
Tree regression models using statistical testing and mixed
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Abstract: Regression analysis is a statistical procedure that fits a mathematical function to a

set of data in order to capture the relationship between dependent and independent variables.

In tree regression, tree structures are constructed by repeated splits of the input space into two

subsets, creating if-then-else rules. Such models are popular in the literature due to their ability

to be computed quickly and their simple interpretations. This work introduces a tree regression

algorithm that exploits an optimisation model of an existing literature method called Mathemat-

ical Programming Tree (MPtree) to optimally split nodes into subsets and applies a statistical

test to assess the quality of the partitioning. Additionally, an approach of splitting nodes using

multivariate decision rules is explored in this work and compared in terms of performance and

computational efficiency. Finally, a novel mathematical model is introduced that performs subset

selection on each node in order to select an optimal set of variables to considered for splitting, that

improves the computational performance of the proposed algorithm.

Keywords: Mathematical programming, Regression analysis, Decision trees, Subset selection,
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1 Introduction

Regression analysis is a predictive modelling technique for formulating the correlation between a

set of dependent and independent variables. Depending on how the values of the independent

variables (i.e. predictors) vary, the value of the dependent variable (i.e. response) also changes.

The objective of regression is to apply a mathematical function to the data that captures these

changes.

There are numerous algorithms in the literature for regression, with varying degrees of complexity.

Examples include linear regression, Support Vector Machine Regression (SVM) (Cortes and Vapnik,

1995), K-nearest neighbors (KNN) (Cover and Hart, 1967) and Multivariate Adaptive Regression

Splines (MARS) (Friedman, 1991).

Ensemble methods have gained a lot of interest due to their ability to produce good results and

can be divided into two major groups, sequential and parallel methods. Parallel methods create

multiple ‘weak learners‘ in parallel and combine them to achieve better predictive performance than

creating a single ‘strong learner‘. One such popular algorithm is Random Forest (Breiman, 2001).

Sequential methods are similar, meaning that multiple models are created. However, those models

are trained sequentially and each model focuses on where the previous one performed poorly. After

many iterations, the result is a single model with much better predictive performance than the

original. Popular methods include Adaptive Boosting (AdaBosot) (Freund and Schapire, 1997)

and XGBoost (Chen and Guestrin, 2016).

In the field of mathematical optimisation there is the Automated Learning of Algebraic Models for

Optimization (ALAMO) (Cozad et al., 2014; Wilson and Sahinidis, 2017), a mixed integer optimi-

sation approach called Classification and Regression via Integer Optimisation (CRIO) (Bertsimas

and Shioda, 2007), as well as two piecewise regression approaches called Optimal Piecewise Linear

Regression Analysis (OPLRA) (Yang et al., 2016) and Piecewise Regression with Optimised Akaike

Information Criterion (PROA) (Gkioulekas and Papageorgiou, 2018, 2019).

This work focuses on generating tree regression models. Those models are conceptually simple

yet powerful. Tree structures are constructed by repeated splits of the input variables into two

descendant subsets, called child nodes. These splits create if-then-else rules to assign samples

into child nodes. Those nodes that are not split any further are called terminal or leaf nodes

and each leaf has an explicit regression model. Popular tree algorithms include Classification and

Regression Trees (CART) (Breiman et al., 1984), C4.5 (Quinlan, 1993) and others.

Advances have been made in the field of integer optimisation as well, with tree approaches being

able to handle both classification and regression tasks. An algorithm called (DTIP) (Verwer and

Zhang, 2017) has been developed that uses integer programming to construct trees of certain depth

from data sets of sizes up to 1000 samples.

Multivariate decision trees have also been an intriguing research field. Multivariate decision trees

mainly differ from univariate tree by creating decision rules on more than one attributes (typically a

linear combination of attributes) (Kotsiantis, 2013). Examples include Brodley and Utgoff (1995),

Sok et al. (2015), Wang et al. (2018) and Wang et al. (2020). Furthermore, Bertsimas and Dunn

(2017) developed an algorithm called Optimal Classification Trees (OCT) that uses mixed integer

optimisation techniques in order to generate tree structures.

In previous work, Yang et al. (2017) developed a tree regression algorithm that employed a math-

ematical programming model to optimise the value of the break point when splitting nodes. That

optimisation model is solved iteratively for every input variable in order to identify the optimal

split. The algorithm also used a heuristic approach to control the tree generation process and ulti-
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mately the size of the tree. That heuristic was based on the introduction of a parameter that was

set to a fixed value based on a sensitivity analysis. As a result, the algorithm has no parameters

that require tuning.

However, when new examples are introduced to this algorithm, the predictive results are often poor.

This work addresses the need for a new stopping criterion to control the size of the generated tree.

By accommodating a well established statistical test, the new proposed algorithm is able to balance

prediction accuracy and model complexity.

Furthermore, the path of creating multivariate decision rules is also explored. The optimisation

model for splitting nodes is modified to address the new rules. In addition to that, a novel

mathematical formulation is proposed to create a subset selection model to enable the algorithm

to search the optimal partitioning variable based on a reduced set of input variables.

2 Proposed regression tree algorithm

This section proposes three variations of a novel regression tree algorithm that is based on the

partitioning model of appendix A. That model is part of the MPtree algorithm that is mentioned

in Section 1 and it is responsible for optimally splitting a node into two nodes while minimising

the absolute deviation of the fitting.

The first variant of the algorithm uses the same optimisation model, but the criterion to assess

node splittings and ultimately terminate the tree generation process is substituted with the Chow

statistical test. The second variant uses a slightly modified version of the optimisation model to

create decision rules based on linear expressions instead of a fixed value based on a particular input

feature. The last variant introduces a new mathematical formulation that minimises the value of

the Bayesian Information Criterion (BIC ) to select an optimal subset of input variables to be

considered for splitting.

2.1 Variant I: Introduction of a statistical test

2.1.1 The Chow statistical test

In regression, the F -test can be used to assess the quality of stepwise regression. Assuming there is

a break in the data, splitting them into two subsets and fitting separate regression models to each

one can result in a better overall fit . However, this action adds to the complexity of the model

and might lead to overfitting. Therefore, the Chow test can be applied to compare the predictive

performance of a segmented and a non-segmented regression model.

Suppose that there are two subsets and the question is whether to perform regression on the

entire dataset consisting of both subsets (we denote this model 1), or to apply separate regression

models for each subset (we denote this model 2). So RSS1 is the residual sum of squares for the

first model and RSS2 is the residual sum of squares for model 2 (which in this case is the sum

of the RSS for each subset). In general, there will be an improvement when splitting the data

(RSS2 ≤ RSS1), with equality occurring only when all the regression coefficients for the two models

coincide (Dougherty, 2011). However, there is a trade-off due to the added complexity of the overall

regression model. By splitting the data into two subsets and performing separate regressions, more

parameters are added to the model and hence more degrees of freedom. So the chow test is useful

for testing if there is a statistically significant difference in predictive performance.
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The F statistic for the chow test can be computed as follows (Dougherty, 2011):

F =

(
RSS1 −RSS2

p2 − p1

)
RSS2

n− p2

(1)

where:

RSS1 residual sum of squares of model 1 (single regression for the entire

dataset)

RSS2 total residual sum of squares of model 2 (separate regression for each

subset)

p1 regression parameters of model 1

p2 regression parameters of model 2

n number of samples in the dataset

The null hypothesis states that model 2 does not provide a significantly better fit than model 1.

So the procedure to either reject or accept the null hypothesis is as follows:

• Calculate the F statistic using equation 1

• Choose an appropriate confidence level (e.g. 99%)

• Calculate the critical Fcrit value of the F -distribution

• Reject the null hypothesis if F > Fcrit

According to the steps above, if there is evidence to reject the null hypothesis, it is accepted that

model 2 does provide a significant improvement in predictive performance. The larger the F

statistic is, the better the overall fit.

2.1.2 Application to tree regression

The use of this test can aid the process of generating regression trees since it can be used as a

criterion for splitting nodes. Every node can be considered a population that can be split into two

separate subsets and a decision has to be made of either accepting or rejecting the splitting.

The main steps of the algorithm for constructing trees are given below. As with other tree algo-

rithms, recursive splitting is used to generate the tree. For each node, the partitioning model of

appendix A is applied to split it into two child nodes. Then the Chow test is applied, comparing

the linear regression model with the segmented regression model. If there is a significantly better

predictive performance by splitting the node, then the partitioning is approved and the algorithm

starts again by following the same procedure for all the new nodes. However, if a node splitting

is rejected then this node will no longer be considered for splitting. The entire tree generation

process is terminated when there are no more nodes that are eligible for splitting.

In previous work, the proposed MPtree algorithm used a heuristic approach to control the tree

generation process. This heuristic introduced a new parameter which was used as a threshold to

the reduction percentage of the absolute deviation. That reduction in error was a comparison

between the current examined node and the root node. By performing a sensitivity analysis, the

authors concluded that the parameter should be set to the value of 0.015, as it yielded the best

results.

The proposed algorithm, from now on called StatTree, is briefly explained below.
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• Exhaustive search over the entire set of input variables. Apply the partitioning model of

appendix A to split every variable into two child nodes.

• Identification of the optimal partitioning variable. This variable is the one that has the

minimum fitting error from the previous step.

• Assess the quality of the splitting by performing the Chow test. If the hypothesis is rejected,

then the splitting is approved and the new nodes can be considered candidates for further

splitting. Otherwise, the current node becomes a leaf node.

• Repeat those step until there are no more candidate nodes left to be checked.

2.2 Variant II: Mutlivariate decision splittings

As mentioned in section 1, multivariate decision trees generate rules as that are a combination of

multiple features. Such a complex rule could be a better representation of the data and improve

performance. There is a trade-off however between performance and model interpretability.

A decision tree with multivariate splitting rules can be obtained by modifying the optimisation

model of appendix A. The new additions to the notation for this work are presented below:

Continuous variables

âm coefficients for splitting instances

b̂ parameter for splitting instances

The new added variables are âm and b̂, which represent the coefficients and the breaking value of

the rules respectively.

Mathematical Constraints

Constraints 18 and 19 in the optimisation model of appendix A are the only ones that require

modification to address the new decision rule changes. The modifications are presented below:∑
m

asm · âm ≤ b̂+ u1 · (1− Fsc)− ε ∀ s ∈ Sn, c = left (2)

b̂− u1 · (1− Fsc) + ε ≤
∑
m

asm · âm ∀ s ∈ Sn, c = right (3)

The rest of the constraints remain the same. This optimisation model is integrated to the rest

of the proposed StatTree algorithm. This variant is called StatTreeLF (StatTree with Linear

Functions).

2.3 Variant III: Variable selection for splitting nodes

According to section (2.1.2), identifying the best partitioning variable employs an exhaustive search

approach. Multiple Mixed Integer Linear Programming (MILP) models are solved iteratively in

order to select the partitioning variable that yields the minimum error. This approach adds to the

overall computational time of training a model, hence making the use of this algorithm on datasets

with a large number of variables impractical.

Feature or subset selection methods are useful for determining a smaller subset of the original

input space, leading to potential improvement in prediction accuracy and interpretability of the

final model. In this section, a feature selection method will be employed in order to identify a subset
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of the original input variables to consider for splitting. So the task at hand is to formulate a model

that decides on the optimal subset of variables. One way of dealing with such problems is the use of

information criteria such as the Akaike Information Criterion (AIC ) and the Bayesian Information

Criterion (BIC ). These two criteria have been established as two of the most frequently used in

the literature with a wide variety of applications.

Jian et al. (2017), proposed a variable selection method through mixed integer quadratic program-

ming by using utilising BIC, whereas Miyashiro and Takano (2015) developed a mixed integer

programming approach to deal with the problem of subset selection using Mallows’ Cp. For this

work, a feature selection model will be developed using the BIC as an objective function. However,

for simplicity reasons this approach will be formulated as an MILP approach.

The general formulation of the BIC is as follows (Wagenmakers and Farrell, 2004):

BIC = −2 · ln(L̂) +K · ln(n) (4)

where:

ln natural logarithm

L̂ Value of the log-likelihood function at its maximum point

K number of parameters in the model

n number of samples in the data

In regression analysis, if all the candidate models assume normally distributed errors with a con-

stant variance, then the criteria can be reformulated as (Burnham and Anderson, 2003):

BIC = n · ln
(
RSS

n

)
+K · ln(n) (5)

where:

RSS residual sum of squares

Given a set of candidate models the criterion can be used for model selection. The model that

achieves the minimum BIC value gets picked as the best performer. It is clear that the use of the

BIC poses a problem since the formulation is non-linear. Formulating the problem as an MILP

requires adjustments. This formulation is based on a recent work by Gkioulekas and Papageorgiou

(2019), in which there are two simplifications. First, the logarithm function is approximated by

using piecewise linear expressions and second, the use of absolute deviation is used instead of RSS.

These two steps ensure a linear formulation of the criterion. The mathematical formulation is

described below:

Indices

s data samples, s=1,2,...,S

m feature/independent input variable

i number of breaking points, i=1,2,...,N
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Parameters

asm numeric value of sample s on feature m

ys output value of sample s

LO lower limit for the linear regression coefficients

UP upper limit for the linear regression coefficients

γi discrete points for the linearisation

βi output values of the discrete points

N maximum number of variables to be selected by the model

Continuous variables

B intercept of regression function in child node c

Ds training error between predicted output and real output for sample s

Prs predicted output for sample s in child node c

Wm regression coefficient for feature m in child node c

BIC Bayesian Information Criterion value

G result of the approximation

Binary variables

Zm 1 if feature m is selected; 0 otherwise

SOS2 variables

λi Variables that describe which discrete points will be used for the linear

approximation

Mathematical Constraints

This mathematical formulation fits a linear regression model to a set of data according to the

following constraint

Ps =
∑
m

asm ·Wmc +B ∀ s (6)

The absolute deviation between the observed values and model predictions is formulated by the

following pair of equations.

Ds ≥ ys − Ps ∀ s (7)

Ds ≥ Ps − ys ∀ s (8)

This formulation introduces a set of binary variables (Zm) to achieve feature selection. For every

feature that is selected, the corresponding variable takes the value of Zm = 1, otherwise Zm = 0.

By restricting the values of the coefficients between specified upper and lower bounds, if a variable

m is not selected, then the regression coefficient will be forced to zero. Otherwise, the coefficient

can take any value between the bounds. By setting very large positive and negative values to those

bounds, the regression coefficients are essentially free to take any real value if the corresponding

features are selected.

Wm ≥ LO · Zm ∀ m (9)

Wm ≤ UP · Zm ∀ m (10)
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Logical constraints are formulated to ensure that at least one variable has to be selected in the

final regression model and that a maximum number of N variables can be selected. N is a user

specified parameter that can take integer values. This constraint enables the user to control the

size of the selected subset.∑
m

Zm ≥ 1 (11)∑
m

Zm ≤ N (12)

Due to the non-linear nature of the BIC, it is desirable to reformulate the criterion by using

piecewise approximations and construct the model as MILP that can be solved to optimality.

Equations 13-16 approximate the logarithm function through piecewise linear expressions. Variable

λi is a SOS2 variable (special ordered set of type 2), which means that at most two λ variables

can take non-zero values and those values have to be for adjacent variables in that set.

βi = ln γi ∀ i (13)

∑
s

Ds =
∑
i

γi · λi (14)

G =
∑
i

βi · λi (15)∑
i

λi = 1 (16)

The objective function is the value of BIC which is formulated as follows:

min BIC = |S| ·G− |S| · ln |S|+ ln |S| ·

(∑
m

Zm + 1

)
(17)

|S| is the total number of samples in the dataset, G is the piecewise linear approximation of the

logarithm. The first term of the right-hand side of Equation 17 is the fitting error, whereas the

last term the last term is the complexity of the model. The complexity of the model is the total

number of selected variables (
∑

m Zm) and an extra degree for the intercept of the regression.

The resulting model, from now on known as FSelect, can be summarised as:

minimise (17)

subject to (6)-(16) constraints

and is formulated as an MILP problem that can be solved to optimality.

A maximum number of selected variables is specified by the user with the final number being

decided by the optimisation model since the BIC tries to find a balance between prediction accuracy

and model complexity.
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Figure 1: The proposed variants. Case (a) is the exhaustive search based on all the variables. Case (b)

selects a subset of size N to consider for splitting.

Figure 1 is a description of two variants. The fundamental difference between the two variants is

the inclusion of the FSelect model that eliminates the exhaustive search of the entire input space.

However, the step to identify a partitioning variable is still required. The StatTreeLF variant

completely eliminates this step, since the decision rule is multivariate linear expression.

3 Computational part

3.1 Examined datasets

A number of examples are considered in this work which are summarised in Table 1. Those

datasets are derived from different online sources. Specifically the pharmacokinetics, earthquake,

abalone and speeding datasets are available through a package in R, boston, bodyfat and sensory
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datasets are available through StatLib (Vlachos, 2005), concrete, cooling, heating, wine and yacht

through the UCI machine learning repository (Dheeru and Karra Taniskidou, 2017) and the rest

are available through the KEEL dataset repository (Alcalá-Fdez et al., 2011).

Table 1: Regression datasets examined in this work

Data Predictors Samples Data Predictors Samples

Concrete 8 1030 Octane 4 82

Cooling 8 768 Pharma 4 132

Heating 8 768 Plastic 2 1650

Yacht 6 308 Sensory 11 576

Bodyfat 14 252 Wankara 9 1609

Boston 13 506 Abalone 8 4177

Dee 6 365 Speeding 3 8437

Earthquake 4 1000

The Yacht hydrodynamics set predicts the residuary resistance of sailing yachts for evaluating the

ships’ performance and for estimating the required propulsive power. An assessment of heating

and cooling load requirements is captured in the Energy Efficiency dataset (Tsanas and Xifara,

2012), of different buildings as a function of 8 parameters. The Concrete dataset (Yeh, 1998)

predicts the compressive strength of concrete as a structural material.

A study of the kinetics of the anti-asthmatic drug theophylline is included in the Pharma dataset.

Twelve subjects were given oral doses of the drug and the aim is to predict the final theophylline

concentration of each subject by measuring parameters such as weight and time. Earthquake data

based on the location of seismic events that occurred near Fiji since 1964 are in the earthquake

dataset. The Bodyfat dataset uses features such as age, weight and height to measure the percent-

age of bodyfat in a subject. An evaluation of wine quality by 6 judges is recorded in the Sensory

dataset.

Dee, predicts the daily average price of electricity in Spain. The dataset contains values about

the daily consumption of energy from various sources such as hydroelectric, fuel, natural gas and

more. Plastic, computes how much pressure can a given piece of plastic withstand when a force is

applied on it at a fixed temperature. Wankara, contains observations about weather information of

Ankara during 1994-1998, with the goal of predicting the average temperature. Abalone, predicts

the age of abalone from physical measurements which are easy obtain. The Speeding dataset has

been collected from a study that tried to identify the effect of warnings signs on speeding patterns.

The speed measurements were taken before the erection of a warning sign, after shortly after the

erection of the sign and finally after the sign had been in place for some time. Finally, Boston

consists of observations that predict the price of houses in various places in Boston.

3.2 Validation of the method

The simplest way to evaluate a model is to split the original data into two subsets, one for training

and one for testing. The training set will be used to construct a regression model, which will be

evaluated by using the testing set. The reason for doing so is to measure how well the model

generalises to new, previously unseen data.

Cross-validation (CV ) is a statistical method of evaluating the performance of models. The most

common form of cross-validation is k-fold where the data is split into k subsets of equal size. Then

the method uses one of these sets for testing and the rest for training. The method stops when all
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of the k sets have been used as the testing set. Parameter k is user-specified and is usually set to

either 5 or 10 (Muller and Guido, 2016).

In this work, 5-fold cross-validation is selected to evaluate the performance of the proposed al-

gorithm. 10 runs are performed and the Mean Absolute Error (MAE ) between model prediction

and the observed values is calculated for each fold. The final score is the average of all the runs.

The algorithm is implemented in the R v.3.3.1 programming language (R Development Core

Team, 2016), while the mathematical programming model responsible for partitioning the nodes,

is implemented in the General Algebraic Modeling System (GAMS) v.24.7.1 (GAMS Development

Corporation, 2016) and solved using the CPLEX v.12.6.3.0 solver with optimality gap set at 0

and a time limit of 200s. R is also used for the k-fold cross-validation procedure by utilising the

caret package (Kuhn, 2008).

A number of tree methods from literature are also implemented in this work for comparison

purposes on the same datasets. All of those methods are implemented in R using the appropriate

packages. The methods include Classification and Regression Trees, CART, (Breiman et al., 1984)

using the rpart package (Therneau et al., 2018), M5P regression (Quinlan et al., 1992; Wang and

Witten, 1996) using the RWeka package (Hornik et al., 2009; Witten et al., 2016), Conditional

inference trees, CTree , (Hothorn et al., 2006), using the partykit package (Hothorn and Zeileis,

2015), Cubist using the Cubist package (Kuhn and Quinlan, 2017) and MPtree (Yang et al., 2017)

which was implemented in R and GAMS. The same 10 runs of 5-fold cross-validation are performed

to evaluate and compare with the proposed methods.

4 Results

4.1 Variant I: Introduction of a statistical test

It is common practice to pre-process and normalise the data in order to avoid having input variables

being more dominant than others in the final regression. For this work, the BBmisc package is

used in R (Bischl et al., 2017) to perform feature scaling and normalise the input variables to the

range of [0,1].

4.1.1 Cross-validation results

Table 2 contains the MAE results of all the runs of cross-validation. For each dataset, the method

that performed the best is marked with bold. StatTree has the best performance in terms of

MAE score for 7 out of 15 examples. Cubist is the next best performer with 3 out 15, MPtree and

M5P 2 out 15 and CART with only a single dataset. However, that alone is not a good indication of

overall performance.
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Table 2: Cross-validation results of StatTree using MAE

StatTree MPtree Cubist CART M5P CTree

Concrete 4.329 4.868 4.267 7.239 4.656 5.295

Cooling 1.175 0.891 0.938 2.400 1.210 1.403

Heating 0.367 0.354 0.347 2.011 0.693 0.665

Yacht 0.539 0.539 0.557 1.669 0.931 0.802

Bodyfat 0.183 5.282 0.205 1.356 0.373 0.911

Boston 2.568 4.644 2.587 3.234 2.501 3.014

Dee 0.313 0.975 0.316 0.381 0.316 0.356

Earthquake 7.345 12.427 7.294 8.223 7.273 7.884

Octane 0.391 0.805 0.384 0.602 0.464 0.591

Pharma 0.900 0.870 1.053 1.339 1.328 1.566

Plastic 1.226 1.230 1.229 1.658 1.234 1.410

Sensory 0.610 0.663 0.602 0.578 0.601 0.593

Wankara 0.972 3.605 1.000 3.213 0.977 1.574

Abalone 1.490 1.512 1.500 1.731 1.521 1.600

Speeding 4.143 4.243 4.188 4.524 4.239 4.581

Constructing a figure to visualise the comparison of the various methods will aid the interpretation

of the overall predictive performance. In this figure, for each dataset the best performer is awarded

10 points whereas the worst performer is awarded 1 point. The final ranking is the average score

that each method achieves across all datasets.

Looking at Figure 2 makes it is easier to compare the overall performance of the methods. The

StatTree algorithm is ranked at number 1. Also, a large performance gap exists between StatTree

and MPtree, which indicates that the new proposed method is actually a better alternative. Cubist

on the other hand, is the only method that can provide competitive results. However, since the

performance of those two methods is very close, a statistical test has to be applied in order to

check whether there is a significant difference in the results.
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Figure 2: Visualisation of the performance of the methods based on the MAE results

4.1.2 Statistical analysis

For this statistical analysis the Welch’s t-test is selected. This is a two-sample test which is used

to test the hypothesis that two populations have equal means and is reliable when the samples

have unequal variances (Welch, 1947). If we have evidence to reject this hypothesis, then we can

conclude that the difference between the two means is significant.
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Figure 3: Visualisation of the computational results of the StatTree variant. Case (a) is a representation

of the statistical analysis using Welch’s t-test. Case (b) is a representation of the MAE performance.

For each dataset, the two different populations that will be compared are the values of the 10

cross validation runs between the StatTree algorithm and one of the rest. If by performing the

Welch‘s t-test there is evidence to reject the null hypothesis, then it can be concluded that there is

a statistically significant difference in the two sample means and the best method is the one that

13



has the minimum average error.

More information about the calculation of the t statistic and the degrees of freedom is available at

appendix B. The application of the t-test follows a similar procedure as the one described for the

F -test in section (2.1.1):

• Calculate the t statistic using equation 25

• Choose a confidence level of 99% (α = 0.01)

• Calculate the probability p-values of the t distribution

• Reject the null hypothesis if p < a

Figure 3 is a visual representation of the statistical analysis performed for the CV results. The

circles contain five groups, one for each competing tree regression algorithm. Each group has 15

bars that correspond to the 15 examined datasets. Figure 3a is a visualisation of the statistical

analysis that has been performed to compare the regression methods. A bar is present only if

there is a significant statistical difference in the results (null hypothesis of the t-test is rejected).

For all the examined examples, there is a difference with CART and CTree. There is a significant

difference in 11 and 8 examples with M5P and MPtree respectively. With Cubist however, there is

a difference in only 6 examples.

Figure 3b is similar to 3a, but this time a bar is present only if StatTree has achieved a lower

MAE score for this specific example. It is clear that the proposed approach has consistently

outperformed CART, CTree and M5P. Even though MPtree is based on the same optimisation model

for splitting nodes, the addition of the F -test has greatly improved the results, with StatTree

providing better MAE score in 12 out of the 15 examples.

To accurately compare those algorithms, both figures should be taken into account. So, for a

specific example it is desirable to have a bar present in both figures. If that is the case, there is

strong evidence to suggest that the MAE averages of all the CV runs are indeed different and

StatTree provides better error values than the competitor. Based on that rule, the proposed

algorithm provides better predictive results than CART, CTree and M5P. It also provides better

predictive results than MPtree in 6 out of 8 examples (there is a significant statistical difference in

8 examples). StatTree is very competitive against Cubist as well and despite having a statistical

difference in only 6 examples, it has lower error values in 4 out of those 6.
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Figure 4: Percentage of winning between StatTree and the other methods, based only on the datasets

with meaningful statistical difference.

Figure 4 is a plot of the percentage of the datasets for which StatTree is able to outperform the

other examined approaches, considering only the examples for which the t-test null hypothesis

was rejected. For example when compared to MPtree, 7 out of 15 examples have statistically

insignificant different MAE values (7/15 = 47%), StatTree provides better results only for 6 of

the statistically significant examples (6/15 = 40%) and worse results for the other 2 examples

(2/15 = 13%).

4.2 Variant II: Multivariate decision splittings

According to the results of section 4.1, StatTree has good performance against other established

algorithms. In this section, the algorithm is compared to the StatTreeLF variant. Since the

optimisation model has to find the optimal coefficients for each input variable as well as the break

value, it is expected to be more computationally expensive.

The results in this section test the accuracy as well as the efficiency of the optimisation model of

the StatTreeLF variant against the main StatTree algorithm. The validation approach followed

in this section is slightly different than the rest of the work. One key difference is the analysis of

the computational efficiency of the proposed optimisation model.

4.2.1 Cross-validation results

3 runs of 5-fold cross-validation are performed to test predictive performance. Table 3 that follows

contains the average MAE scores of the cross-validation runs for each dataset. The variant that

had the lowest error is marked with bold.

15



Table 3: Cross-validation results between variants using MAE

StatTreeLF StatTree

Concrete 5.670 4.183

Cooling 1.020 1.140

Heating 0.515 0.368

Yacht 0.618 0.544

Bodyfat 0.181 0.181

Boston 2.978 2.545

Dee 0.343 0.322

Earthquake 7.768 7.382

Octane 0.489 0.439

Pharma 0.976 0.866

Plastic 1.204 1.225

Sensory 0.653 0.618

Wankara 1.142 0.995

Abalone 1.493 1.527

Speeding 4.115 4.144

Based on the results of Table 3, the variant with multivariate splittings under performs for most

of the examined datasets in this work. However, for some examples the difference between the two

variants is very close. In order to determine the actual impact of the multivariate decision rules,

a statistical analysis needs to be performed.

4.2.2 Statistical analysis

The statistical analysis applied in this section is similar to the one of section 4.1.2. The Welch’s

t-test is used to compare the results of Table 3. The two samples used for the test are the cross-

validation runs for the two variants.

Figure 5 summarises the results of the statistical analysis. The plots in this figure are similar to

the ones in the previous section, where a pairwise comparison takes place between StatTree and

the variant with the multivariate splittings.

In Figure 5a, if a bar is present then there is a statistically significant difference in the CV results.

In Figure 5b, if a bar is present then the StatTree variant has better MAE score compared to the

StatTreeLF variant.

Looking at both figures, it is obvious that using multivariate decision rules does not provide

improved prediction accuracy for all the examples. At the same time, the results are very similar to

the core algorithm since there is not enough evidence to determine if the differences are statistically

significant.
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Figure 5: Visualisation of the computational results of the StatTreeLF variant. Case (a) is a representation

of the statistical analysis using Welch’s t-test. Case (b) is a representation of the MAE performance.
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4.2.3 Analysis of computational efficiency

The final part of the comparison between StatTree and StatTreeLF concerns with the computa-

tional efficiency of the two variants.

For the purposes of this test, for each one of the 3 runs of 5-fold cross-validation the average

absolute gap and average computational time of solving the root node of the tree is captured. The

reason for selecting to capture those metrics only for the root node of the trees, is the fact that the

root node is the most computationally expensive to solve. The root node contains all the available

data samples and each subsequent node in the tree contains a subset of the data, hence making

the model easier to solve.

Table 4: Comparison of computational efficiency between the two variants

StatTreeLF StatTree

Gap CPU (s) Gap CPU (s)

Concrete 1.0 200.0 0.0 31.5

Cooling 1.0 200.0 0.0 9.2

Heating 1.0 200.0 0.0 11.2

Yacht 0.8 200.0 0.0 2.3

Bodyfat 1.0 200.0 0.0 22.6

Boston 1.0 200.0 0.0 47.7

Dee 1.0 200.0 0.0 5.6

Earthquake 1.0 200.0 0.0 11.8

Octane 0.4 200.0 0.0 0.9

Pharma 0.0 99.2 0.0 1.2

Plastic 1.0 200.0 0.0 9.0

Sensory 1.0 200.0 0.0 9.1

Wankara 1.0 200.0 0.0 91.1

Abalone 1.0 200.0 0.0 202.3

Speeding 1.0 200.0 0.0 38.1

Table 4 shows the difference in computational efficiency between StatTree and StatTreeLF. After

performing the 3 runs of 5-fold validation, it is clear that solving the optimisation model for the

root node of the multivariate case, is very expensive. The model always reaches the pre-defined

limit of 200s while failing to close the gap, when using the CPLEX solver. On the other hand, the

univariate algorithm successfully closes the gap in all of the examined datasets while requiring

significantly less time to do so.

It is important to note that solving the root node in the case of StatTreeLF requires only a single

MILP model. However, in the univariate case the algorithm has to solve an MILP model for every

single input variable. This is why abalone requires more than 200s to solve the root node, without

violating the 200s limit per model.

In order to better understand the difference in computational efficiency between the two variants,

the parallel plot of Figure 6 is produced.
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Figure 6: Comparison of computational efficiency between the two variants

In this plot, the red lines represent the multivariate variant whereas the green ones the univariate

variant. It is evident from this figure, that the multivariate model struggles to close the gap and

requires a long time to solve a single MILP model and create the decision rule.

The univariate variant is the exact opposite. It can successfully close the gap for every examined

dataset and can split a node (which requires multiple MILP models) within an acceptable time

limit.

It can therefore be concluded that the StatTreeLF variant is not as efficient as the main StatTree

variant, despite having similar performance for the datasets examined in this work (as demon-

strated in Figure 5).

4.3 Variable selection model

The results of section 4.2.3 suggest that the StatTree variant is able to generate decision rules

within an acceptable time limit. However, it is evident from Figure 6 that when the algorithm is

presented with complex datasets (for example high dimensionality), it requires more computational

time to converge to a solution.

This section compares the predictive performance of StatTree with and without the variable

selection model that was described in Section 2.3. Constraint 12 controls the maximum number of

variables to be selected by the model. At each iteration of the StatTree algorithm, the variable

selection model is applied first in order to select a subset of the original input space to be considered

for splitting. The goal is to reduce the computational time of training, without sacrificing predictive

performance.

By following the same validation procedure of section 4.1.2, the variant with the variable selection

model will be compared to the original StatTree with exhaustive search, for the same datasets

and based on the same k-fold splittings. The reported results are the averages of the k-fold cross-

validation runs. Once again, the same statistical analysis is performed to check for statistical

significance in the results.

Table 5, contains the results of the cross-validation runs. In this work, two values were selected for

the N parameter which controls the maximum number of selected variables, the extreme case of
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N = 1 and the value of N = 3 which has been found to be a good fit for the examined examples.

The metrics used for this comparison are the MAE score and the overall CPU time needed to

complete the cross-validation runs.

Table 5: Comparison between exhaustive search and subset selection

StatTree - Exhaustive Search
StatTree with FSelect

N=3 N=1

MAE CPU(s) MAE CPU(s) MAE CPU(s)

Concrete 4.329 618 4.067 469 4.728 302

Cooling 1.175 243 1.187 107 1.448 46

Heating 0.367 233 0.396 154 0.575 74

Yacht 0.539 97 0.538 43 0.540 30

Bodyfat 0.183 341 0.183 20 0.183 16

Boston 2.568 574 3.016 190 3.174 124

Dee 0.313 61 0.313 31 0.313 31

Earthquake 7.345 153 7.376 94 7.367 70

Octane 0.391 4 0.391 4 0.391 4

Pharma 0.900 16 0.905 16 1.046 12

Plastic 1.226 55 1.226 55 1.226 42

Sensory 0.610 81 0.600 18 0.609 13

Wankara 0.972 1215 0.987 600 1.016 758

Abalone 1.490 2567 1.530 1320 1.521 640

Speeding 4.143 700 4.357 378 4.319 460

On a first glance it is obvious that performing an exhaustive search on the entire set of input

variables provides better results, but it comes at the cost of CPU time. Completing all the cross-

validation runs requires more time when scanning through every single variable, which is expected.

However, in many cases, reducing the number of variables to be considered for splitting leads to

very similar predictive performance.

A statistical analysis of the results is vital in order to derive any useful piece of information. The

Welch‘s t-test will be used, comparing the exhaustive search version of StatTree, with StatTree

when N = 1 and N = 3. Figure 7 is a visualisation of that comparison. The graphs in the figure

work exactly the same way as in Figure 3. It is evident that for the majority of the examined

examples, there is no statistically significant difference between the full set of variables and the

reduced ones.
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Figure 7: Visualisation of the computational results of the variant with the FSelect model. Case (a) is

a representation of the statistical analysis using Welch’s t-test. Case (b) is a representation of the MAE

performance.
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5 Concluding remarks

This work addressed the issue of multivariate regression analysis by generating tree structures. The

proposed method used an optimization model to split data into nodes and the Chow statistical test

to control the tree generation process. The algorithm generated tree structures by deciding the

partitioning variable for every node through an iterative approach and optimised the corresponding

break point values and regression parameters, while minimising the summation of the absolute

deviation between predictions and observed values.

Several real-world examples were used in this work in order to test the algorithm. Its performance

is compared to other established tree regression algorithms that are available in the literature.

Computational experiments indicated that the proposed method consistently performed well and

provided competitive performance against the examined algorithms. Focusing more on the com-

parison against MPtree, which shares the same optimisation model for splitting nodes, it was seen

that there was a big gain in predictive accuracy in favour of the novel algorithm. This could be an

indication that the introduction of the Chow statistical test was having an impact on the gener-

ated trees. Overall, Figure 3 was a summary of this works’ findings and a visual representation of

predictive performance as well as the statistical analysis that was performed to check for statistical

significance.

In addition to the core algorithm, two extra variants were also proposed. The first variant, called

StatTreeLF, used the concept of multivariate decision rules. Instead of splitting nodes on specific

input variables, the optimisation model created liner expressions as rules. These expressions were

functions of the entire input space. A cross-validation analysis was performed to compare the

performance of this variant against the main StatTree algorithm. The results indicated that the

new model that was based on multivariate rules is not able to outperform the classical approach.

In fact, based on the statistical analysis that was performed it can be concluded that there is

little to no difference in predictive performance. However, there was a significant difference in

the efficiency between the two variants. Figure 6 captures this difference, which suggests that the

multivariate model struggles to converge to a solution and requires all of the 200s that had been

chosen as a time limit.

The final variant is a novel mathematical model that was introduced to perform subset selection

and handle the task of reducing the dimensionality of the input space when searching for the

optimal partitioning variable. This novel formulation is an MILP model that applied a linear

regression model to the data and used binary variables in order to select features. The selection

was based on the minimisation of the BIC metric. Computational runs proved that one advantage

of using this novel model was the reduced training time, which allowed the algorithm to handle

datasets with a larger number of variables. Furthermore, Figure 7 illustrated that there was not

a big compromise in predictive performance, since the results of Table 5 were very similar and in

most cases the differences between them proved to be insignificant.

Overall, StatTree was deemed to be a good and competitive alternative in the realm of decision

tree algorithms. Furthermore, the inclusion of the FSelect model was a useful addition that

reduced training times without a significant sacrifice to performance. Finally, future work could

be done in order to improve the efficiency of the StatTreeLF variant, which would enable the

algorithm to create multivariate decision rules and make the optimisation model usable.
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Appendix A Mathematical formulation of MPtree

In this section, the mathematical programming model that was used in the MPtree algorithm

is described as formulated by Yang et al. (2017) in the literature. This model is responsible

for partitioning a node into two child nodes based on a particular partitioning feature. The

mathematical model is presented is as follows:

Indices

c child node of the current parent node; c = left represents left child

node, and c = right represents right child node

m feature/independent input variable

m∗ partitioning feature

n current node

s data samples, s = 1, 2, ..., S

Sets

Cn set of child nodes of the current parent node n

Sn set of samples in the current parent node n

Parameters

asm numeric value of sample s on feature m

ys output value of sample s

u1, u2 suitably large positive numbers

ε suitably small number

Continuous variables

Bc intercept of regression function in child node c

Ds training error between predicted output and real output for sample s

Prsc predicted output for sample s in child node c

W1mc regression coefficient for feature m in child node c

W2mc regression coefficient for feature m in child node c

Xm∗ break-point on partitioning feature m∗

Binary variables

Fsc 1 if sample s falls into child node c; 0 otherwise

Mathematical Constraints

In order to assign samples into the child nodes, binary variables are introduced to the model in

the following constraints:

asm ≤ Xm + u1 · (1− Fsc)− ε ∀ s ∈ Sn, c = left, m = m∗ (18)

Xm − u1 · (1− Fsc) + ε ≤ asm ∀ s ∈ Sn, c = right, m = m∗ (19)
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The following constraint forces each sample to belong only to one child node:∑
c∈Cn

Fsc = 1 ∀s ∈ Sn (20)

For each child node c, polynomial functions of order 2 are employed to predict the value of samples

(Psc):

Psc =
∑
m

a2sm ·W2mc +
∑
m

asm ·W1mc +Bc ∀ s ∈ Sn, c ∈ Cn (21)

For any sample s, its training error is equal to the absolute deviation between the real output

and the predicted output for the child node c where it belongs to and can be expressed with the

following two equations:

Ds ≥ ys − Psc − u2 · (1− Fsc) ∀ s ∈ Sn, c ∈ Cn (22)

Ds ≥ Psc − ys − u2 · (1− Fsc) ∀ s ∈ Sn, c ∈ Cn (23)

The objective function is to minimise the sum of absolute training errors of splitting the current

node n into its child nodes:

min
∑
s∈Sn

Ds (24)

The resulting model can be summarised as:

objective function (24)

subject to (18)-(23) constraints

and is formulated as an MILP problem that can be solved to optimality.

Appendix B Welch’s t-test

The t-test is formulated as (Ruxton, 2006):

t =
X̄1 − X̄2√
s21
N1

+
s22
N2

(25)

where

X̄1, X̄2 mean of the 1st and 2nd sample respectively

s21, s
2
2 variance of the 1st and 2nd sample respectively

N1, N2 size of the 1st and 2nd sample respectively

The degrees of freedom associated with this variance estimate is approximated as (Ruxton, 2006):

ν ≈

(
s21
N1

+
s22
N2

)2

s41
N2

1 · ν1
+

s42
N2

2 · ν2

(26)

where
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v1 = N1 − 1 degrees of freedom associated with the 1st variance

v2 = N2 − 1 degrees of freedom associated with the 2nd variance

Once the t-statistic and the degrees of freedom have been computed, the t distibution can be used

to test the null hypothesis using a two-tailed test.
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