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Abstract—Two new dynamic-state switching phenomena are 

experimentally observed in a vertical-cavity surface-emitting laser 

with polarization-preserved external-cavity optical feedback. One 

is switching between a steady state and a quasi-periodic state, and 

the other is switching between two different steady states. Both 

switching phenomena occur in the same polarization and the 

switching period is equal to the round-trip time in the external 

feedback cavity. The evolution of the two switching phenomena is 

experimentally investigated in detail. This work not only enriches 

the understanding of laser nonlinear dynamics but also provides 

an all-optical alternative for generation of special signals for 

possible applications. 

Index Terms— Semiconductor lasers, Vertical-cavity surface-

emitting lasers, Nonlinear dynamics, Dynamic-state switching 

 

I. INTRODUCTION 

EMICONDUCTOR lasers with external-cavity optical 

feedback are ideal objects for studying laser nonlinear 

dynamics, including chaos, periodic oscillation, and regular 

pulse package, which can find applications in such diverse 

fields as secure chaos communication [1]–[3], physical random 

bit generation [4], [5], chaos range finding [6], and millimeter 

wave generation [7]. Ridge-waveguide edge-emitting lasers 

(RWEELs) are the most widely used commercial 

semiconductor lasers, and RWEELs with external-cavity 

optical feedback have been well studied [8], [9].  

Since its invention, the vertical-cavity surface-emitting laser 

(VCSEL) has attracted considerable attention due to low 

threshold, natural single wavelength operation, circular output 

beam, low cost, etc. [10]. Many studies about dynamics of 

VCSELs with external-cavity optical feedback have been 

undertaken. With polarization-preserved or polarization-

selective optical feedback, VCSELs can exhibit similar 
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dynamics like RWEELs, such as rapid mode hopping between 

two adjacent external-cavity modes [11], low frequency 

fluctuations [12]–[14], regular pulse package [15], and chaos 

[11], [16]–[17]. Furthermore, due to two linear polarization 

modes [18], [19], VCSELs with external-cavity optical 

feedback can exhibit complex dynamics. The existence of two 

different types of low-frequency fluctuations in VCSELs with 

external-cavity optical feedback was demonstrated [13]. It was 

also experimentally found that polarization-preserved feedback 

can induce random polarization mode hopping [20], [21]. In 

addition, polarization mode switching was often observed. For 

example, Li et al. found that 90° polarization-rotating feedback 

leads to square-wave polarization switching dynamics for a 

long external cavity and sinusoidal-wave polarization switching 

for a short external cavity [22] –[24]. 

In this letter, two new dynamic-state switching phenomena 

in a VCSEL with polarization-preserved external-cavity optical 

feedback have been experimentally observed. One is switching 

between a steady state and a quasi-periodic state and the other 

is switching between two different steady states, named S-QP 

switching and S-S switching, respectively. Both switching 

phenomena occur in the same polarization with the switching 

period equal to the round-trip time in the external feedback 

cavity. We experimentally investigate the evolution of these 

two new dynamic-state switching phenomena as bias current 

and feedback strength vary. This work inspires further research 

on the switching mechanism in semiconductor lasers and 

enriches the scientific understanding of laser nonlinear 

dynamics. The two switching phenomena also provide an all-

optical alternative for generation of special signals for optical 

digital signal processing and clock generation, such as duty-

cycle tunable square-wave modulated photonic microwave 

signals. 
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II. EXPERIMENTAL SETUP 

The experiment setup of the VCSEL with polarization-

preserved external-cavity optical feedback is shown in Fig. 

1(a). The laser (VERTILAS, laser output by fiber coupling, at 

wavelength of 1550 nm band) is driven by a low-noise current 

source (ILX Lightwave LDX 3412), and its working 

temperature is stabilized at 25.0 °C by a temperature controller 

(ILX Lightwave LDT-5416). The output of the laser is divided 

into two beams by an 80:20 fiber coupler (FC). The 80% beam 

is directed to a fiber optic mirror and then reflected back into 

the laser cavity. The laser output facet and the mirror form the 

external cavity. In this cavity, a polarization controller (PC) is 

used to match the polarization of the feedback light with the 

laser, and a variable optical attenuator (VOA) is used to adjust 

the feedback power. The 20% beam passes through an optical 

isolator (OI) and an erbium-doped fiber amplifier (EDFA), and 

then split into three paths by two couplers for measurement. The 

VCSEL’s optical spectrum is measured by an optical spectrum 

analyzer (APEX, AP2041B) with a resolution of 0.04 pm. The 

temporal waveform and the power spectrum of the laser 

intensity are measured by a real-time oscilloscope (LeCroy 

LABMASTER10ZI, 36 GHz bandwidth) and a spectrum 

analyzer (Agilent N9020A, 26.5 GHz bandwidth) with 40 GHz 

photodetectors (Finisar XPDV2120RA-VE-FP). 

The free running VCSEL has a threshold current Ith = 1.1 mA 

and its optical spectrum at 4Ith is shown in Fig. 1(b). There are 

two linear polarization (LP) modes, the dominant y-LP mode at 

1543.098 nm and the x-LP mode at 1543.295 nm with a 

polarization mode suppression ratio of 61.44 dB and a 

wavelength difference of 0.197 nm. The output of the laser 

stays in y-LP mode as bias current I increases to 9Ith. The 

external-cavity length is about 9.26 m, corresponding to a 

round-trip time  = 92.6 ns and an external cavity frequency fEC 

= 10.8 MHz. The feedback strength κf is defined as the ratio of 

the feedback power to the laser output power. Due to the 

unknown coupling loss, the actual feedback strength is smaller 

than the measured value. 

III.  EXPERIMENTAL RESULTS 

A. Switching Between Steady and Quasi-Periodic State (S-

QP Switching) 

S-QP switching was observed when the VCSEL was driven 

by a bias current from 3.7Ith to 6Ith. Figure 2 demonstrates a 

typical S-QP switching obtained at I = 4 Ith and κf = 0.056. As 

shown in Fig. 2(a), the laser has a comb-like optical spectrum 

with a center mode vq at 1543.107 nm and side modes with a 

frequency spacing of fq = 6.95 GHz, which is slightly lower than 

the relaxation oscillation frequency. Caused by feedback, the 

optical frequency of the center mode has a slight red shift of 

−1.11 GHz relative to the free-running y-LP mode and the x-LP 

also has a slight red shift of –1.59 GHz. Interestingly there is a 

shorter spectral line, denoted as vs, near the center mode on the 

long-wavelength side with a frequency difference of –2.72 

GHz. From Fig. 2(b), the electrical spectrum has only one high-

frequency component at fq corresponding to the comb spacing, 

but no oscillation at 2.72 GHz corresponding to the beat 

frequency between modes vq and vs. This means that modes vs 

and vq do not exist simultaneously. In addition, as the insert of 

Fig. 2(b) shows, the spectrum in the low-frequency band has a 

few spectral lines with an interval equal to fEC. This indicates 

that the modes vs and vq switch with a period equal to the 

external-cavity round-trip time . Figure 2(c) and 2(d) plot the 

temporal waveform of the laser intensity on different time 

scales. Clearly, there are two different states switching back and 

forth with a period of : One is the quasi-periodic oscillation 

with a large amplitude of about 15 mV, the other is the steady 

state with a fixed power. Note that the noise waveform is 

attributed to the detection noise. Therefore, this switching 

occurs between a steady state at the optical frequency vs and a 

quasi-periodic oscillation at the optical frequency vq. 

Figure 3 shows the evolution of the S-QP switching as 

feedback strength increases measured at a bias current of 4Ith. 

Under this bias current, the laser changes from a steady state to 

the S-QP dynamics when the feedback strength exceeds 0.032. 

From the first column, one can roughly find that the duty cycle 

and average amplitude of the quasi-periodic (QP) oscillation 

increase. Figure 4(a1) plots the duty cycle and average 

 
Fig. 2.  Switching between steady state and quasi-periodic state at I = 4Ith, κf = 
0.056: (a) optical spectrum, (b) electrical spectrum, (c) and (d) intensity 

waveforms on different time scales. 

 
Fig. 1.  (a) Experimental setup. PC, polarization controller; FC, fiber coupler; 
VOA, variable optical attenuator; OI, optical isolator; EDFA, erbium-doped 

fiber amplifier; PD, photodetector; SA, spectrum analyzer; OSC, oscilloscope; 

OSA, optical spectrum analyzer. (b) Optical spectrum of the free running 

VCSEL at bias current I = 4Ith. 



amplitude of QP oscillation as functions of feedback strength. 

Shown in Fig. 4(a1), as feedback strength rises to 0.072, the 

duty cycle increases from 0.48 to 1, and the average amplitude 

increases from 6.65 mV to 16.1 mV. Further increase of 

feedback strength leads to a complete QP oscillation, namely 

the duty cycle is 1. Obviously, S-QP switching is the transition 

from steady state to complete QP state. It is worth noting that a 

similar S-QP switching was recently also found in a distributed-

feedback (DFB) semiconductor laser with optical feedback 

[25], but its evolution is different from that in the VCSEL 

reported in this work. For the DFB laser, the duty cycle of QP 

oscillation first increases and then decreases to zero as feedback 

strength increases, and therefore the S-QP switching will finally 

evolve into a steady state. By contrast, in the VCSEL, it evolves 

from the S-QP switching state to a complete QP state. 

Moreover, as shown in Fig. 4(a2), both the duty cycle and the 

average amplitude decrease as bias current increases when the 

feedback strength is fixed. But for the DFB laser [25], the duty 

cycle increases as bias current increases. 

Back to Fig. 3, in the second and third column, we can find 

that the waveform of the QP oscillation gradually changes from 

sinusoidal to pulse-like, and thus the linewidth of the QP 

spectral line is broadened as feedback strength increases. Figure 

4(b1) shows the effects of feedback strength on the QP 

oscillation frequency and its 3-dB linewidth at I = 4Ith. The 

oscillation frequency fq reduces slightly as feedback strength 

rises. By contrast, the 3-dB linewidth broadens from 3.5 MHz 

to 88.75 MHz. As shown in Fig. 4(b2), the oscillation frequency 

increases but the 3-dB linewidth decreases with increasing bias 

current at the fixed feedback strength. The quasi-periodic 

oscillation originates from the relaxation oscillation. A higher 

bias current brings a higher relaxation frequency with a larger 

damping factor, which leads to the results in Fig. 4(b2).  

B. Switching Between Two Steady States (S-S Switching) 

As the bias current increases from 6Ith to 9Ith, the S-S 

switching occurs when κf is less than 0.04. Figure 5 shows a 

typical S-S switching obtained at I = 7Ith and κf = 0.0146. 

Typically, the optical spectrum as shown in Fig. 5(a) has two 

spectral lines, vs1 at 1544.258 nm and vs2 at 1544.278 nm with 

a frequency difference of 2.58 GHz. The power of the short-

wavelength mode is slightly higher than the long-wavelength 

mode. The electrical spectrum of the laser output in Fig. 5(b) 

does not have a peak at 2.58 GHz. This means that the two 

modes do not exist simultaneously. In addition, as shown in Fig. 

5(c), the electrical spectrum in the low-frequency band has a 

few spectral lines with an interval equal to fEC. This indicates 

that the two modes are steady states and switch with a period of 

. Figure 5(d) shows the temporal waveform of the S-S 

switching which is measured by the oscilloscope with DC 

coupling. The output of the VCSEL switches regularly between 

two different steady states with a period of . The steady state 

with higher level corresponds to the short-wavelength mode, 

and the steady state with lower level is the long-wavelength 

mode.  

Figure 6 shows the duty cycle of the high-level steady state 

and the wavelengths of the two modes as functions of the 

feedback strength at I = 7Ith. S-S switching, characterized by the 

duty cycle between 0 and 1 and two-peak optical spectra, 

appears when κf is in the range of 0.0017 ~ 0.037. As shown in 

Fig.6, as feedback strength increases in this range, the duty 

 
Fig. 3.  Switching between steady state and quasi-periodic state at feedback 

strength of κf = 0.032, 0.044 and 0.064, from top to bottom, with the bias 

current of I = 4Ith. From left to right, columns 1 and 2 are temporal waveforms 

on different time scale, and column 3 lists electrical spectra. 

 
Fig. 4.  (a1),(a2) Duty cycle and average amplitude of QP, (b1),(b2) oscillation 

frequency fq and 3-dB linewidth of the fq peak in S-QP switching as function 

of feedback strength κf (left column at I = 4Ith) and bias current (right column 
at κf = 0.079).  

 

 
Fig. 5.  Switching between two steady states at I = 7Ith, κf = 0.0146: (a) optical 

spectrum, (b) electrical spectrum, (c) low-frequency-band electrical spectrum, 
and (d) temporal waveform. The gray lower waveform is background noise of 

the detector.   

 



cycle of vs1 decreases from 1 to 0 and the laser output changes 

into the steady state at the long wavelength. In addition, as κf 

increases, both vs1 and vs2 red shift. The fluctuation of the 

refractive index, which results from the carrier dynamics, is 

more intense in S-S switching than that in single steady state, 

leading to slightly higher index. As the result, vs1 rapidly red 

shifts when laser output changes into S-S switching, and vs2 

slightly blue shifts when laser output changes out from S-S 

switching. 

Compared with the S-QP switching, the S-S switching 

appears at higher bias current and a lower feedback strength. In 

this condition, the laser has a larger damping factor and its 

relaxation oscillation cannot be forced into undamping to 

generate periodic or QP oscillation by the weak optical 

feedback.   

IV. CONCLUSION 

In conclusion, two new dynamic-state switching phenomena 

are experimentally found in the VCSEL with optical feedback. 

One is the switching between a steady state and a quasi-periodic 

state, which is the transition from a steady to a complete quasi-

periodic state. As bias current increases and feedback strength 

decreases, the other one occurs, i.e., switching between two 

steady states with an optical frequency difference of a few GHz. 

After the S-S switching, the laser will turn back to a steady state 

but with different optical frequency. The switching period is 

equal to the round-trip time in the external cavity. These 

dynamic-state switching phenomena can enrich the 

understanding of the dynamics of semiconductor lasers with 

optical feedback. Furthermore, they provide an alternative for 

generation of square-wave photonic microwave signals which 

is useful in signal processing and communication systems. 
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