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For a stochastic differential equation (SDE) of Ito type of the form

dVt = ξ(Vt)dt+ σ(Vt)dWt, V0 = v0,

the problem considered here is to estimate the term ξ(·) known as the drift term
as well as the term σ(·) known as the diffusivity based on observations of the
stochastic process (Vt)t∈[0,T ] at time points ti ∈ [0, T ]. In the statistical context,
it has frequently been assumed that the unknown functions ξ(·) and σ(·) can be
described by a finite-dimensional parameter θ ∈ Θ, usually of small dimension and
with each component readily interpretable in the application domain. Interest then
shifts to finding good values for this parameter, an approach known as parametric
inference. Such a parameterization limits flexibility and if this is to be avoided,
a nonparametric approach can be adopted instead, where the whole functions
ξ(·), σ(·), or at least their values at a set of points are estimated. The Bayesian
approach is to assume a priori, i.e. before having taken the observations (Vti) into
account, that the function is an element of a suitable function space H and to
construct a probability measure π0, referred to as a prior, on this function space
which reflects a scientific consensus belief elicited from interaction with application
area experts. The SDE gives rise to a probability measure on the observations
P ((Vti)|ξ, σ) which is combined with the prior measure π0 using Bayes’ theorem
to yield the posterior measure; see [2] for the Bayesian viewpoint in general and [10]
for an exposition in the context of nonparametric estimation and inverse problems.

If observations are available at all points of the interval [0, T ], this is known as
continuous time observation and a rich theory exists to address this problem, see
[6]. This setting has also been considered in [8] as its relative simplicity enables a
study of the frequentist behaviour of the Bayesian procedure proposed in dimension
one. If observations are available at a finite number of time points with maximal
inter-observation time ∆t = max{ti+1 − ti} and it is acceptable to consider the
limit ∆t → 0, T → ∞, then many results are available, see [9] in the parametric
case and e.g. [5] in the nonparametric case.

This work assumes a simpler parametric form for the diffusivity σ(v) ≡ Σ ∈
R2×2 and presents fully nonparametric estimation of the drift ξ(·). In extension
of [7, 8], the state space considered is the two-dimensional torus, or equivalently
the unit square with periodic boundary conditions but the work differs from [4]
by defining the process on the torus rather than mapping a diffusion on R2 to the
torus by a modulus operation. The prior measure is Gaussian and described by
the prior mean function ξ0 ≡ 0 and the prior precision operator

A0 = ηoI + η(∂8x + ∂8y),

where x and y refer to the two coordinates describing the state space S = [0, 1]2 3
(x, y)T and η > 0, ηo > 0 are so-called hyperparameters that are chosen to more
carefully reflect prior beliefs on the drift.
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As in the univariate case, conditional on continuous time observations and dif-
fusivity, the posterior follows a Gaussian measure and the update equations con-
necting prior to posterior mean and precision are of the same form given in [7],
i.e. the posterior mean is given as the solution of∫

S

ϕ(v)Aξ̂(v)dv =
1

2

∫ T

0

ϕ(Vt)dVt ∀ϕ ∈ D(A),(1)

where the posterior precision is given by

A = A0 + γT ,

where, in turn, γT is the empirical measure of the process {Vt}Tt=0:∫ T

0

ϕ(Vt)dt =

∫
S

ϕ(v)dγT (v) ∀ϕ ∈ C(S).

Discretization is carried out via a truncated Fourier representation using pre-
conditioned conjugate gradient methods to solve the PDE (1) and to sample from
the posterior measure using the Krylov-based methods reviewed in [1]. The algo-
rithm is complemented by a Langevin-based sampling method for data augmenta-
tion and a Gibbs sampler. Finally, an application to animal movement modelling
is displayed briefly where position observations of a single Capuchin monkey are
obtained at not quite regularly spaced observation times. It is found that accept-
able model fit is obtained only upon sub-sampling of the data and the drift appears
non-conservative (i.e. it contains a rotational component) which precludes simpler
models present in the literature on animal movement ecology where the drift is
modelled as the gradient of a potential, e.g. [3].
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