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Unprecedented public health interventions including travel restrictions and national

lockdowns have been implemented to stem the COVID-19 epidemic, but the effectiveness of

non-pharmaceutical interventions is still debated. We carried out a phylogenetic analysis of

more than 29,000 publicly available whole genome SARS-CoV-2 sequences from 57

locations to estimate the time that the epidemic originated in different places. These esti-

mates were examined in relation to the dates of the most stringent interventions in each

location as well as to the number of cumulative COVID-19 deaths and phylodynamic

estimates of epidemic size. Here we report that the time elapsed between epidemic origin

and maximum intervention is associated with different measures of epidemic severity and

explains 11% of the variance in reported deaths one month after the most stringent

intervention. Locations where strong non-pharmaceutical interventions were implemented

earlier experienced much less severe COVID-19 morbidity and mortality during the period

of study.
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To prevent the spread of the SARS-CoV-2 virus, countries
have implemented unprecedented measures ranging from
school closures and travel bans to large-scale lockdowns1.

Because of the immense economic and social consequences of
such interventions, the utility of travel restrictions and lockdowns
have been questioned by the public and media. Mathematical
models can help determine whether these non-pharmaceutical
interventions (NPI) have been effective in reducing transmission.
Previous investigations based on mathematical models have
shown that travel restrictions in Wuhan delayed arrival of the
virus into other Chinese cities by around 3 days, and early
implementation of control measures was associated with lower
incidence2. Similarly in Germany, changes in epidemic growth
rates are correlated with the timing of interventions3. In order to
assess the impacts of NPIs across European countries, Flaxman
et al. estimated the rate of epidemic growth over time from
reported COVID-19 deaths and pooled information across
European countries4. The impact of NPIs was significant across
all countries, reducing the reproduction number below 1, and
reducing the number of deaths compared to a scenario with no
intervention. Differences in case reporting complicate interna-
tional comparisons, but as the scale of epidemics during the first
wave varied so drastically across countries, such comparisons are
essential. Dye et al.5 found that the 100-fold difference in
cumulative COVID-19 deaths across European countries was not
attributable to lower rates of transmission and epidemic growth,
but rather due to differences in dates of national lockdown.

International comparisons are more complex due to greater
variability in epidemiological surveillance and epidemic growth
rates. Furthermore, while sustained transmission took place
across most of Europe from around mid-February6, global
comparisons are complicated by the fact that the virus was
introduced in different places at very different times. Epidemio-
logical models are typically fitted using data on reported infec-
tions, deaths, and seroprevalence surveys. These provide
estimates of the basic reproduction number, R0, the average
number of onward transmissions per case in a susceptible
population; and the time-varying effective reproduction number,
Rt. However, because a high proportion of SARS-CoV-2 infec-
tions are not detected and seroprevalence surveys have only
recently been carried out, parameterising models for epidemics in
February through April when large-scale NPIs were enforced is
not straightforward. Critically, it is usually not understood how
long SARS-CoV-2 circulated in populations prior to detection,
which is essential information for comparing timing of NPIs
between locations.

Viral genetic data provide an alternative source of information
for understanding when epidemics originated and how quickly
they grew during the first wave. Analysis of SARS-CoV-2 genetic
sequences can help distinguish between imported and local
transmission; and inclusion of sample dates allows for further
time-resolution of epidemic dynamics, yielding dates of viral
introduction into specific regions. Phylodynamic analysis uses
genetic data to parametrise epidemiological models, for example
estimating Rt directly from viral sequences7. Analyses of viral
sequences have demonstrated that transmission of SARS-CoV-2
went undetected within the USA from mid-January8–11 and many
epidemics were seeded between states rather than as a result of
international travel. In contrast in Guangdong, China, the
majority of new diagnoses appeared to be imports, demonstrating
the effectiveness of surveillance and interventions in interrupting
community transmission12.

In the present analysis, we reconstruct the epidemic trajectories
of SARS-CoV-2 outbreaks for locations across the world for
which genetic data were available, to evaluate the scale of
epidemics. We estimate the time of viral introduction into each

region and calculate time to lockdown for each region. We then
determine whether reported and estimated epidemic sizes relate
to the duration of times to lockdown.

Results
Time of viral introductions. We identified 57 locations (24 in
Europe, 20 in North America, 5 in the Middle East, 6 in Asia, 1 in
South America and 1 in Africa) meeting inclusion criteria where
dates of public health interventions could be obtained and where
publicly available SARS-CoV-2 sequences enabled phylodynamic
analysis using non-parametric methods (Fig. 1). For each site, we
extracted dates of the first and the most stringent NPI (maximum
NPI, usually lockdown) from the Oxford COVID-19 Government
Response Tracker1; as well as case and death counts and census
population sizes for each location (Supplementary Table 1 and
Supplementary Fig 1). In total, 29,163 SARS-CoV-2 sequences
were analysed, in regional datasets ranging from 23 sequences
(Innsbruck, Austria) to 677 sequences (Denmark; Supplementary
Fig 2). Sample dates ranged from 2020-01-08 to 2020-05-30.

For each region, we estimated the timing of viral introductions
through time-resolved phylogenetic analysis and parsimony
reconstruction. Epidemic seeding was a continuous process with
all regions showing evidence for more than one epidemic origin
(Fig. 2). The earliest seeding (lineage importation) events among
the 57 sites took place in January and in most locations seeding
continued with a maximum frequency occurring in March before
maximum NPI and travel restrictions were implemented in most
locations. As a phylogenetic estimate of the time of viral
introduction, we use the central epidemic seeding time (CEST),
the mean time of viral introductions weighted by the number of
samples descended from each viral introduction. Sensitivity
analyses utilising other definitions of viral introduction are
presented in Supplementary Information. Time delay from viral
introduction (CEST) to maximum NPI for each location varied
from −4 days (meaning the NPI took place 4 days before CEST)
to 2 months (Fig. 3 and Supplementary Fig 3).

Association between time to non-pharmaceutical interventions
and epidemic severity. We constructed a series of regression
models with time from CEST to maximum NPI (in days) as
predictor variable and a measure of the scale of the epidemic
(deaths one month after the NPI) as the outcome. As estimated
and extracted variables contained some level of uncertainty, we
used Deming regression models, which account for measurement
error in both predictor and outcome variables and allow for
weighting of observations based on the precision of their
estimates13–15; as well as linear regression models, which allow for
inclusion of multiple predictors. Among the 57 sites, CEST to
maximum NPI was significantly associated with the number of
deaths reported at each site 1 month following the time of max-
imum NPI (Fig. 4, Supplementary Data 1 and Supplementary
Table 1). Time from CEST to maximum NPI was predictive of the
number of deaths 1 month later in the Deming regression
(p= 0.0031; Supplementary Fig 5) and in the univariate linear
model (R2= 0.11, p= 0.011). An additional 14 days of transmis-
sion before maximum NPI was associated with a 2.91-fold (95%
CI: 1.35–6.27) increase in deaths 1 month after maximum NPI in
the Deming model and a 2.00-fold (95%CI: 1.19-3.32) increase in
the univariate regression. Meanwhile, time from the tenth repor-
ted case was not significant in either model (p= 0.55 and p= 0.8,
respectively). Census population size of each location was not
significant in a univariate model predicting deaths (p= 0.08).

Association between time to non-pharmaceutical interventions
and viral effective population size. For each region (n= 57), we
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applied a skygrowth model16,17 (version 0.3.1) to estimate viral
effective population size through time and growth rates of
effective population size. Under appropriate conditions, effective
population size can be used as a proxy statistic for epidemic
prevalence7. Viral effective population size at maximum NPI was
similarly associated with time to maximum NPI in the Deming

(p < 0.0001; Fig. 3, Supplementary Fig 5) and the univariate
regression (R2= 0.32, p < 0.0001; Fig. 4, Supplementary Table 1).
An additional 14 days of transmission before maximum NPI was
associated with a 2.18-fold (95% CI: 1.52–3.13) increase in
effective population size at time of maximum NPI in the Deming
model and 2.08-fold (95% CI: 1.54–2.83) increase in a univariate

Jan

Feb

Mar

Apr

May

Jun

Chin
a

Por
tu

ga
l

Unit
ed

King
do

m

Switz
er

lan
d

M
as

sa
ch

us
et

ts

M
ich

iga
n

Sing
ap

or
e

W
isc

on
sin

Den
m

ar
k

W
as

hin
gt

on
Spa

in

Lu
xe

m
bo

ur
g

Illi
no

is

Swed
en

Tha
ila

nd

Fra
nc

e

Flor
ida

M
inn

es
ot

a

Cali
for

nia

New
 Yo

rk
In

dia
Te

xa
s

Ta
iw

an

Con
ne

cti
cu

t

Dem
oc

ra
tic

Rep
ub

lic
of

Con
go Ita

ly

Lo
uis

ian
a

Ger
m

an
y

Net
he

rla
nd

s

Sau
diA

ra
bia

Colo
m

bia

Virg
ini

a
Uta

h

Belg
ium

Rus
sia

nF
ed

er
at

ion

Aus
tri

a
Isr

ae
l

D
at

e

Region

Africa

Asia

Europe

MiddleEast

NorthAmerica

SouthAmerica

Fig. 2 Distribution of phylogenetically inferred times of importation events for the 57 sites included in our analysis, also referred to as seeding time.
Ancestral states are reconstructed onto the phylogeny as exogenous or within the region of interest. The midpoint between an ancestral node which is
exogenous to the region of interest and a node which is within the region of interest is the time of importation. Local epidemics can be seeded by many
importation events. Central box-plot lines represent the central epidemic seeding time (CEST). Note that the CEST does not represent the earliest viral
introduction but rather the mean time of viral introduction weighted by the number of samples descended from each viral introduction. Boxes represent
the interquartile range of the distribution and whiskers indicate the 25th and 75th percentiles of the distributions, derived from n= 2500 data points
(100 time-resolved phylogenies for each location, with ancestral states reconstructed 25 times on each). Ranges reflect the distribution of importation
dates, rather than uncertainty around an estimate of seeding times. Sites from the same country or US state are grouped together and sites are ordered
based on the first CEST for that country or US state. Width serves only to compress multiple sites from the same country or US state.
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seeding time, NPI: non-pharmaceutical intervention. GISAID database https://www.gisaid.org/.
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linear model. In a univariate model, census population size was
predictive of viral effective size (R2= 0.15, p= 0.0046). In a
multivariable model (R2= 0.38), time from CEST to maximum
NPI remained a significant predictor (p= 0.0005) but census
population size did not (p= 0.09). The number of deaths and
viral effective population size were highly correlated (Pearson’s
r= 0.58, p < 0.0001; Supplementary Fig 4). Note that the models
for estimating CEST and models for estimating viral effective
population size were fit to data independently (although run on
the same set of data) and therefore association between these
results is not due to a circularity in inference.

Epidemic parameters inferred through phylodynamic analysis.
Across all sites and using non-parametric methods, we estimated
the mean epidemic doubling time to be 3.68 days (IQR:
2.45–5.76). A subset of sites were analysed in BEAST2 v6.1 using
model-based phylodynamic methods18,19 to estimate the effective
reproductive number and the number of infections through time
(Supplementary Fig 6). Similar results were obtained among those
30 sites: epidemic doubling time was 3.47 days (IQR: 3.09–4.83,
see Supplementary Information). Estimates of R0 varied between
1.53 (in Makkah, Saudi Arabia) and 4.18 (in New Orleans,
Louisiana, USA; Supplementary Table 2; Supplementary Fig 4).

To corroborate inference of effective reproduction numbers
and epidemic size from genetic data, we examined the relation-
ship between inferred quantities and reported numbers of cases as
well as independent information about human mobility patterns
(see Supplementary Information). We found that changes in the
inferred reproduction number through time, Rt, corresponded
with changes in Google human mobility metrics for 29 of 30
locations where these data were available (Supplementary Table 2;
Supplementary Fig 7). Large reductions in human mobility
metrics consistently correspond with periods when Rt decreases.

Discussion
Among 57 geographical sites sampled across five continents, we
found that time from SARS-CoV-2 introduction to time of
lockdown (or maximum NPI in locations that never underwent a
full lockdown) was significantly associated with the severity of the
epidemic in each location during the first wave. This result is
consistent with analyses20 conducted thus far separately in
China2,21 and Europe3–5 and demonstrates the importance of
cryptic transmission before testing and interventions were
implemented in exacerbating epidemic severity. Notably, the time
between detection of the tenth case at each site and the maximum
NPI was not predictive of the number of deaths. This latter
finding indicates that many locations experienced long and
variable periods of cryptic transmission before epidemics were
detected8–11. Based on our numerical analysis, and acknowl-
edging highly variable outcomes across sites, implementing a
strong NPI such as national lockdown 2 weeks earlier would have
approximately halved cumulative deaths in the period immedi-
ately following lockdown, on average. The time from viral
introduction to the first NPI was also associated with severity (see
Supplementary Information).

A previous comparison across European countries found that
earlier lockdown dates were associated with fewer deaths, and that
countries with fewer COVID-19 deaths had fewer inhabitants5.

Singapore

Kinshasa, DRC

Michigan, USA

Telangana, India

Brooklyn, NYC, NY, USA

Sweden

Ile de France, France

Makkah, Saudi Arabia
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Tel Aviv District, Israel
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Event

Central epidemic seeding time (CEST)
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Maximum NPI

CEST 95% CI

Fig. 3 Dates of central epidemic seeding time (CEST), tenth case report
and maximum non-pharmaceutical interventions (NPI) for 14 of 57 sites
included in our analysis. Sites are ordered by the duration of time between
CEST and maximum NPI. Note that the CEST does not represent the
earliest viral introduction but rather the mean time of viral introduction
weighted by the number of samples descended from each viral
introduction; thus it can be preceded by the tenth diagnosis if early
diagnoses are not phylogenetically related to later infections (e.g.,
Singapore). CEST is shown with 95% confidence intervals (CI). 95% CI are
rounded to the nearest day and therefore do not always look symmetrically
distributed around CEST. We selected up to three sites from each world
region for which sites were available (Europe, North America, Middle East,
Asia, Africa) based on their having the highest death counts in the region.
Supplementary Fig 3 shows these dates for all 57 sites.

Fig. 4 Relationship between epidemic severity and viral effective population size, and the estimated time to maximum NPI. a Cumulative deaths within
a month following max NPI versus time to max NPI. a Viral effective population size (estimated at max NPI) versus time to max NPI. Colours are different
for each world region (see Supplementary Fig 4). The grey line indicates the linear regression line (mean fitted values) and 95% confidence interval. CEST
central epidemic seeding time, NPI non-pharmaceutical intervention.
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An association between population size and the number of deaths
could result from depletion of susceptibles, limiting onward
spread in places with smaller populations. However, serological
surveys and patterns of per-capita death do not support the
hypothesis that herd immunity has been reached anywhere in
Europe22. In our global analysis, census population size was pre-
dictive of the number of estimated infections, viral effective
population size and the number of deaths in univariate models.
But when controlling for the time from CEST to lockdown,
population size no longer had an effect, which is consistent with
the hypothesis that herd immunity has not substantially limited
transmission. The timing of viral introductions and all measures
of epidemic scale were inferred independently.

International comparisons of NPI effectiveness have been
complicated by widely varying testing strategies in different locales
and most epidemiological models are highly reliant on reported
COVID-19 diagnoses and deaths. Our ability to run analyses on
such a wide range of locations derives from the fact that our model
is parameterised entirely by genetic data. We have shown that this
approach produces accurate estimates of the numbers of infections
in simulations (Supplementary Information), and among the
study sites, we found that the number of estimated infections was
highly correlated with the numbers of COVID-19 diagnoses and
deaths. Nonetheless, we acknowledge the limitations of reported
death data: reliability will vary based on location, and we only
included a single time point because of difficulties in extracting
such data. Excess mortality figures may provide less biased esti-
mates, but have not been calculated at the level of resolution
required for our study23. Viral effective population size is not
always a quantity directly relatable to the number of infections7;
however, our analyses support the use of viral effective population
size at maximum NPI as a proxy for SARS-CoV-2 epidemic size at
that time. Where possible, we compared our estimates to those
modelled or measured elsewhere. Estimates of R0 and Rt were in
line with those previously reported for the same locations24–28 and
Rt decreased synchronously with reductions in human mobility, as
previously demonstrated for Rt estimates derived from traditional
epidemiological models29–31. Dates of introduction into Europe
aligned with previous reports demonstrating sustained transmis-
sion from mid-February6.

A limitation of our analysis is that the Bayesian MCMC for our
SEIJR phylodynamic model did not converge for all the locations.
Lack of convergence can occur because of problematic datasets, in
which samples may for example not be collected at random;
because the model is mis-specified; or because one of the model
assumptions is violated, for example, the population is not ran-
domly mixing. Where possible, we addressed these concerns by
excluding sites known to have prioritised sequencing from
travellers32,33 or contact tracing and by focusing on smaller geo-
graphical units, such as cities and small regions where within-
sample geographic structure is less biasing. Further optimisation
of some parameters, such as the parameter for transmission
overdispersion could have improved estimates, as has been
recently demonstrated by Miller et al.33, but we chose to keep this
parameter constant across sites to facilitate meta-analysis. Changes
in transmission rates close in time to the last sample are difficult to
detect using genetic data16 and in our SEIJR model, the number of
estimated daily infections tended not to decrease or stabilise,
despite external evidence that reported cases were levelling off.

The non-parametric phylodynamic analysis allowed us to
include sites for which data were available but the Bayesian
MCMC did not converge16,17, as well as to examine sensitivity of
results to choice of modelling framework. Results echoed those
from the compartmental phylodynamic model. Viral effective
population size at maximum NPI was associated with deaths
1 month after maximum NPI and with time to maximum NPI.

One limitation of the skygrowth phylodynamic model is that it
does not explicitly consider imports into the region of interest. As
sequences from the region are generally derived from multiple
distinct importation events the method may incorrectly estimate
viral effective population size for a region, especially early on.
However, as an epidemic expands in a region and more infections
are attributable to endogenous transmission, the approximations
in this method improve. Lineage imports were explicitly para-
meterised in the SEIJR model and results were consistent across
both methodologies.

In conclusion, we have shown that across five continents,
longer delays from viral introduction to lockdowns were asso-
ciated with more infections at lockdown and more deaths
1 month after lockdown. The association may be causal but an
observational study such as ours cannot draw that conclusion.
Our study focused on the first wave of the pandemic, however,
lifting of interventions and waning compliance have led to sub-
sequent waves of infection across many of the sites included. Our
models were calibrated entirely using genetic data and thus
provide an independent confirmation of mathematical models
calibrated to traditional data sources. These findings emphasise
the importance of NPI for decreasing epidemic severity, reinforce
previous findings that seroprevalence is below that needed for
herd immunity22 and highlight the risk for re-emergence and
continued transmission.

Methods
Genetic data preparation and selection of study sites. SARS-CoV-2 sequences
were downloaded from GISAID (http://gisaid.org)34 on June 7, 2020. Genetic data
were cleaned and prepared for time-resolved phylogenetic analysis in R v3.6.1
(Supplementary Information). The GISAID database classifies the geographical
origin of each sequence with four levels of resolution: world region, country,
division and location, We chose to focus our analysis on sites, regardless of scale,
with at least 100 sequences available (although some sites with fewer sequences
were analysed, see Fig. 1 and Supplementary Information for details). Thus a site,
as included in our analysis, could represent anything from a neighbourhood (e.g.,
Manhattan) to a country (e.g., Denmark), depending on the level of resolution of
geographical data available with sequences from that region. All sites analysed are
displayed in Supplementary Fig 2 and listed in Supplementary Data 1. GISAID IDs
for all sequences included in the final analyses are listed in Supplementary Data 2.
When data were available for sites located within each other (e.g., New Orleans in
Louisiana), the smaller geographic unit was preferentially selected to better match
the premise of the phylodynamic model (see Supplementary Information and
Discussion). Sites known to comprise many sequences from travellers or generated
as a result of contact tracing were excluded. Because our model assumes that
samples are taken at random from the population, we excluded duplicate sequences
from our analyses as a proxy for membership with the same transmission chain.
We investigated the effect of this choice through simulation (see
Supplementary Information).

Estimating the time of regional viral introductions. The timing of viral intro-
ductions was estimated through time-resolved phylogenetic analysis and parsi-
mony reconstruction. We included all sequences available for that region as well as
all close exogenous sequences (≤2 substitutions away) in a maximum likelihood
(ML) tree, built using IQtree35. Within the ML tree, we resolved polytomies at
random, and estimated rooted time-scaled phylogenies using treedater36, repeating
the procedure 100 times. The mean clock rate of evolution was constrained
between 0.00075 and 0.0015 substitutions per site per year37. Branch lengths were
smoothed by enforcing a minimum number of substitutions per site on each
branch and by sampling from the distribution estimated by treedater. Finally, we
reconstructed the ancestral state of nodes and dated and counted importation
events, repeating the procedure 25 times. The time of the importation event is
counted as the midpoint along the branch between the exogenous ancestral node
and the most recent common ancestor node within the region. We calculated the
weighted mean from the distribution of viral introduction times and call it the
CEST. All functions are available and documented within the sarscov2 R package
(https://github.com/emvolz-phylodynamics/sarscov2Rutils). Compared to more
sophisticated phylogeographic models implemented in BEAST38, our method has
the advantage of greater computational scalability, while still integrating over
phylogenetic uncertainty.

Non-parametric phylodynamic inference. For each region, we applied a sky-
growth model16,17 (version 0.3.1) to estimate viral effective population size through
time and growth rates of effective population size which under appropriate
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conditions can be used as a proxy statistic for epidemic prevalence7. Time-resolved
phylogenies were constructed, as detailed above, with all exogenous sequences
removed prior to analysis. Growth rates and viral effective population size were
estimated using skygrowth 0.3.116 using Markov chain Monte Carlo (MCMC) and
500 thousand iterations for each time tree and using an Exponential (10−4) prior
for the smoothing parameter. The final results were produced by averaging across
100 time trees estimated for each region. Code to reproduce this analysis is con-
tained in the sarscov2 R package (skygrowth1 function, https://github.com/emvolz-
phylodynamics/sarscov2Rutils).

Transmission model and comparative phylodynamic analysis. Finally, we uti-
lised a compartmental structured coalescent model in the BEAST2 v6.1 PhyDyn
package18,19 to estimate the effective reproduction number and the number of
infections through time from SARS-CoV-2 genetic sequences. This model allowed
us to assess the reporting rate for each site, the proportion of estimated infections
that were diagnosed on each day. The phylodynamic model is designed to estimate
epidemiological parameters from sequence data. The model of epidemic dynamics
is based on a susceptible-exposed-infectious-recovered model and is described in
detail in Supplementary Information. The compartmental model has been pre-
viously described and applied to SARS-CoV-2 sequence data33,39,40. Importantly,
the model accounts for bidirectional migration between a region of interest and an
international reservoir, and splits the infected compartment into categories
representing individuals with high or low rates of onward transmission. Earlier
modelling efforts in SARS-CoV-1 and SARS-CoV-2 demonstrated that the inclu-
sion of a high transmission rate compartment is crucial to realistically capturing
case numbers40,41. The ability to accurately reconstruct epidemic dynamics using
the Bayesian MCMC inferential framework and phylodynamic model was assessed
in a simulation experiment (Supplementary Information). BEAST simultaneously
reconstructs a phylogeny and estimates epidemiological parameters. For each site
under investigation, we selected up to 150 unique regional sequences from the
GISAID alignment, as well as exogenous sequences representing the international
reservoir. Fifty exogenous sequences encompassing the full time-range of GISAID
samples were selected each time at random as background, and to these we added
sequences from GISAID that were ≤2 substitutions away from the sequences in the
regional dataset calculated. Pairwise genetic distances were calculated using TN93
(https://github.com/veg/tn93). It is possible that this number of exogenous
sequences is insufficient to correctly estimate import rates into our regions of
interest; however, this objective was not a focus of the present analysis. For each
regional dataset, we then constructed a phylogeny in IQtree. Polytomies were
resolved at random ten times, each time generating a new starting tree for the
analysis in BEAST2, totalling ten independent chains.

Each of the 10 runs was set up for 20 million steps. Subsequently, log files were
examined for convergence in Tracer v1.7.1, problematic runs excluded, and log files
and trajectory files were combined and cleaned using the sarscov2 R package
(available at http://github.com/emvolz-phylodynamics/sarscov2Rutils).

Comparison with other sources of data and statistical analysis. For every site,
we extracted dates of lockdown from the Oxford COVID-19 Government
Response Tracker1 (downloaded 20/06/2020). We used the date of measure C6
(shelter-in-place), as classified by the OxCGRT dataset. If the region never
underwent a full lockdown, we used the date of school closures or recommendation
to work from home, whichever came first (details in Supplementary Table 1). We
henceforth name this intervention maximum NPI. We also extracted the dates of
the first public information campaign (classification H1) for each site, except for
sites in the USA, where no such data were available. For the USA sites, we used the
date of the Chinese travel ban on Feb 2, 2020, as this attracted extensive media
coverage and would have raised awareness among the general population.

We obtained case and death counts, and census populations sizes, for inclusion
in our models and to assess case reporting (sources and raw numbers listed
Supplementary Data 1; Supplementary Fig 1). We selected to count cases on the
date of maximum NPI as a measure of the scale of the epidemic before that
intervention. We used the death count 1 month later to account for the incubation
period (95% of patients show symptoms within 12 days42) and the period of time
from symptom onset to death (95% occur within 19 days43).

We then calculated the time from epidemic origin (CEST) to each NPI and the
time from the tenth reported case to each NPI for each site and constructed a series
of regression models, looking for relationships between this delay and the severity
of the epidemic at each site. Deming regression models were utilised to take into
account for uncertainty in both predictor and outcome variables and allow for
weighting of observations based on the precision of their estimates13–15. Variance
for predictor and outcome variables was calculated as explained in
Supplementary Information. However, Deming regression models do not allow for
the inclusion of multiple predictors, therefore univariate and multivariable linear
regression were used to assess the relative contribution of predictor variables.

For all sites, we built Deming regression models with time from CEST to
maximum NPI (in days) as predictor variable and number of deaths 1 month after
the maximum NPI as the outcome. To evaluate if the time that cases were first
reported could serve as a proxy for time of epidemic origin, we reran these models
changing our predictor variable to time between the tenth reported case and
maximum NPI. For the 30 locations where the number of infections was estimated,

we built a model with time from CEST to maximum NPI as a predictor and the
estimated number of infections as an outcome. We repeated all three CEST-based
models using univariate linear regression, then expanded them into multivariable
models, including population size and R0 as predictors. Population size, viral
effective population size, estimated infections, reported infections and death counts
were log-transformed prior to analysis, to reflect their exponential rate of increase.
As a sensitivity analysis, as well as the CEST, we also calculated the 5th and 25th
percentiles of the distribution of viral introduction times and recalculated the delay
to maximum NPI for each definition, using these variables as predictors in
regression models. All analyses were conducted in R v3.6.1.

For sites analysed using the BEAST phylodynamic model, we examined the
relationship between mobility data provided by Google (google.com/covid19/
mobility) and Rt29,31. Google mobility data measures daily mobility at the sub-
region level, in relative deviations from maximum mobility prior to the WHO
pandemic declaration. Mobility data were available from the 13th of January 2020
and up until the date of cut-off for genetic data (June 7th). For each site analysed,
we plotted both variables for the time period between 13th of January and the date
of the last sample available for that site. We limited our analysis to mobility
associated with transit stations only (one of six streams). Daily Rt estimates through
time were extracted for the same time period.

Data ethics. Google mobility data (google.com/covid19/mobility) are released in
strict adherence to Google privacy protocols, from users who have chosen to turn
on “Location History”. Data are fully anonymized, aggregated at the sub-region
level and provided as relative deviations from mobility prior to the WHO pan-
demic declaration.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All sequence data are freely available upon registration with the GISAID database
(https://www.gisaid.org). The GISAID IDs for sequences utilised in our final skygrowth
and BEAST analyses (including background sequences) are listed in Supplementary
Data 2. Dates of lockdown were extracted from the Oxford COVID-19 Government
Response Tracker1 (downloaded 20/06/2020). Google mobility data can be accessed at
google.com/covid19/mobility. The mobility data utilised in this manuscript is also
available in the Github repository https://github.com/manonr/ncomms/tree/main/
googlemob_data. Data sources for case and death numbers are available in the
Supplementary Data 1. Source data for reproducibility of our statistical analyses (Deming
and linear regression) and plots are also available in Supplementary Data 1.

Code availability
Code for the simulations is available at https://github.com/thednainus/
sarscov2simulations (https://doi.org/10.5281/zenodo.4559446). The example output (a
fasta file with sequences dated and classified as internal or exogenous to the region of
interest) can be used to make dated trees using treedater (previously released, available as
an R package https://cran.r-project.org/web/packages/treedater/index.html). Dated trees
are the input for the skygrowth model and the method to estimate seeding times. Code
for these methods is available as part of the sarscov2 package v0.1.4 at https://github.
com/emvolz-phylodynamics/sarscov2Rutils. Fasta files, as generated by, and available in,
the simulation package, are the input for the BEAST2 PhyDyn model v1.3.7. Code for the
BEAST2 PhyDyn model, as well as instructions and additional test datasets are available
at https://github.com/mrc-ide/PhyDyn.
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