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Abstract—Distributed fiber optic sensors are 

promising technique for measuring strain, temperature 

and vibration over tens of kilometres by utilizing the 

backscattered Rayleigh, Raman and Brillouin signals. 

Recently, the use of an artificial neural network (ANN) 

has been adopted into the distributed fiber sensors for 

advanced data analytics, fast data processing time, high 

sensing accuracy and event classification. In this paper, 

the recent developments of ANN-based distributed fiber 

sensors and their operating principles are reviewed. 

Moreover, the performance of ANN is compared with the 

conventional signal processing algorithms. The future 

perspective view that can be extended further research 

development has also been discussed. 

Keywords—distributed fiber sensor, artificial neural 

network. 

I. INTRODUCTION 

The use of distributed fiber sensors in structural health 

monitoring applications gained a lot of attention due to their 

high measurement accuracy, small size, immune to 

electromagnetic interference, harsh environmental 

capability and long sensing range up to tens of kilometers. 

The applications includes, oil/gas pipelines monitoring, civil 

infrastructures, border security monitoring, aeroplane and 

railroads [1]. Once an optical signal launched into the optical 

fiber, the light will experience a scattering mechanism in 

three different forms of Rayleigh, Brillouin and Raman 

scattering [2]. Whenever a fiber undergoes a strain, 

temperature and vibration/acoustic changes, the 

backscattered signal modulated by these parameters. By 

analysing the modulated backscattered signal, one can 

realize a distributed fiber sensor over the fiber distance. 

Whereas, the measurement location is quantified by the 

pulse light classical time-of-flight method, which is same as 

the standard optical time-domain reflectometer (OTDR) 

system. 

The familiar Brillouin based distributed fiber sensors are; 

the Brillouin optical time-domain reflectometry (BOTDR) 

based on spontaneous Brillouin scattering, the Brillouin 

optical time-domain analysis (BOTDA) based on stimulated 

Brillouin scattering (SBS) and Brillouin optical correlation 

domain reflectometry (BOCDR) based on laser modulation. 

The well-known Rayleigh based distributed fiber sensors are; 

optical frequency domain reflectometry (OFDR) and phase- 

optical time-domain reflectometry (Φ-OTDR) [3]. All the 

above distributed fiber sensors require data processing 

methods to extract the sensing parameters. For instance, the 

BOTDR/A systems typically use the nonlinear curve fitting 

models such as (i) Lorentzian (ii) Gaussian, (iii) pseudo-

Voigt and (iv) quadratic curve fitting to find the local 

Brillouin frequency shift (BFS) along the sensing fiber. 

These curve fitting methods require a high number of data 

points on measured Brillouin gain spectrum (BGS) with 

careful initialization for better measurement accuracy. 

However, the measurement accuracy of these fitting models 

inadequate in practical condition for high noise BGS. 

Furthermore, when short pulses use for better spatial 

resolution with long sensing fiber, the BGS spectral shape 

could deviate completely from Lorentzian/Gaussian spectral 

shape [4]. Hence, these curve fitting models are not effective 

for accurately estimate the peak BFS and degrades the 

measurement accuracy. Moreover, the computational time of 

these fitting models poses a hurdle for long-range sensing 

since the fitting algorithms often require numerous iterations 

for convergence. Therefore, there is an increasing attention 

to develop enhanced signal processing algorithms to 

accelerate the processing of distributed fiber sensing data 

using advanced machine learning methods such as artificial 

neural networks (ANN). 

In 1940s, mathematicians Warren McCulloch and Walter 

Pitts introduced a simple ANN algorithm to replicate human 

brain function [5]. From that time, the development of ANN 

increasing tremendously for various applications with 

greater computing power and more sophisticated software 

platforms. The applications include in the field of healthcare 

[6], robotics [7], aerospace [8], audio signal processing [9] 

and fiber optics [10]. In the field of fiber optics, ANN was 

used for optical communication systems [11], mode-locked 

lasers [12], nonlinear fiber optics [13] and fiber optic sensors 

[14]. Until now the implementation of ANN in distributed 

fiber sensor systems has been a relatively recent 

development. In this paper, we reviewed recent 

developments in ANN-based signal processing methods and 

performances that applied to distributed fiber sensors with 

their operating principles and experimental procedures. 

II. OPERATING PRINCIPLE OF ARTIFICIAL NEURAL 

NETWORK 

An ANN is a computational model inspired by the way 

of biological nervous system such as brain process 

information. It is composed by a large number of highly 

interconnected systems, consisting of basic computational 

units or neurons arranged in layers. The neuron receives a 

weighted input and produces an output if the sum of the 

inputs exceeds the threshold level for that neuron. The 

multilayer feedforward network describes one of the most 

extensively used ANN architectures. Its architecture consists  



of three sections: an input layer section, one or more hidden 

layers section, and an output layer section. The basic ANN 

architecture with one hidden layer is shown in Fig. 1. The 

input layer receives the input vectors and distributed to the 

first hidden layer. The hidden layer neuron sums up all input 

vectors and transforms through a suitable nonlinear transfer 

function. Each node connected every node to the next layer 

and every connection (shown in black arrow) has a weight 

attached which may have either a positive or negative value 

associated with it. Where the positive weight activates the 

neuron while the negative weights inhibit it. As shown in Fig. 

1, the inputs (x1, x2, . . xi) are connected to neuron j with their 

associated weights (w1j, w2j, . .wij) on each connection. The 

output layer sums all the received signals, where each signal 

multiplied by its associated weights on the connection. The 

output of each node can be expressed as [15], 

( )jy f wii ij j= −       (1) 

where, yj is the node output, fi is the nonlinear transfer 

(activation) function, wij is the weight between nodes i and j, 

θj is the constant bias of the jth node. In recent years, the ANN 

has been adopted into the distributed fiber optic sensors to 

accelerate the sensing performance, such as fast data 

processing speed, event classification, high sensing accuracy, 

and/or calibration of the sensor [14]. 

III. BRILLOUIN BASED DISTRIBUTED FIBER SENSORS 

USING ARTIFICIAL NEURAL NETWORK 

Compared to traditional curve fitting models, the ANN-

based approach has unique advantages of (i) real-time 

strain/temperature extraction (ii) BGS model flexibility, (iii) 

high measurement accuracy, (iii) short processing time and 

(iv) a lesser demand for training data. Moreover, it does not 

require the complete and accurate knowledge of the system 

model. Therefore, it is usually more flexible when 

implemented in practice. In recent years, ANN getting 

progressively more attention and have found many 

applications in fiber optic sensors. The experimental setup 

of the BOTDR system using a passive depolarizer is 

illustrated in Fig. 2 [16]. A DFB laser source at 1550 nm is 

used as a laser source. The laser output split into two 

propagation paths using 50/50 coupler, the upper branch 

signal is used for the pump and the lower branch is used for 

the local oscillator signal. The upper branch modulated with 

a dual drive MZM (DD-MZM), which modulates the 

electrical pulses into optical pulses with a high extinction 

ratio. A passive depolarizer is employed in local oscillator to 

suppress the polarization noise. The backscattered beat 

signal is detected by a photodetector (PD) and then analysed. 

The experimental setup of the BOTDA system is illustrated 

in Fig. 3 [17]. The theoretical Brillouin gain spectrum has a 

Lorentzian shape and can be expressed as [18], 

( )

( ) ( )

2

2 2

/ 2
( )

/ 2

B
B

B B

v
g v g

v v v


=

− + 

    (2) 

where 
Bg  is the Brillouin gain coefficient, 

Bv  is the 

Brillouin linewidth at FWHM, 
Bv  is the peak BFS. 

Sweeping the continuous wave probe frequency, the BGS 

spectrum can be constructed [19]. The measured peak BFS 

determine the strain and/or temperature information over the 

sensing fiber. The use of ANN to directly retrieve the strain 

and temperature information over the sensing fiber distance 

without the procedure of estimation of BFS. The ANN has 

benefits of adaptive learning ability, distributed associability, 

as well as nonlinear mapping ability. 

In 2009, A. Klar et al. [20] demonstrated a 76 m long 

underground tunnel monitoring using BOTDR system 

followed by a neural network that is trained to recognize the 

tunnel status. The ability of the sensing system to detect 

tunnel activities with pattern recognition of external 

disturbances, while insensitive to measurement noise and 

ground disturbances. In 2013, Y. Zhang et al. [21] proposed 

a novel fitting algorithm for the BOTDR sensing system 

based on radial basis function neural networks (RBFNN). 

The novel RBFNN algorithm improves the processing speed 

with accurate measurement of BFS. This approach does not 

require knowledge of the signal, resulting in a fast data 

processing time. 

In [22], proposed a neural network-based data processing 

using commercially available distributed temperature sensor 

(DTS, AP Sensing, N4385B). The neural network approach 

model is composed of three steps: characteristics extraction, 

regression, and reconstruction of the signal. The proposed 

neural network algorithm is experimentally demonstrated 

using a 2 km sensing fiber with 1 m spatial resolution and 

acquisition time of 30 s. 

 

Fig. 1. ANN schematic architecture with one hidden layer 

 

Fig. 2. Experimental setup of BOTDR system [16] 

 

Fig. 3. Experimental setup of BOTDA system [17] 



In 2017, H. Wu et al. [23] proposed and experimentally 

demonstrated an ultrafast (15.75 s) temperature extraction 

using a BOTDA system with ANN-based support vector 

machine (SVM). The SVM algorithms trained by ideal 

pseudo-Voigt curves with various BFSs, linewidths and 

spectral shape parameters. They processed 101,500 BGSs 

along the 40.6 km sensing fiber with 2 m spatial resolution 

and the SVM based data processing speed obtained 100 

times greater than standard Lorentzian curve fitting method. 

The temperature errors at end of the sensing fiber are ±3.1 °C 

with SVM and ±5 °C using standard Lorentzian curve fitting 

at 5 MHZ frequency scanning step and the signal-to-noise 

ratio (SNR) of 6.1 dB. Therefore, compared to the 

conventional curve fitting methods, the ANN-based data 

processing is a promising technique for real-time 

temperature extraction with fast speed and low measurement 

temperature error. 

In 2019, B. Wang et al. [24] demonstrated a deep neural 

networks (DNN) based BOTDA system using a 25 km large-

effective-area fiber (LEAF) sensing fiber with 2 m spatial 

resolution. The simulation and experimental data for various 

temperatures and strains have been measured to prove the 

reliability of DNN based simultaneous strain and 

temperature sensing, and demonstrate its advantages over 

the conventional curve fitting methods. Fig. 4(a) shows the 

schematic representation of DNN structure comprising input 

vectors, hidden layers and an output vector. Fig. 4(b) shows 

the operating principle of DNN using a LEAF fiber, which 

have two BGS spectrums. Here, the number of input vectors 

equal to the number BOTDA system scanned frequencies 

and the output consists of strain and temperature information. 

The neural network is trained by various clean and noisy 

BGS spectrums from the two BGS (double peak) LEAF fiber. 

The strain measurement uncertainty using DNN and 

standard solving method are 66.2 με, and 529.1 με, 

respectively. Whereas, the temperature measurement 

uncertainty using DNN and standard solving method are 

2.6 °C, and 19.4 °C, respectively. Moreover, the strain and 

temperature measured by DNN from 600,000 BGSs along 

the 24 km LEAF, which requires the computational time of 

only 1.6 s, which is much shorter than 5656.3 s by the 

conventional equational curve fitting method. 

In [25], A. K. Azad et al. demonstrated the use of ANN 

in BOTDA system for a longer sensing range of 41 km by 

using different linewidths of BGSs to train the ANN. Hence, 

the effect of BGS linewidth variation on sensing accuracy 

can be minimized. They also found that large frequency 

scanning step of continuous probe wave, the temperature 

extraction performance with ANN does not degrade 

significantly. Therefore, the use of ANN can also benefit to 

reduce the processing time by adopting the large frequency  

 
Fig. 5. BGS data processing using ANN with two independent phases [25] 

Table 1. Performance comparison of Brillouin based distributed fiber sensors using ANN and conventional curve fitting methods  

Ref. Data analysis method Temperature error 

(at end of the fiber) 

Strain error (at 

end of the fiber) 

Data processing 

time 

Sensing 

fiber length 

Spatial 

resolution 

 

[24] 

DNN  ±2.6°C ±66.2με 1.6 s  

25 km  

 

1 m 
Conventional equational 
curve fitting  

±19.4°C ±529.1με 5656.3 s 

 

[25] 

ANN ±1.172 °C Not stated  32s   

41 km 

 

4 m 
Lorentzian curve fitting ±1.705 °C Not stated 994 s 

 
[15] 

ANN ±0.41°C Not stated Not stated  
100 m 

 
4 m 

Lorentzian curve fitting ±0.8°C Not stated Not stated 

 
[23] 

ANN-Support vector 
machine (SVM) 

±3.1°C Not stated 15.75 s  
40 km 

 
2 m 

Lorentzian curve fitting ±5°C Not stated 1574 s 

 
(a) 

 
(b) 

Fig. 4. (a) schematic structure of DNN with ‘n’ hidden layers, (b) 

operating principle of DNN based discriminative strain and 

temperature monitoring using a double BGS LEAF fiber [24]. 



scanning step, thus lesser number of data points and without 

sacrifice the sensing accuracy. The learning or training phase 

and testing phase of the ANN for measuring temperature 

profile from the BGSs is shown in Fig. 5. The neural network 

architecture is trained using a dataset of BGSs corresponding 

to a uniformly sampled subset of temperature measurements, 

as denoted as training phase. The ANN learning essentially 

consists of modifying the weights of the connections 

between the neurons, where the initial weights are modified 

by an algorithm. The weights connecting the neurons of 

different layers are optimized by back-propagation (BP) 

algorithm [26]. Without the process of estimation of BFS, 

the ANN with optimized weights generate the temperature 

distribution along the sensing fiber. At the end of the sensing 

fiber, the temperature measurement error using ANN and 

Lorentz curve fitting methods are ±1.172 °C and ±1.705 °C, 

respectively. Whereas, the data processing time of 32 s using 

ANN and 994 s using Lorentzian curve fitting method. The 

progress summary of ANN and conventional curve-fitting 

methods performances are compared and shown in Table 1. 

IV. RAYLEIGH BASED DISTRIBUTED FIBER SENSORS 

USING ARTIFICIAL NEURAL NETWORK 

The Rayleigh backscattering based phase-optical time 

domain reflectometry (Ø-OTDR) (also called distributed 

acoustic sensor (DAS)) is a promising technique for real-

time vibration/acoustic measurement with high sensitivity 

and large dynamic range. The Φ-OTDR system is widely 

used for distributed acoustic sensing with an application of, 

pipeline monitoring, structural health monitoring, perimeter 

security, and wellbore integrity monitoring. The need for 

automatic and efficient sensing data processing, detection 

and classification algorithms are essential to advance the 

DAS technology. Therefore, the ANN is an ideal candidate, 

where they learn by themselves to extract the sensing 

features in the training phase. The experimental setup of the 

coherent Φ-OTDR system is illustrated in Fig. 6 [3]. A 

highly coherent laser with a narrow linewidth (1 kHz) split 

into two different paths, the upper path used for pulse 

generation and lower path used for the local oscillator. The 

pump pulses modulated by an acousto-optic modulator 

(AOM) with a frequency shift of 200 MHz. Thereafter, the 

signal amplified to an optimised power level using an EDFA 

and the ASE noise filtered by an optical bandpass filter. The 

backscattered signal amplifies using an EDFA2 and 

unwanted components filtered by a tunable fiber Bragg 

grating (TFBG) filter. The signal is then detected by a 

balanced photodetector to eliminate the DC component. 

Thereafter, a low-noise amplifier (LNA) is used for signal 

conditioning and filtered by a band-pass filter (BPF). The 

received signal is analysed by an oscilloscope at a sampling 

rate of 1.25 GSa/s [3]. 

In Ø-OTDR or DAS sensing technology, the efficient 

algorithms for detection of events of interest and their 

classification are the utmost importance. In 2019, S. Liehr et 

al. [27] demonstrated a real-time strain measurement (970 m 

long sensing fiber) based on a wavelength scanning coherent 

optical time-domain reflectometry (COTDR) and the raw 

data was processed using ANN to improve the measurement 

accuracy, computational speed and laser wavelength sweep 

linearization. Typically, the laser wavelength sweep using 

sawtooth laser current modulation results in a frequency drift, 

thus the laser wavelength sweep is not linear [28]. Using a 

trained ANN network, the nonlinear sweep correction with 

high-speed strain extraction is demonstrated and compared 

with least-mean squared (LMS) correlation algorithm. The 

sensing performance comparison of sweep linearization and 

strain extraction time using standard LMS correlation 

method and ANN method are shown in Table 2. The ANN-

based computation of linearization is 272 times and the strain 

extraction is 268 times higher than the standard LMS 

correlation-based method. 

Compared to standard deterministic algorithms in Φ-

OTDR system, the ANN got more attention for an advanced 

data analysis, pattern recognition and classification of 

vibration events. Several Φ-OTDR systems based on ANN 

method has been demonstrated for train position, speed, the 

number of bogies and classification of events such as 

pedestrians or construction work next to the rail tracks. In 

[29], the authors used a commercially available Helios DAS 

system for real-time monitoring of train position, velocity 

and number of bogies. From the results, the train velocity is 

calculated in three different ways using train-view, rail-view, 

and bogie cluster data analysis. They used ANN model in 

DAS sensing data and trained large number of data sets. The 

filtering, processing and train localization using standard 

peak finding algorithm takes 300 s, while, the ANN model 

takes only 22 s. the use of ANN also offers flexibility to 

process different data sets with high processing speed. 

In 2019, Q. Che et al. [30] demonstrated a partial 

discharge (PD) detection in cross-linked polyethylene power 

cables using ANN-based Ø-OTDR system. The sensing fiber 

is composed of weak Bragg gratings (wFBGs) to enhance 

the Rayleigh backscattering signal. The proposed ANN 

algorithm recognises and categorize different types of events, 

including internal PD, corona PD, surface PD, and noise as 

well. In their experiments, 1280 training samples and 832 

test samples are used to improve precision, sensitivity, and 

Table 2. Comparison of sweep linearization and strain extraction 

time using standard LMS correlation method and ANN method [27] 

Signal processing 

method 

Sweep 

linearization 

time 

Strain 

extraction time 

LMS correlation 
method 

33.21 s 94.77 s 

ANN method 0.122 s 0.353 s 

 

 
Fig. 6. Experimental setup of the coherent phase-OTDR system [3] 

(AOM=acousto-optic modulator, EDFA=Erbium-doped fiber amplifier, 

ASE=amplified spontaneous emission, PC=polarization controller, VOA=variable 

optical attenuator, FBG=fiber Brag grating, PZT=Piezoelectric transducer, B-

PD=balanced photo-detector, LNA=low-noise amplifier, BPF=band-pass filter) 



Table 3. Progress summary of ANN-based distributed acoustic sensing (DAS) systems 
 

Sensing system Classification task Accuracy Computational time Sensing fiber 

length 

Spatial 

resolution 

Commercial Helios 

DAS system [29] 

Train view analysis for 4 trains (position, 

speed and number of train bogies) 

±0.8 km/h 

(@160km/h train 
speed) 

22 s 35 km 10 m 

DAS assisted by 

wFBGs [30] 

Power cables partial discharge (PD) 

(internal PD, corona PD, surface PD) 

96.3% Not stated 1.5 km 5 m 

DAS [31] Walking, digging, digging with shovel, 

digging with harrow.  

93% Not stated 40 km 10 m 

DAS [32] Seismic events (human steps, ambient 

noises) 

94% 0.5 s 5 km 5 m  

DAS [33] Ambient noise, human footsteps, vehicle 
moment 

94% for 5 km fiber 
89.3% for 20 km 

fiber 

0.5 s 5 km and 20 
km 

5.5 m for 5 km 
fiber, 10.3 m for 

20 km fiber  

DAS assisted by 

wFBGs [34] 

Human moment  

(one person walk, one person run, two 
person walk, two person tun, two person 

walk and one person run) 

90% 1.25 s 7 wFBGs in 

sensing fiber 

n/a 

DAS assisted by 

wFBGs [34] 

Pipeline corrosion excited by different 

hammers (aluminium, plastic, rubber, 
steel) 

94.29% Not stated 7 wFBGs in 

sensing fiber 

n/a 

 

specificity for each event up to 96.3%, 96.4%, and 98.7%, 

respectively. Therefore, the event recognition based on ANN 

is a promising method in DAS or Ø-OTDR system. 

In [34], the authors experimentally verified human 

movement detection and pipeline corrosion monitoring with 

neural network DAS system. The wFBGs employed in the 

sensing fiber to enhance the Rayleigh backscattered signal 

SNR by 29 dB. The use of ANN is cable for human 

movement classification, whether one/two-person walking 

or running with 90% accuracy. In addition, they also 

developed ANN model for pipeline corrosion monitoring 

and classified the vibration excitation sources, where the 

pipeline knockout by aluminium, rubber, plastic and steel 

hammers. The accuracy of pipeline corrosion detection 

reaches 94.29% using the DAS combined with a neural 

network approach. The progress summary of the ANN-based 

DAS system is shown in Table 3. We can see that the role of 

ANN as a signal processing tool has been a great use in 

distributed optical fibre sensor systems. 

V. CONCLUSION 

We reviewed the recent developments of ANN-based 

distributed fiber sensor and compared the sensing 

performance with conventional signal processing methods. 

In BOTDR and BOTDA systems, the difficulty of accurate 

monitoring of BFS, small frequency scanning step, low 

sensing accuracy, low data processing speed are greatly 

enhanced by ANN-based algorithms. Moreover, the ANN 

offer greater tolerance to measurement noise and real-time 

strain and temperature extraction even for long sensing range 

(>100 km). The DAS sensing system requires efficient data 

processing, detection and classification algorithms. Once the 

ANN is trained by widest possible acoustic conditions data, 

the ANN is more capable to extract real-time acoustic 

information with high classification accuracy. This trend of 

development will likely continue in the future with complex 

fiber sensor signals being interpreted by increasingly 

sophisticated processing hardware and software. It is 

envisaged that the power of ANN in interpreting the sensor 

data and classification of the results may be used to solve 

complex signal processing issues. Furthermore, it is 

anticipated that the use of ANN will gradually become smart 

intelligent sensor systems with the expanded field of 

applications. 
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