national and global logistical planning, to provide a stable market and prevent 

shortfalls in food supply have resulted in the development of the field of agro- 

meteorological modelling. Because of the broad spatial scales at which the 

information is required, remote sensing has become an obvious data source for the 

science. It might be noted, however, that the design of most sensors, in particular 

the Landsat series so widely used in such agronomic projects, has been 

compromised by the need to provide data for other applications and technological 

constraints. These data are often of a far from ideal nature, usually providing only 

an indirect means of predicting the agro-physical parameters required for the task 

of crop assessment. This is because the input from remote sensing has relied upon 

assumptions concerning the relationship between spectral reflectance and these 

various parameters, such as leaf reflectance and transmittance, leaf area index, leaf 

angle distribution, planting density, row orientation, biomass and productivity 

(Woodham, 1989). Using present systems and operational models, none of these 

parameters can be measured directly with confidence - they are estimated, or
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interpreted, using assumptions concerning the scene under investigation. While in 

many cases the models produce good results, in other situations parameter 

predictions may be in gross error, because the assumptions required by the model 

are not justified; and thus the generality of these models becomes questionable.

It makes greater sense, therefore, to try to make more direct measurements of 

these parameters. If the required input for the agro-meteorological modelling is 

biomass and growth stage, then it is these two parameters that should be measured, 

not just reflectance in the red and near infrared wavebands. In this study we have 

tried to show how this might take place, with further improvements to the method 

presented here.

6.1.2: Demands of new data collection strategies upon sensor design

With new methods, new strategies for data collection must be devised. In turn, this 

could mean new sensor designs to maximise the potential of developing techniques. 

In order to allow stereo coverage and bidirectional reflectance analysis, for 

example, off-nadir sensors for space-borne platforms have been developed, such as 

SPOT-HRV and HIRIS. Technological developments are often useful to a number 

of disciplines: along-track off-nadir viewing sensors (such as HIRIS) will be useful 

to ocean scientists, atmospheric modellers, as well as biological scientists studying 

anisotropic canopy reflectance. The greatest benefit will be derived from such 

technological developments when the scientific direction is coordinated and the 

emphasis is multi-disciplinary.

Compromise over sensor design, however, can lead to an inadequate data product. 

The SPOT-1 sensor typifies such a situation: by trying to meet the requirements of 

both the Earth sciences and the topographic mapping communities, the sensor 

design has been compromised, perhaps to the detriment of the majority of users. 

Topographic mapping applications demanded stereo capability and high spatial 

resolution, whereas Earth science applications also required multispectral channels 

and high temporal coverage. The compromise resulted in limited areal coverage of 

a scene, across-track pointing, reasonable spatial resolution, and only three
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multispectral channels. The stereo facility has been disappointing in many instances 

due to problems with temporal changes between images of the same scene. This 

results in difficulties to produce good stereo models as well as limiting the use of 

these data for directional reflectance studies. The choice and performance of the 

spectral channels for the multispectral sensor has been poor, despite initial claims 

of improvements over other instruments (Chevrel et al., 1981); although the signal- 

to-noise ratio of SPOT-HRV is apparently better than that of Landsat TM (Slater 

pers. comm.), the dynamic range of DN over some surfaces is extremely low. It 

has also been shown that temporal resolution, supposed to be more frequent due to 

the pointing capability of the sensor, has improved little over that offered by 

Landsat TM in cloudy temperate regions such as Europe (Cushnie, 1988).

If the analysis of image variance is the main technique to be used for estimating 

scene parameters, then an instrument which carries out on-board processing of data 

could be devised. This could allow data compression, and therefore overcome a 

major problem with designing a high spectral, spatial and temporal resolution 

sensor - data transmission rates. Filtering, such as that used by Woodcock and 

Strahler (1987), in conjunction with image segmentation could produce a radical 

product describing the spatial pattern of scene variance. Such a strategy, however, 

has several limitations. From a practical aspect, on-board processing means an 

increased demand for space on the platform, power, and technical reliability. 

Synergistic operation with other techniques, such as spectral analysis, would be 

reduced; and single-product (and, therefore, single-user) sensors are less economic 

than multi-user systems. Finally, much information can be interpreted from the 

original data before variance analysis is carried out. Pre-processing data on-board 

would not allow this to take place.

The requirements upon a sensor for a multiple view angle strategy to be 

operational can be summarised in the following four criteria:

• The image dataset must contain a number of different views of the object, 

preferably in the same view azimuth plane.
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• Multiple coverage, ideally, should be near-simultaneous, image data should

be acquired preferably from the same orbit.
f

• The spatial resolution of the sensor (or more precisely the size of the ground

resolution element) should be as high as possible; although a range of

sensors could provide examination of the scene at different spatial scales and 

resolutions.

• A number of spectral bands should be collected, to ensure that scene element

contrast is high for a variety of ground cover types.

There are several ways of configuring sensors for a data collection strategy that 

meets these criteria. All involve the ability to view off-nadir, but this could be 

achieved using a broad-swath or a pointable capability of the sensor. The list of 

possible sensors, therefore, includes a number not designed for "off-nadir" 

reflectance studies. The following sections in this chapter (6.2, 6.3) assess the 

capability of current sensors in carrying out such a data collection task using the 

criteria listed above, and examine the prospects offered by future instruments on 

the NASA Earth Observing System (EOS) project due to be launched in 1996.

6.2: Current sensors

Most sensors, by virtue of having a field of view, are capable of off-nadir viewing 

to a greater or lesser degree. Other factors, namely repeat cycle and spatial 

resolution can restrict the potential of certain instruments otherwise capable of 

collecting multiple view angle datasets. Table 6.1 below lists some of the 

characteristics of current sensors relevant to the collection of such data.

6.2.1: Landsat TM

While the GRE size is suitable for image variance analysis, and the number of 

spectral channels enough to ensure good spectral contrast between scene elements,
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the low repeat cycle and restricted overlap allow only two views of a limited area 

of the Earth’s surface. For these reasons, Landsat TM cannot be considered as 

having any potential for analysing image variance in the manner advocated by this 

study, since more than four views are required to compile the dataset.

Table 6.1: Application of some current visible and IR sensors to image 

variance analysis

Landsat TM SPOT XS SPOT Pan AVHRR

GRE size 30m 20m 10m l.l-2.4x6.9km

Channels 7 3 1 r (5)

Spectral Vis, NIR, Vis, NIR Vis Vis, NIR

coverage MIR MIR, Thermal

Off-nadii* (±7°) V ±27° P ±27° P ±55.4° V

Repeat 14 days <26 days <26 days daily1

* Only two of general use to vegetative studies

# V - off-nadir viewing, P - off-nadir pointing

6.2.2: SPOT-HRV multispectral

Like Landsat TM, the SPOT-HRV multispectral sensor has a small GRE size, 

although it collects data in a more limited number of spectral channels. The 

capability to collect data from oblique view angles, however, is an important 

feature in the context of this study. While the full repeat cycle of the platform is 

26 days, the off-nadir geometry of the sensor allows seven images of a scene per 

cycle to be acquired at the Equator, eleven at latitude 45°, increasing to *13 at 

latitude 55° (Cutler, pers. comm.). Despite such theoretical abundance of imagery,

‘Twice daily, but with more than one platform and instrument. This causes 
problems because the Sun-target-sensor geometry varies between images because 
local times of imaging will be different. As we have seen in section 5.3.4.3, 
illumination geometry of the target is likely to affect image variance.

page 206



Chapter 6 Current and future capabilities

these data would be far from perfect for multiple image analysis because the data 

are acquired from successive orbital paths rather than from a single pass. As a 

consequence, a large proportion of the differences between the images could be 

explained by atmospheric and illumination effects, and even changes in the target 

characteristics that the analysis is attempting to describe. For this reason, SPOT XS 

can only be considered as having a very limited potential for such an application.

6.2.3: SPOT-HRV Panchromatic

While the decreased size of the GRE of the panchromatic mode of SPOT-HRV 

improves the usefulness of this instrument over the multispectral mode, this is to 

some extent offset by the decreased spectral contrast of some Earth surface 

materials in this single, broad channel. The capability of this sensor for scene 

variance analysis is, therefore, only marginally improved over the SPOT XS 

instrument.

6.2.4: NOAA AVHRR series

The broad-swath geometry of the AVHRR series of instruments is well-suited for 

the type of data collection strategy proposed here. High off-nadir view angles of 

up to 55.4°, resulting in a large degree of overlap between images acquired from 

adjacent passes and the capability to collect multiple view angle datasets of 9 

scenes in a 10 day cycle2, would allow significant work to take place concerning 

the relationship between view angle and image variance.

Two factors, however, severely limit this capability. First, despite showing an 

impressive change in area across the swath, the very coarse GREs may limit the 

assessment of variance to be at a broad ecological unit level rather than provide

2The number of orbits per day is 14.1, giving a 10 day repeat cycle of 140 
unique orbits, at an average spacing at the Equator of 2.57°. A 2700km swath 
would therefore generate an average of 9 views of any point on the Earth’s 
surface. NASA have calculated that three images in a nine day cycle is the more 
likely practicable limit (NASA, 1986)
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any realistic capability for the extraction of canopy parameters. Some studies have 

been carried out investigating the nature of variance in AVHRR derived products 

(Townshend and Justice, 1989), but the results of these studies have been 

inconclusive. Second, since adjacent orbits will have to be used to gather multiple 

angle data the Sun-target-sensor geometry will vary considerably between images, 

because the platforms are sun-synchronous and the swath widths are 2700km wide. 

Study areas would be imaged at various local times in order to build up a multiple 

view angle dataset. While the effect of solar geometry upon scene variance has not 

been fully investigated in this study, it is interpreted from the data collected here 

and elsewhere that image variance is likely to change with solar zenith angle, 

depending upon the spectral contrast between the scene elements.

6.2.6: Airborne sensors

Despite their intrinsically complex geometries, airborne sensors provide useful data 

sources for the understanding of scene structure through the analysis of image 

variance. In general, they can operate at a good spatial resolution, produce multiple 

coverage from different oblique view angles within a short space of time, and are 

usually equipped with a good choice of spectral bands. In a number of other ways, 

however, airborne sensors are not a flexible operational data source.

The first of these difficulties is the limited extent of coverage provided by airborne 

imagery. While the spatial resolution is high, the low altitude of the aircraft and 

the speed of the platform mean that only small areas on the ground can be 

surveyed quickly - one of the criteria for data collection listed above. Coverage is 

usually non-systematic, depending upon weather conditions and equipment 

availability. The cost of airborne data too, while not high when assessed with 

respect to image quality (approximately 40 pence per line for that collected by the 

NERC Daedalus ATM campaigns), is prohibitive when applied to large areas.

Platform geometry may vary between flightlines, and is relatively unstable 

compared to a satellite, causing many problems with image geometry. Relief 

effects will also be more severe because of the low altitude of the platform.
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Although the sensors are often designed as test instruments for satellite-borne 

sensors (for example, AIS, AVIRIS, HIRIS) the possibilities of synergistic 

operation with other sensors can be limited because of the atmospheric, 

illumination and geometric differences between sensors. It would be necessary to 

remove these effects, or to work with image products, before combined analysis 

can be made from any two sources.

A final problem with airborne data is navigation. This has implications for the 

analysis of multiple view datasets for two reasons. First, locating the platform over 

the correct area of ground. This may need to be achieved with great precision, as 

in this study. Second, low altitude airspace can be very restricted, demanding 

constant attention to other airspace users and sometimes special permission to enter 

zones. In some cases, permission may be unobtainable; it would (and should) be 

impossible to obtain airborne imagery of foreign countries unwilling to cooperate 

with overflights.

This said, airborne sensors probably present the best system currently available for 

the collection of multiple view angle datasets.

6.3: Future sensors: the Earth Observing System platform, 
and SPOT 2-4

In the mid-1990’s, the United States’ National Aeronautics and Space 

Administration (NASA) will launch a multi-sensor platform, including one broad 

swath and two pointable image spectrometer instruments, the fixed view Moderate- 

Resolution Imaging Spectrometer (MODIS-N), the tilting Moderate-Resolution 

Imaging Spectrometer (MODIS-T) and the High-Resolution Imaging Spectrometer 

(HIRIS) (table 6.2), and the less sophisticated Multi-angle Imaging 

Spectroradiometer, MISR.
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Table 6.2: General specification of the MODIS-N, MODIS-T, HIRIS and MISR 

instruments

GRE Swath View angle capability Spectral

(Nadir) width along across Channels

MODIS-N 0.25-1km 1500km n/a (90° FOV) 40

0.47-12pm

MODIS-T 0.25-1km 1500km ±60° (90° FOV) 64

0.41-1.04pm

HIRIS 30m 30.0km +607-30° ±24° 192

0.4-2.5pm

MISR 0.216

-1.73km

210km ±72.5° n/a 4

0.44-0.86pm

(Source: NASA, 1986, 1987, Diner et al.y 1988)

6.3.1: MODIS

Two sensors of moderate spatial resolution are planned for the EOS platform of 

the 1990’s to provide data coverage similar to that currently acquired by the 

AVHRR sensor. Despite having similar spatial resolution and areal coverage, 

MODIS-N and MODIS-T are in fact quite different instruments in terms of image 

geometry, optics and detector design, spectral characteristics and their intended 

applications (NASA, 1986). MODIS-N, termed the "nadir" viewing part of the 

package despite having broad swath characteristics like AVHRR, will contain 40 

channels extending from the visible to thermal spectrum. MODIS-T will provide 64 

channels more applicable to terrestrial science, oceanography, and atmospheric 

studies.

It is not certain that data acquired by the MODIS sensors would provide any 

useful multiple angle datasets which could be used for the analysis of image 

variance. While some studies have examined image variance at these (and coarser) 

spatial resolutions (Townshend and Justice, 1989), these have been inconclusive 

and provided no explanation for the trends of changing image variance with
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degraded spatial resolutions. By comparison, it seems unlikely that the processes 

identified by this study as the mechanism for changing image variance, i.e. canopy 

geometry and the spatial distribution of canopy elements in the scene, would be 

able to operate at the coarse spatial resolutions provided by either of the MODIS 

instruments. Changes in image variance do occur at coarser scales though, and it 

remains to be seen what information multiple view angle image analysis with such 

data would reveal. In addition to studies in isolation, MODIS imagery could be 

used in conjunction with HIRIS data to extrapolate the more detailed analysis 

capable with this instrument to larger areas, in line with the synergistic operation 

of the EOS sensor payload (see 6.3.3).

6.3.2: HIRIS

HIRIS is a 192 band imaging spectrometer, capable of pointing off-nadir by a 

considerable margin in both the along and across-track directions (NASA, 1987). 

Although the instrument will not be operational until the launch of the EOS 

platform in 1996, the specification for the instrument gives a spatial resolution 

similar to Landsat TM, with a varied brief of applications in various disciplines. 

Among these criteria has been the requirement to collect data from off-nadir view 

angles for estimates of the Bidirectional Reflectance Distribution Function (BRDF) 

of vegetative canopies.

Assuming that it is possible to target the sensor quickly using the along-track 

pointing facility, ten 30x30km images could be acquired of a single scene in the 

space of 4.75 minutes (table 6.3). This would be achieved by successively pointing 

the instrument down-track, collecting 1000 scan lines of data, slewing the pointing 

system, waiting for the instrument to settle, and restarting data acquisition at the 

appropriate instant. Based upon the experience of this study, images acquired at 

10° intervals would be suitable for the analysis of variance; since the off-nadir tilt 

capability is between +60° to -30°, this means ten images could be acquired.
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Figure 6.1: The HIRIS sensor geometry. HIRIS points off-nadir in both the along- 
and across-track directions.
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Table 6.3: Tracking capability of HIRIS

Nominal Altitude 

Slew rate (max) 

Settling time 

Ground speed

824km

5° s'1 (down-track), 201 (cross-track) 

0.5 sec 

6.67km. s*1

(NASA, 1987)

The variation of the size of the GRE, in both the down- and cross-track directions, 

is given in figures 6.1 and 6.2 and table 6.4. Unlike the ATM scanner, this is 

easier to calculate because HIRIS is a pushbroom sensor, sampling one line of the 

image at a time using a solid-state array. GRE size in the cross-track direction is 

therefore equal to pixel size, since the detectors abut each other, and is 

proportional to view angle. In the down-track direction pixel size is constant, 

irrespective of the down-track viewing angle, because it is determined by the speed 

of the sensor over the ground and the sampling rate (Barnsley and Kay, 1989, 

Townshend, 1981). The size of the GRE down-track, however, will increase with 

the change in view angle geometry in both these directions. While oversampling 

between adjacent GREs will not take place cross-track, in the down-track direction 

oversampling between lines will be proportional to the viewing angle. Based upon 

the figures calculated in table 6.4, scan lines will overlap nearly by 50% at 60° 

down-track view angles.

The spatial resolution offered by HIRIS is probably not high enough to allow the 

assessment of canopies in the manner outlined in this study without modification. 

For semi-natural or natural vegetation communities, however, 30m may provide a 

suitable initial resolution for image variance analysis.
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Figure 6.2: HIRIS sensor GRE size. (From NASA, 1987)
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Table 6.4: Variation in GRE size of HIRIS (meters)

Down-track +60° +50° +40° +30° +20° +10° 0° -10°

o1 ■ OJ O o

angle

GRE size 59.3 46.1 38.7 34.3 31.6 30.1 29.7 30.1 31.6 34.3

along-track*

Cross-track +24° +20° +15° +10° +5° 0°

angle

GRE size 32.5 31.6 30.7 30.1 29.8 29.7

cross-track*

# Pixel size constant at 30m

* Pixel size equals GRE

The HIRIS instrument will provide excellent data collection possibilities in general 

for off-nadir studies of vegetation in the future. The down-track pointing 

capability allows a multiple image dataset to be collected in one view azimuth 

plane, with the minimum of variation in illumination geometry since local time 

will change by less than five minutes. Good temporal coverage (four to five day 

revisit at the Equator; NASA, 1987) is provided by the across-track pointing 

facility. Effects of changing atmospheric composition and changing irradiance 

conditions will be minimised, since the short data collection periods will reduce 

temporal variations in conditions and the off-nadir strategy will allow better 

modelling of the effects. A large number of spectral channels covering a broad 

spectrum will ensure the best possible choice of bands for a wide variety of Earth 

surface materials. Finally, the synergistic capabilities with other EOS instruments, 

in particular MODIS-N and MODIS-T, will allow the extrapolation of the fine 

resolution analysis to a broader regional scale.
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Figure 6.3: Synergistic use of MODIS and HIRIS.
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6.3.3: Synergistic operation of the HIRIS and MODIS instruments

It is desirable to devise a strategy to combine the broad, high temporal resolution 

overview capabilities of the MODIS instruments with the greater spectral and 

spatial resolutions of the HIRIS sensor. The complementaiy designs of these two 

instruments provides for an examination of Earth surface phenomena at two 

distinct scales. The potential of each of the datasets is increased when the 

instruments are used synergistically, and data collection strategies should reflect 

these possibilities.

Using MODIS, speciral analysis of image data at a regional scale can be made, in 

order to define regions of interest as a function of homogeneity, heterogeneity, or 

temporal variation. Once "target areas" are identified, HIRIS can be used to 

examine sections of these regions in detail, in order to facilitate extrapolation of 

interpretation over a wider area. While HIRIS offers a greater number and range of 

spectral channels, as well as increased spatial resolution, over the MODIS sensors, 

the off-nadir capability would mean that multiple angle analysis of image variance 

could also take place. Hence, while MODIS could be used to identify a 

homogeneous parcel in an ecosystem, say a forest, HIRIS could be used to 

estimate canopy parameters such as tree height and density. These estimates could 

then be extrapolated to other similar parcels identified by the MODIS imagery 

(figure 6.3).

6.3.4: Multi-angle Imaging SpectroRadiometer (MISR)

The Multi-angle Imaging SpectroRadiometer (MISR) is a further experiment on 

board EOS, intended primarily to address the effects of geophysical processes and 

human activities on the Earth’s ecology and climate (Diner et al.y 1988). One of 

the named areas of investigation is the inference of vegetation canopy structural 

parameters by the utilisation of the multiple view angle imaging system. Eight 

identical CCD-based pushbroom cameras acquire data at four viewing angles - 

25.8°, 45.6°, 60.0° and 72.5° - in the fore and aft directions. Data will be 

collected in four narrow (20-60 nm) spectral bands, at 440, 550, 670 and 860 nm,
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with a choice of two spatial resolutions - ’Global’ mode, 1.73km, and ’Local’ 

mode, 216m.

MISR offers a good opportunity for the collection of multiple view angle datasets, 

since the hardware system may prove to be more reliable than HIRIS due its 

simpler design. The reduced number of spectral channels and spatial resolution and 

the lack of a nadir view, however, decrease its potential when compared to the 

more sophisticated spectroradiometer instruments planned for the EOS platform.

6.3.5: SPOT 2-4

Further versions of the SPOT-HRV sensor are planned for the 1990’s. Although 

the later instruments will have an increased number of spectral channels, and 

improved spatial resolution in the red band, the off-nadir pointing capability will 

remain cross-track. These instruments will not provide a significant improvement 

over the current SPOT-1 sensor for the purposes of collecting multiple view angle 

image data.

6.4: Conclusions

In this chapter the suitability of different sensors for multiple view angle data 

collection strategy has been assessed. Only one current sensor configuration, 

airborne sensors with wide fields of view, satisfies the four criteria of view angle, 

near simultaneous coverage, spatial and spectral resolution well enough to be 

considered as an operational source of data. The problems of using airborne data, 

in particular data quantity, quality and cost, are also highlighted. The AVHRR 

series of satellite sensors are also considered to be useful for the collection of 

multiple view angle datasets, although further research would be required to 

examine the effect of different illumination geometries, and the sampling of cover 

types by coarse scale resolution cells, upon the variance of image data.
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With the launch of the EOS platform in 1996, more off-nadir viewing sensors will 

become available. In particular, the HIRIS instrument will provide excellent quality 

data for the implementation of a multiple view angle strategy, minimising the 

atmospheric, illumination and temporal effects on the target restricting the 

application of current sensors in such a method. In conjunction with the two 

MODIS instruments, HIRIS will provide an operational capability of extending 

interpretation of cover type characteristics over a global scale, improving upon the 

synergistic capabilities presently available with sensors like Landsat TM and 

AVHRR.

The launch date of the EOS platform is still some years away, however, and some 

doubt as to the final specification of the sensors to go on board the platform still 

remain. From current information (November 1989), MODIS-N is likely to go 

ahead as planned; MODIS-T may have the tilt mechanism restricted to ±20°, 

severely limiting its usefulness for off-nadir studies; and HIRIS could be launched 

on a different platform (if at all), due to the problems caused by the extremely 

high data-rate from the instrument.

Two final considerations need to be made in assessing the practicality of multiple 

view angle image data methods. First, the cost of multiple angle datasets is very 

high, since it is directly proportional to the number of views required. The 

collection of such datasets would need to be justified on economic grounds before 

they could be considered feasible. Second, it needs to be established more 

precisely exactly what information is required by the Earth science and agriculture 

communities. Only when these two questions have been answered can the 

development of new sensors take place.
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It has been demonstrated in this study that multiple view angle image data 

acquired by an airborne sensor have characteristics relating to the anisotropic 

reflectance properties of variety of vegetative and bare soil cover types. Rather 

than these characteristics always presenting a problem, it is considered possible to 

use them to determine qualitative and quantitative information regarding the nature 

of these surfaces. In some instances, this approach may have advantages over more 

conventional radiometric procedures that assume nadir data collection geometries.

A number of different ways of extracting quantitative information concerning agro- 

physical parameters of vegetative Earth surface materials have been developed, and 

are recorded in the literature. In particular, reflectance models which account for 

the anisotropic reflectance characteristics of these surfaces have been developed; 

however, in general they still only allow the relation of measurements of reflected

radiance indirectly to these parameters. For these reasons such models are

unsatisfactory, and the requirement of a more direct means of assessing canopy 

characteristics arises. A number of studies, in particular those carried out by 

Strahler et al. (Li and Strahler, 1985, 1986, Woodcock, 1985, Strahler et al., 1986, 

Woodcock and Strahler, 1987, Franklin and Strahler, 1988, Strahler et al., 1988) 

have examined the geometric structure of scenes, developing an understanding of 

the relationship between scene structure, sensor characteristics and the image. It is 

concluded that by understanding these relationships it would be possible to devise 

a method by which image variance could be used to extract quantitative 

information concerning the geometric structure of the surface.

This study extends the area of earlier research by examining the relationship

between view angle and image variance, for a number of agricultural cover types.

As well as the expected changes in variance as a result of degraded spatial 

resolutions off-nadir, canopy geometry was predicted to play an important part in 

the variance of the radiance detected by the sensor. The intention of the study, 

therefore, was to examine the possibility of identifying the effect of canopy 

geometry on image variance at different view angles, and explore the possibilities
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of developing a method for extracting information concerning agro-physical 

parameters of the surface under observation.

The data used in this study were acquired using an airborne sensor, the Daedalus 

Airborne Thematic Mapper. Airborne instruments in general, and the ATM in 

particular, have complex sensor geometries. The exact geometry for this sensor, 

including the size of the GRE and view angle for each sample in the image, was 

derived. Initial results demonstrated that changes in image variance could be 

expected for the same parcel on the ground when viewed from different view 

angles; image variance would be expected to decline with increased sensor view 

angle.

A number of other effects could also account for changing variance in images 

acquired from a number of parallel flightlines, as in this study. Here, the use of 

reflectance images was developed to remove the differences between flightlines due 

to changed illumination geometry, atmospheric effects and topography. The 

remaining differences between the images could then be explained purely in terms 

of the different sensor geometry. It was established that in this study, in fact, these 

external factors were less important than expected and analysis proceeded using the 

raw data, since the reflectance image data suffered from quantisation effects and 

corrupted data distributions, rendering the data unreliable for the analysis of 

variance.

Several geometric factors affect the variance of remotely sensed image data; these 

include the effects of scene structure as well as the interaction of the sensor 

sampling frequency and scene spatial variability. In particular, with Daedalus ATM 

data three interacting factors are important:

• The enlarged area of the GRE with increased sensor view angle

• The increased spatial autocorrelation between adjacent GREs, resulting from

increased overlap of adjacent GREs at off-nadir viewing angles

• And the changing proportions of canopy elements when viewed obliquely
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It was determined in this study that this third factor will cause the change in 

image variance with view angle to be directly related to canopy structure. Further, 

it was demonstrated that general descriptions of canopy type, based upon the 

concepts of H- M- and L- relative resolution models proposed by Woodcock and 

Strahler (Woodcock, 1985, Strahler et al., 1986), can be made from the analysis of 

these results. In this study, this interpretation is carried out by quantifying the 

relationship between the two parameters of view angle and image variance, 

measured as the Coefficient of Variation of a parcel, by using linear and non-linear 

regression techniques. By interpreting the coefficients of these regression equations 

it is possible to identify whether a parcel is homogeneous vegetative cover, partial 

cover or bare soil, based upon knowledge of the sampling frequency of the sensor 

(or spatial resolution) and the expected variation of different Earth surface 

materials. While this technique is not developed significantly further in this study, 

in order to extract quantitative information concerning the nature of the canopy, 

extensions to the model are discussed and ways in which this could be achieved 

outlined.

Finally, it was established that although the method of multiple view angle data 

analysis developed here would be difficult to implement using current sensors, 

future instruments such as HIRIS and MISR, both to be launched upon the NASA 

EOS platform in 1996, would provide high quality data which could easily be used 

in such a strategy. Considerations of cost and suitability of such data products that 

could be obtained from such a strategy should be made before the general 

application of this method or the investment in future bespoke technology.

A number of areas of further work are necessary in order to evaluate exactly the 

nature of the relationship between view angle and image variance. These are as 

follows:

• Rigorous methods should be devised to improve upon the assumption of 

negligible atmospheric attenuation in the red and NIR spectral regions, in 

order to construct a more generally applicable method.
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• Data collection of irradiance should be carried out using a pointable

spectrometer, in order to gather better data to input into the Terrain Lite 

model devised in this study. These data could also be used in the empirical 

validation of the assumptions in this model concerning the spectral and 

spatial distributions of sky radiance.

• More effective methods of production should be devised for the generation

of reflectance images, that avoid the problems of increased quantisation of 

data and thereby degrading the reliability of such data in the use of variance 

analysis.

• The effect of row structure and the associated illumination and sensor

geometries upon image variance is not yet fully understood. Such an 

understanding would be a prerequisite to the operational use of this multiple 

view angle data strategy in the assessment of cultivated vegetative surfaces.

• Further studies using sensors capable of increased off-nadir viewing, beyond

37°, should be made in order to ascertain whether it is possible to extract 

parameters of row spacing and canopy height, where these are applicable.

In conclusion, this study has demonstrated two major points. First, it has confirmed 

that the analysis of variance in image data could provide a useful source of 

information concerning scene structure. Second, it has shown that multiple angle 

image data can also be used to extract quantitative information concerning 

vegetative Earth surface materials, by virtue of the effects of canopy geometry 

upon the radiance detected by the sensor.;
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GLOSSARY

AIS:

Albedo:

Analogue:

Anisotropic:

ATM:

AVHRR:

AVIRIS:

AWS:

BRDF:

F / ___
' Canopy:

CPU:

CV:

DEM:

Digital:

Diffuse:

Airborne Imaging Spectrometer

Reflectance of a target over the full solar spectrum

The use of a continuously varying signal to represent a 
measurement; in RS usually a photograph is considered an 
analogue image of the object.

Not constant with angle.

Airborne Thematic Mapper; an instrument built by Daedalus to 
simulate the Landsat TM sensor series, used from an aircraft.

Advanced Very High Resolution Radiometer, on board NOAA 
series of platforms

Airborne Visible and Infrared Imaging Spectrometer

Automatic weather station, several meteorological sensors 
connected to a (digital) data logger, needing periodic attention for 
down-loading of data, batteries etc..

Bidirectional Reflectance Distribution Function; the theoretical 
description of radiance from a target over infinitesimally small 
angles (Nicodemus, 1970).

Generic term for vegetative structures, eg the organisation of 
leaves and branches making up a tree.

Central Processing Unit.,

Coefficient of Variation.

A digital elevation model is a matrix of reference coordinates, 
with associated height information only; cf. DTM.

Data represented as sampled discrete values measured upon a 
quantised scale.

A diffuse surface reflects an equal amount of radiance in every 
direction, according to Lambert’s law.
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Glossary

Directional
Reflectance:

DTM:

EOS:

FOV:

GRE:

HDDT:

HIRIS:

H- res":

I2S:

IFOV:

Image:

Term to describe the anisotropic reflectance characteristics of a 
target

A digital terrain model is usually a matrix of reference 
coordinates, with associated information on height and gradient, 
and/or slope and aspect information; cf. DEM.

Earth Observing System; multi-sensor satellite platform to be 
launched 1996.

The field of view is defined as the angle subtended by one scan 
line at the perspective centre of the sensor.

The ground resolution element is determined by the projection 
of the IFOV onto the Earth’s surface. For a constant IFOV, the 
size of the GRE varies as a function of platform altitude and 
sensor view angle (Slater, 1980).

High density digital tape.

High Resolution Imaging Spectrometer, to be launched on board 
EOS platform 1996.

A basic scene model where the size of the elements in the scene 
are significantly larger than the resolution cells of the sensor and 
therefore can be resolved (Woodcock, 1985, Woodcock and 
Strahler, 1987).

International Imaging Systems1; usually used to refer to the 
image processing system.

The geometric instantaneous field of view is defined as an angle 
which is a function of the detector size and the focal length of 
the optical system (Townshend, 1981).

Collection of measurements from sensor, arranged in a systematic 
fashion (Strahler et al. 1986). Can be either analogue or digital.
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Glossary

Irradiance: Energy impinging on the object, usually from the sky.

Isotropic:

L-res“:

LAI:

Lambertian:

Landsat:

M-res":

MAFF:

Mapics:

Model:

MODIS:

MISR:

MSS:

Nadir:

NASA:

NERC:

Constant relationship with angle; see diffuse.

A basic scene model where the size of the elements in the scene 
are significantly smaller than the resolution cells of the sensor, 
and therefore cannot be resolved (Woodcock, 1985, Woodcock 
and Strahler, 1987).

Leaf Area Index; the ratio of leaf area to ground area.

A surface behaving according to Lambert’s law; see diffuse.

A series of satellites first launched 1972. Landsat 1 to 3 carried 
(among other sensors) the MSS; Landsat 4 (1982) and 5 carried 
the MSS and more importantly the TM sensor.

A basic scene model where the size of the elements in the scene 
are approximately the same as the resolution cells of the sensor. 
This special case has a significant effect upon image variance.

Ministry of Agriculture, Fisheries and Food.

Digital mapping and general purpose graphics package1; some 
GIS capabilities and integration with image data.

A framework, description of systems for the calculation or 
simulation of phenomena.

Moderate Imaging Spectrometer, N (nadir) and T (tilt) versions to 
be launched on EOS platform 1996.

Multi-angle Imaging SpectroRadiometer, to be launched on EOS 
platform 1996.

Multi-Spectral Scanner, four spectral bands, 50x80m GRE; cf. 
Landsat.

Sub-platform point on datum; has equivalent point on image. 

National Aeronautics and Space Administration 

Natural Environment Research Council.
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NOAA:

Normalisation:

OS:

Object:

Off-nadir:

Parcel:

Parametric:

Pixel:

PSF:

PVI:

Radiance:

Scene:

Spectral
Reflectance:

Specular:

Glossary

National Oceanic and Atmospheric Administration

Strategy that corrects data to a normal, in view angle corrections 
often the nadir view.

Ordnance Survey, main UK national mapping service, 
government body.

Feature, or collection of features, of which measurements are 
made by the sensor, eg the surface of the Earth.

Any angle that is not nadir; an oblique view

An area of the object generally defined as homogeneous (at the 
image scale) in the distribution of features within the region; 
generally relates to a field, forest, land cover type.

The use of parameters in a physical model, for example of sky 
radiance.

A pixel is a picture element that makes up a digital image; its 
size is determined by the ground distance between the centres of 
successive GRE’s (across-track), and between successive scan 
lines (along-track).

The Point Spread Function defines how the radiance from an 
object is integrated over the IFOV.

Perpendicular Vegetation Index, measures the distance, in 
feature space, of a cover type response from the soil line 
(Richardson and Wiegand, 1977).

Upwelling radiant flux from the object to the sensor.

The spatial distribution (at the object) of features from which 
measurements of energy flux are made by the sensor.

Often termed "reflectance", actually meaning reflectance of a 
target over a given spectral range.

Surface with mirror-like reflectance properties.
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Glossary

SPOT:

S-bend:

TL:

TM:

Utilisation:

Systeme Probatoire d’Observatoire de la Terre; French multi­
spectral (three bands, 20m GRE) and panchromatic (green/visible 
band width, 10m GRE) passive sensor, launched 1986, oblique 
imaging capability up to ±27° off-nadir, cf. Chevrel et al.t 1981.

Correction applied to ATM image data to preserve pixel size, 
and therefore scale, across-track.

Terrain Lite, the algorithm developed here to model differential 
terrain illumination, using a DTM and spectral and spatial sky 
radiance distribution models (cf. Kay, 1989).

Thematic M apper, seven spectral bands, 30m GRE; c f  Landsat.

Strategy that attempts to use the anisotropic reflectance 
characteristics of targets to obtain information.
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Appendix 1: Field index

This section indexes the main fields used in this study on Bemborough Farm. For 

location map see figure 3.2, p63.

(Field number, name, crop and variety, sowing date, yield cwt/acre)

Field 2: Big Ground, winter barley Marinka C2, 29/9/87, 53

Field 3: Main Ground, ley grass, grazed.

Field 10: Sheffield Thoms, winter barley Plaisant C2, 24/9/87, 45.5

Field 18: Far Lotts, winter barley Plaisant C3, 22/9/87, 52

Field 20: Lotts Pool, winter barley Plaisant C3, 22/9/87, 52.5

Field 21: Hanging Post, winter wheat Brimstone C2, 19-23/10/87, 43.5

Field 27: Big Cooks, spring barley Triumph C2, 7-9/3/88, 44.5

Field 29: Lotts Barrow Ground, winter barley Plaisant C3, 22/9/87, 54

Field 30: D Ground, spring barley Natasha C2, 9/3/88, 42.5
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Figure 3.1: Location of study site
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Figure 3.2: Map of study site, including field index (see Appendix 1)



Appendix 2: Example of Terrain Lite model 3a, encoded in a
Mapics command file

echo off
define pi 3.141529 
define E %3 $ incoming radiation 
define albedo %4 
$
let cll=(-c4/sqrt(l+c4*c4+c5*c5)) 
let cl2=(-c5/sqrt(l+c4*c4+c5*c5)) 
let cl3=(l/sqrt(l+c4*c4+c5*c5))
$
let c6=sqrt(c4*c4+c5*c5) $ compute slope
$
let c7=(atan(c5/c4)) $ compute aspect
$
$ calculate quadrant for aspect 
$
make c8 if (c4 It 0) then ((pi*0.5)-c7) \  

else ((pi*1.5)-c7)
$
let c89=pi*((%2)/180) 
let c88=pi*((%l)/180) 
label c89 zen 
label c88 azi 
label c8 asp 
eras c l to c5 
$
let cl7=c 13/cl3 $ create a unit column
let cl6=cl7*cos(zen)
let cl7=cl7*sin(zen)
let cl4=sin(azi)*cl7
let cl5=cos(azi)*cl7
$
$ make the relative aspect column c87 
$
let c87=azi-asp 
label c87 Raz 
$
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$
$The first make is for all facets with some inclination directly at the Sun; 
$the else is for all those in shadow 
$
$This version FD, Fd, FgD 
$
make c21 if (c20 gt 0) then (E*(c20*%5 \

+(pi-c6)*%6/pi \
+albedo*cos (zen) * (c6/pi) * (1 -sin(zen)*cos (Raz/2)))) \  

else (E*((pi-c6)*%6/pi + albedo*cos(zen)*(c6/pi) \  
*(l-sin(zen)*cos(Raz/2))))

$
$
outgrid 201 251 1 1 201 251 c21 idisk:[rs.simonk.models]temp.hog
$ output in IMO RS directory
define pi
define albedo
define E
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