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ABSTRACT 

Modern power systems incorporate advanced contingency measures with the aim of enhancing 

system performance. Among them, the strategical installation of reactive power compensators 

into a power system is commonly practised to minimize power losses and improve system 

reliability. Such a practice requires a robust optimization technique that could reduce the 

computational burden and provide optimal planning and operation of the compensators. This 

thesis proposes an advanced optimization technique, named as Accelerated Quantum Particle 

Swarm Optimization (AQPSO) to determine the optimal placement, sizing and dispatch 

strategy of the reactive power compensators with the aim of improving the system level 

reliability. The uniqueness of the technique is the incorporation of the concept ‘best 

observation’, which accelerates the search towards the optimal solution. 

The implementation of advanced maintenance strategies is another common contingency 

measure used to enhance system performance. In this context, this thesis proposes a novel 

Smart Maintenance (SM) strategy for power generators that maximize the generation adequacy 

and provide increased economic benefits in a framework of system reliability. The uniqueness 

of the SM approach is the incorporation of the ‘obsolescence’ state through the stages of the 

bathtub curve and half-arch shape to model the aging process and then quantify the operational 

risk of the generators using fuzzy logic theory. Further, SM combines the proposed AQPSO 

and Sequential Median Latin Hypercube to obtain a comprehensive maintenance schedule. 

The investigation presented in this thesis contributes with novel AQPSO-based algorithms to 

enhance power system reliability with the operation of reactive power compensation; a more 

realistic and accurate aging reliability model of power generators; a detailed SM mathematical 

framework and an algorithm for the scheduling of proactive maintenance of generators of small 

and large-power systems. The proposed models are significant in the journey to the smart 

operation of a power system with diverse levels of applications.
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𝑄𝑚𝑎𝑥𝑆𝑉𝐶 Maximum reactive power injected by the SVC [MVar] 

𝑉𝑏𝑢𝑠 Bus voltage [p.u.] 
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𝑉𝑚𝑖𝑛𝑏𝑢𝑠 Minimum bus voltage allowed [p.u.] 

𝑉𝑚𝑖𝑛𝑏𝑢𝑠 Maximum bus voltage allowed [p.u.] 

℘𝑔𝑡  Total power system generation [MW] 

℘𝑑𝑡  Total power system demand [MW] 

∆𝐿 Power losses reduction [MW] 

𝐼𝑙𝑖𝑛𝑒 Current that flows through the conductor (No reactive compensation) 

𝐼𝑙𝑖𝑛𝑒′ Current that flows through the conductor (Reactive compensation considered) 

𝑅 Conductor resistance [ohm] 

𝐸 Energy demanded [Mwh] 

𝑒 Energy price [£/MWh] 

𝑤 Price per reactive compensator capacity [£/MVar] 

𝑆𝑎𝑣𝑖𝑛𝑔𝐿 Savings due to power losses reduction [£] 

𝐶𝑜𝑠𝑡𝑆𝑉𝐶 SVC Acquisition and installation cost [£] 

𝐶𝑜𝑠𝑡𝐴𝑐𝑞 Acquisition cost [£] 

𝐶𝑜𝑠𝑡𝑂𝑝 Cost of operation [£] 

𝐶𝑜𝑠𝑡𝑃𝑀 Cost of preventive maintenance [£] 

𝐶𝑜𝑠𝑡𝐶𝑀 Cost of corrective maintenance [£] 

𝐶𝑜𝑠𝑡𝑀 Total cost of maintenance [£] 

𝑁𝐵 Net benefit [£] 
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𝑀𝑇𝑇𝐴 Meantime to absorption [yr] 

𝑀𝑇𝑇𝐹 Meantime to failure [hr] 

𝑀𝑇𝑇𝑅 Meantime to repair [hr] 

𝐿𝐿𝐷 Loss of load duration [hr] 

𝐸𝑁𝑆 Energy not supplied [Mwh] 

𝐸𝐸𝑁𝑆 Expected energy not supplied [Mwh/yr] 

𝐿𝑂𝐿𝐸 Loss of load expectation [hr/yr] 

𝐿𝑂𝐸𝐸 Loss of energy expectation [MWh/yr] 

𝐿𝑂𝐿𝑃 Loss of load probability [p.u.] 

𝑋𝐿𝑂𝐿 Expected loss of load [MW] 
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Chapter 1: Introduction 
 

1.1 Background and Motivation 

The power system is an electrical network, of which the purpose is to provide 

electricity to the customers securely, efficiently, and economically. Even though the 

efficiency can be addressed from many different aspects, the Federal Energy Regulatory 

Commission (FERC) and Department of Energy (DOE) recognized that a key driver of the 

efficiency prevails on the reliability of the concerned system. The term ‘reliability’ in a 

power system context refers to the capacity to provide continuous service and be able to 

satisfy electrical demand. The reliability plays an important role in power system since is 

essential for planning and operation of power systems [1]. 

 Power system consists of a significant number of components (assets) and it is among 

the most complex systems of engineering. In 2008, the Council of European Energy 

Regulators (CEER) presented a report indicating that many European power systems 

(including the United Kingdom) present in average an interruption of service less or equal 

than two hours per year [2]. While two hours per year may seem small,  this reliability index 

represents around 82 gigawatt-hours per year of energy not supplied for the UK [3], [4], 

leading to a yearly financial loss of around 10 million of sterling pounds for power utilities 

[5]. Therefore, there is still much work to do to provide continuous service to satisfy the 

electrical demand. 

 Power industry is looking for more realistic reliability models to replace the 

traditional model, which is presented as an alternating renewal process between two common 

states: ‘operating’ and ‘failure’ [6]. Even though the traditional model is easy to implement, 

it presents many deficiencies. In the first instance, the model disregards the aging effect since 

the end lifetime of the component is not considered. Consequently, the model brings 

inaccuracies in the reliability assessment. Some efforts to include aging using Weibull 
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distribution are proposed [7-8], however, deeper scrutiny on these reveals that determination 

of the degradation of the component is not clear. The second instance is that alternating 

renewal process does not consider the inclusion of preventive maintenance into the model, 

instead, it just considers corrective maintenance. The last instance is the underestimation of 

other operating states of the component such as the policy of replacement, derated operation, 

overloaded operation, which bring inaccuracies to the reliability evaluation. Therefore, the 

first motivation of the research presented in this thesis arises from the need to incorporate 

innovative models that consider real world implementations and drive to accurate reliability 

evaluation. 

There are different contingency measures to improve the reliability of the power grid 

at the different power system levels. At a generation level, the integration of low carbon 

generators (renewable generation) into the power system is commonly used in developed 

countries, such as the UK [9]. This is because the renewable generation increases the 

capacity of power generation, enhancing the generation adequacy of the system [10]–[13]. 

At the transmission and distribution level, the analysis is extended to lines and transformers 

outages that produce voltage and frequency instabilities. Moreover, the problem can be 

extended since the lines or transformers that are in operation may carry more current and 

some of them may reach the overloaded state. This could result in load curtailment and 

increment in electric power losses. As a solution, the strategical incorporation of reactive 

compensators into the power system is expected to maintain system integrity during post-

contingency operation [14]. However, the optimization problem of planning and operation 

of reactive compensators is a complex process that demands high computer processing 

memory and time. Hence, the second motivation of this thesis arises from the need of 

implementing an advanced optimization technique with low computational burden, which 
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could be used to enhance power system reliability and operation by the employment of 

reactive compensation. 

Power industry employs maintenance actions as another potential contingency 

measure to ensure continuous operation of the power system [15]. Maintenance is defined 

as the process of preserving in an adequate condition a component in order to avoid 

premature failures. Conventional maintenance is being superseded with advanced 

maintenance strategies due to the high cost. For this reason, in the last decade, researchers 

in the UK [16]–[18] and other European countries [19]–[21] have been looking for novel 

maintenance strategies. Among the advances maintenance strategies, the reliability centred 

maintenance (RCM) emerged as one of the most popular in the USA [22]–[24]. The main 

deficiency of RCM is that it focuses on maximizing the availability of the individual 

component without considering the composite system operation. Some authors have 

proposed the inclusion of smart-inspections [25], smart-devices [26] and smart-services [27] 

to develop a new schemes of maintenance. However, a gap in these visions is that the 

mathematical framework is not clearly described to validate the robustness. Thus, the third 

motivation of this thesis arises from the necessity of developing a new smart maintenance 

mathematical framework and an algorithm for the scheduling of proactive maintenance that 

maximizes the net benefits of generation adequacy. 

1.2 Scope of the Research 

This research focuses on power system reliability enhancement with reactive power 

compensation and operational risk assessment with smart maintenance (SM) for power 

generators. For this purpose, it is required to develop a comprehensive reliability model 

based on the bathtub curve and half-arch shape that respectively describe the failure and 

repair rates of power generators. Such a model is useful to carry out a more realistic and 

accurate generation adequacy assessment. The strategical installation of reactive power 
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compensators and implementation of SM approach formulate an optimization problem, 

which is solved using a novel optimization technique called Accelerated Quantum Particle 

Swarm Optimization (AQPSO). In order to demonstrate the efficacy of the proposed 

optimization technique, AQPSO, Particle Swarm Optimisation (PSO) and genetic algorithm 

(GA) are used separately to determine the optimal planning and operation of reactive power 

compensators. Regarding the SM mathematical framework, it involves specific issues 

related to reliability and risk concepts such as Kijima model [28], Markov chain [29], and 

Fuzzy logic [30], which are critically identified and analysed. In addition, the optimum 

preventive maintenance schedule of power generators is solved using the proposed AQPSO 

in combination with the Sequential Median Latin Hypercube [31]. Figure 1.1 shows how the 

topic of this thesis fits in the field of power system reliability assessment. 

 

 
 

Figure 1.1 Thesis topic area (blue boxes) within power system reliability field 
 

1.3 Aim and Objectives 

At power system transmission level, the aim is to investigate the optimum planning 

and operation of the reactive power compensators to minimize power losses and expected 

energy not supplied. At power system generation level, the aim is to develop an innovative 
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smart maintenance model for power generators that considers the aging effect, degradation, 

maintenance exertion degree, and operational risk that maximize the economic benefits of 

generation adequacy. In order to achieve these aims, the investigations have been carried out 

through the following objectives: 

• To develop a novel mathematical model that incorporates the aging effect that 

allows describing the degradation of power generators. 

• To quantify the impact of aging on power systems generation adequacy 

assessment using the proposed approach. The results must be compared with the 

traditional alternating renewal process that uses exponential and Weibull 

distribution function.  

• To propose the advanced optimization technique called Accelerated Quantum 

Particle Swarm Optimization. AQPSO efficacy must be demonstrated by 

showing its advantages over of the traditional optimization techniques, such as 

PSO and genetic algorithm (GA). 

•  To apply AQPSO for the minimization of the energy not supplied (EENS) of the 

power system by installing optimal static var compensators (SVCs). 

• To determine the planning and operation of SVCs that maximizes the power 

losses and economic benefit by using AQPSO. 

• To determine the maintenance exertion degree as a function of the availability 

and the operational factor, bringing a mathematical relationship that leads to the 

impact quantification of maintenance on generators failure rate. 

• To formulate in mathematical terms the novel smart maintenance scheme, 

leading to the optimum preventive maintenance plan of generators that 

maximizes the generation adequacy net benefit. 

 



6 | P a g e  

 

1.4 Research Contributions 

The research brings many contributions to the state of the art, which are summarised 

in the following list. 

• A more realistic and accurate aging reliability model for power generators. 

The thesis provides a comprehensive mathematical model for power generators 

based on the bathtub curve and half-arch shape to describe their failure and repair 

rates, respectively. For the first time, the different operational states of the 

generators are associated to every stage within the bathtub curve and half-arch 

shape, bringing more accurate and realistic results than the conventional 

alternating renewal process that employs exponential and Weibull distribution 

function. 

• A mathematical formulation to quantify the degradation of the component. 

The research incorporates the degradation rate term as the transition rate that 

leads to the obsolescence state. The degradation of the component is formulated 

as a function of the degradation rate and end lifetime of the component. Such 

formulation contributes to more insight into understanding the behaviour of 

components availability. 

• The development of an advanced optimization technique more robust than 

traditional PSO and GA. The approach presents mathematical formulations to 

derive the Accelerated Quantum Particle Swarm Optimization (AQPSO). The 

research considers two reactive compensation optimization problems, which are 

solved using AQPSO, PSO and GA. The computational efficacy of AQPSO is 

validated by performing a computational analysis. The time simulation and 

convergence iteration of each optimization technique are compared to validate 
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the robustness of AQPSO. Such robustness could derive to consider APQSO as 

a potential option to solve different engineering optimization problems.  

• The inclusion of novel AQPSO-based algorithms to enhance power system 

reliability and operation by the employment of reactive compensation. The 

research presents two reactive compensation case studies. In the first instance, 

AQPSO-based algorithm is used to minimize the expected energy not supplied 

by strategically installing SVCs into the power system. In the second instance, 

AQPSO-based algorithm is used to maximize the economic benefit due to power 

losses reduction by the optimal planning and operation of SVCs. The AQPSO-

based algorithms open a pathway to determine a solution for other reactive 

compensation applications. 

• A novel mathematical formulation that describes the relationship between 

generator’s lifetime, virtual age, degradation, and transition rates. This is the 

first study that integrates the Kijima model, Markov chain and fuzzy logic theory 

to establish a relationship between the reliability parameters of the power 

generators. This relationship could be practically useful for maintenance 

management and system reliability applications.  

• An advanced smart-maintenance algorithm for optimal generation 

adequacy in power systems. The smart-maintenance algorithm takes as input 

the individual reliability and risk parameters of the generators. The algorithm 

combines AQPSO with the Sequential Median Latin Hypercube (SMLH) to 

determine an effective preventive maintenance schedule of generators that 

maximizes the generation adequacy net benefit. This is an original application of 

maintenance studies related to system reliability at generation level. 
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1.6 Thesis Structure 

Figure 1.2 presents a pictorial summary of the research. This thesis consists of seven 

chapters including this introductory one. The remaining six chapters are outlined below. 

Chapter 2 presents relevant literature review for this research. This includes the 

different techniques employed to conduct a power system reliability assessment at three 

different hierarchical levels; fundamental understanding of the reactive compensation 

applications for power system reliability enhancement; existing aging reliability model; and 

status quo of maintenance and risk in modern power system. 

Chapter 3 describes the existing assessment reliability theories. The concept of 

reliability, maintainability and availability are described. The classical alternating renewal 

reliability model is derived. The chapter also presents the failure and repair rates for power 

generators and reactive compensators. In addition, the procedures to conduct the generation 

adequacy, composite system and risk assessments are also discussed. 

 Chapter 4 presents a novel aging reliability model for generators based on the 

behaviour of their transition rates. The bathtub curve and half-arch shape are used to model 

the failure and repair rates, respectively. In this chapter, the states at each stage of the bathtub 

curve is identified. In addition, the chapter also includes the quantification of the 

degradation. The validation of the proposed approach is shown by a case study, where its 

suitability to bring realistic reliability indices in comparison with classical reliability models 

is demonstrated. 

 Chapter 5 presents a mathematical framework to derive the AQPSO. The proposed 

optimization technique is used to investigate the impact of the reactive compensator 

installation in power system from two different point of view. Form power system reliability 

side, AQPSO is used to determine the optimal size and placement of the reactive 

compensators to minimize expected energy not supplied. From power system operational 
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side, AQPSO is used to determine the optimal size, placement and strategy dispatch of the 

reactive compensators that maximizes the economic benefits due to power losses reduction. 

In addition, the chapter considers a computational analysis to determine AQPSO robustness 

in comparison with the conventional PSO and GA. 

 Chapter 6 starts with the mathematical framework required to define the smart-

maintenance (SM) scheme, such as the Kijima Model type I, Markov chain and fuzzy logic. 

The smart maintenance procedure is described in detail and to show. Generation adequacy 

assessment is conducted using the smart maintenance, and results are compared to the results 

obtained using the conventional preventive periodic maintenance and reliability centred 

maintenance in order to study the performance of smart maintenance. It is relevant to 

mention that this chapter depends on the outcomes obtained in Chapter 4 and Chapter 5. The 

SM scheme includes the aging phenomenon, and for that purpose, the reliability model 

obtained in Chapter 4 is used. In addition, SM scheme is formulated as an optimization 

problem, which is solved employing the AQPSO presented in Chapter 5. 

Chapter 7 contains the main conclusions of the research highlighting the research 

findings. This chapter also presents suggestions for future development of proposed 

applications and discusses further research topics.  

The interdependency of each chapter is depicted in Figure 1.2 In this figure, the 

chapters are classified by groups. The first group is denoted as ‘Base Theory’ and is formed 

by chapter 1, 2 and 3. As presented in Figure 1.2, Chapter 1 is the foundation for the rest of 

the chapters because contains all the metrics (motivation, aim and objectives, and scope of 

the research) that motivate the development of the research. Chapter 2 and Chapter 3 

contains the state of the art of the research, showing the advantages and deficiencies of 

existing approaches. The next group is named as ‘Contributions’ and this group is 

characterized by the containing the novelty of the research. This group is formed by Chapter 
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4, 5 and 6. Figure 1.2 shows that Chapter 4 and Chapter 5 directly depends on the chapters 

given in the ‘Base theory’ group. Chapter 6 is the core of the research (SM scheme) and it 

mainly depends on the outcomes obtained in Chapter 4 and Chapter 5. The SM scheme 

includes the aging phenomenon, and for that purpose, the reliability model obtained in 

Chapter 4 is used. In addition, the SM scheme is formulated as an optimization problem, 

which is solved employing the AQPSO presented in Chapter 5. The last group is the 

‘Conclusion’ group and it only contains Chapter 7. This chapter depends mainly on the 

chapter of the ‘Contributions’ group. Chapter 7 consolidate all previous chapter, showing 

the findings of  Chapter 4 ,5 and 6. For a better understanding of the interdependence 

between chapters Figure 1.3 shows a pictorial summary of the research. 

 

  Figure 1.2 Interdependency between chapters 
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Figure 1.3 Pictorial summary of the research 
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Chapter 2: Literature Review 
 

 This chapter is divided into five sections. Section 2.1 presents a comprehensive state 

of the art of the reliability assessment conducted at the three-power system hierarchical 

levels. In Section 2.2, the bathtub curve and aging models are described. Section 2.3 exposes 

the current trends in the use of reactive compensation to improve the reliability of the power 

system. Section 2.4 presents the maintenance evolution. In Section 2.5, the concepts of risk 

and maintenance with relevant literature in the context of power generators are reviewed 

critically. Finally, the last section brings a summary of the chapter. 

2.1 Reliability Assessment in Modern Power Systems 

Reliability assessment in modern power systems can be addressed from two broader 

avenues: adequacy and security [32]. Adequacy refers to the presence of adequate facilities 

to supply the load demand in a power system under determined operational conditions. The 

adequacy measures the probability of failure when the system operates under a stationary 

state [32]. In contrast, security refers to the ability of a power system to deal with sudden 

disturbances; therefore, security measures the probability of failure when the system 

operates under dynamic or transient states [32].  

Power system adequacy studies are divided into three hierarchical levels as described 

in Table 2.1 [32]. The literature review scope at each level is presented in Figure 2.1. 

2.1.1 HLI: Generation 

 The first hierarchical level (HLI) is the base level and for this reason could be 

considered as the most important level. HLI  evaluates the risk events in which the generation 

is not being able to supply the electricity demand [33]. For this purpose, it is required to 

define power generation reliability models and load profiles techniques. In this context, 

literature presents the reliability model of conventional generation as an alternating renewal 

process with the following states: operational, not in service and derated [6], [32], [34]–[37]. 
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Figure 2.1  Literature review scope of the reliability levels  
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Table 2.1 Power System Adequacy Hierarchical Levels [29] 

Hierarchical 

Level 
Power System Level Description 

I 
 

Figure 2.2 Generation System Representation 

It corresponds to the ability to 

supply the total energy demand by 

considering only the power sources 

installed in the power system. It 

assumes that transmission and 

distribution systems are 100% 

reliable. 

II 

 
Figure 2.3 Transmission System Representation 

It corresponds to the ability of the 

generation-transmission system to 

supply the demand. It evaluates the 

impact of failures on generators, 

lines, buses, and electrical 

protections involved in the power 

systems. 

III 
 

Figure 2.4 Distribution System Representation 

It encompasses the generation, 

transmission, and distribution 

system. It evaluates the adequacy in 

the main load points located in the 

primary distribution circuits and 

considers any component failure 

installed in the power system. 

 

In the last decade, the use of renewable power in the electricity generation has 

become popular in most of the developed countries [38]–[40]. This is due to the economic 

and environmental benefits that it presents to power utilities. For this reason, researchers 

around the globe are developing new reliability models of renewable power generation. Such 

models are based on the statistical nature of the renewal source. For wind power generation, 

the wind speed is characterized by variations of a Weibull probability distribution function 

[13], [41]. For a photovoltaic generation, the solar irradiance forecast is modelled using 

variations of the Normal probability distribution function [42], [43]. For tidal and geothermal 

power generation, there is still much work to do because there is no unanimity in the 

literature about their reliability models. Nevertheless, stochastic sampling method [44] and 
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predictive reliability-based indicators [45] are employed to adjust the behaviour of these 

energy sources.  

In regard to the load profile, literature provides different techniques to describe it. 

Among the existing models, clustering by k-means highlights due to its fast convergence 

[46]. However, during the last 15 years, the power system load data set have been increasing 

at a fast rate, reaching a new paradigm called ‘big data’ [47]. Academics and power industry 

engineers are looking for novel and robust techniques to deal with these large or complex 

data sets. To exemplify this fact, reference [48] presents a load demand model using a 

modified support vector regression, which consists of mapping the training data to a space 

of greater dimension through a non-linear mapping. The results reveal that the proposed 

model has a higher degree of prediction accuracy and stability in comparison to traditional 

loads models. Another innovative technique is exhibited in [49], which offers a novel 

approach of two stages to classify the energy consumptions profiles. The first stage evaluates 

the data for the intra-cluster similarity of energy consumption patterns, while the second 

stage linearizes the complex energy patterns using interpolant and curve-fitting techniques. 

A more comprehensive study is proposed in [50], in which the authors analyse the load 

profiles using deep neural networks. 

The determination of the operating states of each unit generation is fundamental to 

proceed with the HLI reliability evaluation. Every state of a unit is determined by applying 

sampling methods, such as Monte Carlo simulation [51], Cross-Entropy [52], Gibbs [53], 

and Latin Hypercube [54]. Among the exposed methods, Monte Carlo simulation method 

appears as the most employed at HLI [55]. The reason is that at this level the computational 

burden is not so exhaustive in comparison to other levels [56].  

Although literature presents different reliability evaluation techniques, the main 

difference between them lies in the generation and load profile models. A missing element 
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on these publications is the quantification of the degradation of the component due to aging, 

which is not clearly identified. 

2.1.2 HLII: Transmission 

 The second hierarchical level focus on risk events that affect the transmission system 

[33]. In this level, lines outage is a common scenario to analyse since it produces several 

negative impacts on the power system performance [57]. A line outage may produce 

variation in the bus voltage magnitude, leading to a voltage instability [58]. Another fact to 

consider is that some lines may carry more current, causing an increment in power losses 

[59]. The problem can be extended to cascade failures, driving to a blackout in the worst-

case scenario [60]. In the published literature, load curtailment appears as a corrective action 

to address line outage incidences [32]. This is formulated as an objective function described 

in the optimal power flow, as evidenced in [6], [61], [62]. The main drawback with load 

curtailment is that causes an increment in the expected energy not supplied of the system.  

To quantify the reliability at the transmission level, a composite system reliability 

assessment is required [63], [64]. During the assessment, every operational state of each 

component is analysed to define the final state of the system [65]. In order to conduct a more 

realistic HLII reliability analysis, some studies can incorporate different phenomena into the 

reliability model of the components. For instance, [66] considers the uncertainties due to 

extreme weather conditions and its impact on the occurrence of a cascading failure event, 

resulting in a  flexible restoration model that is useful for practical purposes. In [67], authors 

examine the influence of installing Extra High Voltage (EHV) AC XLPE Underground 

Cables (UGCs) on the Netherlands transmission reliability level, bringing a new reliability 

model for undergrounds cables. In [68], aging failures with Normal and Weibull distribution 

functions are introduced, with a view of conducting a more accurate reliability evaluation. 

This last point is the direction in which the state of the art is moving. Researchers around the 
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globe are looking for innovative models that accurately describe the reliability model of the 

components. 

2.1.3 HLIII: Distribution 

The third hierarchical level focus on risk events that affect the distribution system 

[33]. Similar to HLII, line outages is a common event to study [69]. At this level, load 

curtailment can be used as a corrective measure, nonetheless, reconfiguration strategy, and 

distributed energy are becoming popular at present day. 

The findings of the use of renewables energies on distribution system reliability are 

vast. Authors in [70]–[72] determined a reduction of average interruption and average 

interruption frequency in the distribution system due to the incorporation of photovoltaic 

(PV) generations. Results in [73]–[75] reveal the installation of wind power generation 

produces a reduction on the expected energy not supplied, which represents a positive impact 

of the reliability of the distribution system. References [76]–[78] show improvements on the 

loss of load probability and expected energy not served reliability indices when energy 

storage is installed into a distribution system. The economic benefits of hybrid system 

generation on distribution system reliability are exposed in [79]–[81]. 

Reliability enhancement using optimal feeder reconfiguration is also well defined in 

the literature. The key idea is to find the optimal electrical path that reduces power losses of 

the network and the customer interruption costs simultaneously. The main difference 

between publications lies in the problem definition and optimization technique employed. A 

sample includes reference [82], in which a novel self-adaptive modification method based 

on the clonal selection algorithm is employed to minimize reliability cost. The novelty of 

the algorithm is its ability to search the problem space globally, which in contrast to 

traditional metaheuristics techniques, the global search mechanism of the proposed approach 

inserts an extra population to escape from local optima, resulting in a robust optimization 
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technique. Authors in [83] propose a new multi-objective improved shuffled frog leaping 

algorithm to minimize the average interruption frequency index (SAIFI), system average 

interruption duration index (SAIDI), average energy not supplied (AENS) and the total 

active power losses. The algorithm is based on a multi-objective improved shuffled frog 

leaping optimization technique in combination with fuzzy clustering technique. The results 

reveal its feasibility and the efficiency in comparison with the genetic algorithm, particle 

swarm optimization and traditional shuffled frog leaping optimization technique. In [84], 

feeder reconfiguration is carried out using annealed local search to minimize the SAIFI, 

SAIDI and momentary average interruption frequency index (MAIFI). Even though the 

emergence of novel reconfiguration strategy enables a reliable better system performance, 

the potentials from a more robust optimization technique are still waiting to be exploited. 

2.2 Bathtub Curve and Aging Models 

There are several stochastic models [85]–[89] to evaluate the reliability of a power 

system component. In all these models, the components are analysed using their probability 

distribution functions. For the simplicity, most of the publications [85]–[87] employ an 

exponential distribution function, leading to a time-independent failure rate. This assumption 

underestimates the aging of the component and brings inaccuracies in a realistic reliability 

evaluation. Certain efforts have been made to model aging using Weibull distribution 

functions [88], [89]. However, literature [90]–[93] reports that the bathtub curve is an 

accurate model to describe the failure rate of repairable components. This curve is divided 

into three main stages. The first stage is named as infant mortality and during this stage, the 

failure rate exponentially decreases until reaching its minimum value [94]. Then, the useful 

life stage takes place in which failure rate stabilizes taking a constant value [94]. The last 

stage is known as wear out and during this period the failure rate increases at a fast rate [94].  



 
 
 

19 | P a g e  

 

Studies [95]–[97] that consider a constant failure rate in their analysis, only focus 

their attention on the useful life stage. This supposition disregards aging and leads to 

unreliable results. In the existing literature appears more exhaustive publications that employ 

the full bathtub curve for different reliability assessments. Authors in [98] determine a 

realistic high-voltage direct current transmission system reliability indices by using the 

bathtub curve to model the failure rate of all components installed in the system. Reference 

[99] implements an innovative algorithm to assess the reliability of a power system that 

contains high penetration of photovoltaic (PV) system. The algorithm also includes the 

bathtub curve to model the failure rate of the PV system. A more detailed study is presented 

in [100], which introduces six kinds of failure models (including bathtub curve) to evaluate 

the reliability of proximity sensors of the leading-edge flap in civil aircraft. Although these 

publications offer a pathway to describe the aging of the component using the bathtub curve, 

a limitation on them is the use of an alternating renewal process of two operational states to 

define the reliability model of the components. The use of the bathtub curve without 

recognizing the different operational states at each stage of the curve could bring unrealistic 

outcome and hence could under-estimate the true impact of aging. 

2.3 Reactive Compensation for Reliability Enhancement 

Reactive compensation is defined as the management of reactive power to improve 

the performance of the power system. Its applications include power factor improvement 

[101], power losses reduction [102], voltage stability improvement [103] and reduction in 

electricity bill [104]. The reactive power compensation applications are related to the power 

quality field. However, it can be extended to other power system fields.  

From the reliability point of view, reactive power compensation can be employed as 

a contingency measure to reduce the load shedding. For this purpose, some publications 

suggest the employment of capacitor bank [105]–[107]. This is attributed to its acquisition 
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cost, which is lower in comparison to other compensators. Nevertheless, they present a 

drawback as these devices lack of dynamic reactive power injection [108]. The operation of 

the capacitor bank is limited by its static capacity. Although literature presents switched 

capacitor bank as a solution to this problem [109], their stepwise power injection is still not 

enough to reach the optimal power system performance [110]. 

Another suitable option to handle reactive compensation is the Flexible Alternating 

Current Transmission System (FACTS). These devices are power electronics-based systems, 

and their main feature is their dynamic control operation [110]. The first FACTS applications 

in power system reliability appear in [111]–[114]. In [111], thyristor controlled series 

capacitor (TCSC) is connected between two different lines to increase transmission capacity. 

As a result, the loss of load expectation (LOLE) and loss of energy expectation (LOEE) are 

decreased, leading to better reliability performance of the power system. Subsequently,  the 

study is extended by incorporating a more precise TCSC reliability model [112]. Reference  

[113] investigates the impact of a unified power flow controller (UPPC) on power system 

reliability. The methodology consists of installing the UPPC to regulate the natural power-

sharing of the transmission lines, then, a composite system reliability assessment takes place 

to quantify power systems reliability. The reliability indices validate the positive influence 

of the UPPC. In [114], authors propose to combine static synchronous series compensator 

(SSSC) with a fixed capacitor to introduce a novel hybrid compensating scheme, which is 

used to regulate the transmission infeed impedance. As a result, transmission system 

capacity is increased, and the system reliability is strengthened. These publications are 

important since they inspired other researchers to investigate the influence of other FACTS 

controllers in power system reliability.   

Nowadays, researches are focusing on maximizing system reliability using different 

FACTSs. The main deficiency in the existing literature is that does not offer an inclusive 
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study that deals with problem formulation to address optimal planning and operation of 

FACTS, such that, it maximizes system reliability. That is, [115] analyses system reliability 

by incorporating static var compensators (SVC) into the power system, without considering 

optimal planning and operation of FACTS; the same concern goes for [116], [117] with the 

difference that they use other FACTS controllers. Authors in [118] integrate the optimum 

placement for SVC, however, their optimum strategy dispatch is not considered. In [119], 

[120] propose an approach to maximize the reliability benefits using TCSC [119] and SSSC 

[120], however, the optimal sizing and placement of FACTS are not presented.  

 Recent investigations present new approaches concerning the optimization 

techniques for reliability enhancement using reactive compensation. For example, [121] 

implements a mixed-integer dynamic optimization to determine the allocation of dynamic 

reactive support; the authors in [121] employ a bacterial foraging oriented method by particle 

swarm optimization algorithm in order to find the optimal location and size of the available 

FACTS, such that investment costs are minimized; [122] investigates optimal load 

curtailment model for congestion management using various FACTS devices like 

STATCOM, SSSC, UPFC, IPFC, and GUPFC; [123] propose an application of Cuckoo 

search algorithm to determine optimal location and sizing of SVC to improve power system 

reliability. Although the presented approaches are effective to reach the global solution to 

different optimization problems, deeper analysis on them reveals that a challenge is to reduce 

the computational burden. 

Besides the above-presented advantages of reactive power compensators in system 

reliability, faster optimization techniques with the ability to meet power system reliability 

challenges need to be explored.  
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2.4 Maintenance Evolution  

Maintenance concept firstly appears during the industrial revolution. By that time, 

maintenance was considered as a type of ‘necessary rework’ with low relevance for the 

industry.  It was not until the Second World War, where maintenance became important. The 

first applications appeared in the aviation industry, chemical and petrochemical plants, and 

nuclear power industry [124]. Maintenance actions allowed continuity of service, driving in 

huge economic savings to the industry.  

British Standards define maintenance as [125]: 

“The combination of all technical and administrative actions, including supervision 

actions, intended to retain an item in, or restore it to, a state in which it can perform a 

required action.” 

Nevertheless, the concept of maintenance has been evolved over time. The first 

maintenance scheme that appears in the early stages of the maintenance history is the 

corrective maintenance (CM). CM focuses on the identification, isolation, and rectification 

of a fault so that the failed component can be restored to an operational condition within the 

tolerances or limits established for in-service operations. CM is carried out after failure 

detection and is aimed at restoring an asset to a condition in which it can perform its intended 

function [126]. The main deficiency with CM is that in some circumstances is preferable to 

proceed with the renovation of the component rather than maintenance. For example, in case 

of severe damage in the core of a transformer, the cost of CM is close to the cost of a new 

transformer acquisition [127], therefore CM is not affordable for this particular case. To 

overcome CM drawback, in 1998 the IEEE presented the Standard 1902, IEEE Guide for 

Maintenance, Operation, and Safety of Industrial and Commercial Power Systems setting 

the foundations for preventive maintenance in power industry (PM) [128]. The PM is carried 

out at predetermined intervals or according to prescribed criteria, aimed at reducing the 
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failure risk or performance degradation of the equipment. At difference with CM, PM 

proposes maintenance cycles according to the need of the component. Nevertheless, every 

component operates under different circumstances, and component maintenance should be 

scheduled based on the reliability model of the component. This could potentially bring a 

higher benefit in comparison with the periodic preventive maintenance (PPM) strategy. In 

response to this need, the maintenance evolved from PM to predictive advances. Predictive 

maintenance scheme proposes a maintenance schedule optimization problem, of which the 

typical objective is to minimize the occurrence of failures of a component while maximizing 

profit [129]. The predictive maintenance strategies are categorized as Reliability-Centred 

Maintenance (RCM), Risk-Based Inspection (RBI), and Risk-Based Maintenance (RBM), 

which are described in Table 2.2.  Nowadays, maintenance has evolved into a new paradigm 

within the ‘Asset Management’. This is defined as a comprehensive maintenance plan that 

combines risk-controlled optimised and life-cycle management of an asset [130]. The 

strategies under the scheme are based on smart-inspections (SI) [25], smart-devices (SD) 

[26] and smart-services (SS) [27], resulting in a smart maintenance (SM) model. A schematic 

representation of the evolution of maintenance is presented in Figure 2.5.   

Table 2.2 Predictive Maintenance Strategies 

Reliability Centred Maintenance 

(RCM) 

Risk-Based Inspection  

(RBI) 

Risk Based Maintenance 

(RBM) 

The main objective of RCM 

according to [131] is “to reduce 

the maintenance cost, by 

focusing on the most important 

functions of the system, and 

avoiding maintenance actions 

that are not strictly necessary.” 

The objective of RBI 

according to [132] is “to 

determine what incident 

could occur in the event of an 

equipment failure, and how 

likely is that incident could 

happen.” 

The objective of RBM 

according to [133] is “to 

reduce the overall risk of 

facilities.” 
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Figure 2.5 The evolution of maintenance  

2.5 Risk and Maintenance of Power Generators 

In modern power systems, risk presents different facets depending on the hazard 

situation that may arise. For example, random failures that cannot be controlled by operators 

[86]; uncertainties in the loads that make load forecast to be inaccurate [134]; energy market 

that fluctuates the prices depending on the economy of the country [135]; interruptions of 

service that can be engendered due to natural disasters [136].  

Risk evaluation becomes a vital commitment to the power industry. For this reason, 

the power industry is incorporating new maintenance strategies into their management 

schedules. For instance, [137] presents a method that uses the supply chain construct for 

designing power grids that are relatively insensitive to failure in the integrated generation 

and transmission system; [138] suggests an improved power transformer maintenance plan 

for reliability centred management, which employs Markov theory to model it; a wide-

ranging study in maintenance field is presented in [139], which integrates preventive 

maintenance strategies in an optimal way to maintain the desired availability and safety 

integrity level while minimizing the maintenance intervals using Bayesian networks. 
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 Power system planning and operation starts with the power generation. At this level, 

generator maintenance is vital to preserving the continuity of service in the power system. 

Normally, a routine generator PM includes turbine functional checks and inspection; turbine 

bearing lubrication and inspection; gearbox inspection; gearbox oil condition analysis and 

oil changes; gearbox bearing inspection and lubrication; drive belt inspection and 

replacement; drive coupling inspection; generator inspection; generator bearing inspection 

and lubrication; hydraulic system inspection; hydraulic system oil condition analysis and oil 

changes; check all sensors operate correctly; check controller functions correctly; inspection 

of intake area, impounding structures, pipeline, sluice(s) [140]. Among the predictive 

maintenance strategies, RCM is widely used to optimize preventive generators maintenance 

tasks [141]. The literature presents variations of RCM schedule by incorporating different 

optimization techniques and objective functions. For instance, [142] presents an approach 

that uses a genetic algorithm (GA) to determine an effective generator maintenance schedule 

that maximizes the generation adequacy economic benefit. In [143], a novel generators 

maintenance strategy is proposed. The objective is to minimize the sum of squares of the 

reserve generation via system reliability analysis and cost/benefit analysis of generators 

using a hybrid approach that combines GA and simulated annealing. The findings of this 

research reveal that the proposed approach is less sensitive to optimization problem 

parameters variations and offer an effective alternative for generator maintenance planning. 

A more exhaustive generator maintenance study is conducted in [144] since it presents the 

maintenance schedule as a multi-objective optimization problem from the reliability and 

economic perspectives. The variables involved to formulate the problem are the sum of 

squares of the reserve generation, loss of load expectation and total operating cost. The 

effective PM schedule that maximizes system reliability is obtained using the Ant Lion 

Optimizer (ALO) in combination with fuzzy decision mechanism defined by the authors. 
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The results are encouraging and indicate the viability of the proposed ALO technique. Even 

though the presented publications expose different approaches for an effective maintenance 

plan, a challenge in this context is to incorporate other relevant factors to the existing models. 

Most of the presented studies consider the availability of the component as the predominant 

factor to schedule preventive maintenance. However, another factor that could be considered 

is the operational risk parameter. Such parameter is used to describe in percentage terms the 

hours that the component function under its different operational states since the last 

maintenance. If the operational risk is avoided, it could bring inaccuracies to the maintenance 

schedule and may not lead to the optimum benefits. Certain efforts have been made to 

incorporate the generator’s operating hours into RCM strategy [145], [146]. The limitation 

of these studies is the low information related to the quantification of the effort required 

during maintenance. Therefore, there is a need to incorporate a more comprehensive 

maintenance strategy that considers the operational risk to schedule effective preventive 

maintenance of power generators.  

2.6 Summary 

This chapter presents a comprehensive literature review of the different methods used 

to assess the adequacy at the three hierarchical levels. The incorporation of renewable energy 

and reactive compensators to enhance the reliability of the power system facilities are 

discussed. The chapter exposes different models to describe the aging effect, and among 

them, the bathtub curve appears as the most comprehensive model. A challenge in 

recognizing the operational states at each stage of the bathtub curve is emphasized. The need 

for faster and robust optimization techniques to maximize the accuracy of the reliability of 

a power system is identified as a potential research gap. The chapter also presents an 

epistemology of the evolution of maintenance. The last section of the chapter discussed 
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different maintenance strategies to mitigate the risk of power generators. The importance of 

operational risk and need to quantify the effort during maintenance actions are highlighted.
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Chapter 3: Reliability Assessment Theories 
 

This chapter presents existing theories to evaluate the reliability of a power system. The 

chapter is divided into five sections. Section 3.1 describes the Markov chain and the 

alternating renewal process to describe the traditional reliability model of a repairable 

components. Section 3.2 presents typical failure and repair rates for hydro and thermal unit 

generation. Section 3.3 exhibits the failure and repair rate for capacitors bank, static var 

compensators and synchronous var compensator. Section 3.5 exposes different studies 

related to risk and reliability evaluation of power systems in their three hierarchical levels.  

Finally, the last section brings a summary of the chapter. 

3.1 Reliability Concept 

The ability of a component to offer a continuous operation in a given time interval is 

defined as reliability [65]. This can be quantified using the operational records of the 

component. Literature presents two schemes for  reliability evaluation: 1. Analytical 

methods; 2. Probabilistic methods [65]. Based on these, it is possible to estimate future 

failures that can be avoided by taking preventive actions. Another advantage that these 

schemes offer lies in the evaluation of historical performance and simulation of past 

behaviour of the component. The reliability evaluation can be employed to analyse the 

operational state of a component in the past or future. An illustration is given in Figure 3.1. 

Most of the probabilistic methods focus on determining the reliability, 

maintainability and availability of a system. Mathematically, the reliability is the probability 

of a component of being in an operating state, which is given by its probability function 𝑓𝑓. 

If the time to failure is defined by 𝜏𝑓, then [147]: 

𝑅(𝑡) = 𝑃(𝑡 > 𝜏𝑓) = ∫ 𝑓𝑓(𝑡)𝑑𝑡
∞

𝜏𝑓

 (3.1) 
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Figure 3.1 Reliability Schemes [148] 

On the other hand, the maintainability is the probability of executing an effective 

repair within a time 𝜏𝑟, which is defined by the probability density function 𝑓𝑟. Therefore,  

𝑀(𝑡) = 𝑃(0 < 𝑡 < 𝜏𝑟) = ∫ 𝑓𝑟(𝑡)𝑑𝑡
∞

𝜏𝑓

 (3.2) 

 

The availability refers to the probability of being in operation during a specific time 

interval. Unlike reliability, it incorporates the maintainability information.  In order to 

proceed with availability calculation, two operational considerations are taken into account 

[149]: 

1. The system operates correctly between time intervals (0, 𝜏𝑓]. This implies that 

probability of this event happening is given by 𝑅(𝑡). 

2. The system is operating appropriately since the last repair at time 𝜏𝑢, such 

that 𝜏𝑢 < 𝜏𝑟. The probability of this condition is given by ∫ 𝑅(𝑡 − 𝜏𝑢)𝑓𝑟(𝑡)
𝜏𝑟
0

𝑑𝑡. 

Consequently, the availability can be defined as:  

𝐴(𝑡) = 𝑅(𝑡) + ∫ 𝑅(𝑡 − 𝜏𝑢)𝑓𝑟(𝑡)
𝜏𝑟

0

𝑑𝑡 (3.3) 

 

As can be appreciated, the last term is difficult to deal with, and for this reason 

stochastic models are used. 
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3.2 Alternating Renewal Process 

As presented in the last section, the availability model involves differential equations, 

which makes complex to reach the solution. Nevertheless, Markov chain can be employed 

to facilitate the process. Markov chain is a representation of all possible states in a diagram 

connected between them by variables called transition rates. For instance, Figure 3.2 presents 

a space state diagram of a repairable component. Its reliability model is represented as an 

alternating renewal process between two states: 1. Operating (Available); 2. Not in service 

(Unavailable) [36]. The transition rate that goes from state “1” to “2” is denoted by 𝜆 and it 

represents the failure rate of the component, while the transition rate that goes from “2” to 

“1” is denoted by 𝜇 and it represents the repair rate of the component. As in most of the 

published literature [150]–[153], in this section 𝜆 and 𝜇 comes from an exponential 

distribution function. Hence, these values are considered as time independent.  

In order to find the solution of the model, let 𝛥𝑡 defined as the time interval. This is 

considered very small in such a way that the occurrence probability of more than one fault 

or repair is also very small, and the occurrence of these events can be neglected. Then, the 

probabilities of failure and repair are as given in (3.4) and (3.5), respectively.  

𝑃𝑓(𝑡) = 𝜆Δ𝑡 (3.4) 

𝑃𝑟(𝑡) = 𝜇Δ𝑡 (3.5) 

 

On the other hand, the probability of being in state “1” at time 𝑡 + Δ𝑡 is determined 

by the sum of the probability of not having failed in 𝛥𝑡 and the probability of being failed at 

time 𝑡 and having been repaired in 𝛥𝑡. Mathematically, this is described as given in (3.6).  

𝑃1(𝑡 + Δ𝑡) = 𝑃(𝑡) (1 − 𝑃𝑓(𝑡)) + 𝑃2(𝑡)𝑃𝑟(𝑡) (3.6) 
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Figure 3.2 Markov chain of a repairable component [148] 

Focusing on state “2”, its probability at time 𝑡 + Δ𝑡 is equal to the probability of 

being failed in 𝑡 and not having been repaired in 𝛥𝑡 plus the probability of being non-failed 

in 𝑡 and having failed in 𝛥𝑡. Therefore,  

𝑃2(𝑡 + Δ𝑡) = 𝑃2(𝑡) + (1 − 𝑃𝑟(𝑡)) + 𝑃1(𝑡)𝑃𝑓(𝑡) (3.7) 

 

By replacing (3.4) and (3.5) in (3.6):  

𝑃1(𝑡 + Δ𝑡) = 𝑃1(𝑡)(1 − 𝜆Δ𝑡) + 𝑃2(𝑡)𝜇Δ𝑡 (3.8) 

𝑃1(𝑡 + Δ𝑡) − 𝑃1(𝑡)

Δ𝑡
|
Δ𝑡→0

= −𝜆𝑃1(𝑡) + 𝜇𝑃2(𝑡) (3.9) 

𝑑𝑃1(𝑡)

𝑑𝑡
= −𝜆𝑃1(𝑡) + 𝜇𝑃2(𝑡) (3.10) 

 

By replacing (3.4) and (3.5) in (3.7):  

𝑃2(𝑡 + Δ𝑡) = 𝑃2(𝑡)(1 − 𝜇Δ𝑡) + 𝑃1(𝑡)λΔ𝑡 (3.11) 

𝑃2(𝑡 + Δ𝑡) − 𝑃2(𝑡)

Δ𝑡
|
Δ𝑡→0

= −𝜆𝑃1(𝑡) − 𝜇𝑃2(𝑡) (3.12) 

𝑑𝑃2(𝑡)

𝑑𝑡
= 𝜆𝑃1(𝑡) − 𝜇𝑃2(𝑡) (3.13) 

 

Expressing (3.10) and (3.13) in matrix form:  

𝑑

𝑑𝑡
[
𝑃1(𝑡)

𝑃2(𝑡)
] = [

−𝜆 𝜇
𝜆 −𝜇

] (3.14) 

 

In order to simplify the analysis, 𝑷(𝒕) is defined as the probability vector of all 

possible states,  𝑷̇(𝒕) is defined as the derivative probability vector of all possible states, and 

𝑯𝑻 is defined as the transpose of the stochastic matrix of transition states, then (3.14) can be 

expressed as follows: 

𝑷̇(𝒕) = 𝑯𝑻𝑷(𝒕) (3.15) 
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The process continues by employing Laplace transform (𝑡 → 𝜛) to (3.15):  

𝑠𝑷(𝝕) − 𝑷(𝟎) = 𝑯𝑻𝑷(𝝕) (3.16) 

𝑷(𝝕) =
𝑷(𝟎)

𝜛 −𝑯𝑻
 (3.17) 

 

Applying inverse Laplace Transform (𝜛 → 𝑡)  to (3.17):  

 

𝑷(𝒕) = 𝑪𝑒𝑯
𝑻𝑡 (3.18) 

 

where 𝑪 is the vector that contains values given by the initial conditions. 

The solution for the system still being complicated since the matrix 𝑯𝑻 appears as 

exponent. To simplify the solution, the Putzer’s spectral formula [154] is applied, in which  

the term 𝑒−𝑯
𝑻𝑡 can be expressed as a function of the eigenvalues 𝜒 and eigenvectors 𝝊 of 

𝑯𝑻. This is shown below:  

𝑒𝑯
𝑻𝑡 =∑𝝊𝒔𝑒

𝜒𝑠𝑡

𝑁𝑆

𝑠=1

 (3.19) 

 

where 𝑁𝑆 is the number of states. Therefore, the general solution for the Markov chain is: 

𝑃(𝑡) =∑𝑐𝑠𝝊𝒔𝑒
𝜒𝑠𝑡

𝑁𝑆

𝑠=1

 (3.20) 

 

The alternating renewal process presents a transition matrix 𝑯𝑻 = [
−𝜆 𝜇
𝜆 −𝜇

], then: 

𝜒1 = 0; 𝜒2 = −𝜆 − 𝜇 (3.21) 

𝝊𝟏 = [
𝜇/𝜆
1
] ; 𝝊𝟐 = [

−1
1
] (3.22) 

 

In order to get the values for 𝑐, it is assumed that at 𝑡 = 0 the component is operating 

(𝑃1|𝑡=0 = 1; 𝑃2|𝑡=0 = 0). Therefore, (3.20) can be written as: 

[
1
0
] = 𝑐1 [

𝜇/𝜆
1
] 𝑒0 + 𝑐2 [

−1
1
] 𝑒(−𝜆−𝜇)(0) ⟹ 𝑐1 =

𝜆

𝜆 + 𝜇
; 𝑐2 = −

𝜆

𝜆 + 𝜇
 (3.23) 

 

Finally, the reliability model of the alternating renewal process is given in (3.24). 
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𝑃1(𝑡) =
𝜇

𝜆 + 𝜇
+

𝜆

𝜆 + 𝜇
𝑒−(𝜆+𝜇)𝑡 

𝑃2(𝑡) =
𝜆

𝜆 + 𝜇
−

𝜆

𝜆 + 𝜇
𝑒−(𝜆+𝜇)𝑡 

(3.24) 

 

It is relevant to highlight that the availability and unavailability is represented by 𝑃1 

and 𝑃2, respectively. 

3.3 Reliability Features of Electrical Power Generators 

Electrical Power generators are essential components in power systems since they 

supply the demand. In the following sections, the reliability features (failure and repair rates) 

of hydro and thermal power generators are discussed. 

3.3.1 Hydro Unit Generation 

From the reliability point of view, a hydro generator is a series system comprised 

with five main parts: stator, rotor, shaft, wicket gate, and turbine blades. A series system is 

characterized by its weakest link, that is, the failure rate of the system mainly depends on 

the most vulnerable component [155]. For a hydro generator, the turbine is the most 

vulnerable component since it is the only one that is in direct contact with water flow [156]. 

For this reason, many reliability studies [156]–[158] focus their attention on the turbine. 

Therefore, failure rate of hydro generator is given by the turbine reliability characteristics.  

Table 3.1 Reliability Features of Hydro Unit Generation [6], [34], [157], [159]–[164] 

Hydro power generation Turbine 
Failure rate 

[1/yr] 

Repair rate  

[1/yr] 

Small 

power<10 MW 

Pelton 1.0 ≤ 𝜆 ≤ 3.0 180 ≤ 𝜇 ≤ 220 

Francis 2.0 ≤ 𝜆 ≤ 3.0 170 ≤ 𝜇 ≤ 200 

Kaplan 2.0 ≤ 𝜆 ≤ 3.0 165 ≤ 𝜇 ≤ 230 

Medium 

10 MW≤power<30 MW 

Pelton 1.5 ≤ 𝜆 ≤ 4.0 150 ≤ 𝜇 ≤ 189 

Francis 2.3 ≤ 𝜆 ≤ 3.4 130 ≤ 𝜇 ≤ 190 

Kaplan 2.2 ≤ 𝜆 ≤ 3.6 127 ≤ 𝜇 ≤ 170 

Large 

Power≥30 MW 

Pelton 2.9 ≤ 𝜆 ≤ 6.0 150 ≤ 𝜇 ≤ 170 

Francis 2.0 ≤ 𝜆 ≤ 5.0 120 ≤ 𝜇 ≤ 180 

Kaplan 2.5 ≤ 𝜆 ≤ 5.0 120 ≤ 𝜇 ≤ 180 
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Figure 3.3 Hydro generator reliability topology 

Figure 3.3 shows a schematic diagram representing the reliability topology of a hydro 

generator. Table 3.1 presents the registered [6], [34], [157], [159]–[163] transition rates for 

small, medium, and large hydro power generation. 

3.3.2 Thermal Unit Power Generation 

Thermal unit power generations follow a combined thermodynamic cycle to produce 

energy [165]. The generator incorporates a gas turbine that compresses air and mixes it with 

fuel that is heated to a very high temperature [166]. The hot air-fuel mixture moves through 

the gas turbine blades, making them spin (kinetic energy). The generator drive shaft 

transform the kinetic energy into electrical energy [166]. This process is supported by a heat 

recovery steam generator that captures exhaust heat from the gas turbine and creates steam. 

The steam is delivered to the steam turbine [166], producing an extra kinetic energy that is 

used to generate additional electricity [166].  

Thermal unit generation design mainly depends on the source used to produce the 

heat, which could be: coal, oil or natural gas [165]. The transition rates registered [6], [163], 

[167]–[170] are shown presented in Table 3.2. 
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Table 3.2 Reliability Features of Thermal Unit Generation [6], [163], [164], [167]–[170] 

Thermal Power Generation Heat Source 
Failure rate 

[1/yr] 

Repair rate  

[1/yr] 

Small 

power<10 MW 

Coal 3.0 ≤ 𝜆 ≤ 4.0 140 ≤ 𝜇 ≤ 167 

Oil 3.0 ≤ 𝜆 ≤ 5.0 127 ≤ 𝜇 ≤ 166 

Natural gas 2.3 ≤ 𝜆 ≤ 4.0 113 ≤ 𝜇 ≤ 140 

Medium 

10 MW≤power<30 MW 

Coal 4.0 ≤ 𝜆 ≤ 5.8 150 ≤ 𝜇 ≤ 189 

Oil 4.5 ≤ 𝜆 ≤ 7.0 132 ≤ 𝜇 ≤ 150 

Natural gas 3.2 ≤ 𝜆 ≤ 4.6 130 ≤ 𝜇 ≤ 179 

Large 

power≥30 MW 

Coal 5.0 ≤ 𝜆 ≤ 7.0 200 ≤ 𝜇 ≤ 230 

Oil 6.0 ≤ 𝜆 ≤ 9.3 160 ≤ 𝜇 ≤ 190 

Natural gas 4.0 ≤ 𝜆 ≤ 8.0 120 ≤ 𝜇 ≤ 180 

 

3.4 Reliability Features of FACTS 

FACTS devices present different advantages such as reactive compensation, 

oscillations damping, voltage support, and increasing network stability [171]–[173]. Its main 

benefit in comparison with capacitor banks, lies in its dynamic operation that allows varying 

the injected reactive power with the minimum harmonics [174]. The classification of FACTS 

is based on the topology of its controllers.  After deep scrutiny and with a formal 

arrangement, Figure 3.4 shows FACTS classification. It is relevant to mention that this 

research focus on two FACTS, they are: Static Var Compensator (SVC) and Static 

Synchronous Compensator (STATCOM). 

SVC and STATCOM are often in modern power systems accredited to its dynamic 

and fast response at the need for reactive power compensation. Mathematically, the injected 

current of these compensators is defined as: 

𝐼𝑆 = 𝑗𝑈𝑔𝑟𝑖𝑑𝑌𝑆(𝜃) ⇒ 𝑄dispached (3.25) 

 

where 𝑈𝑔𝑟𝑖𝑑 is the system voltage, 𝑌𝑆 is the admittance of the reactive compensator, which 

appears as a function of the firing angle operation 𝜃. Figure 3.5 and Figure 3.7 show a 

schematic representation of SVC and STATCOM operation, respectively. 



 
 
 

36 | P a g e  

 

 
Figure 3.4 FACTS categorization 

 

The SVC and STATCOM involve various components. Nevertheless, Figure 3.6 and 

Figure 3.8 show that they can be characterized by three fundamental parts. They are: 1. Main 

Circuit; 2. Auxiliary power supply; and 3. Control system. Each of these presents a failure 

and repair rate, which are used to create the Markov chain of the system. Figure 3.9, shows 

the Markov chain that define the reliability model of both compensators. In addition, their 

transitions rates are presented in Table 3.4 and Table 3.5. 
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Table 3.3 SVC and STATCOM Electrical Features 

FACT Electrical Model Reactive Compensation Model 

SVC 

 
Figure 3.5 SVC electrical circuit [175], 

[176] 

 
Figure 3.6 SVC U-I characteristic 

 [177], [178] 

STATCOM 

 
Figure 3.7 STATCOM electrical circuit 

[179], [180] 

 
Figure 3.8 STATCOM U-I 

characteristic [181], [182] 

 

Table 3.4 Static Var Compensator Reliability Features [112], [183]–[186] 

Size System 
Failure rate 

[1/yr] 

Repair rate  

[1/yr] 

Small  

power<10 MVAr 

Main circuit 0.050 ≤ 𝜆 ≤ 4.00 145 ≤ 𝜇 ≤ 167 

Auxiliary 

power supply 
0.015 ≤ 𝜆 ≤ 0.048 200 ≤ 𝜇 ≤ 876 

Control 0.0001 ≤ 𝜆 ≤ 0.0003 995 ≤ 𝜇 ≤ 4380 

Medium 

10 MVAr≤power<30 MVAr 

Main circuit 0.105 ≤ 𝜆 ≤ 6.20 150 ≤ 𝜇 ≤ 195 

Auxiliary 

power supply 
0.010 ≤ 𝜆 ≤ 0.050 210 ≤ 𝜇 ≤ 2190 

Control  0.0001 ≤ 𝜆 ≤ 0.0004 600 ≤ 𝜇 ≤ 2190 

Large 

power≥30 MVAr 

Main circuit 0.506 ≤ 𝜆 ≤ 8.20 160 ≤ 𝜇 ≤ 219 

Auxiliary 

power supply 
0.010 ≤ 𝜆 ≤ 0.098 215 ≤ 𝜆 ≤ 1095 

Control 0.0001 ≤ 𝜆 ≤ 0.0008 236 ≤ 𝜇 ≤ 2190 
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Figure 3.9 SVC/STATCOM reliability model [187] 

Table 3.5 Static Synchronous Compensator Reliability Features [186]–[192] 

Size System 
Failure rate 

[1/yr] 

Repair rate  

[1/yr] 

Small 

power<10 MVA 

Main circuit 1.0 ≤ 𝜆 ≤ 6.0 130 ≤ 𝜇 ≤ 180 

Auxiliary 

power supply 
0.010 ≤ 𝜆 ≤ 0.050 205 ≤ 𝜇 ≤ 900 

Control system 0.0001 ≤ 𝜆 ≤ 0.0003 950 ≤ 𝜇 ≤ 4280 

Medium 

10 MVA≤power<30 MVA 

Main circuit 0.23 ≤ 𝜆 ≤ 8.60 140 ≤ 𝜇 ≤ 205 

Auxiliary 

power supply 
0.012 ≤ 𝜆 ≤ 0.070 208 ≤ 𝜇 ≤ 2590 

Control system 0.0001 ≤ 𝜆 ≤ 0.0004 500 ≤ 𝜇 ≤ 3580 

Large 

power≥30 MVA 

Main circuit 0.83 ≤ 𝜆 ≤ 9.80 146 ≤ 𝜇 ≤ 300 

Auxiliary 

power supply 
0.015 ≤ 𝜆 ≤ 0.099 220 ≤ 𝜆 ≤ 1100 

Control system 0.0001 ≤ 𝜆 ≤ 0.0005 205 ≤ 𝜇 ≤ 3190 
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3.5 Reliability Assessment in Power Systems 

In all the hierarchical levels, reliability is measured using probabilities, descriptive 

statistics, operative measures, and deterministic indexes. In the next sections, the required 

techniques to determine the reliability indices at each hierarchical level are discussed. 

3.5.1 Monte Carlo Simulation 

 Since it is not possible to determine the exact moment when a failure will occur, 

sampling methods are utilized to estimate the state of the component. Monte Carlo (MC) 

simulation is the most famous method in reliability field. Literature [193]–[195] reports the 

method as simple and robust, which makes it feasible for different applications. The method 

is divided into two: sequential and non-sequential. In the former, the order of the randomized 

events is relevant in the simulation, while this is not considered in the latter. This causes an 

increase in the computational burden for sequential MC. Nevertheless, sequential MC 

presents better accuracy in some applications [196]. 

Monte Carlo Simulation is applied to power systems to determine the state of each 

component. The procedure starts by generating a random number between one and zero to 

every power system component, such that, the state of the ℴth component is as given in 

(3.26). 

𝑠ℴ = {
1, Operating           
0, Not in service    

 (3.26) 

 

The process continues with the calculation of the mathematical expectation of the 

system state. For this purpose, let define the state of a power system at experiment 𝑒𝑥𝑝 as 

𝑆𝑒𝑥𝑝 = {𝑠1, 𝑠2, … , 𝑠𝑁𝐶}. Then, the mathematical expectation of the system state can be 

expressed as: 

𝐸𝑋𝑆𝑒𝑥𝑝 = 𝐸𝑋𝐹(𝑆𝑒𝑥𝑝) 𝑃(𝑆𝑒𝑥𝑝) (3.27) 
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where 𝐸𝑋𝐹 and 𝑃 represent the experiment function, and the probability event function, 

respectively. This calculation is repeated for a total number of experiment 𝑁𝐸. In every 

experiment, 𝐸𝑒𝑥𝑝 is recorded.  

The procedure finishes at the convergence with the determination of the sample mean 

value, which can be obtained using (3.28).  

𝐸𝑋𝑆̂ =
1

𝑁𝐸
∑ 𝐸𝑋𝑆𝑒𝑥𝑝

𝑁𝐸

𝑒𝑥𝑝=1

 (3.28) 

 

More details about the method are presented in Algorithm 3.1  [187]. 

Algorithm 3.1 Monte Carlo Pseudocode 

1.   Procedure of MC 

2.   For 𝑒𝑥𝑝 = 1 to total experiment (𝑁𝐸) 
3.       randomize the states for all components: 𝑆𝑒𝑥𝑝 = (𝑠1, 𝑠2, … , 𝑠𝑁𝐶) 

4.       define 𝐸𝑋𝐹 and 𝑃 

5.       evaluate 𝐸𝑋𝐹 and 𝑃 in 𝑆𝑒𝑥𝑝 

6.       determine 𝐸𝑋𝑆𝑒𝑥𝑝 using (3.27) 

7.   Endfor 

8.   determine 𝐸𝑋𝑆̂ using (3.28) 

 

3.5.2 Generation Adequacy Analysis 

The generation adequacy studies the reliability at HLI. The reliability is measured by 

different indices, such as the loss of load expectation (LOLE) given in hr/yr, loss of energy 

expectation (LOEE) given in MWh/yr, loss of load probability (LOLP) given in p.u. and 

expected loss of load (XLOL) given in MW.  The determination of these indices required to 

determine three main metrics: mean time to failure (MTTF), mean time to repair (MTTR), 

and mean time between failures (MTBF). MTTF is defined as the length of time that a system 

is in operation between outages; MTTR refers to the amount of time required to repair a 

component and bring it back to normal operation state; MTBF measures the predicted time 

that passes between one previous failure of a system to the next failure during normal 

operation.  
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The reliability indices calculation starts with simulation of the MTTF, MMTR and 

MTBF by generating random number a random number for each one-hour time slot sampling 

during the time analysis 𝑇𝑆 for each unit generation in the power system. If the generated 

number is greater than the unavailability, the component goes the operating state, otherwise, 

the component goes to not in-service state. The next step is to calculate the margin generation 

by taking the difference between the available hourly power generation and the hourly 

demand. The sum of the negative margin (area presented in Figure 3.10) determines the 

energy not supplied 𝐸𝑁𝑆𝑒𝑥𝑝, while the sum of the time period that this phenomenon occurs 

determines the loss of load duration 𝐿𝐿𝐷𝑒𝑥𝑝. These values are saved, and one experiment is 

completed. The process is repeated 𝑁𝐸 times. Finally, the reliability indices can be estimated 

as follows [6], [32]: 

𝐿𝑂𝐿𝐸 =
1

𝑁𝐸
∑ 𝐿𝐿𝐷𝑒𝑥𝑝

𝑁𝐸

𝑒𝑥𝑝=1

 (3.29) 

𝐿𝑂𝐸𝐸 =
1

𝑁𝐸
∑ 𝐸𝑁𝑆𝑒𝑥𝑝

𝑁𝐸

𝑒𝑥𝑝=1

 (3.30) 

𝐿𝑂𝐿𝑃 =
𝐿𝑂𝐿𝐸

𝑁𝐸
 (3.31) 

𝑋𝐿𝑂𝐿 =
𝐿𝑂𝐸𝐸

𝐿𝑂𝐿𝐸
 (3.32) 

 

Figure 3.10 Generation-Demand margin model  
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3.5.3 Composite System Reliability Analysis 

The composite system reliability assesses the generation, transmission, and 

distribution systems adequacy. The reliability is measured by indices, such as the expected 

number of load curtailments (ENLC) given in occ/yr, expected duration of load curtailments 

(EDLC) given in hr/yr, probability of load curtailments (PLC) given in p.u. and expected 

energy not supplied (EENS) given in MWh/yr. Among the described reliability indices, the 

most used is the EENS [197] attributed to its application in the cost-benefit analysis. It could 

be used to represent the economic losses due to outages. For its calculation, the analysis 

starts by conducting Monte Carlo simulation to determine the state of each component of the 

power system. Then, a generation adequacy assessment that considers load curtailment is 

performed. The curtailment is carried out by meeting two criteria: 1. curtailed buses which 

are as close to the elements on outage; 2. loads are categorized by hierarchy relevance [198]. 

During this step, any load curtailed is added and it becomes the energy not supplied (ENS). 

Once the generation have satisfied the demand, the process continues with an optimal power 

flow [199] to determine the voltage and current of the buses. If any voltage constraint is 

violated or if there is an overloaded line (OL), load curtailment is applied and added to the 

ENS, otherwise, the experiment finishes. Finally, the whole process is repeated 𝑁𝐸 times 

and the EENS is calculated using (3.28). For more details about the study, Figure 3.11 

presents a flowchart of the process. 

3.6 Risk Quantification 

The term risk (ℶ) refers to the probability of failure that is caused by external or 

internal vulnerabilities, and that may be avoided through preventive actions. For the 

quantification of the risk, the existing literature [95], [194], [200] presents the convolution 

method (∗) as a pathway to calculate it. For instance, let define the probability distribution 

for the generation and demand as 𝑓𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and 𝑓𝑑𝑒𝑚𝑎𝑛𝑑, respectively. Then, the risk is 



 
 
 

43 | P a g e  

 

assessed by measuring the probability that the available generation in a given time (day, 

month, and year) is greater than or equal to the maximum demand forecasted. 

Mathematically it can be formulated as:  

𝑅𝑖𝑠𝑘 = 𝑓𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(℘) ∗  𝑓𝑑𝑒𝑚𝑎𝑛𝑑(℘) = ∫ ∫ 𝑓𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(℘) 𝑓𝑑𝑒𝑚𝑎𝑛𝑑(℘)
℘

0

∞

0

𝑑℘ 𝑑℘ (2.1) 

 

where ℘ is the power given in [MW]. Figure 3.12, presents a schematic representation of 

the risk. 

 
Figure 3.11 Flowchart for a composite system reliability evaluation  
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Figure 3.12 Risk of not meeting the predicted maximum demand 

3.7 Summary 

This chapter presented the existing reliability assessment theories. The parameters 

that define the reliability of any component are the failure and repair rates, which are 

determined based on the operational records of the component. If the operational records are 

known, many analyses can be performed, such as estimate past and future behaviour, and 

evaluate historical performance. The typical model employed for these aims is the alternating 

renewal process, which is represented using Markov chains. The chapter also presents the 

solution of the alternating renewal model. 

 The chapter continues with the presentation of a data collection of common failure 

and repair rates of generators. The rates for hydro and thermal unit generation are categorized 

as a function of the turbine and heat source required to operate the generator, respectively. 

The data collection is extended to static var compensators and static synchronous generator. 

The electrical circuit, voltage-current characteristic curve, and Markov chain model of the 

reactive compensators are also described.  

The chapter culminates with the description of the strategies needed to perform a 

reliability assessment on a power system. This includes Monte Carlo simulation, generation 

adequacy analysis, composite system reliability analysis, and reliability indices 

mathematical formulations. 
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Chapter 4: Reliability Model with Aging Features 
 

Every component in a power system suffers a loss of mechanical and electrical properties 

(degradation) due to aging. The aging phenomenon is important to consider in a reliability 

evaluation of power system since it affects the availability of the component. In this chapter 

a novel reliability model with aging features for repairable components is introduced. The 

chapter is divided into six sections. Section 4.1 introduces the bathtub curve and the half-

arch shape as a Markovian process to define the transition rates of repairable components. 

Section 4.2 describes the states involved in each stage of transition rates. In section 4.3, the 

mathematical framework of the proposed reliability model is presented. In section 4.4, the 

quantification of the degradation is given. Section 4.5 studies the proposed models through 

a case study. Finally, the last section presents a summary of the chapter.  

As a contribution to the state of art, the publications [201], [202] resulted from the 

research described in this chapter.  

4.1 Time Dependent Transitions Rates 

A component presents different operational states during its lifetime. The speed 

associated with various state changes is defined as the transition rate. This can be represented 

as a function of time, nevertheless, if this takes a constant value the transition rate is 

considered as time independent. Literature provides several reliability studies [203]–[206] 

that considers constant transition rates. Nonetheless, components present a tendency to fail, 

and as time pass by, this tendency increases due to aging phenomenon [201]. Therefore, 

time-independent transition rates disregard the aging and carry inaccuracies, leading to 

unrealistic results. To tackle this drawback, it is necessary to incorporate models that 

consider time-dependent transition rates. For this purpose, the thesis proposes the 

implementation of the bathtub curve and half-arch shape, which are described as follows. 
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4.1.1 Bathtub Curve 

A milestone in reliability theory is the bathtub curve [94]. This curve describes the 

behaviour of the failure rate of a reparable component as a function of time 𝑡. The literature 

reports that the curve is divided into three stages [68]. The initial stage corresponds to the 

infant mortality (0 ≤ 𝑡 ≤ 𝑇𝑈), in which the component has a high probability of failure in 

the first instances of operation. This is attributed to undetected or hidden defects during 

manufacturing. The next stage is the longest period and it is called useful lifetime (𝑇𝑈 ≤ 𝑡 <

𝑇𝑉). At this stage, the failure rate takes a constant value.  Then, the component transcends to 

wear out (𝑇𝑉 ≤ 𝑡 < 𝑇𝑊). In this stage, the failure rate increases, and the component 

undergoes to physical deterioration process. Although the literature reports only three stages 

for the bathtub curve, there is a need to include one more stretch in order to describe the 

obsolescence of the component. This stage is called end lifetime (𝑡 > 𝑇𝑊) [201]. 

There are different distributions functions used to define the bathtub curve. For 

instance, in [9] employs a Coxian; in [10] uses a nonstandard beta; in [7], [11], [12] use 

Weibull. In this research, the Gumbel distribution function is suggested since it permits to 

join the useful lifetime and wear out stages. Hence, the bathtub curve can be formulated as 

given in (4.1) [2]. 

𝜆(𝑡) = {
𝜆𝐼

𝑎 + 𝛼𝑒𝛼(𝑡−𝜔)

∞

;  0 ≤ 𝑡 ≤ 𝑇𝑈
   ;  𝑇𝑈 < 𝑡 ≤ 𝑇𝑊
;  𝑡 > 𝑇𝑊       

 (4.1) 

 

where 𝜆𝐼 is the failure rate due to replacement, 𝛼 is the failure rate scale;  𝑎 is the failure rate 

displacement parameter, and 𝜔 is the failure rate location parameter.  

4.1.2 Half-Arch Shape 

The repair rate behaviour is defined by the half-arch shape. As in the bathtub curve, 

the half-arch shape is divided into four stages. In the infant mortality period, the repair rate 

mainly depends on how quickly the manufacturer executes the replacement action. During 
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the useful life, the repair rate of the component takes a constant value. The failures on the 

component become more intense with time, and the restoration of the component becomes 

more difficult to execute. Consequently, during the wear out stages, the repair rate decreases 

fast. The process continues with the end lifetime stage, where restoration cannot be 

performed, and the repair rate takes a null value. Mathematically, the half-arch shape is as 

described in (4.2) [202]. 

𝜇(𝑡) = {

𝜇𝐼
𝑏 − 𝛽𝑒𝛾𝑡

∞

;  0 ≤ 𝑡 ≤ 𝑇𝑈
   ;  𝑇𝑈 < 𝑡 ≤ 𝑇𝑊
;  𝑡 ≥ 𝑇𝑊       

 (4.2) 

 

where 𝜇𝐼 is the repair rate subject to the policy of replacement, 𝛽 is the repair rate scale;  𝑏 

is the repair rate displacement parameter, and 𝛾 is the repair rate power parameter.  

4.2 States and Stages 

The transitions rates are lanes to different states. Its behaviour depends on where the 

state takes place within the bathtub curve. For each state, there are corresponding stages 

which are described below. 

4.2.1 States in the Infant Mortality Stage 

 The infant mortality is defined by the policy of the manufacturer and it corresponds 

to the period of guarantee. In this stage, the component is in a state denominated as 

“operation good as new”. Whenever a failure arises, the component goes to a state 

characterized by the policy of replacement. This process is recurrent, and the component 

goes to the next stage only if no failures event occurs during the guarantee period ends. 

4.2.2 States in the Useful Lifetime and Wear Out Stages 

 Although the component can operate under different conditions during the infant 

mortality and wear out stage, this can be summarized in two simple states: 1. Normal 

operation; 2. Not operating. Other possible states will be discussed in Chapter 6. 
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4.2.3 State in the End Lifetime Stage 

 At some point, the unavailability of the component will be so high that a replacement 

will be required. If that occurs, the component reaches the obsolescence state, which is 

characterized by the degradation rate 𝜙. 

 Once every state has been recognized and assigned to each stage of the bathtub curve, 

the Markovian process that describes the reliability model of a repairable component is 

introduced in Figure 4.1. 

 

 

Figure 4.1 State-space diagram based on the Bathtub curve and Half-Arch shape [202]. 
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4.3 Reliability Framework 

Although Figure 4.1 shows five possible states, the model can be truncated in three 

states. This is based on the fact that states “0” and “I” appears only to secure the guarantee, 

that is, if a failure event takes place during this period, the time is reset to zero. Therefore, 

the component only goes to the next stage if no failures occur during the guarantee period. 

Therefore, the model can avoid the states that appear during the infant mortality and the 

analysis can start from state “1” by considering the end of the guarantee period (𝑇𝑈) as the 

initial time analysis.  Under these considerations, the process continues as follows. 

4.3.1 Probability Vector of States 

The stochastic matrix of transition states mathematically represents all possible states 

in a stochastic process. Its diagonal terms ℎ𝑖𝑖 are given by the negative of the sum of the 

transitions rates that goes out of state 𝑖, while the rest of the terms ℎ𝑖𝑗 are given by the 

transition rate that goes from state 𝑖 to 𝑗 [201], [202]. Applying this criterion to the model 

presented in Figure 4.1, the result is: 

𝑯 = [
−𝜆 𝜙 0
𝜇 −𝜇 − 𝜙 𝜙
0 0 0

] (4.3) 

 

Later, the eigenvalues, eigenvectors and eigenmatrix of 𝑯𝑻 are given as in (4.4), (4.5) 

and (4.6), respectively. 

 𝜒1 = 0; 𝜒2 = (−𝜆 − 𝜇 − 𝜙 − 𝑑)/2; 𝜒3 = (−𝜆 − 𝜇 − 𝜙 + 𝑑)/2;  (4.4) 

𝝊𝟏 = [0 0 1]𝑇 

𝝊𝟐 = [
(−𝜆 − 𝜇 − 𝜙 + 𝑑)(𝜆 + 𝜇 + 𝜙 + 𝑑)

4𝜆𝜙

−𝜆 − 𝜇 − 𝜙 − 𝑑

2𝜙
1]

𝑇

 

𝝊𝟑 = [
(𝜆 − 𝜇 − 𝜙 − 𝑑)(𝜆 + 𝜇 + 𝜙 − 𝑑)

4𝜆𝜙

−𝜆 − 𝜇 − 𝜙 + 𝑑

2𝜙
1]

𝑇

 

(4.5) 

𝜰 = [𝝊𝟏 𝝊𝟐 𝝊𝟑] (4.6) 

 

where 
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𝑑 = √−4𝜆𝜙 + (𝜆 + 𝜇 + 𝜙)2 (4.7) 

 

The analysis continues with the determination of the 𝑐 values. At a time 𝑡 = 0 the 

component is in an operating state (𝑃1|𝑡=𝑇𝑢 = 1; 𝑃2|𝑡=0 = 0; 𝑃3|𝑡=0 = 0), therefore:  

lim
𝑡→0

𝑷 = [
1
0
0
] (4.8) 

 

By replacing (4.4), (4.5) and (4.8) in the general solution (3.20): 

[
1
0
0
] = 𝑐1𝑒

𝜒1(0) [
0
0
1
] + 𝑐2𝑒

𝜒2(0)

[
 
 
 
(−𝜆−𝜇−𝜙+𝑑)(𝜆+𝜇+𝜙+𝑑)

4𝜆𝜙

−𝜆−𝜇−𝜙−𝑑

2𝜙

1 ]
 
 
 

+

𝑐3𝑒
𝜒3(0)

[
 
 
 
(𝜆−𝜇−𝜙−𝑑)(𝜆+𝜇+𝜙−𝑑)

4𝜆𝜙

−𝜆−𝜇−𝜙+𝑑

2𝜙

1 ]
 
 
 

  

(4.9) 

 

Solving for the 𝑐 values gives:  

 

𝑐1 = 1; 𝑐2 =
𝜆 + 𝜇 + 𝜙 − 𝑑

2𝑑
𝑒−0.5𝑇𝑈(𝜆+𝜇+𝜙+𝑑); 

            𝑐3 =
−𝜆 − 𝜇 − 𝜙 − 𝑑

2𝑑
𝑒−0.5𝑇𝑈(𝜆+𝜇+𝜙−𝑑) 

(4.10) 

 

 Once 𝑐, 𝜒 and 𝛖 are defined in terms of the transitions rates, they can be replaced in 

(2.20), bringing (4.11) [201], [202]. This formulation determines the probability of each 

state.  

𝑃1(𝑡) = 𝑐1𝑒
𝜒1𝑡Υ11 + 𝑐2𝑒

𝜒2𝑡Υ12 + 𝑐3𝑒
𝜒3𝑡Υ13

𝑃2(𝑡) = 𝑐1𝑒
𝜒1𝑡Υ21 + 𝑐2𝑒

𝜒2𝑡Υ22 + 𝑐3𝑒
𝜒3𝑡Υ23

𝑃3(𝑡) = 𝑐1𝑒
𝜒1𝑡Υ31 + 𝑐2𝑒

𝜒2𝑡Υ32 + 𝑐3𝑒
𝜒3𝑡Υ33

 (4.11) 

  

4.3.2 Degradation Rate 

The reliability model requires to know the degradation rate of the component. To get 

it, let start by defining the term “absorbing state”. This is described as the state in which once 

reached, there is no possibility to go to any other state. For example, in Figure 4.1 the 
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obsolescence is an absorbing state. The particularity of this state is that it presents a mean 

time to absorption (𝑀𝑇𝑇𝐴), which can be gotten with the following process [207]: 

1. Determine the matrix 𝑮 = 𝑯 + 𝑰. This matrix can be expressed in a canonical 

form by separating the transient states (TR.) and absorbing states (AB.), as 

presented in (4.12). 

  TR.     AB. 

𝑮 = [
𝑸    𝑳 

𝟎̅   𝑰 
]
TR.
AB.

 
(4.12) 

 

2. Obtain the fundamental matrix 𝑵 = [𝑰 − 𝑸]−1. 

𝑵 = [
1 − 𝜆 𝜆 0
𝜇 1 − 𝜇 − 𝜙 𝜙
0 0 1

] (4.13) 

 

3. Calculate 𝑀𝑇𝑇𝐴 by adding the terms of 𝑵 in the row that corresponds to the 

started state. In this case, ‘1’ is the initial state, then: 

𝑀𝑇𝑇𝐴 =
𝜆 + 𝜇 + 𝜙

𝜆𝜙
 (4.14) 

In practical terms, the 𝑀𝑇𝑇𝐴 represents the end of lifetime of the component, hence: 

𝑇𝑊 =
𝜆 + 𝜇 + 𝜙

𝜆𝜙
 (4.15) 

 

Consequently, from (4.15): 

𝜙 =
𝜆 + 𝜇

𝑇𝑊𝜆 − 1
 (4.16) 

 

4.3.3 Availability and Unavailability 

In a reliability context, the availability quantifies the degree of reliability of a 

component. It can be obtained from the sum of probabilities of the operating states of the 

component that are defined in Θ. In contrast, the unavailability is the sum of probabilities of 

the non-operating states of the component that are defined in  Ω. Mathematically, they can 

be written as shown in (18) and (19), respectively. 
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𝐴(𝑡) =∑𝑃𝑠
𝑠∈Θ

 (4.17) 

𝑈(𝑡) =∑𝑃𝑠
𝑠∈Ω

 (4.18) 

 

The set of operational and non-operational states for the proposed model are given in (4.19). 

Θ = {1};  Ω = {2, 3} (4.19) 

 

Hence: 

 

𝐴(𝑡) = 𝑃1(𝑡) (4.20) 

𝑈(𝑡) = 𝑃2(𝑡) + 𝑃3(𝑡) (4.21) 

 

4.4 Quantification of the Degradation 

The degradation is a process that leads to the loss of essential characteristics, and 

eventually causes a component to fail. In this research, the degradation is a per unit factor 

defined by the inverse of the product between the lifetime of the component (𝑇𝑊), and its 

degradation rate (𝜙𝑊). Mathematically, it is formulated as given in (4.22) [202].  

Λ =
1

𝑇𝑊𝜙
 (4.22) 

 

The degradation must deal with the fact that when the component reaches its end 

lifetime stage, it must drive the component to the obsolescence state. In order to retain this 

state, the degradation must be so high, in which case it must satisfy (4.23) [202]. 

lim
𝑡→𝑇𝑊

Λ = ∞ (4.23) 

 

4.5 Aging Impact in Reliability Evaluation 

To study the impact of the aging effect, a generation adequacy assessment is 

developed. The system to evaluate is the Roy Billinton Test System (RBTS) [6], with the 

following assumptions: 1. all generators have a period of guarantee of two years; 2. bathtub 

curve and half-arch shape of the generators is as shown in Figure 4.2; 3. generators reliability 



 
 
 

53 | P a g e  

 

data is as shown in Figure 4.1; 4. yearly load profile is as shown in Figure 4.3, and it will 

keep the same for the subsequent years. 

Table 4.1 Generators Reliability Data [202] 

Unit Generation 

H:Hydro 

T:Thermal 

H5 

Pelton 

T10 

Oil 

H20 

Francis 

T20 

Coal 

H40 

Kaplan 

T40 

Coal 

# of units 2 1 4 1 1 2 

Size [MW] 5 10 20 20 40 40 

𝑇𝑊 [yr] 25 20 30 25 40 35 

𝜆 [1/yr] 

𝑎 2.0 4.0 2.4 5.0 3.0 6.0 

𝛼 0.50 0.40 0.85 0.40 0.88 0.78 

𝜔 25 20 30 25 40 35 

𝜇 [1/yr] 

𝑏 198 196 158 195 147 194 

𝛽 0.20 0.10 0.10 0.25 030 0.30 

𝛾 0.28 0.25 0.25 0.27 0.15 0.19 

 

 

Figure 4.2 Bathtub curve and Half-arch shape for each unit generation [202] 
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Figure 4.3 Yearly load Profile [201] 

 
Figure 4.4 State space diagram for each case [202] 

In order to show the advantages of the proposed model, three cases are considered. 

Figure 4.4 shows the space state diagram for each case and its description is given below. 

• Case 1 (classical model no aging): alternating renewal process between state “1” 

and “2” with constant failure (𝜆 = 𝑎) and repair rate (𝜇 = 𝑏). 
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• Case 2 (classical model with aging): alternating renewal process between state 

“1” and “2” considering the bathtub curve and half-arch shape. 

• Case 3 (proposed model):  Markovian process as described in Figure 4.2. 

4.5.1 Degradation of the Unit Generation 

In this section the first advantage of the proposed model is shown. For the 

quantification of the degradation, it is required to know the degradation rate 𝜙. For case 1 

and 2, their space state diagrams do not present the obsolescence state, and so the term 𝜙; 

therefore, the degradation cannot be calculated in these cases. In contrast, case 3 presents a 

more comprehensive space state diagram. The model in case 3 incorporates the degradation 

rate, which can be calculated by replacing the data given in Table 4.1 in (4.16). Then, the 

degradation is obtained by using (4.22). 

Figure 4.5 shows the degradation of each generator. Notice that as time passes by the 

degradation becomes more intense and when the component reaches its end lifetime (𝑡 =

𝑇𝑊), the degradation takes an extremely high value, satisfying (4.23). 

 
Figure 4.5 Degradation function of each generator [202] 
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4.5.2 Reliability Model of the Unit generation 

The reliability model of a generator is defined by its availability and unavailability, 

which are described as the sum of the probabilities of being in the operating state or not in-

service state, respectively. The reliability model for the case 1 was already discussed in 

section 3.2, resulting in the functions given by (3.24). Despite the availability and 

unavailability appear as the sum between a transient and stationary function, Figure 4.6 

shows constant values for the availability and unavailability. This is because when replacing 

the values of 𝜆, 𝜇 and 𝑡 in (3.24), the transient part of the function has a low impact compared 

to its stationary part, to such an extent that the transient part becomes negligible. Therefore, 

case 1 disregards the aging phenomenon and carries imprecisions to the reliability 

assessment.  

Case 2 and 3 present time-dependant failure and repair rate, hence, the values 𝑐, 𝜒, 

and 𝛖 also become time dependent. Following the process stated in Section 4.3, the 

probability vector of states for each generator is determined. Then, their availability and 

unavailability, are obtained applying (4.20) and (4.21), respectively. Figure 4.6 reveals for 

case 2 that aging influence the generator only at a time close to its end lifetime, resulting in 

quixotic fact because aging is always acting, and it should be constantly affecting the 

reliability of the generator. Hence, case 2 brings unrealistic results for reliability evaluation. 

Figure 4.6 shows for case 3 that as time passes by, the unavailability increases, while 

the availability decreases, in such a way that the sum of both is always equal to the unity. It 

is notable that the degradation due to aging is constantly affecting the reliability of the 

generator, which results in a more realistic model than the other two previous cases.  

Figure 4.6 shows an interception point between availability and unavailability, which 

appears when the probability is at 50 %. Beyond this point, the generator will start to fail 

more often because of  𝑈 > 𝐴. This point can be considered as an indicator for the 
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replacement of the generator. Case 1 presents no interception point; therefore, no 

replacement is required. This is reasonable because the model in case 1 neglects the aging 

phenomenon, which makes the generator to does not reach the obsolescence state. In case 2, 

the cross point almost appears at the end of the lifetime of the generator, while for case 3 

appears long before. This last one offers more practical reliability behaviour as it shows the 

continuous impact of the degradation due to aging and not just when it is close to the end of 

its lifetime as it occurs in case 2. 

 

 

Figure 4.6 Availability and unavailability of each generator [202] 
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4.5.3 Generation Adequacy with Aging Features 

With a view of showing the impact of the different reliability models proposed in 

each stated case, a generation adequacy assessment for a period of ten years is carried out. 

The process (flowchart) described in Section 3.4 is implemented in MATLAB 2018 with 

Monte Carlo simulation experiments of 5000. 

Figure 4.7 shows the different reliability indices that characterize the system 

generation. It can be observed that case 1 and 2 held invariant reliability indices, that is for 

LOLE, LOLP, LOEE, and XLOL the values are 1.12 [hr/yr], 0.0026 %, 10.32 [MWh/yr] 

and 6.16 [MW], respectively. Constant reliability indices imply that aging influence is 

ignored. Thus, case 1 and 2 brings unrealistic results. The case 3 exposes more credible 

results, the reliability indices exponentially increases with time, reaching values for the tenth 

year of 866 [hr/yr], 0.99 %, 17213.23 [MWh/yr] and 19.84 [MW], for LOLE, LOLP, LOEE 

and XLOL, respectively. The results show that as time pass by the power system reliability 

decreases. This fact is attributed to the aging that produces loss of mechanical and electrical 

properties of power generators. 

 

Figure 4.7 Reliability indices [202] 
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4.6 Summary  

This chapter introduces a novel reliability model that considers the aging effect. The 

model incorporates the bathtub curve and the half-arch shape to describe the failure and 

repair rates, respectively. Each stage of the curve is described as a Markovian process by 

defining a state accordingly with the evolution of component lifetime, which is an original 

contribution to the new knowledge. The chapter also shows the mathematical framework of 

the proposed model in detail, which is applied to generators. The approach is validated 

through three different cases. Case 1 analyses the conventional model, that is, an alternating 

renewal process with constant transition rates. Case 2 is also an alternating renewal process, 

with the difference that the failure and repair rates follow the bathtub curve and the arc-

shape, respectively. Case 3 corresponds to the proposed model, which is presented in Figure 

4.1. The results demonstrate the efficacy of the proposed approach since it provides more 

comprehensive reliability features, leading to more accurate outcomes to the power system 

reliability evaluation.
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Chapter 5: Accelerated Quantum Particle Swarm 

                                                                 Optimization 
 

Optimization techniques have become a powerful tool for the diagnosis and solution of 

multiple engineering problems. For instance, they can be employed to achieve optimum 

planning and operation of different components installed in a power system. A fact to 

consider is that a robust optimization technique is required to get an accurate solution in a 

reasonable time due to the complexity of the power system. 

This chapter presents a novel optimization technique called Accelerated Quantum 

Particle Swarm Optimization (AQPSO). AQPSO introduces the concept of quantum particle 

position to define a candidate solution to an optimization problem. The optimal solution is 

obtained via iterative methods that consider concepts of quantum mechanics to simulate the 

motion of the quantum particle. The novelty of the method lies in the incorporation of the 

concept of ‘best observation’, which accelerates the motion of the particle and reduce 

simulation time. The chapter is divided into five sections. Section 5.1 presents the AQPSO 

methodology. Section 5.2 exposes the mathematical framework that describes the motion of 

the quantum particle. In section 5.3, AQPSO is employed to reduce the energy not supplied 

(EENS) of the power system using SVCs. In section 5.4, AQPSO is used to maximize the 

savings by reducing the cost of power losses in the system. Finally, the last section brings a 

summary of the chapter.  

As a contribution to the state of art, the publications [187], [208] resulted from the 

research described in this chapter.  
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5.1 AQPSO Methodology 

Quantum Particle Swarm Optimization (QPSO) is an evolutionary computation 

technique that unlike classical PSO, it does not employ the concept of inertia and velocity 

(classical physics) to get the optimal solution. Instead, it employs concepts of quantum 

physics to reach the optimal solution.  

AQPSO follows the process described in Figure 5.1. The process starts defining the 

initial population of the particles 𝑆𝑆 and total number of iterations 𝐼𝑡. The position of the 

particle (𝑥) represents a solution candidate to the optimization problem; thus, it can be used 

to evaluate the objective function.  

The next step is to identify the positions called ‘personal best’ and ‘global best’. In 

this step is relevant to consider two specific attributes of the particle, which are related to 

memory and communication. The memory attribute refers to the ability to save the best 

position of the particle by comparing its actual position with the position after the motion. 

 

Figure 5.1 AQPSO flowchart 
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 For instance, Figure 5.2 shows two scenarios of particle motion. In scenario 1, the particle 

has the possibility to move close to the optimum position, therefore, it proceeds to move and 

saves this position as its best position. In scenario 2, the particle has the possibility to move 

far from the optimum position, therefore, it will not move and saves its actual position as its 

best position. The memory attribute is known as ‘personal best’ and denoted by 𝑞ℓ [209], 

[210]. 

 
Figure 5.2 Memory attribute of a particle 

 

 
Figure 5.3 Communication attribute of a particle 
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The communication attribute refers to the ability to save the particle with the best 

position among the swarm. Figure 5.3 shows a swarm with three particles, resulting in the 

‘particle 3’ as the best particle since is the one nearest to the optimum position. The 

communication attribute is known as ‘global best’ and is denoted by g [209], [210]. 

The personal best and global best are used to define the local attraction between 

particles. The authors in [211] conducted a trajectory analysis of a particle and demonstrated 

that this attraction mainly depends the terms 𝑞 and 𝑔. Mathematically, the local attraction of 

the particle at search step 𝑘 is defined as given in (5.1). 

𝐷ℓ(𝑘) = 𝜑𝑞ℓ + (1 − 𝜑)g 

𝜑 = 𝑟1𝑢1/(𝑟1𝑢1 + 𝑟2𝑢2) 
(5.1) 

 

where 𝑢 is a uniformly distributed random number, and 𝑟 is a constant of acceleration 

coefficient such that 0 ≤ 𝑟 ≤ 2.  The expression given in (5.1) is important because is 

needed to describe the motion of the particle. 

The process continues with the position update of every particle. The new positions 

represent an evolution (enhancement) of the actual solutions. The evolution is achieved 

based on the particle motion mathematical formulations, which are described in the next 

section. The last step is to verify the termination criterion using the total number of 

iterations 𝐼𝑡, and convergence tolerance value ℮. The process finishes if one of the 

conditions given in (5.2) is satisfied [212]. 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎: { 

𝑘 = 𝐼𝑡                              

|∑𝑞𝑖(𝑘)

𝑆𝑆

ℓ=1

− 𝑆𝑆g(𝑘)| ≥ ℮
 (5.2) 

 

5.2 Mathematical Framework of Quantum Particle Motion 

Metaheuristics approaches define different scenarios to describe the motion of a 

particle. For instance, [211] traditional PSO presents particles with characteristics of 

classical physics, such as inertia, speed, acceleration, etc. Hence, the motion of the particles 
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in this scenario is governed by the laws of dynamics and kinematics. Another example is 

given in [213], which proposes magnetic particles and its motion is described using 

electromagnetism theory. AQPSO proposes a scenario, where a unidimensional particle lies 

in a quantum delta potential well. The motion of the particle is driven by quantum mechanics 

concepts. 

To derive the expression that describes the motion of the particle, let define the delta 

function for a relative position of particle ℓ as 𝛿(Δ𝑥ℓ). Then, it can be expressed in terms of 

the characteristic length 𝑙 as given in (5.3) [214].  

𝛿(Δ𝑥ℓ) = 1/𝑙 (5.3) 

 

Then, probability of finding the quantum particle in a certain region of the space is 

defined in (5.4) [215]. 

ℑ(Δ𝑥ℓ) = 𝛿(Δ𝑥ℓ)𝑢 (5.4) 

 

By replacing (5.3) in (5.4) 

ℑ(Δ𝑥𝑖) = 𝑢/𝑙 (5.5) 

 

Since the particle lies in a delta quantum well, the probability of finding such particle 

at position 𝑥 is [214]:  

ℑ(Δ𝑥ℓ) = 𝑒
−2|Δ𝑥ℓ|/𝑙/𝑙 (5.6) 

 

 The expressions given in (5.5) and (5.6) are equal, hence 

𝑢/𝑙 = 𝑒−2|Δ𝑥ℓ|/𝑙/𝑙 (5.7) 

 

Solving for Δ𝑥  

Δ𝑥ℓ = (𝑙/2) ln(1/𝑢) (5.8) 

 

The term 𝑙/2 is a control governed by the contraction-expansion coefficient 𝜀, actual 

position 𝑥ℓ(𝑘) and mean sum of each individual particle of the swarm. Mathematically is 

defined by [214], [215]:  
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𝑙/2 = 𝜀 |𝑥(𝑘) −
1

𝑆𝑆 
∑𝑞ℓ(𝑘)

𝑆𝑆

ℓ=1

| (5.9) 

 

Substituting (5.9) in (5.8) 

Δ𝑥ℓ = 𝜀 |𝑥(𝑘) −
1

𝑆𝑆 
∑𝑞ℓ(𝑘)

𝑆𝑆

ℓ=1

| ln(1/𝑢) (5.10) 

 

Figure 5.4 shows an illustrative representation of the motion of the quantum particle, 

from which (5.11) is established 

Δ𝑥ℓ = 𝐷ℓ(𝑘) ± 𝑥ℓ(𝑘 + 1) (5.11) 

 

Solving for 𝑥ℓ(𝑘 + 1) and replacing (5.10) in (5.11) [187] 

𝑥ℓ(𝑘 + 1) = 𝐷ℓ(𝑘) ± 𝜀 |𝑥ℓ(𝑘) −
1

𝑆𝑆 
∑𝑞ℓ(𝑘)

𝑆𝑆

ℓ=1

| ln(1/𝑢) (5.12) 

 

The term ‘±’ indicates that the particle is in a quantum superposition state, that is, its 

position lies is both sides of the space at the same time (take as reference the Schrödinger 

cat [216]). The only way to determine its right position is by making an observation, which 

defined as 𝑜𝑏𝑠 = rand(0,1) [217]. At time step 𝑘 + 1, the particle materialize in between 

the zone [−𝑥ℓ(𝑘 + 1), +(𝑥ℓ(𝑘 + 1))], then the sign can be assigned following (5.13). 

{
+ 𝑖𝑓 1 ≥ 𝑜𝑏𝑠 ≥ 0.5
− 𝑖𝑓 0 ≤ 𝑜𝑏𝑠 < 0.5

 (5.13) 

 

 
Figure 5.4 Motion of a particle in a quantum delta potential well 
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In order to improve the robustness of the method, the number of observations 𝑁𝑂 is 

increased to an odd number greater than one. Then, the set of observers 𝑂𝐵𝑆1 and 𝑂𝐵𝑆2 are 

defined below [187]:  

𝑂𝐵𝑆1 ∪ 𝑂𝐵𝑆2 = {𝑜𝑏𝑠1, 𝑜𝑏𝑠2, … , 𝑜𝑏𝑠𝑁𝑂} 

𝑂𝐵𝑆1 = {𝑎𝑙𝑙 𝑜𝑏𝑠 ≥ 0.5};  𝑂𝐵𝑆2 = {𝑎𝑙𝑙 𝑜𝑏𝑠 < 0.5}  
(5.14) 

 

The function cardinality (card) establishes the total numbers of elements in a set. This 

is employed to find the ‘best observation’ ℬ for the position of the particle, such that [187] 

𝑖𝑓 card(𝑂𝑏𝑠1) > card(𝑂𝑏𝑠2) ⇒ ℬ ≥ 0.5 

𝑖𝑓 card(𝑂𝑏𝑠1) < card(𝑂𝑏𝑠2) ⇒ ℬ < 0.5 
(5.15) 

 

Therefore, (5.12) can rewritten as given (5.16) [187]. 

𝑥ℓ(𝑘 + 1) =

{
 
 

 
 
𝐷ℓ(𝑘) + 𝜀 |𝑥ℓ(𝑘) −

1

𝑆𝑆 
∑𝑞ℓ(𝑘)

𝑆𝑆

ℓ=1

| ln (
1

𝑢
) , 𝑖𝑓 ℬ ≥ 0.5

𝐷ℓ(𝑘) − 𝜀 |𝑥ℓ(𝑘) −
1

𝑆𝑆 
∑𝑞𝑖(𝑘)

𝑆𝑆

ℓ=1

| ln (
1

𝑢
) , 𝑖𝑓 ℬ < 0.5

 (5.16) 

 

The implementation of AQPSO is presented in Algorithm 5.1. 

Algorithm 5.1 Accelerated Quantum Particle Swarm Optimization Pseudocode 

1.   Procedure of AQPSO 

2.   For 𝑖 = 1 to swarm size (𝑆𝑆) 
3.       randomize the position of each particle 𝑥ℓ(0); 
4.       𝐷ℓ(0) = 𝑥ℓ(0);  

5.       Evaluate the objective function 𝑂𝐹(𝑥ℓ(0)); 

6.   Endfor 

7.   min𝑂𝐹(𝑥ℓ(0)) → g; 𝑘 = 0; ℮ = 1 × 10−6  

8.   While 𝑘 ≠ (𝐼𝑡) & |∑ 𝑞𝑖(𝑘)
𝑆𝑆
ℓ=1 − 𝑆𝑆g(𝑘)| ≥ ℮ 

9.       For ℓ = 1 to 𝑆𝑆 

10.            calculate 𝐷ℓ(𝑘) with (5.1); 

11.            Get 𝑜𝑏𝑠 based on (5.15); 

12.            update 𝑥ℓ(𝑘) with (5.16); 

13.            Evaluate the objective function 𝑂𝐹(𝑥ℓ(𝑘)); 

14.            If 𝑂𝐹(𝑥ℓ(𝑘)) < 𝑂𝐹(𝐷ℓ(𝑘)) 

15.                  𝐷ℓ(𝑘) = 𝑥ℓ(𝑘); 

16.                  If min𝑂𝐹(𝑥ℓ(𝑘)) → g(𝑘)′ < g(𝑘) 

17                         g(𝑘) = g(𝑘)′ 
18.                  Endif 

19.            Endif 

20.      𝑘 = 𝑘 + 1;   

20.   Endwhile 

21. Endfor 
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5.3. Composite System Reliability Evaluation with Reactive 

         Compensation Using AQPSO 

 In this section, the first application of AQPSO is presented. The optimization 

technique is employed to maximize the reliability of a power system by incorporating SVCs 

into the power system. The description of the case study, problem formulation, proposed 

algorithm, and results are as given in the following sections. 

5.3.1 Case Study  

The study incorporates the IEEE 24 bus reliability test system [163], with the 

following assumptions: 1. All components start operating at time 𝑡 = 0; 2. Reliability model 

of the SVC [148], [185] is as shown in Figure 3.9; 3. Table 5.1 shows the features of the 

available SVCs; 4. Bus voltage must meet IEEE Standard 1860-2014 [218] that is 

0.95 𝑝. 𝑢. ≤ 𝑉𝑏𝑢𝑠 ≤ 1.05 𝑝. 𝑢. 

Table 5.1 Static Var Compensators Available for AQPSO First Case Study [187] 

 SVC in Stock 

Capacity 

[MVAr] 
5 10 20 30 40 50 

𝜆P [1/yr] 0.0906 0.1283 0.5789 1.0580 2.045 2.5480 

𝜆ℚ [1/yr] 0.0200 0.0250 0.0250 0.0300 0.040 0.0450 

𝜆ℝ [1/yr] 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 

𝜇P [1/yr] 150 160 162 180 188 200 

𝜇ℚ [1/yr] 250 300 155 190 170 199 

𝜇ℝ [1/yr] 999 999 732 652 428 357 

 

5.3.2 Problem Formulation 

The objective is to maximize the reliability of the system by incorporating the SVC 

in the most suitable locations. The expected energy not supplied (EENS) is used to measure 

power system reliability. By defining the slot index 𝑡, real power P, and reactive power 𝑄, 

the optimization problem can be written as [187]:  

𝑚𝑖𝑛𝑚𝑖𝑧𝑒 (𝐸𝐸𝑁𝑆) (4.24) 
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Subject to [187] 

∑ P𝑔𝑒𝑛(𝑡)

𝑁𝐺

𝑔𝑒𝑛=1

= ∑ P𝑙𝑜𝑎𝑑(𝑡)

𝑁𝐿𝑜

𝑙𝑜𝑎𝑑=1

+ ∑ P𝑙𝑖𝑛𝑒(𝑡)

𝑁𝐿𝑖

𝑙𝑖𝑛𝑒=1

 (5.17) 

∑ 𝑄𝑔𝑒𝑛(𝑡)

𝑁𝐺

𝑔𝑒𝑛=1

+ ∑ 𝑄𝑆𝑉𝐶(𝑡)

𝑁𝑆𝑉𝐶

𝑆𝑉𝐶=1

= ∑ 𝑄𝑙𝑜𝑎𝑑(𝑡)

𝑁𝐿𝑜

𝑙𝑜𝑎𝑑=1

+ ∑ 𝑄𝑙𝑖𝑛𝑒(𝑡)

𝑁𝐿𝑖

𝑙𝑖𝑛𝑒=1

 (5.18) 

P𝑚𝑖𝑛𝑔𝑒𝑛 ≤ P𝑔𝑒𝑛(𝑡) ≤ P𝑚𝑎𝑥𝑔𝑒𝑛 (5.19) 

𝑄𝑚𝑖𝑛𝑔𝑒𝑛 ≤ 𝑄𝑔𝑒𝑛(𝑡) ≤ 𝑄𝑚𝑎𝑥𝑔𝑒𝑛 (5.20) 

𝑄𝑚𝑖𝑛𝑆𝑉𝐶 ≤ 𝑄𝑆𝑉𝐶(𝑡) ≤ 𝑄𝑚𝑎𝑥𝑆𝑉𝐶 (5.21) 

𝑉𝑚𝑖𝑛𝑏𝑢𝑠 ≤ 𝑉𝑏𝑢𝑠(𝑡) ≤ 𝑉𝑚𝑎𝑥𝑏𝑢𝑠 (5.22) 

𝐼𝑙𝑖𝑛𝑒(𝑡) ≤ 𝐼𝑚𝑎𝑥𝑙𝑖𝑛𝑒 (5.23) 

0 ≤ 𝑁𝑏𝑢𝑠 ≤ 𝑁𝑆𝑉𝐶 (5.24) 

 

where {𝑔𝑒𝑛, 𝑙𝑜𝑎𝑑, 𝑙𝑖𝑛𝑒, 𝑡} ∈ ℕ. 

The restriction (5.17) states that the active power injected by all generators (P𝑔𝑒𝑛) 

must satisfy the power losses in the transmission lines (P𝑙𝑖𝑛𝑒) plus the active power 

demanded by all the loads (P𝑙𝑜𝑎𝑑). The restriction (5.18) states that the reactive power 

injected by all generators (𝑄𝑔𝑒𝑛) plus the reactive power injected by all SVC installed in the 

power system (𝑄𝑆𝑉𝐶) must satisfy the power losses of the transmission lines (𝑄𝑙𝑖𝑛𝑒) plus the 

reactive power demanded by all loads (P𝑙𝑜𝑎𝑑). The constraint (5.19) regulates the minimum 

(P𝑚𝑖𝑛𝑔𝑒𝑛) and maximum (P𝑚𝑎𝑥𝑔𝑒𝑛)  active power that the generator can inject. The 

constraint (5.20) regulates the minimum (𝑄𝑚𝑖𝑛𝑔𝑒𝑛) and maximum (𝑄𝑚𝑎𝑥𝑔𝑒𝑛)  reactive 

power that the generator can inject. The restriction (5.19) attributes the minimum (𝑄𝑚𝑖𝑛𝑆𝑉𝐶) 

and maximum (𝑄𝑚𝑎𝑥𝑆𝑉𝐶) power that the SVC can generate. The voltage in the buses is 

regulated by a minimum and maximum, which is defined by (5.22). The maximum current 

that the transmission line can carry (𝐼𝑚𝑎𝑥𝑙𝑖𝑛𝑒) is controlled by (5.23). The last constraint 

(5.24) is to assure that the number of SVC (𝑁𝑆𝑉𝐶) does not exceed the number of bus in the 

system (𝑁𝑏𝑢𝑠). 
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5.3.3 Proposed Algorithm 

 To get the solution to the formulated problem, the algorithm shown in Figure 5.5 is 

employed and implemented using MATLAB 2018. The algorithm is divided into five main 

stages, which are described below. 

• Stage 1: The algorithm starts by loading the power system data, such as impedances 

of the lines, capacity of the generators, failure and repair rates of the lines and 

generators, and active and reactive power consumed by each load. In addition, the 

size of the swarm 𝑆𝑆 and total number of iterations 𝐼𝑡 are also defined.  

• Stage 2: The first particles 𝑥ℓ(0) are randomly generated. Each particle represents a 

different combination of installing the available SVC into the power system. Every 

combination is saved in 𝑥ℓ. ℴ(0). In addition, the particle also contains the maximum 

and minimum reactive power of every SVC, which given by 𝑥ℓ. 𝑄𝑆𝑉𝐶(0). Then, the 

information of the particle is added to the power system. Then, a composite system 

reliability assessment takes place following the procedure previously described in 

Section 3.5.3. As a result, 𝐸𝐸𝑁𝑆 is calculated for every particle and saved in 

𝑥ℓ. 𝐸𝐸𝑁𝑆(0). The stage finishes with the identification of the ‘global best’ particle, 

which is obtained by looking for the particle with the minimum value of  𝐸𝐸𝑁𝑆. The 

value is saved in g. On the other hand, notice that the ‘best personal’ 𝑞ℓ is equal to 

the actual position 𝑥ℓ(0) since the particles have not started their motion. 

• Stage 3: The first iteration takes place, and the particles start their motion. The 

attraction parameter 𝐷ℓ(𝑘), and best observation ℬ are obtained using (5.1) and 

(5.15), respectively. Then, the new position of the particle is computed using (5.16). 

The updated position of the particle represents a new SVC combination that may lead 

to a better 𝐸𝐸𝑁𝑆. The composite system reliability assessment described in Section 

3.5.3 takes place to obtain a new 𝐸𝐸𝑁𝑆 value, which is saved in 𝑥ℓ. 𝐸𝐸𝑁𝑆(𝑘). 
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• Stage 4: The 𝐸𝐸𝑁𝑆 values before 𝑥ℓ. 𝐸𝐸𝑁𝑆(𝑘 − 1) and after 𝑥ℓ. 𝐸𝐸𝑁𝑆(𝑘) the 

motion of the particle is compared. A reduction of 𝐸𝐸𝑁𝑆 value implies that the 

particle is getting closer to objective function since the algorithm is looking for the 

minimum 𝐸𝐸𝑁𝑆. Therefore, if 𝑥ℓ. 𝐸𝐸𝑁𝑆(𝑘) < 𝑥ℓ. 𝐸𝐸𝑁𝑆(𝑘 − 1) then the particle 

updates its position. In addition, the ‘personal best’ of the particle is also updated and 

saved in 𝑞ℓ. This is followed by a second comparison in which the ‘global best’ is 

considered. For this purpose, it is required to find the best 𝑥ℓ(𝑘) among the swarm 

such that brings the minimum 𝐸𝐸𝑁𝑆. The best particle is saved in the variable g𝑜𝑝
′ .  

If the g′. 𝐸𝐸𝑁𝑆 < g. 𝐸𝐸𝑁𝑆 then the 𝑥ℓ(𝑘) becomes the ‘global best’, otherwise the 

‘global best’ is not replaced. In case that 𝑥ℓ. 𝐸𝐸𝑁𝑆(𝑘) ≥ 𝑥ℓ. 𝐸𝐸𝑁𝑆(𝑘 − 1) then the 

process continues with the next particle.  

• Stage 5: The process in stage 3 and stage 4 are repeated until one of the convergence 

criteria presented in (5.2) is satisfied. Consider for the convergence criteria a 

|∑ 𝑞ℓ. 𝐸𝐸𝑁𝑆(𝑘)
𝑆𝑆
ℓ=1 − 𝑆𝑆 g. 𝐸𝐸𝑁𝑆(𝑘)| ≤ 10−6. Finally, the outcome is the particle 

with the best SVC combination and location, as presented in Figure 5.6. 
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Figure 5.5 Flowchart for optimum reliability assessment through VAr compensation [187] 

Figure 5.6 shows that the optimal placement and sizing of the SVCs that minimize 

the 𝐸𝐸𝑁𝑆, is as follows: 

• SVC of size 5 [MVAr] installed at bus 5. 

• SVC of size 10 [MVAr] installed at bus 4. 

• SVC of size 30 [MVAr] installed at bus 3. 

• Three SVCs of size 40 [MVAr] installed at bus 10, 11 and 19, respectively. 

• SVC of size 50 [MVAr] installed at bus 13. 
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Figure 5.6 SVC placement and sizing that minimize EENS [187] 

5.3.4 Results and Discussion 

To perceive the impact of the SVC installation, Table 5.2 presents the 𝐸𝐸𝑁𝑆 values 

in two different scenarios: 1. No SVC installed; 2. Optimum SVC installation. In the first 

scenario, 𝐸𝐸𝑁𝑆 takes a value of 12.9 × 104 MWh/year, and this value is used as a 

benchmark to measure the reliability of the power system. In the second scenario, 𝐸𝐸𝑁𝑆 

takes a value of 7.18 × 104 MWh/year. The results reveal that the expected energy not 

supplied is less in the case where SVCs are employed, which implies reliability enhancement 

in the power system. This is attributed to the ability of the SVC to deals with the problems 

of bus voltage instability and overloaded line, which are produced in case of line outages. 

Consequently, load shedding strategy is less required and expected energy not supplied is 
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reduced. The optimal installation of the SVC is an adequate reactive power reserve to 

maintain system integrity. 

With a view to show the computational efficiency of the proposed optimization 

technique, AQPSO was executed with three (AQPSO3), five (AQPSO5) and seven 

(AQPSO7) observers.  In addition, the same optimization problem was solved using other 

two different optimization techniques, these are PSO and QPSO. It is relevant to highlight 

that a total of 20 particles and 50 iterations are used for every optimization technique with 

Monte Carlo simulation experiments of 5000. The computer employed for this purpose 

possesses a RAM of 8.00 GB and processor Intel Core i7-6700 of 3.40 GHz. Figure 5.7 

shows the convergence behaviour for each optimization technique.  

Figure 5.7 depicts that as the number of observers increases, the faster is the 

convergence. This is because the probability of finding the position of the quantum particle 

within the solution space increases with the number of observers [219]. Another important 

fact to discuss in the time simulation, which is presented in Table 5.3. Among the existing 

optimization techniques, PSO presents the highest time simulation. This is attributed to the 

velocity parameter that PSO requires to update the position the particles. The calculation of 

the velocity increases time simulation in every iteration. On the other hand, the smallest time 

simulation corresponds to AQPSO, followed by AQPSO3, AQPSO5 and AQPSO7. This is 

understandable, the mathematical operations during the optimization process to determine 

the position of the quantum particle within a certain region of the solution space increases 

with the number of observers. Consequently, the time simulation increases. 

Table 5.2 Impact of the SVC on power system reliability [187] 

Scenario: No SVC installed Optimum SVC installation 

𝐸𝐸𝑁𝑆: 12.9 × 104 MWh/year 7.18 × 104 𝑀Wh/year 
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Table 5.3 Optimization Technique Robustness for AQPSO first case study [187] 

Optimization 

Technique 
Average time simulation per experiment [s] Convergence iteration 

PSO 11.67 34 

QPSO 11.04 37 

AQPSO3 11.20 36 

AQPSO5 11.25 30 

AQPSO7 11.26 30 

 

 
Figure 5.7 Optimization Technique Convergence [187] 

5.4 Planning and Operation of Static Var Compensators 

The second application of AQPSO is presented in this section. AQPSO is used to 

determine the optimum planning and operation of the SVCs that minimize power losses in 

the transmission lines. The description of the case study, problem formulation, proposed 

algorithm, and results are as given in the following sections. 

5.4.1 System Layout Description 

The study incorporates the IEEE 24 bus reliability test system [163], with the 

following assumptions: 1. All components start operating at time 𝑡 = 0. 2. Energy and SVC 

price constants are 𝑤𝐿 = 0.08 [£/kWh] and 𝑤𝑆𝑉𝐶 = 4 × 104 [£/MVAr] [208]; 3. 

Normalized demand profile during weekdays and weekends is as shown in Figure 5.8 [208]; 
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4. Table 5.4 shows the features of the SVC in stock [208]; 5. Bus voltage must meet IEEE 

Standard 1860-2014 [218] that is 0.95 𝑝. 𝑢. ≤ 𝑉𝑏𝑢𝑠 ≤ 1.05 𝑝. 𝑢. 

Table 5.4 Static Var Compensators Available for AQPSO Second Case Study [208] 

 Capacity [MVAr] 

SVC in 

Stock 
10 20 50 100 120 150 

 

 

Figure 5.8 Load profiles for AQPSO Second Case Study [208] 

5.4.2 Problem Formulation 

SVC is employed in the power system in order to maximize the savings by reducing 

the cost of power losses in the system. The SVC injects reactive power, which causes a 

reduction on the conductor current magnitude [110]. Consequently, it produces a reduction 

of power losses that are described as shown below [208]:  

∆𝐿𝑙𝑖𝑛𝑒 = (𝐼𝑙𝑖𝑛𝑒
2 − 𝐼𝑙𝑖𝑛𝑒

′ 2
)𝑅𝑙𝑖𝑛𝑒 (5.25) 

 

where 𝐼𝑙𝑖𝑛𝑒 is the current flow without the installation of the SVC, 𝐼𝑙𝑖𝑛𝑒
′  is the current flow 

considering the installation of the SVC, and 𝑅𝑙𝑖𝑛𝑒 represents the resistance of the conductor. 

Then, the savings due to power losses reduction can be obtained using the following 

formulation [208]: 

𝑆𝑎𝑣𝑖𝑛𝑔𝐿 = 𝑒 ∑ ∆𝐿𝑙𝑖𝑛𝑒

𝑁𝐿𝑖

𝑙𝑖𝑛𝑒=1

 (5.26)  

 

where 𝑒 represents the energy cost function and 𝑁𝐿𝑖 is the total number of lines of the power 

system. 
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The acquisition and installation of the SVC imply a costly investment, which appears 

as a function of the price per MVAr (𝑤). This cost is given by (5.27) [208]. 

𝐶𝑜𝑠𝑡𝑆𝑉𝐶 = ∑ 𝑤𝑆𝑉𝐶  𝑄𝑆𝑉𝐶

𝑁𝑆𝑉𝐶

𝑆𝑉𝐶=1

 (5.27)  

 

Then, the optimization problem can be defined as follows [208]:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑆𝑎𝑣𝑖𝑛𝑔𝐿 − 𝐶𝑜𝑠𝑡𝑆𝑉𝐶) (5.28)  

 

which is subject to the constraints presented in (5.17) to (5.24).  

5.4.3 Proposed Algorithm 

The optimization problem cannot be addressed using a simple AQPSO since the 

solution involves the optimization of two types of particles. The first type of particles is used 

for the planning of the SVCs, while the second type of particles deals with the operation of 

the SVCs. Thus, a Bi-Level Accelerated Quantum Particle Swarm Optimization (BL-

AQPSO) is employed. The first level is called AQPSOsp, which focuses on the determination 

of the effective placement and sizing of the SVC (SVCs planning). The second level is called 

AQPSOop and is used to determine the optimal strategy dispatch for each SVC (SVCs 

operation). AQPSOsp and AQPSOop are presented in Figure 5.9 and Figure 5.10, respectively. 

Both algorithms are implemented using MATLAB 2018. Every level of the algorithm 

presents different stages. Stage 2 to stage 5 correspond to AQPSOop, while the rest of the 

stages belongs to AQPSOsp. Each stage is described as follows. 
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Figure 5.9 𝐴𝑄𝑃𝑆𝑂𝑠𝑝 flowchart for optimum SVC planning [208] 
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Figure 5.10 𝐴𝑄𝑃𝑆𝑂𝑜𝑝 flowchart for optimum SVC operation [208] 
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• Stage 1: The algorithm starts by taking as data input the size of the SVCs available, 

swarm size 𝑆𝑆𝑠𝑝, the total number of iterations 𝐼𝑡𝑠𝑝 and simulation time 𝑇𝑆. This is 

followed by the random generation of the first particles 𝑥ℓ𝑠𝑝(0). Each particle 

represents a different combination of installing the available SVC into the power 

system. The SVC placement is saved in 𝑥ℓ. 𝑃𝑙𝑎𝑐𝑒(0), while its total acquisition cost 

is saved in 𝑥ℓ. 𝐶𝑜𝑠𝑡(0).  

• Stage 2: This stage takes as input the power system data, specifically the impedances 

of the lines, the capacity of the generators, and active and reactive power consumed 

by each load. In addition, a second swarm size 𝑆𝑆𝑠𝑝 and the total number of 

iterations 𝐼𝑡𝑠𝑝 are defined. Next, a strategy dispatch (within the limits of the SVC) is 

set for every particle, which is saved in the variable 𝑥ℓ𝑜𝑝 . 𝑄𝑆𝑉𝐶(0). In order to get the 

power losses, a power flow based on Newton Raphson method is computed. The 

savings are obtained and the particle with the highest savings becomes the ‘global 

best’ and is saved in g𝑜𝑝. In addition, notice that the ‘best personal’ 𝑞ℓ𝑜𝑝 is equal to 

the actual position 𝑥ℓ𝑜𝑝(0) since the particles have not started their motion. 

• Stage 3: The first AQPSOop  iteration takes place, and the particles of the swarm 𝑆𝑆𝑜𝑝 

start their motion. The attraction parameter 𝐷ℓ𝑜𝑝(𝑘𝑜𝑝), and best observation ℬ𝑜𝑝 are 

obtained using (5.1) and (5.15), respectively. Then, the new position of the particle 

is computed using (5.16). The updated position of the particle represents a new 

strategy dispatch for every SVC that may lead to a better saving value.  

• Stage 4: The savings before 𝑥ℓ𝑜𝑝 . 𝑆𝐿(𝑘𝑜𝑝 − 1) and after 𝑥ℓ𝑜𝑝 . 𝑆𝐿(𝑘𝑜𝑝) the motion of 

the particle are compared. The higher the savings implies that the particle is getting 

closer to objective function since the algorithm is looking to maximize savings. 
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Therefore, if 𝑥ℓ𝑜𝑝. 𝑆𝐿(𝑘𝑜𝑝) > 𝑥ℓ𝑜𝑝 . 𝑆𝐿(𝑘𝑜𝑝 − 1) then the particle updates its 

position. The ‘personal best’ is also updated and saved in 𝑞ℓ𝑜𝑝. This followed by a 

second comparison in which the the ‘global best’ is considered. For this purpose, it 

is required to find best 𝑥ℓ𝑜𝑝(𝑘𝑜𝑝) among the swarm such that brings the maximum 

savings. The best particle is saved in the variable g𝑜𝑝
′ . If the g𝑜𝑝

′ . 𝑆𝐿 > g𝑜𝑝. 𝑆𝐿 then 

the 𝑥ℓ𝑜𝑝(𝑘𝑜𝑝) becomes the ‘global best’, otherwise the ‘global best’ is not replaced. 

In case that 𝑥ℓ𝑜𝑝 . 𝑆𝐿(𝑘𝑜𝑝) ≤ 𝑥ℓ𝑜𝑝 . 𝑆𝐿(𝑘𝑜𝑝 − 1) then the process continues with the 

next particle.  

• Stage 5: The process in stage 3 and stage 4 are repeated until one of the convergence 

criteria given in (5.2) is satisfied. Consider for the convergence criteria |𝑥ℓ. 𝑆𝐿(𝑘) −

𝑥ℓ. 𝑆𝐿(𝑘 − 1)| < 10−6. The outcome is the particle with the best SVC strategy 

dispatch at time simulation 𝑡. The next step is to verify if the SVC location is 

optimum. 

• Stage 6: The first AQPSOsp  iteration takes place, and the particles of the swarm 𝑆𝑆𝑠𝑝 

starts their motion. The attraction parameter 𝐷ℓ𝑠𝑝(𝑘𝑠𝑝), and best observation ℬ𝑠𝑝 are 

obtained using (5.1) and (5.15), respectively. Then, the new position of the particle 

is computed using (5.16). The updated position of the particle represents a new 

location for every SVC. Then, AQPSOsp  is used to obtain the optimal SVC strategy 

dispatch. 

• Stage 7:  In this stage the particles compete between them to determine the best SVC 

placement. If 𝑥ℓ𝑠𝑝. 𝑆𝐿(𝑘𝑠𝑝) > 𝑥ℓ𝑠𝑝 . 𝑆𝐿(𝑘𝑠𝑝 − 1) then the particle updates its 

position. The ‘personal best’ is also updated and saved in 𝑞ℓ𝑠𝑝. This is followed by a 

second comparison in which the ‘global best’ is considered. For this purpose, it is 
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required to find best 𝑥ℓ𝑠𝑝(𝑘𝑠𝑝) among the swarm such that brings the maximum 

savings. The best particle is saved in the variable g𝑠𝑝
′ .  If the g𝑠𝑝

′ . 𝑆𝐿 > g𝑠𝑝. 𝑆𝐿 then 

the 𝑥ℓ𝑠𝑝(𝑘𝑠𝑝) becomes the ‘global best’, otherwise the ‘global best’ is not replaced. 

In case that 𝑥ℓ𝑠𝑝 . 𝑆𝐿(𝑘𝑠𝑝) ≤ 𝑥ℓ𝑠𝑝 . 𝑆𝐿(𝑘𝑠𝑝 − 1) then the process continues with the 

next particle.  

• Stage 8: The process in stage 6 and stage 7 are repeated until one of the convergence 

criteria given in (5.2) is satisfied. Consider for the convergence criteria 

|∑ 𝑞ℓ. 𝑆𝐿(𝑘)
𝑆𝑆
ℓ=1 − 𝑆𝑆 g. 𝑆𝐿(𝑘)| ≤ 10−6. The outcome is the particle that contains the 

SVC with the best location and strategy dispatch. 

5.4.4 Results and Discussion 

There are many combinations in which the available SVCs can be installed within 

the power system. Nevertheless, there is a combination that leads to the maximum reduction 

of power losses and hence the maximum savings. Figure 5.11 shows that the optimal 

placement and sizing of the SVCs that maximize the savings, is as follows: 

• SVC of size 100 [MVAr] at bus 3. 

• SVC of size 50 [MVAr] at bus 8. 

• Two SVC of size 10 [MVAr] at bus 11 and 19, respectively. 
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Figure 5.11 SVC optimal placement and size for AQPSO second case study [208] 

Even though the SVCs optimal sizing and placement are known, the challenge is to 

set the strategy dispatch for each SVC. The reactive power injected by each SVC cannot be 

constant since the load demand is a time-dependent function. Figure 5.12 shows the 

operation for each SVC during weekday and weekend.  

Once the optimal planning and operation of the SVC are obtained, it is required to 

verify that the solution does not violate voltage restrictions. Figure 5.13 presents a box plot 

that contains the voltages values for each bus in the power system. As can be perceived in  

Figure 5.13, the median voltage value in all buses 1.02 𝑝. 𝑢, with a maximum and minimum 

of 1.04 𝑝. 𝑢. and 0.97 𝑝. 𝑢. Therefore, the voltages values in all buses follow the IEEE 

Standard 1860-2014 [218] which stablishes 0.95 𝑝. 𝑢. ≤ 𝑉𝑏𝑢𝑠 ≤ 1.05 𝑝. 𝑢. 
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Weekday 

 

Weekend 

 
Figure 5.12 Optimal dispatch strategy for each SVC [208] 

 

 

Figure 5.13 Voltage profile for AQPSO second case study [208] 
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Regarding the savings, over the initial period of analysis, the cost exceeds the savings 

due to the high upfront investment required for the installation and acquisition of the SVCs. 

However, as time pass by, the savings increases and by the year 12 the total savings is 

4.40 × 105 [£]. To verify that this value is the maximum saving, the same optimization 

problem is solved using two different algorithms. The former is called Bi-level Particle 

Swarm Optimization (BPSO) and it employs 20 particles and 30 iterations in each level with 

Monte Carlo simulation experiments of 5000 per level; the second is called Bi-level Genetic 

Algorithm (BLGA) and it employs a population of 20 chromosomes and 30 iterations with 

Monte Carlo simulation experiments of 5000 per level. Table 5.5 shows the results for each 

optimization technique and it can be appreciated that the total savings obtained from BPSO 

and BGA coincide with the value obtained from BAQPSO. 

Another relevant fact to consider in the analysis is the average time simulation, which 

is given by the time average simulation and number of iterations for convergence of each 

optimization technique. Table 5.5 reveals that BAQPSO presents the lowest average time 

simulation by 3.98 [s] and 3.09 [s] in comparison to BPSO and BGA, respectively. 

Additionally, BAQPSO also presents the fastest convergence by 34.3 % and 37.5 % in 

comparison to BPSO and BGA, respectively. This is attributed to physical theories that 

describe the motion of the particles. BPSO and BGA employ particles that move following 

the principles of classical physics and biology, respectively. Their convergence is defined 

by deterministic equations. Consequently, the particles in both algorithms move towards the 

solution with a specific rate in each iteration. In contrast, BAQPSO employs quantum 

particles and their motion is given by principles of uncertainties (Quantum Mechanics), 

which establishes that the particle can appear at any position within the solution space. 

Nevertheless, this is controlled by observers that leads the particle closer to the optimal 
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solution. Hence the probability of convergence for BAQPSO may increase drastically in 

each iteration.  

Table 5.5 Optimization Technique Robustness for AQPSO second case study [208] 

Algorithm 
Average time 

simulation [s] 

Number of iterations 

to reach convergence 

𝑆𝑎𝑣𝑖𝑛𝑔𝐿 − 𝐶𝑜𝑠𝑡𝑆𝑉𝐶 
(after 12 𝑦𝑒𝑎𝑟𝑠) 

BAQPSO 10.69 20 4.40 × 105 

BPSO 14.67 32 4.40 × 105 

BGA 13.78 30 4.40 × 105 

  

5.5 Summary 

 This chapter presents an advance optimization technique called Accelerated 

Quantum Particle Swarm Optimization (AQPSO). AQPSO uses the concept of quantum 

particle position to define a candidate solution to an optimization problem. The mathematical 

formulation that describes the motion of the quantum particle is derived from quantum 

mechanics theories. The novelty of the proposed AQPSO is the incorporation of the ‘best 

observation’ parameter, which is determined by performing several observations. This 

parameter increases the probability of finding the particle close to the optimal solution, 

which accelerates the convergence to the near-optimal solution. To prove the performance 

of the proposed approach, two different optimization problems in power systems are solved 

using AQPSO. In the first case, the AQPSO is employed to determine the size and location 

of SVCs that minimize the expected energy not supplied. In the second case, the technique 

is applied to maximize the savings due to power losses reduction by optimal planning and 

operation of SVCs. In addition, to show the computational efficiency of AQPSO in 

comparison to other optimization techniques, the same optimization problems are solved 

using standard PSO and genetic algorithm. The results reveal that AQPSO proved to be 

superior in convergence, accuracy and time simulation. 
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Chapter 6: Smart Maintenance Scheme for 

                         Generators 
 

In order to provide a reliable service and being able to supply the electricity demand, all 

power system components should be subjected to an effective maintenance plan. Such 

maintenance plan is vital to limit failures and downtime of the components. The smarter the 

maintenance performed could potentially result in a better performance of the power system. 

In this context, periodic preventive maintenance (PPM) and reliability-centered maintenance 

(RCM) are the most popular in power system industry and recommended by many standards 

[128], [220], [221]. Nevertheless, these plans do not consider the different operational states 

and optimum maintenance, which brings inaccuracies to the reliability evaluation. 

Several researchers proposed the vision of smart maintenance with the inclusion of 

smart-inspections [25], smart-devices [26] and smart-services [27], giving a scheduled and 

proactive maintenance schemes. The current literature in this area provides limited 

transparency of mathematical frameworks that can effectively capture the maintenance 

paradigms for the economic benefit of planning and operating power systems.  

This chapter presents a reliability-based smart maintenance approach of generators 

to compute the net-maximum economic benefit. The chapter is divided into four sections. 

Section 6.1 exposes the reliability and risk concepts employed to define the SM scheme. 

Section 6.2 describes SM general process. In Section 6.3, SM is employed to get the 

maximum net benefit from the system generation.  Finally, the last section brings a summary 

of the chapter.  

As a contribution to the state of art, the publications [222]–[224] resulted from the 

research described in this chapter.  
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6.1 Smart Maintenance Mathematical Framework 

Smart maintenance (SM) is an advanced maintenance framework that incorporates 

operational risk and reliability models of the components to set an effective maintenance 

plan that maximize the generation adequacy economic benefits. Figure 6.1 presents the 

reliability and risk concepts needed to formulate the smart maintenance mathematical 

framework.  

Firstly, Kijima model [225] is employed to characterize the impact of maintenance 

over the virtual age of the component. Secondly, Markov chain is used to describe the 

probability of being in the different operational states of the component. Thirdly, fuzzy logic 

is applied to quantify the maintenance exertion degree (maintenance effort). This is required 

to measure the impact of maintenance over the magnitude of the failure rate of the 

component. 

 

Figure 6.1 Smart maintenance concepts 

 

6.1.1 Kijima Model: Virtual Age, Actual Age and Maintenance 

Maintenance produces a rejuvenation effect on the lifetime of a component. To 

quantify its impact the Kijima model type I is employed [225] since is simple and bring 

accurate results. It assumes that the repairs can be fixed only by the damage incurred during 

the period of operation since the last repair. For its formulation, let the real age be time 𝑡 in 

which the component is in operation. Then, the virtual age Γ of the component can be defined 

using a linear function of its real age, in such a way that the virtual age varies by an amount 
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proportional to the time elapsed from the 𝑛 − 1th maintenance to the 𝑛th maintenance, as is 

presented in (6.1). Mathematically, the virtual age is as follows [225]: 

Γ𝑛 = Γ𝑛−1 + 𝑞𝑛Δ𝜏𝑛 (6.1) 

 

where 𝑞 represents the degree of maintenance. 

 

By expanding the formulation given in (6.1): 

No maintenance ⇒ Γ0 = 0 

1st maintenance  ⇒ Γ1 = Γ0 + 𝑞1Δ𝜏1 = 𝑞1Δ𝜏1 

2nd maintenance ⇒ Γ2 = Γ2 + 𝑞2Δ𝜏2 = 𝑞1Δ𝜏1 + 𝑞2Δ𝜏2 

⋮                                                                                  

𝑛th maintenance ⇒ Γ𝑛 = Γ𝑛−1 + 𝑞𝑛Δ𝜏𝑛 = 𝑞1Δ𝜏1 +⋯+ 𝑞𝑛Δ𝜏𝑛 

(6.2) 

 

Generalizing for the two types of maintenance, (6.2) can be rewritten as in (6.3).  

Γ𝑛 = ∑ 𝑞𝐶𝑀

𝑁𝐶𝑀

𝐶𝑀=1

Δ𝜏𝐶𝑀 + ∑ 𝑞𝑃𝑀

𝑁𝑃𝑀

𝑃𝑀=1

Δ𝜏𝑃𝑀; 

𝑛 = 𝑁𝑃𝑀 + 𝑁𝐶𝑀 

(6.3) 

  

 

Figure 6.2 Virtual age evolution 

 

6.1.2 Markov Chain: Probability Vector of all Possible States 

Table 6.1 presents the seven operational stages of generators used to create the Markov 

chain. Figure 6.3 shows each operational state based on the stages of the bathtub curve and 

half-arch shape [14]. Each state and stage are described as follows: 

• Operation Good as New and Policy of Replacement: The infant mortality is 

considered as a period of guarantee given by the manufacturer’s policy. In this stage, 

the component is in a state denominated by ‘operation good as new’. If an event 

failure occurs, the component is subjected to the policy of replacement and the 
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component’s lifetime is reset to start from zero. This process is repeated until the 

guarantee period ends. 

• Non-operating, derated, and rated operation: In order to evaluate the reliability, 

it is common to represent the components of the system in two basic states: 1. 

Operating (On); 2. Non-Operating (Off). Although this model is simple to use, it 

lacks completeness of modelling a real system. There are systems that present n+1 

redundancy between their components, and if a failure occurs in a certain component, 

such systems may be partially operating, in which case it is said that the component 

is in a derated operation. For example, thermal unit generation is designed with a 

main and auxiliary circuits working in parallel. Whenever the auxiliary circuit fails, 

the output power of the system is reduced by a certain amount, resulting in a derated 

state of power [6]. A schematic diagram of the given example is presented in Fig. 2. 

Table I shows the individual impact of the states between the main and auxiliary unit 

of a thermal power generator. Consequently, the derated state open a pathway to 

define the term ‘semi availability’. The semi-availability (Å) is described by the sum 

of probabilities of the derated states of the component that belongs to the set Ξ. 

Mathematically, semi availability is given by (6.4). 

Å(𝑡) =∑𝑃𝑠
𝑠∈Ξ

 (6.4) 

 

Hence, the semi availability for the model presented in Figure 6.3 is given by (6.5). 

Å(𝑡) = 𝑃4 (6.5) 

 

• Overloaded operation: This operation can be executed after the infant mortality 

stage. In contrast to the states already presented, this state is based on decision-

making, that is, if at 𝜏𝑜𝑣 an overloaded operation is programmed, then the transition 
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rate automatically conducts the component to that state. Mathematically, it can be 

formulated as:  

𝜚(𝑡) = {
∞; 𝑡 = 𝜏𝑜𝑣
0; 𝑡 ≠ 𝜏𝑜𝑣

⇒ 𝑃𝐼𝐼(𝑡𝑜𝑣) = 1.0 (6.6) 

 

It is considered that under overloaded operation the component will not exceed its 

permitted limits of time (∆𝜏𝑜𝑣) operation and output power. Therefore, no failure will 

occur and the only state to return is to state I. Mathematically, it can be expressed as:  

lim
𝑡→𝜏𝑜𝑣+∆𝜏𝑜𝑣

𝑃1(𝜃(𝑡)) = 1.0 (6.7) 

 

• Obsolescence: At some point, the component’s unavailability could be high, and a 

replacement is required. If that occurs, the component can be treated as having 

reached the obsolescence state. The transition rate that leads to this state is the 

component’s degradation rate 𝜙 [202], which can be determined following the 

procedure described in Section 4.3.2. Mathematically, the degradation rate can be 

expressed as given in (6.8). 

𝜙 =
𝜆𝐾 + 2𝜇𝐾
Γ𝑛𝜆𝐾 − 1

 (6.8) 

 

Notice that the impact of maintenance is considered within the degradation rate since 

the real age (𝑇𝑊) of the component is replaced by the virtual age (Γ𝑛). Then, as 

described in Section 4.4, the degradation of the component can be defined as: 

Λ =
1

Γ𝑛𝜙
 (6.9) 

Table 6.1 Operational States Labels 

State Name 

0 Operation good as new 

1 Rated operation 

2 Derated operation 

3 Obsolescence 

4 Not in Operation 

I Policy of replacement 

II Overloaded operation 
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Table 6.2 Thermal Unit Power Output 

Main Auxiliary System State 

Off Off 
Off 

P𝑜𝑢𝑡 = 0 
Not in service 

Off On 
Off 

P𝑜𝑢𝑡 = 0 
Not in service 

On Off 

On 

P𝑜𝑢𝑡 = 𝜍P𝑜𝑢𝑡 

0 < 𝜍 < 100% 

Derated Operation 

On On 
On 

P𝑜𝑢𝑡 = 100%P𝑜𝑢𝑡 
Rated Operation 

 

 
Figure 6.3 Markov chain of the operational states 

 

 

Figure 6.4 Design of a thermal unit with auxiliary support  
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Even though Figure 6.3 shows seven possible states, the Markov chain model can be 

reduced to four states. In the first instance, failures being occurred during the guarantee 

period does not correspond to the customer. The state “0” and “I” are to secure the guarantee, 

that is, if a failure occurs during this period, then time count is reset to zero and this process 

is repeated until guarantee period ends. Therefore, the model can avoid the states that appear 

during the infant mortality and the analysis can starts from the state “1” by considering the 

end of the guarantee period (𝑇𝑈) as the initial time analysis.  On the other hand, the 

overloaded operation is a based-decision-making state, hence once the decision is made the 

probability of being in this state becomes to the unit. Under these considerations, the 

stochastic matrix of transitions states is determined following the procedure given in Section 

4.3.1. The stochastic matrix of transitions of the model presented in Figure 6.3 is given by 

(6.10). 

𝑯 = [

−𝜆𝑚𝑎𝑖𝑛 − 𝜆𝑎𝑢𝑥 𝜆𝑚𝑎𝑖𝑛 0 𝜆𝑎𝑢𝑥
𝜇𝑚𝑎𝑖𝑛 −2𝜇𝑚𝑎𝑖𝑛 − 𝜙 𝜙 𝜇𝑚𝑎𝑖𝑛
0 0 0 0

𝜇𝑎𝑢𝑥 𝜆𝑚𝑎𝑖𝑛 0 −𝜆𝑚𝑎𝑖𝑛 − 𝜇𝑎𝑢𝑥

] (6.10) 

 

where the 𝜆𝑚𝑎𝑖𝑛 and 𝜇𝑚𝑎𝑖𝑛 are the transitions rates of the main circuit of the component and 

𝜆𝑎𝑢𝑥 and 𝜇𝑎𝑢𝑥 represent the transitions rates of the auxiliary circuit, respectively. Then, the 

probabilities of being in each state are [226]: 

𝑃1(𝑡) = 𝑐1Υ11𝑒
𝜒1𝑡 + 𝑐2Υ12𝑒

𝜒2𝑡 + 𝑐3Υ13𝑒
𝜒3𝑡 + 𝑐4Υ14𝑒

𝜒4𝑡

𝑃2(𝑡) = 𝑐1Υ21𝑒
𝜒1𝑡 + 𝑐2Υ22𝑒

𝜒2𝑡 + 𝑐3Υ23𝑒
𝜒3𝑡 + 𝑐4Υ24𝑒

𝜒4𝑡

𝑃3(𝑡) = 𝑐1Υ31𝑒
𝜒1𝑡 + 𝑐2Υ32𝑒

𝜒2𝑡 + 𝑐3Υ33𝑒
𝜒3𝑡 + 𝑐4Υ34𝑒

𝜒4𝑡

𝑃4(𝑡) = 𝑐1Υ41𝑒
𝜒1𝑡 + 𝑐2Υ42𝑒

𝜒2𝑡 + 𝑐3Υ43𝑒
𝜒3𝑡 + 𝑐4Υ44𝑒

𝜒4𝑡

 (6.11) 

 

where 𝜒 represent the eigenvalues of 𝑯𝑻,  Υ is the element of the matrix formed by the 

eigenvectors of 𝑯𝑻, and 𝑐 is a constant given by the initial conditions; T indicates the 

transpose of the matrix. 
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6.1.3 Fuzzy Logic to Quantify Maintenance Effort 

During the manufacturing process, components are subject to operational strength-

toughness test. Based on this, the operational risk (Ω) is defined as the probability of failure 

due to danger events [97]. The operational risk ℶ is closely associated with the maintenance 

exertion degree 𝑧. Mathematically, their relationship is as follows:  

𝑧 ∝ ℶ (6.12) 

 

The exertion degree represents the efficacy of maintenance, which can be perfect, 

imperfect and minimal. The term perfect (𝑧 = 1) refers to the restoration of the component 

as ‘good as new’, the imperfect (0 < 𝑧 < 1) implies a restoration of the component between 

‘good as new’ and ‘bad as old’, and in the case where maintenance is developed with limited 

effort, is called minimal (𝑧 = 0) [227]. Concerning the imperfect maintenance, it can be 

fuzzified as follows: ‘Negligible’, ‘Minor’, ‘Moderate’ and ‘Major’. Its quantification and 

description are exhibit in Table 6.3. 

There are two fundamental risk parameters used to assess the exertion degree. The 

first one is the availability (A), which determines the frequency of failures in a certain time 

period. It can be classified using five linguistic variables, these are: ‘Extremely Low’, ‘Low’, 

‘Medium’, ‘High’ and ‘Extremely High’. The quantification and description of each grade 

are presented in Table 6.4. The other parameter that defines the risk is the factor of operation 

(Op), which determines the magnitude of operation of the component. Four linguistic 

variables are defined to describe it, these are: ‘Light’, ‘Marginal’, ‘Regular’ and ‘Forced’. 

The quantification of each grade is as presented in Table 6.5. 

Linguistic variables are used to describe different types of fuzzy membership 

functions according to the situation of an interested area, and these are critically defined by 

experts. After an exhaustive interview with the experts in the field of power generator 

maintenance [228]–[232], the membership functions for each risk parameter is stablished 
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and presented in Table 6.6. With this information, the next step is to process the fuzzy dataset 

by defining the control rules. These are based on an antecedent and consequence, in such a 

way that for every action associated with the input variables, there is a response related to 

the output variables. After verification with the experts in the field [228]–[232], the control 

rules are defined and presented in Table 6.6. Such control rules are used to determine the 

maintenance exertion degree as a function of the availability and factor of operation. This 

can be appreciated in Figure 6.6. 

Table 6.3 Maintenance Exertion Degree Qualitative Descriptors 

Qualitative Descriptors Description Range [p.u.] 

Negligible 
Risk is insignificant and can be 

controlled by with a simple inspection 
0.00-0.25 

Minor 
Risk is low; therefore, a low 

maintenance effort is required 
0.00-0.50 

Moderate 
Risk is medium bringing the need of a 

medium maintenance effort 
0.25-0.75 

 

Table 6.4 Availability Qualitative Descriptors 

Qualitative Descriptors Description Range [%] 

Extremely Low Failure is almost unavoidable 0.00-50.0 

Low Failure to happen frequently 50.0-77.0 

Medium 
Risk is medium bringing the need of a 

medium maintenance effort 
62.0-87.0 

High Occasional failure 72.0-95.0 

Extremely High Failure is unlikely to occur but possible 92.0-100 

 

Table 6.5 Factor of Operation Qualitative Descriptors 

Qualitative Descriptors Description Range [%] 

Light 
Most of the time the component was not 

in operation 
0.00-50.0 

Marginal 
Most of the time the component was in 

derated operation 
50.0-92.0 

Regular 
Most of the time the component was in 

rated operation 
90.0-105 

Forced 
Most of the time the component was in 

overloaded operation 
105-115 
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Table 6.6 Maintenance Exertion Degree Control Rules 

Rule Statement 

1 If (𝐴 is Extremely Low) & (𝑂𝑝 is Light) ⟹ (𝑧 is Negligible) 

2 If (𝐴 is Extremely Low) & (𝑂𝑝 is Marginal) ⟹(𝑧 is Negligible) 

3 If (𝐴 is Extremely Low) & (𝑂𝑝 is Regular) ⟹ (𝑧 is Negligible) 

4 If (𝐴 is Extremely Low) & (𝑂𝑝 is Forced) ⟹ (𝑧 is Negligible) 

5 If (𝐴 is Extremely High) & (𝑂𝑝 is Light) ⟹ (𝑧 is Negligible) 

6 If (𝐴 is Extremely High) & (𝑂𝑝 is Marginal) ⟹ (𝑧 is Minor) 

7 If (𝐴 is Extremely High) & (𝑂𝑝 is Regular)⟹ (𝑧 is Moderate) 

8 If (𝐴 is Extremely High) & (𝑂𝑝 is Forced) ⟹ (𝑧 is Moderate) 

9 If (𝐴 is Medium) & (𝑂𝑝 is Light) ⟹ (𝑧 is Minor) 

10 If (𝐴 is Medium) & (𝑂𝑝 is Marginal) ⟹ (𝑧 is Minor) 

11 If (𝐴 is Medium) & (𝑂𝑝 is Regular) ⟹ (𝑧 is Moderate) 

12 If (𝐴 is Medium) & (𝑂𝑝 is Forced) ⟹ (𝑧 is Major) 

13 If (𝐴 is Low) & (𝑂𝑝 is Light) ⟹ (𝑧 is Moderate) 

14 If (𝐴 is Low) & (𝑂𝑝 is Marginal) ⟹ (𝑧 is Moderate) 

15 If (𝐴 is Low) & (𝑂𝑝 is Regular) ⟹ (𝑧 is Major) 

16 If (𝐴 is Low) & (𝑂𝑝 is Forced) ⟹ (𝑧 is Major) 

17 If (𝐴 is High) & (𝑂𝑝 is Light) ⟹ (𝑧 is Minor) 

18 If (𝐴 is High) & (𝑂𝑝 is Marginal) ⟹ (𝑧 is Minor) 

19 If (𝐴 is High) & (𝑂𝑝 is Regular) ⟹ (𝑧 is Moderate) 

20 If (𝐴 is High) & (𝑂𝑝 is Forced) ⟹ (𝑧 is Moderate) 

 

 

Figure 6.5 Membership functions 
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Figure 6.6 Maintenance Exertion Degree: a) 3d plot; b) contour plot 

6.1.4 Maintenance Effort Impact on Failure Rate 

In order to measure the impact of the maintenance on the failure rate, the maintenance 

exertion degree is required. Figure 6.7 shows that the failure rate varies by a proportional 

amount 𝑧, such that [225]: 

No maintenance ⇒ 𝜆0(𝑡) 

1st maintenance  ⇒ 𝜆1(𝑡) = 𝑧𝜆0(𝑡 − Δ𝜏1) + (1 − 𝑧)𝜆0(𝑡) 

2nd maintenance ⇒ 𝜆2(𝑡) = 𝑧𝜆1(𝑡 − Δ𝜏2) + (1 − 𝑧)𝜆1(𝑡) 

⋮                                                                                  

𝑛th maintenance ⇒ 𝜆𝑛(𝑡) = 𝑧𝜆𝑛−1(𝑡 − Δ𝜏𝑛−1) + (1 − 𝑧)𝜆𝑛−1(𝑡) 

(6.13) 

 

where Δ𝜏𝑛 represents the time elapsed between the 𝑛th and 𝑛th -1 maintenance. 

Since there are two types of maintenance, (6.13) can be generalized as follows: 

𝜆𝑛(𝑡) = {
𝑧𝐶𝑀𝜆𝑛−1(𝑡 − Δ𝜏𝑛−1) + (1 − 𝑧𝐶𝑀)𝜆𝑛−1(𝑡), if CM is performed

𝑧𝑃𝑀𝜆𝑛−1(𝑡 − Δ𝜏𝑛−1) + (1 − 𝑧𝑃𝑀)𝜆𝑛−1(𝑡), if PM is performed
 (6.14) 
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To simplify the model, the maintenance type factor 𝜗 is incorporated into the model. 

Depending on the type of maintenance, 𝜗 can be: One, if CM is performed; 2. Zero, if PM 

is performed. Hence, (6.14) can be rewritten as in (6.15).   

𝜆𝑛(𝑡) = 𝑧𝐶𝑀
𝜗𝑧𝑃𝑀

1−𝜗𝜆𝑛−1(𝑡 − Δ𝜏𝑛−1) + (1 − 𝑧𝐶𝑀
𝜗𝑧𝑃𝑀

1−𝜗)𝜆𝑛−1(𝑡); 

𝜗 =  {
1, if CM is performed
0, if PM is performed

 
(6.15) 

 

 
Figure 6.7 Maintenance impact on failure rate  

 

6.2 Smart Maintenance Procedure 

Smart maintenance (SM) is an evolutionary maintenance strategy that proposes a 

maintenance schedule optimization problem, of which the objective is to minimize the 

maintenance cost while keeping adequate reliability of the system. Consequently, SM leads 

to a comprehensive and effective preventive maintenance schedule that indicates when (time 

to perform the maintenance), which (component that receives the maintenance) and how 

(effort required during maintenance) the maintenance actions should be performed in order 

to maximize the economic benefits. Although SM can incorporate smart devices, SM is not 

limited to it since SM can be achieved using the historical operational records of the 

component following the process described in Figure 6.8. 
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Figure 6.8 Smart Maintenance flowchart 
 

• Get initial operational records (no PM): SM starts by determining the initial 

operational records of the components of the system. The operational records are 

obtained from the base case in which no PM is considered. This is done in order to 

get a benchmark and be able to measure the impact of the preventive maintenance 

schedule. From this analysis, the availability and factor of operation of the 

components are obtained. 

• Set different PM schedules: SM takes as input different PM schedules. During the 

optimization process, the PM schedules candidates will evolve (enhance) based on 

the PM schedule with the highest economic benefit. It is suggested that among the 

PM schedules to consider periodic preventive maintenance (PPM). This is in virtue 

that PPM is highly recommended by many standards [128], [220], [221] and is simple 

to incorporate as a candidate solution into the SM process. 
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• Update reliability and risk features: Maintenance actions bring many impacts on 

the risk and reliability features of the component. Firstly, the maintenance exertion 

degree is determined based on fuzzy logic (section 6.1.3), by using the operational 

records of the component that were initially obtained. Then, the failure rate of the 

component is updated as described in section 6.1.4. Secondly, the virtual age of the 

component is calculated by using the Kijima Model described in Section 6.1.2. 

Subsequently, the degradation rate is updated. Finally, the probabilities vector of all 

possible states (influenced by PM) can be estimated following the process described 

in section 6.1.1.  

• Update operational records: New operational records are generated in this stage. 

This is due to the impact of the maintenance actions over the reliability model of the 

component. The updated operational records are obtained by using the updated 

reliability model of the components in combination with sampling techniques. In this 

research the Sequential Median Latin Hypercube sampling technique is suggested to 

reduce the computational burden. 

• Reliability assessment: In order to quantify the system performance due to 

maintenance, a reliability assessment is conducted. 

• Get the best PM schedule: In this stage, the economic benefits of the proposed PM 

schedules are compared. The best PM schedule is the one that presents the highest 

economic benefits. 

• Update PM schedules: In order to assure the optimum economic benefits among the 

PM schedules candidates, PM schedules evolve (enhance) based on the rules set by 

the optimization technique employed. Notice that SM involves a complex 

optimization problem (non-linear equations), which can be solved using robust 



 
 
 

100 | P a g e  

 

optimization techniques. For this reason, SM incorporates the AQPSO into the 

model. Therefore, the PM schedules evolve following the expression given in (5.16). 

• Termination criteria: The termination criteria mainly depend on the optimization 

technique employed to solve the optimization problem. Since SM employs AQPSO, 

SM finishes if one of the conditions given in (5.2) is satisfied. 

6.3 Generation Adequacy using Smart Maintenance 

SM is employed to define an effective maintenance plan that maximizes the net 

benefit from the system generation. The description of the case study, problem formulation, 

proposed algorithm, and results are as given in the following sections. 

6.3.1 Case Study 

The study incorporates the Roy Billinton Test System (RBTS) [6]. Four scenarios 

are evaluated: 1. No PM (NPM); 2. Yearly periodic PM with 𝑧 = 0.80 (PPM); 3. Reliability-

centred maintenance using PSO with 𝑧 = 0.80  (RCM). 4. Smart maintenance (SM).  The 

assumptions are the following: 1. Generators reliability features are as shown in Table 4.1; 

2. Generators cost data is as given in Table 6.7; 3. Energy price is 𝑒 = 0.082 [£/kWh] with 

a yearly increment of 3%; 4. Only thermal generators are subjected to a derated operation 

and it cost half of the CM to restore the component to rated operation; 5. Overloaded 

operation maximum time for all generators is one hour with a maximum power output of 

115%;  6. Yearly load profile is as shown in Figure 4.3 with a yearly increment of  0.5 %; 8. 

The cost increases every year by 2%. 8. PM cost is as shown in Figure 6.9.  

Table 6.7 Generators Maintenance Cost 

Unit Generation 

H: Hydro 

T: Thermal 

H5 

Pelton 

T10 

Oil 

H20 

Francis 

T20 

Coal 

H40 

Kaplan 

T40 

Coal 

Acquisition Cost [M£] 40 40 80 60 160 80 

Operation Cost [k£/yr] 12.5 600 50 680 100 790 

CM Cost [k£] 156 625 375 1250 750 1375 

 



 
 
 

101 | P a g e  

 

 

Figure 6.9 PM cost as a function of the exertion degree 

6.3.2 Problem Formulation 

The annual reliability index under consideration is the loss of energy expectation 

(𝐿𝑂𝐸𝐸)  in MWh/yr. This index is calculated using the Sequential Median Latin Hypercube 

(SMLH). SMLH is a statistical method for generating a near-random sample of parameter 

values from a multidimensional distribution. The key idea of SMLH is the stratification of 

the input probability distribution function. This is divided into equal intervals that coincide 

with the total number of experiments NE. Then, the set 𝐺 is formed with the intervals, such 

that:  

𝐺 = {𝐺1, 𝐺2, … , 𝐺𝑁𝐸} (6.16) 

 

where  

𝐺1 = [0,
1

𝑁𝐸
) ; 𝐺2 = [

1

𝑁𝐸
,
2

𝑁𝐸
) ;… ; 𝐺𝑁𝐸 = [

𝑁𝐸 − 1

𝑁𝐸
, 1] (6.17) 
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Figure 6.10 State estimation rule using SMLH 

When the experiment 𝑒𝑥 takes place, the median value (𝑢) of each equiprobable 

interval 𝐺𝑖 is selected by comparing with the probability state of the component as presented 

in Figure 6.10. Then, the operational state 𝑠 of the component is given by the rule in (12) 

[6].  

𝑠 = {

𝑆𝑡𝑎𝑡𝑒 1, 𝑖𝑓 𝑢 > 𝑃2 + 𝑃3 + 𝑃4                   
𝑆𝑡𝑎𝑡𝑒 2, 𝑖𝑓 𝑃2 + 𝑃3 + 𝑃4 ≤ 𝑢 ≤ 𝑃2 + 𝑃3
𝑆𝑡𝑎𝑡𝑒 3, 𝑖𝑓 𝑃2 + 𝑃3 ≤ 𝑢 < 𝑃3                   
𝑆𝑡𝑎𝑡𝑒 4, 𝑖𝑓 𝑃3 ≤ 𝑢                                       

 (6.18) 

 

Once the state of each generator is identified, the energy not supplied due to 

interruptions of the service (𝐸𝑁𝑆𝑒𝑥) is obtained by calculating the available energy margin. 

That is, if the demand is greater than the total generation (negative margin), then its 

difference becomes the 𝐸𝑁𝑆𝑒𝑥. This value is saved, and the experiment is completed. The 

process is repeated for 𝑁𝐸 experiments during the period of study 𝑇𝑆. Finally, the reliability 

index is calculated by using (6.19). 

𝐿𝑂𝐸𝐸 =
1

𝑁𝐸
∑ 𝐸𝑁𝑆𝑒𝑥𝑝

𝑁𝐸

𝑒𝑥𝑝=1

 (6.19) 

 

Then, the unit generation benefit is obtained by multiplying the energy price times 

the energy supplied. Mathematically, the generation adequacy benefit can be written as  
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𝐵𝑒𝑛𝑒𝑓𝑖𝑡 = 𝑒 (∑𝐸(𝑡)

𝑇𝑆

𝑡=1

− 𝐿𝑂𝐸𝐸) (6.20) 

 

where 𝐸(𝑡) represents the demanded energy at time 𝑡. 

 On the other hand, maintenance cost is the price paid for the actions taken to preserve 

or restore the generator to rated operational state. In the case of corrective maintenance 

(CM), the cost is related to the repair or substitution of the failed part in the component. In 

the case of preventive maintenance (PM) action, the cost is related to the resources needed 

to perform inspection and reduce the occurrence failure. By defining 𝑔𝑒𝑛 as the slot index 

for generators, 𝐶𝑜𝑠𝑡𝑃𝑀 as the price of performing one PM, 𝐶𝑜𝑠𝑡𝐶𝑀 as the price of 

performing one CM, 𝑁𝑃𝑀 as the total number of PM performed, and 𝑁𝐶𝑀 as the total 

number of CM. Then, the maintenance cost can be formulated as given in (6.21) Hence, the 

total maintenance cost in the interval (0, 𝑇𝑆]  can be expressed as 

𝐶𝑜𝑠𝑡𝑀 = ∑ (𝐶𝑜𝑠𝑡𝑃𝑀𝑔𝑒𝑛 𝑁𝑃𝑀𝑔𝑒𝑛 + 𝐶𝑜𝑠𝑡𝐶𝑀𝑔𝑒𝑛 𝑁𝐶𝑀𝑔𝑒𝑛) 

𝑁𝐺

𝑔𝑒𝑛=1

 (6.21) 

 

 Another cost to consider is the 𝐶𝑜𝑠𝑡𝐴𝑐, which represent the capital required to buy 

the generators. The last cost involves the operation of the generator defined as 𝐶𝑜𝑠𝑡𝑂𝑝. 

Therefore, the total cost is: 

𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙 = 𝐶𝑜𝑠𝑡𝑀 + ∑ (𝐶𝑜𝑠𝑡𝐴𝑐𝑔𝑒𝑛 + 𝐶𝑜𝑠𝑡𝑂𝑝𝑔𝑒𝑛) 

𝑁𝐺

𝑔𝑒𝑛=1

 (6.22) 

 

 With the obtained expressions, the net benefit can be mathematically formulated as:  

𝑁𝐵 =  𝐵𝑒𝑛𝑒𝑓𝑖𝑡 − 𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙 (6.23) 

 

The main goal is to maximize the net benefit by obtaining the optimum PM 

scheduling for each generator. Hence, the optimization problem can be defined as follows:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑁𝐵) (6.24) 

 



 
 
 

104 | P a g e  

 

Subject to (6.18), (6.25), (6.26) and (6.27). 

(𝑁𝑃𝑀𝐺𝑒𝑛 &  𝑁𝐶𝑀𝐺𝑒𝑛) 𝜖 ℕ (6.25) 

𝑡𝑃𝑀𝑔𝑒𝑛𝜖ℕ (6.26) 

∃𝑓𝜖𝐹 ⟹ ∃𝐶𝑀: 𝑡 < 𝑇𝑊 (6.27) 

 

The formulation given in (6.18) determines the operational state of each generator. The 

restriction shown in (6.25) stablishes that the number of CM and PM must be positive 

integers.  Restriction (6.26) indicates that the time to perform PM must an integer in the 

interval (0,𝑇𝑆]. The last restriction (6.27) states that in case that the failure 𝑓 (element of the 

set of failures events 𝐹) is detected, a CM will immediately take place, as long as, 

component’s end lifetime is not reached. 

6.3.3 Proposed Algorithm 

 To get the solution to the formulated problem, the SM algorithm shown in Figure 

6.11 is employed and implemented using MATLAB 2018. The algorithm is based on 

AQPSO and is divided into five main stages, which are described below. 

• Stage 1: The algorithm starts by loading the power system load profile and reliability 

generators’ reliability data such as failure and repair rates, capacity, costs of 

acquisition, operation and maintenance. In addition, the size of the swarm SS and 

total number of iterations 𝐼𝑡 are also defined. 

• Stage 2: The first particles 𝑥ℓ(0) are randomly generated. Each particle represents a 

different PM schedule. The generators subjected to PM are saved in 𝑥ℓ. 𝑔𝑒𝑛(0), 

while the time when PM is performed is saved in 𝑥ℓ. 𝑡𝑃𝑀(0). In addition, the 

maintenance exertion degree for each maintenance is calculated using Figure 6.6 and 

saved in 𝑥ℓ. 𝑧(0). This is followed by the determination of the degradation rate and 

failure rate (updated) of the generators, which are saved in 𝑥ℓ. 𝜙(0) and 𝑥ℓ. 𝜆(0), 

respectively. The probability vector of all possible states is obtained using Markov 
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Chain and used to conduct generation adequacy using SMLH. As a result, 𝐿𝑂𝐸𝐸 is 

calculated for every particle and saved in 𝑥ℓ. 𝐿𝑂𝐸𝐸(0). The stage continues with the 

calculation of the total cost and net benefit using (6.22) and (6.23); these values are 

save these values in 𝑥ℓ. 𝑐𝑜𝑠𝑡(0) and 𝑥ℓ. 𝑁𝐵(0), respectively. The stage finishes with 

the identification of the ‘global best’ particle, which is obtained by looking for the 

particle with the maximum net benefit. The value is saved in g. It is relevant to 

mention that the ‘best personal’ 𝑞ℓ is equal to the actual position 𝑥ℓ(0) since the 

particles have not started their motion. 

• Stage 3: The first iteration takes place, and the particles start their motion. The 

attraction parameter 𝐷ℓ(𝑘), and best observation ℬ are obtained using (5.1) and 

(5.15), respectively. Then, the new position of the particle is computed using (5.16). 

The updated position of the particle represents a new PM schedule that may lead to 

a better net benefit. Then, generation adequacy is computed to obtain a new net 

benefit value, which is saved in 𝑥ℓ. 𝑁𝐵(𝑘). 

• Stage 4: In this stage, the particles compete between them to determine the best PM 

schedule. If 𝑥ℓ. 𝑁𝐵(𝑘) > 𝑥ℓ. 𝑁𝐵(𝑘 − 1) then the particle updates its position. The 

‘personal best’ is also updated and saved in 𝑞ℓ. This is followed by a second 

comparison in which the ‘global best’ is considered. For this purpose, it is required 

to find the best 𝑥ℓ(𝑘) among the swarm such that brings the maximum savings. The 

best particle is saved in the variable g′.  If the g′. 𝑁𝐵 > g.𝑁𝐵 then the 𝑥ℓ(𝑘) becomes 

the ‘global best’, otherwise the ‘global best’ is not replaced. In case that 𝑥ℓ. 𝑁𝐵(𝑘) ≤

𝑥ℓ. 𝑁𝐵(𝑘) then the process continues with the next particle. 

• Stage 5: The process in stage 3 and stage 4 are repeated until one of the convergence 

criteria presented in (5.2) is satisfied. Consider for the convergence criteria a 
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tolerance value of 10−6. Finally, the outcome is the particle with the best PM 

schedule. 

 

Figure 6.11 Flowchart for effective maintenance plan through SM 
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6.3.4 Smart Maintenance Schedule 

In order to consider the impact of maintenance in the long term, the analysis is 

conducted for the next 50 years. Figure 6.12 and Figure 6.13 present the SM schedule for 

hydro and thermal unit generation (UG), respectively. To understand these graphs, a symbol 

is defined for every UG. Then, the time when the PM takes place is given by the interception 

point formed from the figure axis, that is, the month is determined by the x-axis and the year 

is given by the y-axis. The colour on the symbol indicates the maintenance exertion degree. 

For example, the first PM (with z≈0.37) to execute on H20 ( ) is in February of the third 

year. Notice that the PM cost is given by the colour, as shown in Figure 6.9. 

The maintenance displays different patterns depending on the UG. The first pattern 

appears in H5 and T10, in which the exertion degree increases with the time until reaching 

the maximum of 0.95. This is attributed to their low capacity of power that leads to a small 

contribution to the demand in comparison to other UG. On the other hand, H40 and T40 

show the highest number of maintenances. These UGs are the most relevant in the system as 

they produce the highest amount of power. Focusing on H20 and T20, their exertion degree 

also increases with time until reaching values around 0.94 and 0.77, respectively. 

Independently of the UG, SM scheme suggests performing PM after the second and 

a half year of acquisition of the generator. In the subsequent years, SM recommends in an 

average of one, one and a half, and two maintenances per year during the useful lifetime for 

high (H40 and T40), medium (H20 and T20), and low (H5 and T10) UGs, respectively. In 

addition, SM acclaims for all UGs not to perform any maintenance for three and a half years 

before the generator reaches its obsolescence state. 
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Figure 6.12 SM plan for hydro unit generation 

 

Figure 6.13 SM plan for thermal unit generation 
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Figure 6.12 and Figure 6.13 show a tendency during the months of February, March, 

and August. These are the months on which most PMs are performed. This is due to the 

strategy established by SM, which takes advantage of the months with demand of lowest 

peaks (March and August, as presented in Figure 4.3) to be prepared and supply the demand 

during the month of high peaks (January, May, June and November, and December as 

presented in Figure 4.3). The impact of the schedules generated by the SM scheme is 

discussed in the next sections. 

6.3.5 Operation and Number of Maintenances 

During the next 50 years, every generator will be subjected to different operating conditions. 

Table 6.8 shows a summary of the operation of every UG with different maintenance 

strategies. It can be observed that scenario NPM presents the lowest and highest values of 

percentage for ‘rated operation’ and ‘not in operation’ states. This is because in this scenario 

the failures are recurrent due to the absence of maintenance. In contrast, the highest values 

of percentages for the rated operation state belongs to PPM, followed by RCM and SM. 

Regarding the overloaded operation, in all the cases the values do not exceed the five per 

cent. This is attributed to the condition of operation which stablishes that the generators 

cannot operate under this condition for more than one hour, therefore the overloaded 

operation is very limited. On the other hand, the percentage of derated operation corresponds 

to NPM followed by SM, RCM and PPM scenario. This last point is relevant since it reveals 

that SM uses the derated state as a strategy for planning PM, at the difference with RCM and 

PPM. 
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Table 6.8 Summary of the Operational States of each UG 

Unit 

Generation 
Case 

Operation within 50 years [%] 

Rated  Derated  Overloaded  
Not in 

Operation 

H5 

NPM 83.28 0 3.72 13 

PPM 93.16 0 3.3 3.54 

RCM 93.66 0 3.13 3.21 

SM 89.8 0 4.49 5.71 

T10 

NPM 77.2 16.76 1.25 4.79 

PPM 93.1 3.65 0.81 2.44 

RCM 92.71 3.76 1.04 2.49 

SM 84.84 13.06 1.25 0.85 

H20 

NPM 85.19 0 4.24 10.57 

PPM 96.44 0 1.85 1.71 

RCM 95.16 0 2.66 2.18 

SM 93.57 0 3.08 3.35 

T20 

NPM 78.53 17.88 1.57 2.02 

PPM 94.66 3.54 0.65 1.15 

RCM 92.36 4.59 1.52 1.53 

SM 87.62 10.34 0.86 1.18 

H40 

NPM 85.27 0 4.9 9.83 

PPM 94.88 0 1.8 3.32 

RCM 92.82 0 2.71 4.47 

SM 92.71 0 2.74 4.55 

T40 

NPM 78.12 14.25 2.07 5.56 

PPM 94.25 3.19 1.7 0.86 

RCM 93.39 4.64 1.26 0.71 

SM 84.41 11.03 1.24 3.32 

 

Table 6.9 Summary of the Maintenances performed to each UG 

Unit 

Generation 

Number of PM 

 within 50 years 

Number of CM  

within 50 years 

NPM PPM RCM SM  NPM PPM RCM SM 

H5 0 50 31 24 125 57 69 71 

T10 0 50 36 24 151 77 85 88 

H20 0 50 42 34 134 57 60 65 

T20 0 50 46 38 176 84 88 91 

H40 0 50 46 40 142 63 70 73 

T40 0 50 47 45 180 96 99 104 
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In order to get an insight into the numbers of PM and CM executed to every UG, 

Table 6.9 presents a maintenance summary. It can be appreciated that under the SM scheme, 

the thermal UGs require more attention than hydro UGs. This is in virtue of the derated 

operation that just thermal generators possess, which reduces the probabilities of being in 

the rated operation.  

Concerning the number of PM and CM, NPM scenario shows the highest number of 

CM, which makes this scenario the least reliable. In contrast, PPM shows the lowest and 

highest number of CM and PM, respectively. Therefore, PPM is the scenario with the lowest 

occurrence of failures, and the most reliable scenario. Nevertheless, it is important to 

consider that there should be a balance between the reliability and the cost maintenance in 

order to maximize the net benefit. Consequently, PPM may not lead to the optimum net 

benefit since is the most expensive among the strategies. This is discussed in detail in the 

next sections. 

6.3.6 Unit Generation Degradation 

In order to get the degradation, the reliability data of each generator is used in (6.9). 

Figure 6.14 shows the degradation as a function of time for every UG under different PM 

strategies. It can be observed that the degradation tends to be more intense as time passes 

by. Nevertheless, PM actions influence degradation.  The results reveal that since PPM 

presents the highest number of maintenances followed by RCM and SM, the degradation is 

reduced. This fact brings repercussion over the reliability of the UG, and therefore in the net 

benefit. 
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Figure 6.14 Degradation of each unit generation under different PM strategies 

6.3.7 Unit Generation Reliability Model 

Following the process described in Section 6.1.2, the probability vector of each 

possible state is obtained. Then, the availability, unavailability, and semi-availability are 

determined using (4.20), (4.21) and (6.5), respectively.  
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Figure 6.15 Reliability model for each UG under different PM strategies 
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Figure 6.15 shows for every scenario the reliability behaviour of each unit generation. 

It is notable that at some point the availability and semi-availability go to zero while the 

unavailability takes a value of 100%. This phenomenon indicates that the component had 

reached its end lifetime, then a replacement takes place. The figure also depicts that when no 

PM (NPM) is executed, the availability decreases, while the unavailability increases, both at a 

fast rate. In contrast, PPM, RCM and SM schemes present a more stable and higher value of 

availability than NPM. In addition, PPM, RCM and SM schemes present a more stable and 

lower value of availability than NPM. This fact demonstrates the strong influence of PM on 

the reliability of generators.  

The availability with the highest value is given by the PPM scenario. This is reasonable, 

as previously presented, the PPM scenario presents the highest number of PM. Therefore, PPM 

is the most reliable, but also, the one with the highest maintenance cost. On the other hand, 

RCM presents a slightly highest value of availability than SM. Nevertheless, SM compensates 

this difference with the semi-availability. This instance has implications on the net benefit as 

shown in the next section. 

6.3.8 Smart Maintenance Maximum Net Benefit 

Figure 6.16 presents the behaviour of the net benefit every five years. Figure 6.16 shows 

that independently of the scenario, a negative net benefit appears at time zero. This is 

reasonable, in the beginning, the net benefit corresponds to the UGs acquisition cost. During 

the next years until the twenty-fifth, the net benefit increases and still negative for all cases, 

showing the lowest value for NPM. Between the twenty-fifth and fortieth year, the net benefit 

increases at a low rate in comparison to previous years. This is because by the fortieth year all 

the UGs have reached their end lifetime, which increases the cost due their renewal 

requirement. In the subsequent years the net benefit for NPM increases at a lower rate than the 
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other two scenarios. By the fifth year SM presents the highest net benefit, followed by the 

RCM, PPM and the NPM. 

Even though PPM and RCM show a slightly better reliability performance than SM, it 

does not necessarily superior to SM in an economic context. The reason is being that the 

optimization process of SM defines a hierarchical level, based on the power output, reliability 

features and operation behaviour of every UG. This leads to a proactive PM plan that contains 

the optimum time and maintenance exertion degree for each UG. 

 
Figure 6.16 Net benefit evolution 

6.3.9 Smart Maintenance Computational Efficiency 

 With a view to show the computational efficiency of AQPSO for SM, the same 

preventive maintenance schedule optimization problem is solved using traditional PSO and 

genetic algorithm (GA). It is relevant to mention that a total of 50 particles and 100 iterations 

are used for each optimization technique with Sequential Median Latin Hypercube experiments 

of 5000. A computer with a RAM of 16.0 GB and processor Intel Core i7-6700 of 3.40 GHz is 

employed to run the algorithms.  

The proposed case study given in Section 6.3.1 employs the Roy Billinton test system. 

Such system is considered as a small-scale power system (6 bus). For this reason, the IEEE 73-
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bus reliability test system (RTS) [163] is used to investigate the robustness of the proposed 

approach for a large-scale system. 

Figure 6.17 shows the convergence behaviour of each optimization technique. For the 

RBTS, the convergence is reached at iteration 21, 23 and 25 for AQPSO, PSO and GA, 

respectively. Even though AQPSO presents the fastest convergence, the convergence speed 

difference in comparison to PSO and GA is not significant. On the other hand, for the RTS, the 

convergence is reached at iteration 75, 85 and 89 for AQPSO, PSO and GA, respectively. In 

this case, AQPSO presents again the fastest convergence with a notable difference in 

comparison to PSO and GA. It is relevant to highlight that independently of the size of the 

power systems, at some iteration number all the employed optimization techniques reached the 

same net benefit, which guarantees the accuracy of the results. 

Another important aspect to analyse is the simulation time. Table 6.10 presents the 

simulation time values per experiment for each optimization technique. Table 6.10 reveal that 

for the RBTS, the simulation time difference among the optimization techniques does not 

exceed 0.4 %. Nevertheless, for the RTS, such difference is outstanding since PSO and GA 

simulation time exceeds by 22.1 % and 18.1 % to AQPSO, respectively. Therefore, AQPSO 

presents the best efficiency in terms of simulation time, which makes AQPSO the most suitable 

optimization technique to be used in the Smart-Maintenance model. 

Table 6.10 SM Optimization Techniques Robustness 

Power 

System 
Algorithm Simulation time per iteration [s] 

RBTS 

(6 buses) 

PSO 10.05 

GA 10.03 

AQPSO 10.01 

RBT 

(73 buses) 

PSO 124.3 

GA 120.2 

AQPSO 101.8 
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Figure 6.17 SM Optimization technique convergence 

6.4 Summary 

This chapter focuses on an innovative mathematical approach for SM of generators that 

maximizes generation adequacy net benefit. The main difference between the proposed SM 

with other advanced maintenance strategies is that SM considers the maintenance exertion 

degree and the composite operation of every component in the system to formulate an effective 

maintenance plan.  SM is based on reliability and risk concepts including Markov chain to get 

the probability vector of states, Kijima model to quantify the virtual age of the component, and 

fuzzy logic to determine the maintenance effort during maintenance action. The SM scheme 

involves an optimization problem which is solved using AQPSO in combination with SMLH. 

To prove the efficacy of the proposed approach four scenarios are evaluated: 1. No preventive 

maintenance (NPM), 2. Periodic preventive maintenance (PPM); 3. Reliability-centered 

maintenance (RCM); 4. Smart maintenance (SM).  

The results show that PM actions have a strong impact on the reliability of the 

component, deriving in the lowest economical net benefit for NPM scenario. In contrast, the 

SM scenario presents the highest economical net benefit. This fact is attributed to the effective 
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maintenance schedule that SM brings, which includes the effort required in each PM. Even 

though PPM and RCM are highly recommended by many standards, this may not lead to 

maximum net benefit as evidenced by the presented work in this chapter.
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Chapter 7: Closure 
 

This chapter presents the conclusions from the key findings of the research. It is followed by 

an outline of potential applications of the proposed approach that might be of interest to the 

power industry and others. 

7.1 Conclusions 

Electrical power system components are constantly affected by failures, which can be 

due to meteorological phenomena, technical causes, and human errors. The occurrence of 

failures can be reduced by performing proper maintenance actions at the right time. This 

research proposes a novel Smart Maintenance (SM) scheme that optimises the economic 

benefits, while maintaining adequate level of reliability of the system.  

SM takes the failure and repair rates of the components as inputs to formulate a system 

reliability model. A more rigorous reliability model provides more accurate reliability indices.  

Chapter 4 proposed a novel reliability model with aging features. The advancement of the 

model is the incorporation of the obsolescence state that is used to describe the degradation of 

generators due to aging. The accuracy of the proposed model is further improved by modelling 

the failure and repair rates of the components using the bathtub curve and half-arch shape, 

respectively. The efficacy of the approach is validated by a case study that considers three 

different reliability models. The results reveal that the existing models (first and second) 

produce imprecise availability functions. For instance, in the first model, the availability of 

generators is constant over all stages of the bathtub curve. In the second model, the availability 

decreases exponentially when a generator is within the wear-out stage. However, the 

availability should decrease over time since generators degrade throughout their entire lifecycle 

due to mechanical and electrical stresses. To incorporate the aging process in all stages of the 

bathtub curve, the proposed model (third) adds the obsolescence state. The obsolescence state 
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enables the quantification of the degradation rate of the generators, which exponentially 

reduces the availability over all stages of the bathtub curve. The proposed model offers a more 

realistic estimation of the generator availability than traditional models, providing a more 

comprehensive alternative for generation adequacy assessments.  

SM formulates a preventive maintenance (PM) schedule optimization problem, in 

which the objective is to maximize the maintenance economic benefits. In order to obtain the 

optimum solution in an adequate time, the optimization technique must be robust and reliable. 

Chapter 5 proposes an advanced optimization technique named as Accelerated Quantum 

particle Swarm Optimization (AQPSO). AQPSO is an evolutionary computation technique 

that, unlike traditional PSO, does not employ the classical physics concepts to get the optimal 

solution. Instead, it associates the motion of particle based on quantum mechanics theories. 

The innovation of the approach lies in the incorporation of the ‘best observation’, which is 

obtained by using more than one observer into the experiment. Applicability, stability and 

robustness of AQPSO are validated by applying it for two different case studies.  

In the first case study, the proposed optimization technique was used to determine the 

optimal sizing and placement of SVCs such that the expected energy not supplied (EENS) is 

minimized.  The results argue that the presence of SVC produces an improvement in power 

system reliability by 44.3%. To assure the accuracy of the results, the same optimization 

problem is solved using different number of observers, emerging in the same EENS value. A 

finding is that as the number of observers increases, faster convergence is achieved. This is 

because the probabilities of finding the quantum particle near the optimal solution increases 

with the number of experiments (observations). 

In the second case study, the objective was to maximize the savings due to the reduction 

in power losses. The strategy is based on the proficient planning and operation of SVCs. The 

optimization problem is solved using three different methods: Bi-Level Genetic Algorithm 
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(BLGA), Bi-Level Particle Swarm Optimization (BPSO) and Bi-Level Accelerated Quantum 

particle Swarm Optimization (BAQPSO). The case study was carried out for the next 12 years 

and all methods generated savings of £440,000. This result indicates the potential economic 

benefits of installing SVCs into the power transmission system. Even though all the 

optimization techniques reached the same outcome, their computational efficiency differs. The 

fastest convergence corresponds to BAQPSO by 34.3% and 37.5% in comparison to BPSO and 

BGA, respectively. Furthermore, BAQPSO exhibits the lowest time simulation with a 

reduction of time by 27.1% and 22.4% in comparison to BPSO and BGA, respectively. 

Therefore, AQPSO demonstrates to be the most robust technique in comparison to the 

conventional GA and PSO.  

The greater number of preventive maintenances could potentially lead to a considerable 

level of the improvement in the reliability of power system. Nevertheless, it is vital to consider 

the operational risk of the components and perform preventive maintenance (PM) at the benefit 

horizons to avoid superseding the cost over benefit. Under this context, Chapter 6 presented an 

innovative smart maintenance scheme that incorporates reliability and risk concepts to 

maximize economic benefits. From the reliability perspective, SM considers Kijima model to 

calculate the virtual age of the component after PM is performed and Markov chain to describe 

the probability of being in the different operational states of the component. From the risk 

perspective, SM considers the fuzzy logic to quantify the maintenance effort based on the 

operational records and availability of the component. In addition, SM formulates a PM 

schedule optimization that is solved using AQPSO in combination with the Mean Sequential 

Latin Hypercube (MSLH). In this way, SM achieves a comprehensive schedule that indicates 

where, when and how the PM should be executed.  

The proposed maintenance strategy is applied to a case study to maximize the economic 

benefits due to the reduction of occurrence of failures of power generators. In order to show 
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the efficacy of the proposed approach, the case study considers two more maintenance 

strategies: yearly periodic preventive maintenance (PPM) and reliability-centre maintenance 

(RCM). The case study results suggest that during the optimization process, SM defines a 

hierarchical level for each generator based on its failure rate, capacity and lifetime. For 

instance, generators with higher failure rate, lower lifetime and lower capacity, require more 

maintenance than the ones with lower failure rate, higher lifetime and higher capacity. For this 

reason, the SM schedule does not present a common pattern as in the PPM in which the PM is 

performed every year. On the other hand, the maintenance strategy with the lowest degradation 

belongs to PPM, followed by RCM and SM. This fact is associated with the number of 

preventive maintenances. The more PM executed, the slower the degradation process. 

Consequently, PPM presents the highest availability, but also, the one with the highest 

maintenance cost. Thirdly, the predominance of SM over the PPM and RCM is corroborated. 

Even though PPM and RCM are highly recommended by many standards, it does not 

contemplate a comprehensive reliability and risk operational analysis of the component. This 

fact heads to a maintenance plan that may not carry the maximum net benefit.  

The research presented in this thesis provides significant contributions to the knowledge 

in the field of power system reliability. Firstly, a more accurate relationship between 

maintenance, degradation due to aging, and operational risk is achieved. Such relationship is 

useful to quantify the impact of maintenance on the reliability parameters of power generators, 

bringing more realistic reliability assessment results. Secondly, a detailed Smart-Maintenance 

mathematical framework for power generators is proposed.  The application of these 

mathematical formulations leads to the net-maximum economic benefit engendered from the 

improved reliability performance of generators, resulting in an approach that might be of 

interest to the power industry. Thirdly, an advanced SM algorithm that combines the AQPSO 

with SMLH for the scheduling of proactive maintenance of generators in a power system is 
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proposed. Such algorithm demonstrates to be efficient in terms of convergence speed and 

simulation for small and large power systems. Therefore, the proposed algorithm could be 

considered as an effective optimization technique for the optimization of generators in a PM 

schedule. 

Thus, it is relevant to highlight that PM is essential to keep a high-reliability level in 

the power system. However, a more important fact to consider is to perform PM based on the 

reliability performance and operational risk of the components such that the maintenance cost 

does not supersede the economic benefit. Further, the approach is beneficial for planning PM 

schedules with the aim of improving the reliability performances in the long run. Although this 

research employs the SM scheme for generators, the model can be extended for other power 

system components, providing a range of opportunities for the operational planning of modern 

power systems. 

7.2 Future Research 

The proposed research includes several aspects related to the improvement of power 

system reliability. These aspects focus on the reactive compensation and the impact of smart 

maintenance over aging of power generators. Nevertheless, there are other fields that can be 

explored, leading to new trends in power system reliability. The following is a list of the 

possible future directions:  

• To incorporate the aging of power generators in reliability modelling, this thesis 

proposes the use of the bathtub curve and half-arch shape. However, other equipment 

installed in the power system contain unique features, which impact the aging process. 

For instance, wind turbines and transmission lines are constantly affected by weather 

conditions, and the bathtub curve and half-arch shape may not represent the true 

behaviour of their failure and repair rates. Thus, it would of interest to develop a holistic 

framework that considers aging due to climate conditions such as humidity, 
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temperature, solar radiation, and wind speed. These considerations could result into a 

more comprehensive power system reliability assessment. 

• To enhance the performance of the power system reliability, this research proposed an 

innovative smart maintenance model for power generators. Nevertheless, brand new 

maintenance models for other power system components are needed since the proposed 

model is limited to system generation adequacy. For instance, advanced maintenance 

planning for transmission lines and power transformers requires researchers to consider 

parameters such as the maximum potential of insulators, electrical stress due to short 

circuits failures, and extreme weather conditions. These considerations could result in 

more effective maintenance planning. 

• To show the real-world applications of the proposed approach, it will be advantageous 

to perform simulations using the manufacturers’ datasheet for the different power 

system components. Moreover, the consideration of a real power system (i.e. the UK 

national grid) could result in a practical evolution of the proposed approach, bringing 

new reliability models to be considered.  
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Appendix 
 

A.1 Roy Billinton Test System (RBTS) 

The Roy Billinton Test System (RBTS) [6] is a 230 kV transmission system that has 9 

buses, two generator, four load buses, nine transmission lines, and eleven generating units. 

Figure A.1 shows the RTBS single line diagram. The normalized yearly load demand is 

presented in Figure A.2. Reliability data regarding the generation units and transmission lines 

are presented in Table A.1 and Table A.2, respectively. 

 
Figure A.1 RBTS single line diagram  [6] 
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Table A.1 RBTS Unit Generation Reliability Data [6] 

Unit size 

[MW] 
Type # of units 

Forced outage 

rate 
Failure Rate 

[1/yr] 
Repair Rate 

[1/yr] 

5 Hydro 2 0.010 2.0 198.0 

10 Thermal 1 0.020 4.0 196.0 

20 Hydro 4 0.015 2.4 157.6 

20 Thermal 1 0.025 5.0 195.0 

40 Hydro 1 0.020 3.0 147.0 

40 Thermal 2 0.030 6.0 194.0 

 

Table A.2 RBTS Transmission Lines Reliability Data [6] 

From To 
R 

[p.u.] 

X 

[p.u.] 

Outage rate 

[occ/yr] 

Repair time 

[1/yr] 

1 2 0.0342 0.180 1.5 10.0 

2 4 0.1140 0.600 5.0 10.0 

1 2 0.0912 0.480 4.0 10.0 

3 4 0.0228 0.120 1.0 10.0 

3 5 0.0028 0.120 1.0 10.0 

1 3 0.0342 0.180 1.5 10.0 

2 4 0.1140 0.600 5.0 10.0 

4 5 0.0228 0.120 1.0 10.0 

5 6 0.0028 0.120 1.0 10.0 

 

 

 

Figure A.2 Normalized yearly load profile  [6] 
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A.2 IEEE Reliability Test System (RTS) 

The IEEE Reliability Test System (RTS) [163] is a transmission system that is divided 

in three areas. Each area presents the same electrical topology, having 24 bus, 38 lines, and 

five transformers, as shown in Figure A.3. The normalized yearly load demand is presented in 

Figure A.2. Reliability data regarding the bus, generation units, and transmission lines are 

presented in Table A.1 and Table A.2, respectively. 

 

 

Figure A.3 RTS single line diagram  [6] 
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Table A.3 RTS Unit Generation Reliability Data [163] 

Bus number Type 
Voltage 

[KV] 
MW Load MVAR Load 

1 Control 138 108 22 

2 Control 138 97 20 

3 Load 138 180 37 

4 Load 138 74 15 

5 Load 138 71 14 

6 Load 138 136 28 

7 Control 138 125 25 

8 Load 138 171 35 

9 Load 138 175 36 

10 Load 138 195 40 

11 Load 230 0 0 

12 Load 230 0 0 

13 Swing 230 265 54 

14 Control 230 194 39 

15 Control 230 317 64 

16 Control 230 100 20 

17 Load 230 0 0 

18 Control 230 333 68 

19 Load 230 181 37 

20 Load 230 128 26 

21 Control 230 0 0 

22 Control 230 0 0 

23 Control 230 0 0 

24 Load 230 0 0 

 

Table A.4 RTS Unit Generation Reliability Data [163] 

Unit size 

[MW] 
Type # of units 

Forced outage 

rate 
MTTF  

[hour] 
MTTR 

[hour] 

12 Oil/Steam 12 0.02 2940 60 

20 Oil 20 0.10 450 50 

50 Hydro 50 0.01 1960 20 

76 Coal/Steam 76 0.02 1960 40 

100 Oil/Steam 100 0.04 1200 50 

155 Coal/Steam 155 0.04 960 40 

197 Oil/Steam 197 0.05 950 50 

350 Coal/Steam 350 0.08 1150 100 

400 Nuclear 400 0.12 1100 150 
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Table A.5 RTS Transmission Lines Reliability Data [163] 

From To 
R 

[p.u.] 

X 

[p.u.] 

Failure rate 

[1/yr] 

Repair time 

[1/yr] 

1 2 0.003 0.014 0.24 16 

1 3 0.055 0.211 0.51 10 

1 5 0.022 0.085 0.33 10 

2 4 0.0333 0.127 0.39 10 

2 6 0.050 0.192 0.48 10 

3 9 0.031 0.119 0.38 10 

3 24 0.002 0.084 0.02 768 

4 9 0.027 0.104 0.36 10 

5 10 0.023 0.088 0.34 10 

6 10 0.014 0.061 0.33 35 

7 8 0.016 0.061 0.30 10 

8 9 0.043 0.165 0.44 10 

8 10 0.043 0.165 0.44 10 

9 11 0.002 0.084 0.02 768 

9 12 0.002 0.084 0.02 768 

10 11 0.002 0.084 0.02 768 

10 12 0.002 0.084 0.02 768 

11 13 0.006 0.048 0.40 11 

11 14 0.005 0.042 0.39 11 

12 13 0.006 0.048 0.40 11 

12 23 0.012 0.097 0.52 11 

13 23 0.011 0.087 0.49 11 

14 16 0.005 0.059 0.38 11 

15 16 0.002 0.017 0.33 11 
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