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Abstract

This paper investigates the development of second (2nd) order effects, arising from geometric and

material non-linearities of T-stubs bolted to a rigid support, through a combination of experi-

mental, numerical and analytical approaches. Experimental data is presented for a broad range

of T-stub geometries, designed to ensure that significant 2nd order effects always develop, that

will complement the existing library of limited test results. Finite element models, incorporating

combined tensile (ductile) and shear damage initiation, evolution and failure in both the flange

and bolt, are also developed to elucidate how key geometric/material parameters influence the

resistance and ductility of T-stubs undergoing large displacement. It will be shown that the

restraining effect from the bolt is integral to the activation of catenary action in the flange and

the development of a second hardening branch in the tensile response, leading to identification

of two new modes of failure that are not currently considered in classical theory or by EC3 (Part

1.8). A mechanical model is formulated to identify the key geometric and material parameters

controlling the initiation, and development, of the second hardening branch. Finally, a criterion

is proposed to estimate the critical displacement from when 2nd order effects become active.
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1. Introduction

The robustness of Moment Resisting steel Frames (MRFs) is typically assessed by evaluating

the response of structural members, and their connections, to large rotations [1–6]. A structural

joint is one of the most vulnerable constituent of a MRF when subjected to exceptional loadings

– this has not been satisfactorily addressed in EC3 Part 1.8 [7]. When designing connections,5

spare deformation capacity would need to be built into the system to ensure smooth load trans-

mission between connecting beams and columns. This is especially pertinent when catenary

effects develop in the beams during which structural joints are subjected to significant axial

stretch in addition to rotations. The need to accommodate large global displacement induces

significant geometric and material non-linearities - giving rise to 2nd order effects that cannot10

be ignored when characterising the rotational capacity of bolted joints. The rotational capacity

of a beam-to-column joint is inextricably linked to the deformation capacity of its constituent

components, such as the end-plate, the bolts or the column web panel zone [8–14]. Mechanical

models already exist that could predict, to a reasonable degree of accuracy, the global response

of a structural joint using a component approach. However, they are contingent upon the ac-15

curate modelling/characterisation of the sources of stiffness, resistance and ductility in each

component[7]. While substantial progress had already been made to characterise the mechanical

response of the main joint components, most of these have focused on the modelling of the joint

response where their rotations are suitable only for the development of first-order plastic analyses

for frame design, such as those required for the design/check of MRFs in seismic zone. The influ-20

ence of 2nd order effects on the response of joint components undergoing large rotations [15–19]

is still not yet well understood. As part of a wider program to address the aforementioned, the

large displacement response of bolted T-stubs, one of the main components of a beam-to-column

joint, will be investigated in this paper.

25

Experiments are often performed on coupled T-stubs comprising of two T-elements bolted

together through their flanges. Piluso et al. [20] investigated the effects of material non-linearity

for T-stubs of m/db ≈ 3 and m/tf ≈ 3, where m is the distance between the plastic hinge located

at the web-to-flange attachment and the bolt line, and db and tf are the nominal bolt diameter

and flange thickness, respectively. A mechanical model [21] was developed that was shown30

to predict well the experimental load-displacement (F - ∆) response even though it neglects

geometric non-linearity. The influence of m, tf and db on the resistance and deformation of
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T-stubs connected by thread-fixed one-side bolts were studied by Liu et al. [22] and Zhang et al.

[23]. Similar experiments were also performed by Girão Coelho [24–26] and Dinu et al. [27]

although they were mainly for specimens with small m/db and m/tf values.35

The failure mode reported in the aforementioned typically involves a combination of tension

and bending of the bolts. As yet, there is limited experimental data, apart from one reported

by Latour and Rizzano [28], for T-stub dimensions of m/db ≥ 4 and m/tf ≥ 8. They reported

a second hardening branch (2HB) in the large displacement régime (∆ > 4tf ) - a consequence

of the development of axial (membrane) stresses in the flange - where geometric non-linearity40

becomes significant. The same test was also repeated for one connected to a rigid support during

which an even more pronounced hardening branch was observed to develop from a smaller global

displacement of ∆ > 2tf . A new failure mechanism was identified in the form of combined

membrane action in the flange and shear stresses in the bolts. Zhao et al. [29] also reported

on the development of a 2HB for their T-stubs (bolted to a rigid support ) of m/db = 5 and45

m/tf ∈ {7, 10, 15}. They found that the T-stubs failed as a result of membrane actions in the

flange since the bolt diameter (24 mm) was much greater than tf . Notwithstanding, it is unclear

from the tests reported by Latour and Rizzano [28] and Zhao et al. [29] how different geometric

combinations of m/db and m/tf influence the mode of failure. Even though, collectively, the

aforementioned provided some insights into the effects of material and geometric nonlinearities50

on the global response of T-stubs, little is yet known of how the dimensions of a T-stub affect

the development of 2nd order effects [28, 29]. In addition, no mechanical model currently exists

that could account for the influence of geometric non-linearity [20, 24, 27].

In this paper, we will examine how different T-stub (bolted to a rigid support) dimensions

influence the development of 2nd order effects (in their F-∆ response) through a combination55

of experimental, numerical and analytical approaches. T-stub geometries are carefully selected

to ensure that second order effects always develop and is significant throughout. Different com-

binations of m/db and m/tf are investigated to extend the range of the experimental studies

highlighted previously. The effects of shear and membrane forces in the bolts and flange, respec-

tively, are investigated and digital image correlation (DIC) will be employed to map the strain60

field evolution in the flange - the latter is used to validate the FE predictions. Finite element

models, incorporating damage initiation and evolution, and the eventual failure of both the flange

and bolt materials, are developed for the T-stubs. A simplified criterion is proposed to predict

the onset of 2nd order effects that originate from the contact between the bolt shaft and the bolt

hole. Despite its simplicity, it will be shown, through comparison with experimental data and65
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FE predictions, that the proposed criterion successfully identifies the key geometric and material

parameters that influence the development of a second hardening branch (2HB).

2. Methodology

In this study, finite-element (FE) simulations and experiments were performed to elucidate

how different T-stub geometries - conducted for T-stubs bolted to a rigid support - influence the70

development of 2nd order effects in their corresponding F-∆ response. Their geometric dimensions

were carefully chosen, in accordance to a preliminary study by Faralli et al. [30], to ensure that

significant second order effects develop in all cases. Special considerations were given to cover

the full range of the key geometric parameters to extend the results of existing experimental data

[20, 24, 27–29] - this is achieved by selecting different combinations of m/db and m/tf ratios.75

Each specimen is annotated as Mx-y-z where x, y and z denote the values of db, m/db and tf ,

respectively. Three plate thicknesses (viz.,10,15 and 20 mm) and three different bolt diameters

(M16, M18 and M20) were used; hence, the m/db ratio varies between a range of 3-5. Table 1

lists the geometric parameters of the T-stubs considered in this study. Based on the criterion

in EC3 Part 1.8 [7], the selected T-stubs will develop either a Type-1 (plate fracture) or Type-280

(plate fracture in combination with bolt failure in tension) failure mechanism.
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Fig. 1: (a) Nominal and (b) true plastic stress-strain curves for the S275 steel material, where tf is the plate

thickness.

2.1. Experiments

2.1.1. Material properties

Material characterisation of the S275 steel plates, used to construct the flange, is performed

using tensile coupon tests of different thickness. Figure 1 shows the results (nominal and true85

stress-strain curves) for the three plate thicknesses used in the experiments. The materials tested

showed a scatter in the necking strain - this is due to statistical variation of the mechanical

properties. The tensile F - ∆ response of the Grade 10.9 bolts are given in Fig 2a. All three

diameters, viz. M16, M18 and M20, showed a ductile tensile response with failure occurring at

nominal strains in excess of 6% – they failed by necking localisation of the bolt shank as shown in90

Fig 3a. A special test assembly was designed/manufactured to characterise the shear resistance

of the bolts and this was reported in Faralli et al. [31]; only their results are shown in Figs 2b

and 3b.

2.1.2. Tensile testing of bolted T-stubs

Tensile testing were performed under displacement control, at a rate of 0.05 mm/s, using95

a Shenck Hydropuls Universal Testing machine (Load Capacity +/- 600 kN, Stroke 250 mm),

where the overall deformation is monitored through the machine load cell and displacement

transducer. An axial load is applied to the web, which was clamped to the testing machine, as

shown in Fig 4(a).

Digital image correlation (DIC), see Fig 4b, was also employed for the full-field strain mapping
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Fig. 2: Tensile and shear tests for three different bolt diameters.

(a) Tensile failure (b) Shear failure

Fig. 3: The deformed bolts at failure.
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in the plane of the specimen thickness. A correlation function C was used to locate a reference

(a) Setup for tensile testing (b) Setup for the full-field strain mapping using

DIC

Fig. 4: Experimental setup for the monotonic tensile testing of the T-stubs.

subset of pixels, given by

C(x, y, u, v) =

n/2∑
i,j=−n/2

[I(x+ i, y + j)− I∗(x+ u+ i, y + v + j)]2 , (1)

where (x, y) and (u, v) are the original coordinates and the displacement of the pixel, respectively;100

n is the size of the subset; I and I∗ are the light intensities distribution reflected by the pixel

before and after the deformation, respectively, and they correspond to a grade between 0 (no light

intensity) and 255 (maximum light intensity). When the displacements u and v were obtained,

the Green-Lagrangian strains are calculated as follows:

εx =
1

2

[
2
∂u

∂x
+

(
∂u

∂x

)2

+

(
∂v

∂x

)2]
(2)

εy =
1

2

[
2
∂v

∂y
+

(
∂u

∂y

)2

+

(
∂v

∂y

)2]
, (3)

where εx and εy are the in-plane principal strains. They are to be used later for comparison105

against finite element (FE) model predictions.

2.1.3. Experimental results

Figure 6 shows the experimental F - ∆ curves of the T-stub specimens and, as expected, they

all failed in either a Type-1 or -2 failure mechanism. In every case, there is a significant influ-

ence by the bolts on the development of a second hardening branch (2HB). A 2HB – typically110
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(a) M16-3-10 (b) M16-5-10 (c) M16-5-15 (d) M18-4-10

(e) M18-4-15 (f) M18-5-10 (g) M18-5-15 (h) M20-3-10

(i) M20-4-15 (j) M20-5-10 (k) M20-5-15 (l) M20-5-20 (m) M20-4-20

(a) M16-3-10 (b) M16-5-10 (c) M16-5-15 (d) M18-4-10

(e) M18-4-15 (f) M18-5-10 (g) M18-5-15 (h) M20-3-10

(i) M20-4-15 (j) M20-5-10 (k) M20-5-15 (l) M20-5-20 (m) M20-4-20

Fig. 5: Post-test (failed) specimens - see Table 2 for the classification of their failure mode.

observed for displacements between 15 mm to 30 mm – develops whenever the bolt shank comes

into contact with the side wall of their respective bolt hole in the flange plate, leading to an

abrupt rise in the overall T-stub stiffness. This increase in stiffness arises from the development

of catenary action in the flange plate, activated through the restraining action from the bolts.

During the second hardening branch of the F - ∆ curve, the bolt shank is subjected to significant115

shearing forces (in addition to bending and tension), caused by the relative horizontal displace-

ment between the flange and the underlying rigid plate. Whenever a 2HB develops in a F–∆

curve, failure occurs through one of the following mechanism/mode: (I) Weld-toe failure (failure

of the flange plate at the flange-to-web attachment); (II) Necking of the bolt-hole (failure of the

flange plate at the bolt line); or (III) Bolt failure under the combined actions of shear, tension120

and bending. Figure 5 shows the post-test specimens and they are categorised according to the

aforementioned failure modes in Table 2. Note that Modes II and III are not currently consid-

ered in EC3 (Part 1.8), which was developed within the constitutive framework of limit analysis

(rigid-plastic materials) where shear force in the bolts is neglected. It must be emphasised that

the bolts are subjected to bending, shear and tensile forces; consequently, their failure is due to125

these combined actions.

Figure 6 reveals that nearly all the test specimens develop a distinct second hardening branch

(2HB) when ∆ ≥ 15 mm. This confirms that the study by Faralli et al. [30] correctly provides the

9



Weld toe failure (Mode I): M16-3-10 M18-3-10 M20-4-15 M20-4-20 M20-5-15

Necking of the bolt hole (Mode II) : M16-5-10 M18-5-10 M20-3-10 M20-5-10

Bolt failure (Mode III): M16-5-15 M18-4-15 M18-5-15 M20-5-20

Table 2: Failure mode classification for the test specimens.

T-stubs sizing needed by them to develop a 2HB. Only the M20-4-20 specimen exhibits a slightly

different trend – it resembles those obtained in previous studies where geometric non-linearities130

were disregarded [21, 24, 27] – which can be attributed to a combination of the thick flange and

a small m/db ratio.

In the main, the F - ∆ response of a T-stub is influenced by two non-dimensional geometric

parameters, viz. m/db and m/tf . Specimens with high m/db and m/tf tend to exhibit a distinct

2HB (see, for example, M20-5-10) and have greater ductility: they are characterised by ultimate135

displacement of ∆u ≥ 5tf , with the M20-5-15 specimen reaching ∆u = 7tf ≈ 110mm. Their

ultimate displacement appears unaffected by a decrease in m/tf so long as m/db ≥ 4; however,

the transition to a 2HB is somewhat less discernible, as exemplified by the M16-5-15 and M20-

5-20 specimens. A further decrease in m/tf , along with a decrease in m/db, leads to a F - ∆

response which is broadly similar to those reported in [20, 24, 27] with a significantly reduced140

ductility; ∆u = 2tf of the M20-4-20 specimen was the lowest recorded in this study. An exception

to the above is the M18-4-15 specimen which appeared to develop a well-defined 2HB. Unlike

T-stubs with small m/db and m/tf values (viz. M16-3-10, M18-3-10, M20-4-15 and M20-4-20)

where failure is a consequence of the membrane action that develops in the flange, the M18-4-15

specimen failed by fracture of its bolts through the combined action of tension and shear as145

shown in Fig. 5e. As noted by Latour and Rizzano [28], the development of shear stresses in

the bolts should also be considered as a form of geometric non-linearity. Therefore, bolt fracture

(as shown in Fig 7a) should be regarded as another mode of failure. Specimens that fail due to

shearing action in the bolts are generally characterised by m/db ≥5 and m/tf = 5. By contrast,

T-stubs with small m/db and m/tf usually fail by through-thickness fracture at the weld toe150

(Fig 7b). This is consistent with Zhao et al. [29] where specimens with smaller m/tf value were

observed to fail at the weld toe. Increasing m/tf leads to net-section plastic collapse as shown

in Fig 7c: this involves necking of the flange at the bolt line, giving rise to a more ductile overall

response compared to the one at the weld toe.
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In general, increasing the plate thickness or the bolt diameter, or their combination thereof,155

would lead to increased overall tensile resistance of a T-stub. Its ductility supply, however, can

only be extended by increasing m/db (Fig 6). The development of a 2HB in all the T-stubs

(as listed in Table 2) always involved the participation of the bolt in shear. This leads to an

ultimate resistance that is far beyond the expected value predicted by EC3 (Part 1.8) because

geometric non-linearity is not considered. It is worth re-emphasising that geometric nonlinearity160

gives rise to a load resisting mechanism which is completely different from that considered by

existing Eurocodes.

2.2. Finite element modelling

Three-dimensional FE models are developed for the T-stub specimens subjected to quasi-

static tension using ABAQUS/Standard V6.13. C3D8R elements were used for the mesh and165

only a quarter of the T-stub is modelled owing to symmetry, see Fig 8. The threaded region of

each bolt is modelled as a cylinder with a cross-sectional area equivalent to the tensile stress area

of As, whereas the nominal cross-sectional area is used for its unthreaded counterpart. Given

the similarities between the true stress-strain curves (see Fig 1b) obtained for different tf , the

data corresponding to tf = 15mm is used in the FE model since it is representative of all the170

specimens that were tested. The true stress-strain curve for the Grade 10.9 bolts that was used in

the FE models are shown in Fig 9. The damage responses of both flange and bolt were modelled,

and calibrated, following Faralli et al. [31]; details of their damage initiation and evolution are

listed in Tables 3 to 5.

2.2.1. Comparison between experimental and numerical results175

Figure 6 shows good agreement between FE predictions and their experimental counterpart.

In nearly all cases, the FE model accurately predicts the key response parameters, viz. stiffness,

plastic and ultimate strength and ductility of the T-stubs. Notwithstanding, discrepancies exist.

For instance, a loss of resistance is observed in the M20-3-10 specimen (see Fig 6c). This is

caused by self-adjustment of the bolt within the bolt-hole during the experiment, which is not180

captured by the FE model, and this explains the higher predicted resistance. In some instances,

the deformation of the rigid support has affected the response of the T-stub, leading to a slight

overestimation of the ultimate displacement, such as for the M20-5-10 specimen as shown in

Fig 6d.

In general, the FE model is able to predict the characteristic shape of the experimental F - ∆185

response for a broad range of T-stub dimensions. Figures 10 and 11 compare the normal strain
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Fig. 6: Comparison between experimental (solid) and numerical (dotted) F-∆ curves.
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Fig. 7: Comparison between FE predictions and observed failure modes: (a) failure of bolt under shear (Specimen

M18-4-15); (b) fracture of the flange at the weld-toe (Specimen M18-3-10); (c) fracture of the flange at the bolt

line (Specimen M18-5-10). Arrows indicate deleted elements in the FE model and SDEG represents the scalar

stiffness degradation variable.

5

Fig. 8: Three-dimensional FE model of a T-stub specimen. The imposed displacement boundary conditions are

as shown.
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Table 3: Damage initiation criteria for the S275 steel and 10.9 bolt grade.

S275 M16 M18 M20

θ εpl0 εpl0 εpl0 εpl0

0.15 0.304 0.046 0.039 0.029

0.23 0.272 0.041 0.035 0.026

0.33 0.232 0.035 0.03 0.022

0.67 0.139 0.021 0.018 0.013

1 0.085 0.013 0.011 0.008

1.33 0.052 0.008 0.007 0.005

1.67 0.031 0.0047 0.004 0.003

2 0.019 0.0029 0.0024 0.0018

Table 4: Shear damage initiation for the 10.9 bolt grade.

M16 M18 M20

τs ε̄pls τs ε̄pls τs ε̄pls

1.732 0.08 1.732 0.065 1.0732 0.035

field (εx) predicted by FE to those measured using DIC for the M18-5-10 and M18-3-10 specimens,

in the plane of the flange thickness. The results correspond to two instances at ∆ = 2tp (Figs 10a

14



Table 5: Damage evolution for the S275 steel and 10.9 bolt grade.

S275 M16 M18 M20

Di upli Di upli Di upli Di upli

0 0 0 0 0 0 0 0

0.003 0.3 0.05 1.0 0.05 0.67 0.2 1.32

0.034 0.403 1 1.1 1.0 0.69 1.0 1.34

0.077 0.496

0.140 0.623

0.235 0.786

0.324 0.913

1.0 1.427

and 11a), and at F = Fmax (Figs 10b and 11b). ∆ = 2tp was chosen because it corresponds to

the start of the second hardening branch. When ∆ = 2tp, plastic hinges are visible at both the190

weld-toe and bolt line. This implies that, up until this point, the flange behaves as predicted by

EC3 for Mode 1 failure and εx ≈ 0 between the plastic hinges. With increasing ∆ (i.e. ∆ > 2tp),

the axial tensile strain along the flange increases rapidly due to catenary effects. At F = Fmax,

plastic hinges develop at weld toe in both T-stubs. Note also that the level of axial straining

in the flange close to the bolt is higher in the M18-5-10 compared to the M18-3-10 specimen.195

Specimen M18-5-10 eventually failed by net section collapse as seen in Fig 5f; whereas, failure is

caused by fracture at the weld-toe in the M18-3-10 specimen(see Fig 5d). The differences in the

extent of straining at the weld-toe can be attributed to the presence of the heat affected zone -

this is not modelled by FE.

3. Analytical model200

Here, an analytical model is developed to introduce 2nd order effects into the tensile response

of a T-stub bolted to a rigid support - this is a good approximation of the behaviour of bolted

beam-to-column joints where the end-plate is connected to a stiffened column. The aim is not

to provide a detailed (nor accurate) prediction of the resistance of a T-stub at ultimate failure;

rather, to identify those key geometric and material parameters that controls the development of205

a 2HB. The mechanical model is identical to the classical T-stub theory, currently in use by EC3

15
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(Part 1.8), but it will be modified to incorporate the contact between the bolt shaft and bolt-hole,

this was previously identified to trigger the development of 2nd order effects. A criterion will

be proposed to estimate the critical displacement (∆lim) from where 2nd order effects become

active.210

3.1. Formulation

The model assumes a collapse mechanism typical of a Mode 1 deformation, viz. flange failure

through the development of four plastic hinges. A schematic of the kinematic collapse mechanism,

and the geometric parameters, is given in Fig 12. The problem is treated as vertically-symmetric,

using a Cartesian (x,y) coordinate system as shown in Fig 12a. Note that n and m are defined215

as in EC3 [7]; θ is the total rotation of the plastic hinges (denoted by black dots in Fig 12a

and b); and, ∆ is the global displacement of the T-stub. Both the flange and bolt are assumed

to be made of rigid-perfectly plastic material; hence, M , B and V (see Fig 12) are the plastic

bending moment of the flange, the plastic tensile strength and plastic shear resistance of the

bolt, respectively. In order to obtain a closed form solution, the model ignores the shear-tension220

interactions in the bolt even though this is likely to be significant. Instead, it will focus on

predicting the trend of the F - ∆ response after bolt-hole contact is established so that key

geometric and material parameters, controlling the development of 2nd order effects, can be

identified.
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Fig. 12: Plastic collapse mechanism of the T-stub.

Given the mechanism in Fig 12, the equilibrium equations can be expressed as follows:225
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F ′′

2
+Q = qdw (4a)

µQ+ Vpl = N (4b)

qd2w
8

+Mpl = Qn (4c)

Mpl + Vpl∆ + µQ∆ = qdwm
∗ −Q(n+m∗). (4d)

Equations 4a and 4b consider vertical and horizontal equilibrium, whereas Eqs 4c and 4d con-

siders the equilibrium of rotation about the bolt axis and the plastic hinge located at the weld,

respectively. Note that the resistance of the bolt (qdw) is treated as a uniformly distributed load

along the head of the bolt - this is similar to assumptions made in Method 2 of EC3 [7]. When

a T-stub is bolted to a rigid flange, as in this study, the bolt axis is initially positioned along230

the centreline of the bolt hole, and the hole is pulled towards the bolt by the deformation of the

flange and contact is established between bolt and bolt-hole.

From a kinematic perspective, there is no shear force acting in the bolt since the bolt and

hole are not initially in contact due to the bolt-hole clearance. Consequently, friction is the

only horizontal force and Eqs 4 can be re-written by setting Vpl = 0. Because of compatibility,235

the vertical displacement ∆ and the T-stub deformation would trigger a horizontal translation

of the plate δh = m(1 − cos θ), see Fig 12. When δh = δg (the bolt-hole gap), and assuming

a rigid-plastic response of the plate and bolt materials, one may set Vpl = αfubAs (this is the

plastic shear resistance of the bolt as described in EC3 [7]) and N becomes equal to µQ + Vpl.

Therefore, considering equilibrium of the internal and external virtual work done for the plastic240

collapse mechanism, in Fig 12, gives

2Mplθ + q
d2w
8

tan θ + µQδh + Vplδb =
F ′′

2
∆ . (5)

The horizontal translation of the bolt δb can be expressed as δb = δh − δg = m(cos θ∗ − cos θ),

where θ∗ is the rotation of the plastic hinge after contact is established between the bolt and

hole. The T-stub displacement can be written as ∆ = m sin θ. Substituting for δb, ∆ and δh into

Eq 5 gives245

2Mplθ +
qd2w

8
tan θ + µQm(1− cos θ) + Vplm(cos θ∗ − cos θ) =

F ′′

2
m sin θ . (6)

Substituting qd2w/8 from Eq 4c into Eq 6 gives

19



F ′′

2
m sin θ = 2Mplθ + µQm(1− cos θ) + Vplm(cos θ∗ − cos θ) +

F ′′

16
dw tan θ +

Qdw
8

tan θ , (7)

which can be expressed as

F ′′ =
4Mpl

m
f1(θ) + 2Vplf2(θ) + 2Qf3(θ) , (8)

where

f1(θ) =
θ

sin θ − dw

8m tan θ
(9a)

f2(θ) =
cos θ∗ − cos θ

sin θ − dw

8m tan θ
, forθ ≥ θ∗ and f2(θ) = 0 , for θ < θ∗ (9b)

f3(θ) =
µ(1− cos θ) + dw

8m tan θ

sin θ − dw

8m tan θ
. (9c)

An expression for Q can be obtained by extracting qdw from Eq 4c, then substituting this

into Eq 4d to give

Mpl + Vpl∆ + µQ∆ =
8Qnm∗

dw
− 8Mplm

∗

dw
−Q(m∗ + n) . (10)

Recall that ∆ = m sin θ and m∗ = m cos θ, the prying force can now be evaluated as follows:

Q =
Mpl(8m cos θ + dw) + Vplmdw sin θ

8m cos θn− (m cos θ + n)dw − µmdw sin θ
. (11)

It is worth noting that, if one ignores the influence of both the bolt head (dw = 0) and friction

(µ = 0), Eqs 8 and 11 become

Q =
8Mplm

8nm
(12)

and

F ′′ =
4Mpl

m
f1(θ) + 2Vplf2(θ) = F ′f1(θ) + 2Vplf2(θ) , (13)

where 4Mpl/m = F ′ (Mpl = bt2/4fy [7]) and

f1(θ) =
θ

sin θ
, (14)

and

f2(θ) =
cos θ∗ − cos θ

sin θ
, for θ ≥ θ∗ (15a)

f2(θ) = 0 , for θ < θ∗ , (15b)
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while f3(θ) = 0. Additionally, if we assume small displacements (so that V ≈ 0, δh ≈ 0,250

sin θ ≈ θ, cos θ ≈ 1), f1(θ) = 0 and f2(θ) = 0; and, Eq 13 simplifies to the one given by EC3 [7],

i.e. F ′′ = F ′.

Using Eq 13, it is now possible to obtain a closed-form solution to evaluate the critical

displacement ∆lim beyond which 2nd order effects cannot be neglected. Re-arranging Eq 13, one

obtains

k =
F ′′

F ′
= f1(θ) +

Vplm

2Mpl
f2(θ) , (16)

which is measure of the increased resistance due to the shear in the bolt and the development of

geometrical non-linearities. From the above equation, together with a fixed threshold for k, it is

possible to define the displacement corresponding to the increased resistance. Equation 16 can

be simplified by expanding (using Taylor series) f1(θ) and f2(θ) to include their 2nd order term.

One obtains

f1(θ) = 1 (17)

and

f2(θ) =
cos θ∗ − 1

θ
+
θ

2
. (18)

The rotation θ∗ can be evaluated as

θ∗ = arccos
(

1− δg
m

)
. (19)

Substituting Eqs 19, 17 and 18 into Eq. 16, gives

k − 1 = −Vplm
2Mpl

δg
mθ

+
Vplm

4Mpl
θ . (20)

We can now calculate θ to give255

θ =
2Mpl

Vplm
(k − 1) +

√√√√(2Mpl(k − 1)

Vplm

)2

+
2δg
m

. (21)

For ∆ ∼= mθ (this corresponds to evaluating ∆ at ≈ 5% for θ = 30◦ and ≈ 10% for θ = 45◦), it is

possible to derive a simple criterion to calculate the critical displacement ∆lim at which F ′′/F ′ =

k for a given T-stub dimensions. This critical displacement corresponds to the displacement from

where 2nd order effects should not be neglected and is given by

∆lim =
2Mpl(k − 1)

Vpl
+

√√√√(2Mpl(k − 1)

Vpl

)2

+ 2δgm . (22)
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3.2. Results and discussions260

Model prediction of the F- ∆ response is obtained using Eqs 8, 9 and 11. The results are

compared to their FE counterpart in Figs 13 and 14. The former shows the FE predictions if

both the flange and bolt were rigid, perfectly-plastic; the latter for the calibrated material model

described in Section 2.2). The critical displacement ∆lim corresponding to the development of

2nd order effects (in other words, at F ′′/F ′ = k = 1.1) is given by Eq 22 and this is indicated by265

a solid dot in the corresponding figures. Despite its simplicity, the mechanical model provides a

good estimate of the critical displacement ∆lim - this is evident in Table 6. As to be expected,

prediction by the mechanical model is somewhat conservative in most cases. From a practical

perspective, ∆lim identifies the range of validity of the prediction by classical theory where the

restraining action of the bolts in shear, originating only at large displacements, is neglected.270

The mechanical model is also able to predict the plastic resistance of the T-stubs to a good

level of accuracy. The corresponding resistance predicted by EC3 [7] (in red dotted line) is plotted

in the same figures for comparison. There is only one case (viz. M18-3-10 in Figs 13b and 14b)

where the mechanical model under predicts the plastic resistance. This is due to the combination

of thin flange plates and relatively large bolt diameter which renders approximate the measure275

of the parameter m (defined as the distance between the plastic hinge located at the weld toe

and the bolt axis). In some cases, say, for example, M18-3-10, the measure for m is conservative

because, in reality, due to the constraining effect provided by the bolt head, the physical position

of the plastic hinge at the bolt line shifts from the bolt axis to the bolt head tip (see Fig 11).

Overall, the mechanical model provides a satisfactory prediction of the 2HB (Fig 13). However,280

deviations occur at very large displacements. This is because the mechanical model neglects the

shear-tension interaction in the bolts that provides a final softening branch to failure. In Fig 14,

the difference between the FE and mechanical model is due mainly to material strain-hardening;

this difference reduces drastically if the materials are modelled as rigid-perfectly plastic (Fig 13).

285
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Model ∆FEM
lim ∆Mech

lim

M16-3-10 10.11 9.88

M16-5-10 13.39 14.03

M16-5-15 15.01 12.98

M18-3-10 11.97 11.01

M18-5-10 12.89 12.24

M18-4-15 13.23 12.06

M18-5-15 16.36 12.86

M20-3-10 12.05 11.62

M20-5-10 14.86 14.25

M20-4-15 16.82 13.37

M20-5-15 16.81 17.89

M20-4-20 18.58 14.70

M20-5-20 16.55 16.58

Table 6: Critical displacements predicted by FE (∆FEM
lim ) with material strain-hardening and by the simplified

rigid, perfectly-plastic mechanical model (∆Mech
lim ).
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Fig. 13: Predicted F- ∆ response by FE model (assuming rigid, perfectly-plastic flange and bolt materials) and the

mechanical model. Black and red dots indicate the critical displacement ∆lim predicted by FE and the mechanical

model, respectively.
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Fig. 14: Predicted F- ∆ response by FE model (using calibrated material properties described in Section 2.2)

and the mechanical model. Black and red dots indicate the critical displacement ∆lim predicted by FE and the

mechanical model, respectively.



4. Conclusions

The constraining effect provided by the bolt in shear was shown to trigger the development

of axial forces in the flange plate, giving rise to failure modes that are not previously captured

by classical theory, or by FE models that neglect geometric nonlinearity. Through a combined

experimental and numerical approach, two further modes of failure (bolt failure under combined290

tensile, shear forces and bending moment; necking at the bolt-hole) were identified in this work.

Finite element models (incorporating both tensile and shear damage in the flange and bolts)

were created and they were shown to predict well the key parameters (stiffness, ductility, plastic

and ultimate strength) of a T-stub response. A mechanical model was also developed that

successfully identifies the key geometric and material parameters governing the transition to a295

second hardening branch. The corresponding critical displacement was derived and its prediction,

although conservative, was shown to be reasonably accurate.
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