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Self-Reference and Chaos in Fuzzy Logic 
Patrick Grim 

Abstract-The purpose of this paper is to open for investigation 
a range of phenomena familiar from dynamical systems or 
chaos theory which appear in a simple fuzzy logic with the 
introduction of self-reference. Within that logic, self-referential 
sentences exhibit properties of fixed point attractors, fixed point 
repellers, and full chaos on the [0, 11 interval. Strange attractors 
and fractals appear in two dimensions in the graphing of pairs 
of mutually referential sentences and appear in three dimensions 
in the graphing of mutually referential triples. 

I. INTRODUCTION 
HAOS theory and fuzzy logics form two of themost C intriguing and promising areas of current mathematical 

research. In what follows, I want to explore a region of fuzzy 
logic which exhibits some of the phenomena of chaos theory-- 
a region found, interestingly enough, in a consideration of the 
fuzzy dynamical semantics of self-referential paradoxes and 
related sentences. 

A familiar fuzzy logic is outlined in Section I. In section 
11, the classical example of the Liar paradox is used to sketch 
the use of iterated algorithms to model self-reference. Self 
referential sentences in fuzzy logic displaying the dynamical 
semantics of fixed-point attractors and fixed-point repellers 
are then outlined in Section 111. Section IV is devoted to the 
Chaotic Liar, a fuzzy self-referential sentence the dynamical 
semantics of which is fully chaotic in the precise mathematical 
sense. Section V traces similar results with regard to pairs of 
mutually referential sentences, introducing strange attractors 
and fractals in two dimensions. In Section VI, the exploration 
is extended to triples of mutually referential sentences and 
corresponding dynamical phenomena in three dimensions. 

Here, my purpose is merely to call attention to some of the 
dynamic phenomena of self-referential fuzzy logics, and I will 
proceed for the most part by simple example. In the somewhat 
different context of [ 11, a hope was expressed that a next step 
in research would reveal fuzzy systems with chaotic behavior 
“and then we can define, and study, fuzzy fractals” [ 2 ] ,  131. 

The work that follows seems to fulfill that hope, here inthe 
context of a study of the dynamical semantics of self-reference 
within fuzzy logic. 

Given the affinity of many of the examples that follow 
to the traditional semantic paradoxes, it  should perhaps be 
emphasized that this paper is not to be construed as an attempt 
to solve the paradoxes. Two thousand years of attempted 
solutions can hardly be said to have met with conspicuous 
success, and I do not expect fuzzy logics to be any less 
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vulnerable to strengthened versions of the Liar, say, than 
are three-valued, multivalued, infinite-valued, gapped, and 
antifoundational logics (for a critical survey, see for example 
[4, ch. 11). In the end, a solution to the phenomena of self- 
reference may simply be the wrong thing to look for. In 
something of the spirit of [5]-[7], the attempt here is rather 
to open for investigation the semantical dynamics of self- 
reference and self referential reasoning in their own right, 
here within a fuzzy logic and with an emphasis on pattems 
of semantic instability. 

Although I attempt at various points to draw some specu- 
lative conclusions, it is clear that much remains to be done in 
terms of generalization and interpretation. Intriguing and per- 
haps even beautiful formal phenomena appear in the semantics 
of certain self-referential sentences within fuzzy logic, but it 
is not always clear why they appear, how they generalize, or 
what such formal phenomena actually mean. It is known that 
there are a range of metamathematical results closely related to 
aspects of the current work, including extensions of classical 
limitative results to both chaos theory and fuzzy logic [8], 191. 
I leave a more complete discussion of those topics, however, 
to another paper. 

11. A SIMPLE FUZZY LOGIC 
The basic fuzzy logic to be used in what follows is per- 

haps thesimplest possible: the familiar Lukasiewicz LN1. Our 
numerical truth values are taken to be the reals in the [0, 11 
interval, using as connectives: 

where g(p) denotes the numerical truth value of a proposition 

Formal considerations cast a strong presumption in favor 
of minand max for conjunction and disjunction [12], and an 
only slightly weaker presumption in favor of the treatment 
of negation employed here. The same cannot be said for the 
Lukasiewicz implication: here, it must simply be admitted that 

P [lo], [ I  11. 
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there are a number of alternatives.’ Nonetheless, it is clear 
that LN1 can currently claim to be the srundurd basis for fuzzy 
logic. 

The distinguishing mark of true fuzzy logics, as opposed 
to mere infinite-valued logics, is the use of a denumerable set 
of “linguistic” truth values beyond the numerical truth values 
- v ( p )  used above.’ Linguistic truth values are themselves rep- 
resented by fuzzy sets, standardly generated from a fuzzy set 
“true” and its converse “false” through recursive application 
of algorithmic hedges such as “very,” “more or less,” “slight,” 
and the like [ l l ] ,  [15]-[19]. 

Nothing in the basic Lukasiewicz logic, however, dictates 
what shape a basic fuzzy set for “true” is to take. Here, as in the 
case of implication, there are clearly alternatives. For present 
purposes, I want to use what may be the simplest and most 
clearly justified fuzzy set for “true,” generated by importing 
the familiar Tarski convention T directly into LN1. 

Following 1201, and using T ( p )  for the claim that“$ is true, 

T(P) * P. 
Using the Lukasiewicz biconditional, 

V(7’(P) * P) = I!((T(P) ---$ P) A (P ---$ 

= 1 - abs(V(7’(P)) - V ( P ) ) .  

Assuming that the Tarskian schema itself takes the value of 
“1,” for absolute truth, it must be the case that: 

I!(T(P)) = V ( P )  

Ptrue(ZI) = v. 
or, for those more familiar with Zadeh’s symbolism, 

What direct importation of the Tarskian T schema into LN1 
gives us is the basic fuzzy set for “true” of 1171, [181, 1211, 
[22]. With “false” as the complement of “true” and modeling 
“very” and “fairly” or “more or less” in terms of squares and 
square roots, respectively-a treatment fairly consistent across 
the literature-we get the basic set of linguistic truth values 
indicated in Fig. l.3 

This treatment of “true” does, of course, have alternatives-- 
most notably that of [ 111, in which a fuzzy set for “true” is 
characterized as: 

PLtrueO) = 0 foro I v I Q: 

‘In [SI, for example, we use an implication definable as (- p V q) ,  which 
gives us Rescher’s S,> [lo], first developed in [13]. As [I41 notes, this 
approach offers a direct fuzzification of predicate calculus. 

It should also be noted that a stronger intuitive argument might be made 
for the tukasiewicz biconditional than for the conditional itself. It is the 
biconditional rather than the conditional that is most directly relied on in 
what follows. 

?-See [I41 on different senses of “fuzzy logic.” 
3Here, I do not mean to suggest that the standard modeling for “very” and 

“fairly” is any way beyond question, of course. On this, see the discussions 
in Sections IV and footnote 17. 
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where a is a parameter “which indicates the subjective judg- 
ment about the minimum value of in order to consider a 
statement as “true” at all” [19]. A sketch of Zadeh’s basic 
fuzzy sets for “true” and “false” (where pfalse(g) = ptrue(l - 
- v)), using an (Y of 0.6 along with the corresponding sets for 
“very” and “fairly,” appears in Fig. 2. 

The results of this paper are built on Baldwin’s fuzzy 
logic rather than Zadeh’s for reasons of simplicity: Baldwin’s 
outline for “true” is simpler not only in algorithmic and graphic 
terms but in terms of its justification as a direct importation 
of the Tarski 7’-schema into Lukasiewicz LN1. It is clear that 
a range of results similar to those described later, however, 
would emerge from a consideration of Zadeh’s logic or other 
more complicated fuzzy logics as well; at several points results 
are indicated which will hold for any fuzzy logic with L N ~  as 
a base. 

It is important to note that although the underlying semantics 
(or model) of our logic is expressed in terms of numerical truth 
values, the propositions admissable in the language of the logic 
itself can use only linguistic truth values, “p is very true” is, 
thus, a type of sentence for which our fuzzy logic provides 
a valuation scheme; “p is 0.75 true” is not. The perceived 
artificiality of sentences of the latter sort does, in fact, seem to 
be have been part of Zadeh’s initial motivation for moving to 
linguistic truth values [ 111, and much of the common suspicion 
of the “artificial numbers” of fuzzy logics can be dealt with by 
viewing those numbers merely as an artifact of the semantic 
model. The language for which that model is designed need 
not contain numerical truth values at all.4 

4Here, the case of set-theoretical semantics is perfectly parallel. The fact 
that our semantic model is written in terms of sets need not commit us to 
thinking that the sentences modeled are themselves about sets at all. 
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Consider also a language, however, in which we are allowed 
to claim numerical truth values for particular propositions--“p 
is 0.75 true”-just as we normally do within the semantics of 
fuzzy logic. Suppose, moreover, that we have a claim q that 
we know to be 0.75 true. In that case, the claim that “ p  is 
0.75 true” will intuitively be as true as the claim that p has 
the same value as q .  For this particular case, and using the 
biconditional quite naturally to represent “has the same value 
as,” we can express that basic intuition as: 

pis0.75true * ( p  ++ q ) .  

In general, let [w] represent a proposition with fixed numerical 
value U. By the same reasoning, the claim that ‘‘p is II true” 
will be as true as the claim that p has the same value as [U]. 

This we can express in terms of a biconditional as: 

pis  w true H ( p  H [w]). 

If this general intuitive principle is itself thought of as having 
a value of 1, the tukasiewicz biconditional gives us: 

- v(piswtrue) = 1 - abs(v(p) - ~ ( [ v ] ) )  

or simply 

= 1 - abs(g(p) - U). 

This, it tums out, is Rescher’s truth value assignment operator 
for infinite-valued logic [lo]. In terms of Rescher’s schema, 
the value for a proposition Vvp to the effect that a proposition 
p has a numerical truth value w is given by: 

- v(Vvp) = 1 - abs(v - ~ ( p ) ) .  

This relation between Baldwin’s fuzzy sets for linguistic 
truth values and Rescher’s V v p  schema for attributions of 
numerical truth values is perhaps even clearer when envisaged 
graphically. With numerical values on axes, the graph for a 
proposition “Vlp” to the effect that a proposition p has value 
1, given Rescher’s treatment, is precisely Baldwin’s graph for 
“p is true” in Fig. 1. The Rescher graph for “VOp” corresponds 
to Baldwin’s graph for “p is false.” 

The infinite-valued Rescher scheme is central to [8], [9], 
[23]. Here, I want to focus on dynamical semantic phenomena 
within the more strictly fuzzy logic outlined. 

111. SELF-REFERENCE AS ITERATION: 
THE EXAMPLE OF THE LIAR 

Consider, for a moment, the Liar sentence in the context of 
a classical logic: 

This sentence is false. (1) 

If true, (1) must be false. If false, since the Liar says it is 
false, it must be true. When one first approaches the Liar, one 

is forced into an intuitive pattem of reasoning that seems to 
oscillate in conclusion between “true” and “false:” if true, the 
Liar must be false . . . but then if false, it must be true. . . but 
then if true, it must be false? 

T ,  F , T ,  F , T ,  F ,  . . 

In these familiar intuitive terms, this altemation is quite 
literally a temporal one: one is first drawn to the conclusion 
that the Liar must be true, later forced to the conclusion 
that it must be false, and so forth. It is also the case that 
finite reasoners such as ourselves are generally smart enough- 
or logically unprincipled enough, or both-to break out of 
such a series rather than to continue it indefinitely. In what 
follows, however, I wish to abstract from both of these points. 
The dynamical semantics of a sentence such as the Liar 
can be thought of as a series of revised semantic values 
forced by something like the standard Liar argument. As 
such, the points of oscillation represent not so much discrete 
times as discrete abstract steps in a pattem of protracted 
reasoning.6 If we think of these as values arrived at by a 
reasoner, that reasoner should be thought of as an idealized 
reasoner acting without time constraints and purely on logical 
principle.’ 

5Semantic paradox has had, of course, a long and distinguished career 
in philosophical and mathematical logic. It lies at the core of Cantor’s 
diagonal argument and the paradise of transfinite infinities it offers. Russell’s 
paradox, discovered as a simplification of Cantor’s argument, was historically 
instrumental in motivating axiomatic set theory. Godel [24] explicitly uses the 
Liar paradox (and a relative known as the Richard paradox) to motivate his 
incompleteness theorems, and the limitative theorems of [20], [25], [26] can 
all be seen as exploiting the basic reasoning of the Liar. In the mid-l960’s, 
Chaitin [27] developed an interpretation of Godel’s theorem in terms of the 
notion of algorithmic randomness by formalizing the Berry paradox, itself a 
simplication of the Richard. 

In recent years, philosophers have repeatedly attempted to find solutions to 
the semantic paradoxes by seeking patterns of semantic stability--hence, the 
proliferation of “truth-value gap solutions” of the 1960’s and 1970’s [28]-[30]. 
Efforts in the direction of finding patterns of stability within the paradoxes 
continued in the 1980’s with the work of H. Herzberger [5] and A. Gupta [6]. 
Recent work in this vein also includes that of J. Banvise and J .  Etchemendy 
[31], using Aczel set theory with an antifoundation axiom to characterize 
Liar-like cycles. 

The work of this paper, in contrast, like that of [8], [9], can be seen as 
an attempt to study complex patterns of insfability in the general domain of 
self-reference and paradox. 

61n [32, p. 2181, dynamical systems are spoken of intuitively as the 
description of the time behavior of a point moving about on some sort 
of surface according to a rule that describes how one point is to follow 
another. Here, as in other contexts, I think that restriction to time cannot be 
taken too literally. Within ecological studies, iterative “times” may in fact be 
generations; within epidemiological studies, “times” may be (variable) periods 
of vulnerability to infection and, of course, the pure mathematics of iterated 
functions need not be thought of in terms of literal time at all. 

Many attempts to solve the Liar and similar paradoxes, of course, rely on 
denying that there is a genuine oscillation here by insisting that, at each 
step, one is using a distinct truth predicate or has ascended to a higher 
metalanguage. That move itself, however, is quite clearly counterintuitive. 
(As Banvise and Etchemendy note, “When we think about the Liar on an 
intuitive level, there is an inclination to claim that the truth value “flips back 
and forth.” First, we see that it is false, then that it is true, then that it is false, 
and so forth.” [31, p. 1361). Here and throughout, as noted in the Introduction, 
my attempt (like that of 151-171) is to track the intuitive dynamical semantics 
of self-referential sentences rather than to sacrifice semantic intuitions in a 
too-quick search for a “solution” to the paradoxes. 

’The idealizations and abstractions at issue clearly make our semantic 
model “objectivist” in spirit. For a critique of objectivist approaches, in 
general, see [33, esp. 205 ff.1. 
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Fig. 3 
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Using 1 for truth and 0 for falsity, we can then model the 
classical semantic behavior of the Liar in terms of a sequence 
of values xn, where 50 is an initial or “seed” value and 

2,+1 = 1 - 5,. 

With a seed value of 1, the dynamic semantics of the Liar 
within a classical logic can, thus, be graphed as in Fig. 3. 

A seed value of 0, of course, shows an identical os- 
cillationshifted one iteration to the left. In what follows, 
iterated algorithms of this type will be used to model the 
dynamical semantics of self-referential sentences quite gen- 
erally. 

As a first example, consider the Liar sentence within the 
context of the fuzzy logic outlined--a variation we might term 
the Fuzzy Liar. Given the Baldwin fuzzy set for “false,” our 
algorithm remains the same, though now of course we need 
to consider numerical truth values in the full [O, 11 interval. 

For a seed value of 0.3, the Fuzzy Liar gives an oscillation 
between 0.3 and 0.7 (see Fig. 4). 

For any seed value 5,  in fact, the dynamical semantics of the 
Fuzzy Liar will be a simple oscillation between z and (1 - T ) .  

The one fixed point is 0.5. 
Often, the dynamical semantics of self-referential sentences 

is better,illustrated using a web diagram. In a graph such as 
that in Fig. 5, we start with a plotted function for, say, “false.” 
An initial seed value a (0.3, in this case) is plotted as (a . ( ) ) ,  
and a line drawn from that point vertically to the function 
f(z) [Fig. 5(a)]. We read off our y value as indicating that 
f(5) for 5 = 0.3 is 0.7. In order to represent the iteration 
of that function, we now draw a horizontal line to a point 
[ f (u) ,  f(u)] on the diagonal z = y--thereby converting our 
previous y value to a new 5 value--and then draw a vertical 
line again from that point to our function at [ f ( a ) . f ( f (u ) ) ]  

1 

the Fuzzy Liar for . 3  the Fuzzy Liar for .86 

Fig. 6. 

[Fig. 5(b)]. The y value of this intersection point indicates 
that f(5) for 5 = 0.7 is 0.3 [Fig. 5(b)]. We graph the results 
of repeated iteration by continuing the process, at each step 
converting our y value to an 5 value by reflecting off the 
z = y diagonal, giving us a new point of intersection with 
our plotted function. 

Within such a web diagram, it is clear that a seed value of 
0.3 for Fuzzy Liar will give us a simple box, representing the 
period two oscillation between 0.3 and 0.7. A seed value of 
0.86 gives us a broader box (Fig. 6). 

Because the Fuzzy Liar sets up an oscillational dynamical 
semantics of this type, statements which are not self-referential 
but which attribute some linguistic truth value to the Fuzzy 
Liar will have semantics with the same pattern. In this sense, 
the dynamical semantics of the Fuzzy Liar prove conta- 
gious. 

Consider, for example, the following fuzzy statement about 
the fuzzy Liar: 

The Fuzzy Liar is very true 

or the second satement of the pair: 

This sentence is false. (1) 
(1) is very true. ( 2 )  

For a seed value of 0.3, we have seen the Fuzzy Liar alternate 
between 0.3 and 0.7. Using the standard squaring function for 
“very true,” the value of ( 2 )  will then alternate between 0.09 
and 0.49. For a seed value of 0.54, to use another example, the 
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Fuzzy Liar alternates between 0.54 and 0.46. In that case, (2) 
will correspondingly alternate between 0.2916 and 0.21 16.* 

The derivative semantic behavior of (2) can be thought of in 
terms of a web diagram as follows. Let us start with an initial 
seed value of 0.3 for the Fuzzy Liar, represented on the z axis 
as (0.3,O). If ( I ) ,  thus, has a value of 0.3, (2) will have a value 
of 0.09, reflected by the fact that a line drawn vertically from 
(0.3, 0) intersects our function for “very true” at (0.3, 0.09). 
Given a seed value of 0.3, however, we will also be forced 
to a revised value for the Fuzzy Liar of 0.7, reflected by the 
fact that our vertical line intersects the function for the Fuzzy 
Liar at (0.3, 0.7) (see Fig. 7). 

Here, we are interested in successive values for (2). In order 
to obtain the next value for ( 2 ) ,  however, we cannot simply 
reflect (0.3, 0.09) off the 2 = y diagonal as before. We have 
instead to work from the revised value 0.7 for the Fuzzy Liar, 
reflect that off the z = y diagonal, and then drop a line 
vertically to again intersect our “very true” function for (2). 

For reasons discussed at a slightly later point in the paper, 
we can also graph progressive values for (2) directly by 
reflecting the y value of our earlier point (0.3, 0.09) off not 
the z = y diagonal but the mirror image left to right of our 
graph for (2). 

‘On the pattern of the Liar, the intuitive reasoning here will proceed 
something as follows. If we assume that (1) has a value of 0.3, then (2) 
will be fairly false with a value of 0.09. On the assumption that (1) has a 
value of 0.3, however, since ( I )  says it is false, (1 )  will be fairly true--it will 
have a value of 0.7. However, (2) will not be so far off after all, receiving a 
value of 0.49. If ( 1 )  has a value of 0.7 . . .. Despite this alternation, the spirit of 
Zadeh’s extension principle [ I  1, 416 ff.]) appears to be preserved at each step. 

The intuition that we should, nonetheless, be- able to say something constant 
about (1)’s truth value, despite its oscillation, can perhaps be addressed only 
in a language in which we explicitly introduce predicates such as “is not 
consistently true” or “has no constant truth value.” In this paper, I have 
concentrated on chaotic relatives of the Liar; in that stronger language, I 
believe we should expect chaotic relatives of the Strengthened Liar. 

Fig. IO. 

An initial value of 0.41 for the Fuzzy Liar gives us a graph 
for (2) shown on the left in Fig. 8. An initial value of 0.8 
gives us the graph on the right. 

In each case, our graph again shows a box, though here in 
a different position, reflecting the fact that semantic values for 
sentences which attribute truth values to the Fuzzy Liar will 
oscillate in the same way that semantic values for the Fuzzy 
Liar itself do. 

Iv. ATTRACTOR AND REPELLER FIXED POINTS 
IN THE PHENOMENA OF SELF-REFERENCE 

To this point, we have concentrated on the simple Liar 
within fuzzy logic. The same basic techniques also allow us 
to model a wider spectrum of self-referential sentences with a 
wider class of dynamic semantic behaviors. 

Consider, for example, 

This sentence is fairly false. (3) 

I will refer to (3) as the Modest Liar. In terms of our basic 
logic, the dynamical semantics of (3) can be modeled using 
the following algorithm: 

z,+1 = 41 - 2, 

In a simple bounce diagram, for a seed value of 0.314, this 
gives us Fig. 9: 

The semantical behavior of the Modest Liar is still clearer, 
however, in a web digram (Fig. 10). 
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Fig. 1 1  

For any seed value, it tums out, the Modest Liar converges 
inexorably on a fixed point attractor of (-1 + &)/2.9Fig. 11 
shows the Modest Liar with a seed value of 0.99. 

The fact that the Modest Liar has a semantics with a fixed 
point attractor of this sort means that it is, in a sense, a self- 
referential limiting case with regard to fuzziness. Whatever 
element of a fuzzy range of numerical values we might assign 
to such a sentence initially, repeated calculation will force us 
to a very precise and single value: the Modest Liar seems to 
convert fuzziness to precision. 

It is clear that the precise behavior of the Modest Liar relies 
on the use of a square root function to model “fairly.” Although 
thet use is fairly consistent across the literature, as noted, it 
is also clearly open to challenge: why insist on square root in 
particular? The use of q, d,  or the like would give us semantic 
behavior similar to that of the Modest Liar, though converging 
on a different fixed point. Here, I leave as open questions 
what the fixed point would be for an arbitrary n root and 
whether that has anything to tell us about the appropriateness 
or inappropriateness of different roots in modeling hedges such 
as “fairly.” 

Consider also an Emphatic Liar: 

This sentence is very false. 

%+1 = (1 - Gd2. 

(4) 

Semantic values for the Emphatic Liar will be determined by: 

For a seed value of 0.3, the Emphatic Liar forces a series 
of revised values which eventually converge on the familiar 
oscillation between 0 and 1 characteristic of the classical Liar 
(see Fig. 12). 

With one exception, the Emphatic Liar will force any 
numerical value in the [O, 11 interval to the oscillation of 

9The solution to s = fi is (-1 f f i ) / 2 .  Only (-1 f & ) / 2  
appears within our semantic interval [0, I], however. Similar comments apply 
with respect to s = (1 - 1)’ and the semantic fixed point ( 3  - & ) / 2  
for the Emphatic Liar, In an entertaining knights-and-knaves exploration of 
some of these ideas, Hellerstein [34] refers to the Modest Liar as the Golden 
Liar, pointing out that its attractor fixed point is l/a, where o is the golden 
ratio. The repeller fixed point for the Emphatic Liar is similarly 1 - 1/0. 
The golden ratio d itself tums up in a number of surprising places: o is 
the limit of the Fibonacci series 1/1, 2/1, 3/2, 5/3, 8/5 . . .  ; d - 1 = l/o; 
o = d r w . .  .; etc. See [35, pp. 203-2061, 

Fig. 12. 

the classical Liar: the semantical dynamics of the Emphatic 
Liar is that of a fixed repeller point at (3 - &)/2. The one 
point that is not forced out to the behavior of the classical 
Liar is the point (3 - &)/2 itself. The Emphatic Liar can, 
thus, be seen as a self-referential limiting case to fuzziness in 
much the same way as can the Modest Liar. The Modest Liar, 
however, forces convergence on a precise nonclassical value. 
With one exception, the Emphatic Liar forces revised values 
to a Liar-like oscillation between the two classical values of 
0 and 1.’’ 

The use of squaring to model “very” is, of course, open to 
question in ways similar to those indicated regarding the use 
of square root for “fairly.” An Emphatic Liar using (1 - 2n)3 

or (1 - xn)4 would still converge to a Liar-like oscillation, 
though from a different repeller point. Here, again it remains 
unclear whether this has anything to tell us about the proper 
modeling of hedges such as “very” or “fairly.” 

What of statements which attribute fuzzy truth values ro 
sentences such as the Modest and Emphatic Liars? Here, as 
in the case of the Fuzzy Liar, we will have sentences with a 
semantics dependent on that of the Liars themselves. Consider, 
for example, 

The Modest Liar is very false ( 5 )  

or (6): 

This sentence is fairly false. (3) 
(3) is very false. (6) 

“Hellerstein has also suggested an Equivocal Liar: 

This sentence is not very true 

with an algorithm 

.z,,+1 = 1 - 1%. 

Here, (-1 + &)/2 is a repelling fixed point, forcing values out to an 
oscillation between 0 and 1. 
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Not surprisingly, attribution of fuzzy linguistic truth values 
to the Modest Liar shows a convergence to the same fixed Modest Liar 

point as does the Modest Liar itself. 
It is perhaps worth noting why x4 is used as a reflec- 

tioncurve in this case. So as to avoid confusion with x and 
y values, let us express the algorithms at issue in terms of 
variables a and b: 

I , ,  , \  
This sentence is fairly false (3) 

Fig. 13. (3) is very false (6) 

seed: .314 seed: .1 

Fig. 14 

For a seed value of 0.3, the Modest Liar gives us the following 
series, converging as we have seen on (-1 f &)/2: 

0.3,0.83667,0.40415,0.77191;~~” 

If the Modest Liar has a value of 0.3, however, the claim 
that it is very false takes a value of (1 - 0.3)’ or 0.49. Given 
a revised value of 0.83667 for the Modest Liar, we are forced 
to revise the value of (6) accordingly, to 0.02668. Thus, the 
progressive dynamics of the Modest Liar force a corresponding 
dynamics for (6): 

0.49,0.02668,0.35503,0.05202, . . . . 

This pattem of dependent dynamical semantics can be il- 
lustrated in a web diagram as follows. In Fig. 13, we have 
graphed functions for both the Modest Liar and “very false.” 
For a given seed value x, we draw a line vertically for (z,0) 
to intersect the Modest Liar function. The y value of this point 
of intersection (2, y) is, of course, our revised numerical truth 
value for the Modest Liar, and reflection off the z = y line 
will give us the next value for the Modest Liar. 

At each step, the value of (6) depends on that of the Modest 
Liar and is, in fact, the value at which our line representing 
z-value intersects the function line for (6). Thus, we can think 
of progressive values for (6) as intersection points on the “very 
false” curve directly below the progressive points on the graph 
for the Modest Liar. 

In this case, we can also graph the dynamics of the de- 
pendent sentence (6) more directly, however, by reflecting its 
values off the x4 curve. Progressive values for (6) starting with 
two different seed values for (3), appears as in Fig. 14. 

“Here, I exhibit only approximate values, rounded off for the sake of 
simplicity. 

b, = (1 - a,)’ 

For a given value b, for (6), the calculation of the next value 
b,+l can be thought of as proceeding in several steps. 

We first use the inverse of our algorithm for (6) 
for the case of 0 5 b, 5 1 in order to give us a,. 

By embedding this result in the algo- 

1 - 6 
J1 - (1 - 6) 

rithm for (3), we then obtain the value a,+l. 
(1 - (J1 - (1 - a))) By embedding this result in the 

algorithm for (6), we obtain b,+l. 
The calculation is captured in a reflective graph as follows. 

For 0 5 b, 5 1, (J1 - (1 - 6)) amounts to K. For 
the purposes of our web diagram, we need to exchange x and 
y values, however--the function of our x = y line originally. 
We, thus, solve for x = ~, giving us y = x4, which therefore 
serves as our reflective curve in the web diagram. 

Reflective curves for other cases of sentences derivative 
or parasitic on self-referential sentences can be computed 
similarly. For pairs of sentences with algorithms f’ and f 
and inverses f -’ and f - l  within the limits of our semantic 
interval [O, 11, given a value b, for the derivative sentence 
modeled by f, b,+l can be calculated by reflecting a y value 
representing b, off the function given by: 

and recalculating the new x value in terms of our function f . 1 2  

To this point, we have concentrated on fuzzy relatives of the 
Liar. We should, however, also mention fuzzy relatives of the 
Truth-teller. Within classical logic, (7) proves troublesome in 
a manner different from but related to the troubles of the Liar: 

This sentence is true. (7) 

Unlike the Liar, the difficulty with (7) is not that it cannot 
consistently be assigned a value of either T or F .  The difficulty 
with (7) is rather that it can consistently be assigned either 
value, and there seems no basis on which to prefer one over 
the other. 

Within a fuzzy logic, using the algorithm 

zn+1 = z n  

the Truth-teller can still consistently be assigned any value-in 
the fuzzy context, any numerical value in the [0, 11 interval. 

121 leave to another context generalization to more complicated cases and 
to deeper chains, including sentences about the semantic value of sentences 
about the semantic value o f . .  . self-referential sentences. 
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The Modest Truth-teller 
f o r  seed .13 

The Emphatic Truth-teller 
for seed . 8 7  

truth- 

values 

iterations 

Fig. 16. 

Fig. 15. 

is not the Fuzzy Liar but the quite different Emphatic Liar that 
converges on the familiar oscillation between 0 and 1. 

giving us full semantic chaos in the strict mathematical sense. 

‘Onside‘ the Modest Truth-te11er and the Emphatic It is also the case that fuzzy self-reference is capable of 
Truth-teller: 

This sentence is fairly true (8) 
This sentence is very true 

with corresponding algorithms: 

(9) V. FUZZY CHAOS 

Consider the following sentence, which I will call the 
Chaotic Liar [8]: 

This sentence is true if and only if it is false. (10) 2 , + 1  = 2:. 

Both Truth-tellers, like their classical predecessor, have fixed 
points at 0 and 1. For fuzzy values in between, however, they 
vary dramatically and symmetrically. The self-reference of the 
Modest Truth-teller drives every intermediate value up to 1. 
The Emphatic Truth-teller, on the other hand, drives every 
intermediate value down to 0 (Fig. 15). 

The Truth-tellers, like the Modest Liar, thus in some sense 
force fuzziness to precision through the iteration of semantic 
self-reference. In the case of the Truth-tellers, as in the case 
of the Emphatic Liar, however, that inexorable self precision 
is the more remarkable since the values one is driven to in 
each case are classical values. In the case of the Truth-tellers, 
moreover, one is driven to stable classical values. 

One lesson of sentences such as the Modest Truth-teller 
and the Emphatic Truth-teller is that dynamical semantics may 
introduce the need for logical categories beyond the traditional 
“tautology” and “contradiction.” A classical tautology is one 
which (instantly, as it were) takes a value of “1” for any 
value assigned its components. A dynamic tautology, we might 
propose, is one which converges through iteration on a value of 
“1” for any initial value. The Modest Truth-teller might, thus, 
be proposed as a dynamic tautology; the Emphatic Truth-teller 
as a dynamic contradiction.13 

From this first sampling of examples, i t  is clear that fuzzy 
self-reference opens up a realm of dynamical semantics far 
richer than anything dreamt of within classical logic. It is 
also clear that there are some surprises in the transition from 
classical to fuzzy logic. The Fuzzy Liar, for example, is a 
quite direct fuzzification of the standard Liar. Nonetheless, it 

I3The very different behavior of the Modest Truth-teller and the Emphatic 
Truth-teller is inevitable, given a modeling of “very” and “fairly” by squares 
and square roots-or, for that matter, by cubes and cube roots or the like. It has 
been suggested, however, that this is itself a mark againsr such a modeling: 
are “very” and “fairly” so different that “this is fairly true” should converge 
on pure truth and “this is very true” should converge on pure falsity? 

Using the Lukasiewicz biconditional and modeling self- 
reference in terms of iterated algorithms, semantic values 
for the Chaotic Liar will be given by: 

x,+~ = 1 -*abs((l - 2,) - xn). 

By expanding our language slightly, we can also express the 
Chaotic Liar in other ways. If “ p  is as true as q” or “the value 
of p is the same as the value of q” are treated fairly naturally 
as taking the value 

for example, then the Chaotic Liar can alternatively be ex- 
pressed as: 

This sentence is as true as it is false. (11) 

or 

The value of this sentence is the same as its negation. (12) 

A seed value of 0.314 for any of these gives us a series of 
values that begins as in Fig. 16. 

The semantical dynamics of the Chaotic Liar is perhaps 
best exhibited by its web diagram, however, here shown in 
four progressive stages of de~elopment ’~  (Fig. 17). 

‘“ne peculiarity of this function is that standard rounding off within the 
binary arithmetic of computers disguises its chaoticity: although it is probably 
chaotic on the [0, I ]  interval, it does not show up as such on the computer 
screen. In order to graph something closer to the function’s true behavior, it is 
thus standard to “cancel out” the effect of rounding off by introducing a small 
element of randomness, and that has been done for the illustrations here. On 
this point, I am obliged to J. Milnor for discussion. 
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-- 

Fig. 17 

The dynamical semantics of the Chaotic Liar qualifies as 
chaotic in the precise mathematical sense of [36].15 

What this amounts to is a range of surprising semantic 
features. 

1) The Fuzzy Liar, as we have seen, has a simple period 
of 2 for almost all values. For sentences such as the Chaotic 
Liar, on the other hand, any repeating period we might care 
to choose, however high, will be generated by some initial 
value. For such sentences, there is no upper limit to semantic 
periodicity. 

2 )  It is also the case that there will be numerical truth values 
for such sentences which eventually move from any arbitrarily 
small semantic region to any other. There is, thus, no range 
of degrees of truth, however small, such that values within 
that range assigned to the Chaotic Liar will safely stay there 
on iteration. For any such region, some semantic values will 
eventually escape to any other semantic region we might name. 

3) Finally, no matter what numerical truth value x we might 
start off with as an estimate for such sentences, there will 
be numerical truth values arbitrarily close to our initial value 
which, upon iterative recalculation through our sentences, 
eventually move as far from corresponding iterations of x 
as we might choose to specify. There is, thus, no initial 
range “close enough’ to a starting estimate x that differences 

I5Given a set J .  f : J t J is chaotic on .I if  a) f shows sensitive 
dependence on initial conditions,f b) f is topologically transitive, and c) 
the set of periodicpoints is dense in d .  

Here, let us use the notation F” (s) to stand for the composition or iteration 
of the function f(s) n times, i.e., 

f”(s)  = . .  . f ( f ( f ( .  r ) ) ) . . . i i t i m e s  

a) f : J + J shows sensitive dependence on initial conditions if there exist 
points arbitrarily close to any s E J which eventually separate from .r by 
any chosen distance h or more under iteration of f, i.e., there exist (i > 0 
such that, for any s E .J and any neighborhood .V of s, there exist y E .Y 
and 71 2 0 such that abs (f”(s) - f ” ( y ) )  > (1. 

b) f : J t d is topologically transitive if it has points which eventually 
move under iteration from one arbitrarily small neighborhood to any other, 
i.e., for any pair of open sets L-. 1. 2 J there exists some 1 1  > 0 such that 
f r L  ( L i )  n V is nonempty. 

c) The set of periodic points of J ,  PER(.J), is the set of all .r E .I such 
that f“(1) = s for some natural number n ,  i.e., PER(.l) = {.r E J : 
3nfn(s) = s}. PER(J) is dense in J if PER(.J), together with all its limit 
points, is equal to .l. 

1 

truth- 

values 

0 

iterations 

Fig. 18. 

within that range will not make a significant difference. 
Within any distance from z, however small, is another value 
iterations of which will eventually diverge from iterations of z 
enormously--as enormously, within the limits of our semantic 
range, as we might care to specify. 

Although somewhat stronger and weaker characterizations 
of chaos appear in the literature, the central element in all 
versions is this last feature, known as sensitive dependence on 
initial conditions. The graph in Fig. 18 shows the basic idea of 
sensitive dependence for the Chaotic Liar. Here, time series 
graphs are superimposed for seed values tarting with 0.3 14 
and increasing by 0.001. 

The basic algorithm for the Chaotic Liar is, in fact, a very 
simple and paradigmatically chaotic function, known as a tent 
map because of the shape of its graph and more familiar in 
the mathematical guise x,+1 = 1 - abs(2z, - 1) or 

for 0 5 x < 0.5 
2,+1= { :;;- 2,) for 0.5 5 z 5 1 

(see [37], 171 ff.]). The semantic role of this function within 
self-referential fuzzy logic comes as something of a surprise, 
however; the function is, for example, relegated to a mere class 
of “mathematical curiosities” in [38].16 

Here, let me also offer a second simple sentence which 
shows chaotic behavior within fuzzy logic--a sentence I will 
call the Fuzzy Logistic: 

(13) It is very false that this sentence is true if it is false. 

Here, semantic values will be given by: 

x,+1 = (1 - (1 - abs((1 - x,) - x,)))*. 

Note that the algorithm for the Chaotic Liar is embedded 
within that of the Fuzzy Logistic. We can, in fact, obtain the 
Fuzzy Logistic from the Chaotic Liar simply by adding the 
prefix “It is very false that . . .”. 

Here, as before, there are of course altemative phrasings. If 
we take “differs in value from” as the negation of “is as true 
as,” the Fuzzy Logistic can be phrased as: 

It is very true that this sentence differs in value 

from its negation. (14) 
or 

The value of this sentence is very different from that 

of its negation. (15) 

I6The similar role of that algorithm in a Rescher multivalued logic appears 
in [81, PI. 
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Fig. 19. 

For values in the [0, 11 interval, our algorithm amounts in 
each case to: 

This, it turns out, is an inverted form of the logistic or quadratic 
equation, perhaps the most familiar and thoroughly studied 
sample of chaos.” 

For an initial value of 0.314, the web diagram of the Fuzzy 
Logistic develops as in Fig. 19. 

Chaos can be expected to appear within other fuzzy logics 
by way of other self-referential sentences. Though we have 
here confined ourselves in general to the simple Baldwin 
fuzzy logic outlined in Section 11, it is perhaps worth noting 
a route by which chaos will appear within any fuzzy logic 
with the standard Lukasiewicz base, regardless of the fuzzy 
set it introduces for “true.” Within Zadeh fuzzy logic or 
any other based on LN1, consider the prospect of a sentence 
p which amounts to a biconditional between itself and its 
negation: 

P = ( P  t ) N  P I .  

Given simply the basic Lukasiewicz biconditional, 
the algorithm for such a sentence will 
be: 

z,+1 = 1 - abs((1 - z,) - 2,) 

”An additional negation would give us the Logistic without inversion: 
It is not very false that this sentence is true if it is false 

It is not very true that this sentence differs in value from its negation 
or 

The value of this sentence is not very different from that of its negation. 
I am obliged to N. Hellerstein for his seminal work on the Fuzzy Logistic, 
communicated in private correspondence. 

or 

and any such sentence will, thus, amount to the Chaotic 
Liar.I8 

VI. FUZZY SELF REFERENCE IN W O  DIMENSIONS 

Beyond the traditional Liar lies an infinite series of Liarcy- 
cles, the simplest of which is perhaps the Dualist. In medieval 
form, it appears as an exchange between Socrates and Plato: 

Socrates: What Plato is about to say is true. 
Plato: Socrates speaks falsely. 

More simply, we have two sentences each of which is about 
the truth value of the other: 

X : Y is true 
Y : X i s  false. 

With the tools of our basic fuzzy logic, we can also introduce 
fuzzy variations on the Dualist. Consider, for example, 

X : X + + Y  
Y : Y ++ it is very false thatX 

or, equivalently, 

X : X is true if and only if Y is 
Y : Y is true if and only if X is very false. 

In previous sections, we have concentrated on single sentences 
which force a series of revised values. Here, the situation is 
somewhat more complex: we have a pair of sentences which, 
for any initial seed values ( 5 0 ,  yo), forces a series of pairs of 
revised values. For X and Y, revised values can be calculated 
in terms of the following algorithms: 

%,+I = 1 - abs(z, - y,) 

yn+i = 1 - abs(y, - (1 - 2,)’). 

If we start with seed values of 0.25 and 0.25, for example, 
we are forced to the following series of revised values:19 

(1,0.6875), (0.6875,0.3125), (0.625,0.7852), 
(0.8398,0.3555), (0.5156,0.6702) ... . 

”For Zadeh fuzzy logic in particular, St. Denis has suggested the following 
chaotic sentence: 

It is not the case thqt this sentence is fairly not true, or it is not the 

case that the negation of this sentence is fairly not true. 

Here, our algorithm is: 

where Z(s,,) indicates the degree of membership in Zadeh’s fuzzy set “true” 
(using 0.5 as a )  of a sentence with numerical truth value zn. In a web 
diagram, the St. Denis sentence appears as a more slender variation on the 
inverse Logistic. 

l 9  Here again, numbers are rounded off for presentational simplicity. 
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Fig. 21 

If we plot these pairs as Cartesian coordinates, the pentagonal 
attractor of Fig. 20 appears. 

The persistence of such an attractor, for various seed values, 
is clear from an overlay diagram for seed values (z, y)  where 
x and y range from 0 to 1 in intervals of 0.5 (Fig. 21). 
Throughout the [0, 11 interval, values are attracted to and 
trapped within the same clearly defined region. 

Consider, also, a second fuzzy Dualist variation: 

X : It is very false that X tf Y 
Y : It is fairly false that Y tf N X 

or, more colloquially, 

X : It is very false that X is true if and only if Y is. 
Y : It is fairly false that Y is true if and only if X is false. 

Here, successive values can be calculated using the following 
algorithms: 

X,+I = (1 - (1 - abs(z, - Y,)))' 
yn+1 = dl - (1 - abs(y, - (1 - 2,))) 

Fig. 22. 

Fig. 23 

or, more simply, 

xn+1 = ( X ,  - Y,)2 

yn+i = dabs(y, - (1 - xn)). 

Our attractor in this case is shown in an overlay diagram in 
Fig. 22 .  

Here, let me finally offer one further fuzzy Dualist: 

X : It is very false that X tf Y 
Y : It is very false that X is false if and only if 

Y is very true 

with successive values 

X n + 1  = ( 5 ,  - Y d 2  

Yn+l = ((1 - 2,) - Y,) ' 
2 2  

The attractor for this final variation, once again in overlay 
form, appears in Fig. 23. 

In our calculation of revised values for the Fuzzy Dualists, it 
should be noted we have assumed a simultaneous calculation 
of numerical truth values for sentences X and Y in each case. 
Given a pair of seed values (x,y), in other words, we have 
calculated a new value for X in terms of those values and 
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have simultaneously calculated a new value for Y in terms of 
those same values. 

Evaluation of the sentences of a Fuzzy Dualist pair might 
also be thought of sequentially. It might be argued, for 
example, that in at least some contexts a more natural way 
to approach such a pair of sentences would be to begin with 
seed values (z,y), to calculate the value of X in terms of 
those seed values, but then to calculate the value of Y using 
the newer or most recent value computed for X .  

This second pattern of reasoning, with regard to the same 
pairs of sentences, can be represented with a slight change 
in our algorithms: In each case, 2, is replaced in the second 
algorithm with x,+~. 

Our algorithms for the first variation on the Dualist, for 
example, 

X : X + + Y  
Y : Y H it is very false thatX 

will now be 

z,+~ = 1 - abs(z, - y n )  

Y n + l  = 1 - abs(?h - (1 - z,+1)2). 

Using this alternative form of calculation, the same pair of 
sentences give us the attractor shown in Fig. 24. A similar 
change from a simultaneous to sequential pattern of reasoning, 
in the case of our other fuzzy Dualist variations gives us the 
following attractors. As shown in Fig. 25: 

X : It is very false that X tf Y 
Y : It is fairly false that Y t-f - X  

zn+1 = (. - Y)* 

Yn+l = J W Y ,  - (1 - .,+I)) . 
As shown in Fig. 26. 

X : It is very false thatX ti Y 
Y : It is very false that X is false if and only if 

Y is very true 

zn+1 = (2 ,  - Y n ) 2  

Yn+l = ((1 - % + 1 )  - Y,) 2 2  

Although these figures graphically illustrate the difference 
between simultaneous (or parallel) and sequential updating in 
calculating the fuzzy Dualist, it must be confessed that their 
interpretation remains much less clear. Simultaneous updating 
might be said to be more appropriate to a God’s-eye view of 
the informational dynamics of the fuzzy Dualist, in which all 
information is received and processed simultaneously at each 
step. Sequential updating, on the other hand, might be said to 
be more appropriate to beings capable of processing only the 
information of a single sentence at a time. In more realistic 
applications to repeated sequences of mutually referential 
sentences, the difference might be appropriate to contexts in 
which two sources of information provide information about 
each other, and in which the second source of information 

. .  

Fig. 24. 

Fig. 25 

Fig. 26. 

is or is not immediately aware of reports coming from the 
first source. All of this remains at the level of speculation, 
however: here, as elsewhere, the graphic display of semantic 
characteristics is as yet clearer than are matters of their 
interpretation or application. 
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0 1 Fig. 29 

Fig. 21 

Fig. 28 

Certain aspects of the fuzzy dynamics of Dualist variations 
can also be graphed using what are known as escape-time 
diagrams. For each pair of points (x ,y)  on the Cartesian 
plane, we can graph in terms of color the number of iterations 
required for the series of values, beginning with seed values 
( x , ~ ) ,  to reach a certain threshold. Here, one threshold we 
might choose is a certain distance from the origin, with the 
origin itself representing (0, 0) or “double falsity” for our 
two sentences. Within a particular fuzzy Dualist, a pair of 
seed values (say 0.1, 0.5) may give us a series of values 
which first escapes from a distance of 1 from the origin in 
two iterations, for example, in three, in four, or in more. If 
that series escapes in two iterations, we might color the initial 
point (0.1, 0.5) blue; if three, we might color it green, and 
so forth. Another point (say 0.2, 0.4) may give us a series 
which escapes our chosen threshold in a different number of 
iterations, and will correspondingly be given a different color. 
(The general idea of escape-time diagrams should be familiar 

Fig. 30 

from standard graphing of the Julia and Mandelbrot sets.) 
Fig. 27 shows an escape-time diagram of this type for the 

first fuzzy Dualist. 
Given present printing limitations, however, the fractal 

character of such a graph is perhaps clearer if we emphasize 
merely the interfaces of different colored areas: points at which 
the number of iterations required to pass the chosen threshold 
changes. Our escape-time diagram now appears as a tracery 
(Fig. 28). 

Consider, in contrast, an escape-time diagram for a sequen- 
tial pattern of reasoning with regard to our first Fuzzy Dualist 
(Fig. 29). 

Fig. 30 shows escape-time diagrams for simultaneous and 
sequential calculations (left and right, respectively) of the 
second Dualist variation offered. 

X : It is very false that X ti Y. 
Y : It is fairly false that Y H N X 

In this case, an escape threshold of 0.8 is used. 
In all of the escape-time diagrams considered to this point, 

we have confined our values (x ,y )  to the unit interval, 
reflecting the fact that the semantics of our fuzzy logic limits 
numerical truth values to the [0, 11 interval. In some cases, 
however, it is easy to see that the characteristics of points 
within the [O, 11 interval are merely part of a larger pattern. 
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Fig. 31. 

Fig. 32. 

Fig. 31 shows our third Fuzzy Dualist variation for values 
between -1.4 and 2.4 and with a threshold of 0.85:*’ 

X : It is very false that X H Y 
Y : It is very false t h a t x i s  false if and only if 

Y is very true 

Other escape-time diagrams are possible in terms of other 
parameters. In all those mentioned, we noted the threshold 
used is a particular distance of a pair (z,y) from the origin. 
We can also plot escape-time diagrams using other thresholds 
as well. Fig. 32 shows an escape-time diagram in which what 
we measure is the number of iterations required before a series 
starting from a pair of seed values (z.y) reaches a value 
(dl y’) such that II: and y are separated by a distance of at 
least 0.5. 

In many of these images, a deep fractal character--self affin- 
ity at descending scales--is clearly evident. This is a familiar 
companion to chaos within dynamical systems theory. What 
its appearance indicates, however, is the presence of fractal 
organization in the dynamical semantics of self-referential 
sentences within a fuzzy logic. It is tempting to speculate 
that different varieties of self-reference, direct or indirect, 
can themselves be thought of as abstractly fractal in some 
intuitive sense: self-referential sentences or sets of sentences 
semantically contain themselves, or images of themselves, in 
much the way that fractals seem to contain themselves on 
different scales. It might be proposed that what images such 
as those in Fig. 32 really do is give more explicit visual 
expression to the inherently fractal semantics of different 
patterns of self-reference. This remains speculation, however. 
Here, as elsewhere, it proves easier to graph certain semantic 
characteristics than to fully understand them. 

For a few other small samples, the reader is referred [SI, 191, [33]. 
”The range of Fuzzy Dualist variations is so immense as to be intimidating. 

Fig. 33 

Fig. 34 

VII. FUZZY TRIPLISTS MODELED IN THREE DIMENSIONS 

Beyond the Dualist lie Triplist variations, in which three 
mutually referential sentences speak of each others’ truth 
values. In the case of Triplists, attractors must be graphed 
as three-dimensional rather than two-dimensional objects, and 
the correlates to two-dimensional escape-time diagrams will 
be three-dimensional escape-time solids. Here again, I simply 
offer some examples. 

Consider, to begin with, the following set of sentences (a 
colon is used to avoid ambiguity): 

X : It is very false that: X - N (Y tf 2)  
Y : It is very false that: Y H N Z 
2 : It is very false that: 2 ++ N (X tf Y ) .  

In the fuzzy Dualists, our sentences forced us through a series 
of revisions for initial seed values (2, y) for sentences X and 
Y .  In the case of this fuzzy Triplist, our sentences will force us 
through a similar series of revisions for seed values (zl y, 2). 
For these sentences, these revised values can be calculated in 
terms of the following algorithms: 

II:,+I = (abs(y,, - 2 , )  - 2,)’ 

Yn+l = ((1 - 2 , )  - 

z,+1 = (abs(z, - yn) - 2,)’. 

If we plot revised values for these sentences starting with seed 
values of (0.23, 0.34, 0.45), the attractor of Fig. 33 appears. 

In Fig. 33, the attractor is shown in two dimensions (“full- 
face,” as it were, from the z axis). In Fig. 34, in contrast, 
i t  is rotated in three dimensions. Despite its apparent depth, 
it is clear that the attractor for this first fuzzy Triplist is still 
confined to. a plane. 
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Fig. 35. 

Fig. 36. 

Here, as before, we can also compute revised values for 
oursentences by considering them sequentially rather than 
simultaneously, with the following changes in our algorithms: 

With a sequential calculation, the looping attractor of Figs. 35 
and 36 appears. 

Consider a second fuzzy Triplist variation: 

X :-  (X tt it is very true thatY H 2)  
Y :-  (Y tt it is very true thatX 2) 
2 :N (2 tt it is very true thatX H Y) 

with the following algorithms for revised values: 

zn+l = abs((1 - abs(y, - 2,))’ - z,) 

Y,+I = abs((1 - abs(zn - 2,))’ - yn) 
zn+1 = abs((1 - abs(z, - Y,))~ - zn). 

Using the same seed values as before, this second fuzzy 
Triplist gives us the attractor of Figs. 37 and 38. A sequential 
computation, in contrast, gives us Figs. 39 and 40. 

For fuzzy Triplists, the analog to two-dimensional escape- 
time diagrams will be three-dimensional escape-time solids. 
We can once again color points in terms of how many iterations 

Fig. 31. 

1 1.1) 

Fig. 38. 

I 

Fig. 39. 

Fig. 40. 

are required for a series of revised values starting from that 
point to reach a certain threshold. In the case of Triplist 
variations, however, we will be coloring points (z,y,z) in 
a three-dimensional space. 
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In Figs. 41 and 42, we use sequential calculation for the first 
Triplist variation and simultaneous calculation for the second, 
with a chosen threshold in each case of J x 2  + y2 + 9 = 1. 
Both escape-time solids are shown from two angles, in a space 
extending roughly from -2 .5 to +5 for each of our three 
values: 

X : It is very false that: X H - (Y ti 2) 
Y : It is very false that Y ti - 2 
2 : It is very false that: 2 ts - ( X  H Y) 

X : -  ( X  +i i t  is very true thatY +-+ 2) 
Y : - (Y cf i t  is very true that X c--) 2) 
2 :-  (2 ts it is very true thatX H Y ) .  

There is no upper limit to the size of sets of mutually 
self-referential sentences that might be considered, of course, 
nor any upper limit to the number of dimensions appropriate 
for modeling their semantical dynamics. Beyond the three- 
dimensional semantic phenomena of Triplist variations lie the 
four-dimensional semantic phenomena of the Quadruplists, the 
five-dimensional semantic phenomena of Quintuplists, and so 
on. 

VIII. CONCLUSION 

Here, my attempt has been to introduce, for the most part 
by example, a range of dynamical phenomena which appear 
in the semantics of a simple fuzzy logic with the introduction 
of self-reference. Within such a logic appear sentences the 
dynamical semantics of which exhibit the behavior of fixed 
point attractors, fixed point repellers, and full chaos on the [0, 
11 interval of semantic values. Mutually referential Dualist and 
Triplist pairs take the phenomena of chaos and fractals, once 
again in a semantic guise, into two and three dimensions. 

Fig. 42 

A great deal of further formal exploration, generalization, 
andapplication clearly remains to be done.21 Perhaps it is 
not out of place, however, to close with some admittedly 
philosophical speculations. 

Logical systems have typically been introduced with certain 
semantical expectations, and one thing the introduction of 
semantical self-reference often does is to violate those initial 
expectations. Here, classical logic is a prime example: within 
such a logic, the expectation is that every proposition will 
be simply true or false. With the introduction of semantical 
self-reference, however, we are confronted with the classical 
Liar: 

This sentence is false. (1) 

The dynamical semantics of such a sentence seems to be 
that of an oscillation, and the attempt to assign either of our 
supposedly exhaustive semantical categories results in simple 
contradiction. A similar story, relying on strengthened versions 
of the Liar, can be told for multivalued, infinite-valued, 
gapped, and antifoundational logics [ I ,  ch. 11. In each case, 

2 '  One metamathematical application is mentioned in the introduction: [XI, 
191 each contain a sketch of Godel-like limitative results for chaos theory in 
the context of formal systems for real arithmetic, motivated by a close relative 
of the sentence that appears here as the Chaotic Liar. It is clear that one class 
of extensions would take these into the context of fuzzy logics. 
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self-reference seems to violate initial semantical expectations 
by forcing us to recognize categories of semantical behavior 
not initially and intuitively provided for. 

What the work above seems to show is that something 
similar also happens with the introduction of semantical self- 

constructed to incorporate an important range of intuitive 

[ 151 L. A. Zadeh, “A fuzzy-set-theoretic interpretation of linguistic hedges,” 
J .  Cybernet., 

[ 161 R. E. Bellman and L. A. Zadeh, “Local and fuzzy logics,” in Modern 
Uses of Multiple-Valued Logic, J. Michael Dunn and George Epstein, 
Eds. Dordrecht: D. Reidel, 1977. 

[171 J. F. Baldwin, “A new approach to approximate reasoning using a fuzzy 
logic,” F u u y  Sets and Syst., vol. 2, pp. 309-325, 1979. 

Appl., E. H. Mamdani and B. R. Gaines, Eds. 

2, PP. 4-349 1972. 

reference within logics‘ Fuzzy logic was, Of course? [18] -, “Fuzzy logic and fuzzy reasoning,” in Fuuy Reasoning and its 
New York: Academic, 

phenomena and to facilitate a range of applications not pro- 
vided for within more classical logics. One assumption which 
appears to have been carried over from its classical prede- 
cessors, however, was that semantic values, however fuzzy, 
could nonetheless be expected to be tolerably well behaved and 
manageably stable. Here again, the introduction of semantical 
self-reference seems to violate central semantical expectations: 
in the context of fuzzy logic, self-reference seems to introduce 
a range of pattems of semantic instability as diverse and 
complex as the phenomena of chaos theory generally. 

ACKNOWLEDGMENT 

The work presented here is an expansion of collaborative 
work on infinite-valued logics and chaos which appears in 
Mar and Grim 181, Grim and Mar [9], and Grim, Mar, Neiger, 
and St. Denis [23]. The author is indebted to P. St. Denis 
for programming assistance and for repeatedly bringing my 
attention back to the Lukasiewicz biconditional. M. Neiger 
developed the programming required for three-dimensional 
escape-time solids in Section V. As always, the author is 
deeply indebted to G .  Mar for fruitful discussion and for 
central good ideas. The author would also like to express 
thanks to several anonymous referees for detailed and helpful 
comments. 

REFERENCES 

J. J. Buckley, “Fuzzy dynamical systems: I.” in Proc. IFSA ‘91, Brussels, 
Belgium, pp. 16-20. 
G.-Y. Wang, J.-P. Ou. and P.-Z. Wang, “Dynamic fuzzy sets and fuzzy 
processes,” in Proc. 3rd IFSA Cong., Seattle, WA, 1989, pp. 276-279. 
P. Diamond, “Chaos and fuzzy representations of dynamical systems,” 
in Proc. Int. Symp. Fuuy Syst., Iizuka, Japan, July 1992, pp. 51-58. 
P. Grim, The Incomplete Universe. Cambridge, MA: M.I.T. Press, 
1991. 
H. Herzberger, “Notes on naive semantics,” J .  Phil. Log.,  vol. I I .  pp. 
61-102, 1982. 
A. Gupta, “Truth and paradox,” .I. Phil. Logic, vol. 11, pp. 1-60, 1982. 
A. Gupta, and N. Belnap, The Revision Theory of Truth. Cambridge, 
MA: M.I.T. Press, 1993. 
G .  Mar and P. Grim, “Pattern and chaos: New images in the semantics 
of paradox,” Noiis, vol. 25, pp. 659-694, 1991. 
-, “Chaos, fractals, and the semantics of paradox,” Res. Rep. 91- 
01, Group for Logic and Formal Semantics, Dept. of Philos., SUNY at 
Stony Brook, 1991. 
N. Rescher, Many-Valued Logic. 
L. A. Zadeh, “Fuzzy logic and approximate reasoning,” Synrhese, vol. 
30, pp. 407428, 1975. 
R. E. Bellman and M. Giertz, “On the analytic formalism of the theory 
of fuzzy sets,” Inform. Sci., vol. 5 ,  pp. 149-156, 1973. 
Z. P. Dienes, “On an implication function in many-valued systems of 
logic,” J.  Symbol. Log., vol. 14, pp. 95-97, 1949. 
B. R. Gaines, “Foundations of fuzzy reasoning,” Int. J .  Man-Much. 

New York: McGraw-Hill, 1969. 

Stud., vol. 8, pp. 623-668, 1976. 

1981. 
[ 191 H.-J. Zimmerman, Fuuy Set Theory and Its Applicafions. Dordrecht: 

Kluwer-Nijhoff, 1985. 
[20] A. Tarski, “Der wahrheitsbegriff in den formalisierten sprachen,” Studien 

Philosophica, vol. I, pp. 261-405, 1935. 
1211 Y. Tsukamoto, “An approach to fuzzy reasoning method,” in Advances 

in Fuuy Set Theory and Applications, M. M. Gupta et. al, Eds. North- 
Holland: Amsterdam, 1979, pp. 137-149. 

[22] L. Ding, Z. Shen, and M. Mukaidono, “A new method for approx- 
imate reasoning,” in Proc. 19th Int. Symp. on Multiple-Valued Logic. 
Washington, DC: IEEE Comput. Soc. Press, 1989, pp. 179-186. 

[23] P. Grim, G. Mar, M. Neiger, and P. St. Denis, “Self-reference and 
paradox in two and three dimensions,” Computers and Graphics. 

1241 K. Godel, “iiber formal untscheidbare satze der Principia Mathemutica 
und verwandter systeme I, ” Monatschefe fur Mathemutik und Physik, 
vol. 38, pp. 173-198, 1931. 

[25] A. Church, “A note on the entscheidungsproblem,” J. Symbol. Logic, 
vol. 1, pp. 40-41, 101-102, 1936. 

[26] A. Turing, “On computable numbers, with an application to the entschei- 
dungsproblem,” in Proc. London Mathemat. Soc., 1936, vol. 42, pp. 
23Ck265. 

[27] G. Chaitin, Information, Randomness, and Incompleteness--Papers on 
Algorithmic Information Theory. Singapore, World Scientific, 1990. 

[28] B. van Fraassen, “Presupposition, implication, and self-reference,” J.  
Philosophy, vol. 65, pp. 13652,  1968. 

[29] R. L. Martin, “A category solution to the liar,” in The Paradox of the 
Liar, R. L. Martin, Ed. 

(301 S. Kripke, “Outline of a theory of truth,‘’ J.  Philosophy, vol. 72, pp. 
690-716, 1975. 

1311 J. Banvise and J. Etchemendy, The Liar. New York: Oxford Univ. 
Press, 1987. 

[32] J. L. Casti, Alternate Realities. New York: Wiley, 1989. 
[33] G .  Lakoff, Women, Fire, and Dangerous Things. 

of Chicago Press, 1987. 
1341 N. Hellerstein, Isle of Paradox and Other Logic Adventures. 
[35] C. Pickover, Computers and the Imagination. New York St. Martin’s, 

1991. 
[36] R. L. Devaney, An Introduction to Chaotic Dynamical Systems. Menlo 

Park, CA: Addison-Wesley, 1989. 
[ 371 K. Falconer, Fractal Geometry: Mathematical Foundations and Appli- 

cations. New York: Wiley, 1990. 
[38] R. May, “Simple mathematical models with very complicated dynam- 

ics,” Nature, vol. 261, pp. 459-467, 1976. 

Reseda, CA: Ridgeview, 1970. 

Chicago, IL: Univ. 

1992. 

Patrick Grim received the A.B. degree in phi- 
losophy and anthropology from the University of 
California, Santa Cruz, in 1971, the B. Phil. degree 
from St. Andrews in 1975, and the A.M. and Ph.D. 
degrees in philosophy from Boston University in 
1976. 

He is author of The Incomplete Universe: Total- 
ity, Knowledge, and Truth (M.I.T. PressBradford 
Books, 1991) and co-editor of fourteen volumes of 
The Philosopher’s Annual (Ridgeview Press). He is 
an Associate Professor and a member of the Group 

for Logic and Formal Semantics within the Department of Philosophy at 
the State University of New York at Stony Brook. His current research 
interests include alternative logics, game theory, dynamical systems, epistemic 
modeling, contemporary metaphysics, and ethics. 


