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Abstract: This paper investigates the impact of battery and fuel cell (FC) degradation on energy management of a FC hybrid

electric vehicle (FCHEV). In this respect, an online energy management strategy (EMS) is proposed considering simultaneous

online adaptation of battery and FC models. The EMS is based on quadratic programming (QP) which is integrated into an online

battery and proton exchange membrane FC (PEMFC) parameters identification. Considering the battery and PEMFC states of

health, three scenarios have been considered for the EMS purpose, and the performance of the proposed EMS has been examined

under two driving cycles. Numerous test scenarios using standard driving cycles reveal that the ageing of battery and PEMFC has

a considerable impact on the hydrogen consumption. Moreover, the proposed EMS can successfully tackle the model uncertainties

owing to the performance drifts of the power sources at the mentioned scenarios.

1 Introduction

Global warming, air pollution owing to toxic fumes of combustion
engines, and limitation of fossil fuels have motivated automobile
industry to exploit alternative energy sources, such as fuel cell (FC)
and electro-chemical battery [1, 2]. Hybrid electric vehicles (HEVs)
incorporate more than one energy source to propel the vehicle. FC
hybrid electric vehicle (FCHEV) is a kind of HEV that uses the
FC as the primary power source and the electric battery as the sec-
ondary one [3]. Proton exchange membrane FC (PEMFC) is the
most popular technology employed in the FCHEVs because of its
low-temperature and low-pressure operating range[4]. Lithium-ion
battery, because of its high energy and power density and low self-
discharge rate, is also the dominant battery technology in the electric
and hybrid electric vehicles [5]. Furthermore, battery provides the
capability of storing the recovered energy from the regenerative
braking system which in turn can improve the energy efficiency.
Although PEMFCs have good energy density, they suffer from
slow dynamic response. Therefore, a FC vehicle may encounter
power shortage, when the required power is provided only by the
FC. Therefore, the combination of PEMFC and lithium-ion battery
seems a proper match for FCHEVs. As the PEMFC and Lithium-ion
battery have different characteristics in respect of power delivery,
the design of an energy management strategy (EMS) is vital to
ameliorate the hydrogen economy and lifetime of the powertrain
components. The existing EMSs for FCHEVs can be grouped into
three kinds of rule-based, optimization-based, and intelligent-based
[6–8]. Rule-based strategies are normally developed based on heuris-
tic methods and do not guarantee the optimality though they are
sufficient for reaching an immediate goal [9]. Optimization-based
strategies propose theoretical near-optimal solutions. They can also
be utilized to refine the rule sets of the expert system in the rule-
based methods [10]. Optimization-based EMSs are divided into

global and real-time methods. Global strategies determine the opti-
mal policy of a defined cost function over a known driving profile
and are not appropriate for real-time applications. Dynamic pro-
gramming (DP) (as an optimal solution) [11, 12] and metaheuristic
algorithms, such as genetic algorithm (GA) [13], (as a near-optimal
solution) have been employed several times as off-line global EMSs.
Real-time strategies solve an instantaneous cost function at each
instant concerning the variables of the vehicle model. These strate-
gies have been developed employing optimal theory techniques, such
as quadratic programming (QP) [14–17], Pontryagin’s minimum
principle (PMP)[18, 19], and equivalent consumption minimization
strategy (ECMS) [20, 21]. Intelligent-based strategies are usually
formulated by utilizing the navigation data and the history of motion
for identifying and predicting the driving condition [22, 23]. Such
strategies are normally combined with ruled-based and optimization-
based strategies to resolve the issues associated with the variation
of driving condition. A considerable number of EMSs, based on
the above-explained techniques and their combinations, have been
proposed for FCHEVs in the literature. For instance, in [24], a rule-
based EMS is proposed for a FC-SC-battery vehicle to enhance
the lifespan of the power sources by using them in the recom-
mended operational range. Furthermore, the PEMFC output power is
maximized by regulating the oxygen ratio. In [25], a quadratic func-
tion for the PEMFC energy consumption is defined in a multi-state
ECMS to distribute the power among the sources. This strategy has
decreased the energy consumption by 2.5% compared to a rule-based
power following strategy. In [26], an EMS based on adaptive con-
trol theory and fuzzy logic control (FLC) is proposed. The authors
suggest updating the membership function values of the FLC as
the PEMFC voltage drops owing to degradation after a while. This
reflection shows that apart from the importance of considering driv-
ing condition and other related factors, it is vital to take into account
the state of health (SOH) of the power sources while developing an
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2 Powertrain modeling 

The utilized vehicle model in this study is an electrified vehicle 
equipped with a single ratio gearbox, a differential and two driven-
wheels [36]. The powertrain of this vehicle consists of a 15-kW
induction motor, a Lithium Iron Phosphate (LiFePO4) battery pack,
and a PEMFC stack. The maximum speed of this vehicle is 85 km/h
and its main specifications are listed in Table 1. Fig. 1 schematically
represents the powertrain configuration modeling of this vehicle for
the purpose of this work. The required power at the wheels is esti-
mated based on the longitudinal dynamics, including aerodynamic
drag, rolling resistance, and grade forces [37]. The required power is
then demanded from the downstream components step by step until
it reaches the power bus. Equation (1) calculates the road resistance
force where, Fr is the rolling resistance force, Fa is the aerodynamic 
drag force, Fg is the grade force, v is the vehicle speed, mv is the
vehicle mass, ρ is the air density, A is the frontal area of the vehicle, g 
is gravitational acceleration, Cx is the aerodynamic drag coefficient, 
Cr is the rolling resistance coefficient, and α is the grade angle. It
should be noted that the simulation in this paper will be done for a 

EMS. Lithium-ion batteries and PEMFCs may undergo various per-
formance drifts in terms of efficiency and power delivery due to the
alteration of operating conditions and degradation. In this regard,
some attempts have been made to enhance the health-awareness of
the power sources while developing an EMS. In [27], an EMS based
on model predictive control is proposed in which the objective func-
tion considers the hydrogen consumption as well as the degradation
of both PEMFC and battery. Similarly, in [28–30], a degradation
model has been used for each of PEMFC stack and battery pack
to prevent the proposed EMSs from mismanagement due to the per-
formance drifts of these power sources. However, the issue with this
line of work is that degradation and ageing mechanisms are highly
complicated phenomena to be modeled. Moreover, the variation of
the operating conditions, such as humidity and ambient tempera-
ture, which are not considered in the model of the power sources
can change their power delivery capacity leading to the malfunc-
tion of the EMS. To avoid these issues, some attempts have been
made to combine the extremum seeking methods, which search an
optimal operating point by using a periodic perturbation signal, with
the EMS design in FCHEV [31, 32]. The shortfall of the extremum
seeking methods is that they are not suitable for simultaneous explo-
ration of several points, such as maximum power and efficiency, as
a particular search line is needed for each sought characteristic. This
problem can be sorted out by online updating of the power sources
models using recursive filters and obtaining the required characteris-
tics while the vehicle is under operation. In [33–35], recursive filters,
such as Kalman filter (KF) and recursive least square (RLS), are
employed to update the parameters of the PEMFC model online.
Afterwards, the proposed EMSs are fed with the present-state char-
acteristics of the PEMFC, including maximum power and efficiency
points, to perform the power distribution with complete awareness
of the PEMFC realistic characteristics. The authors have shown that
the classical strategies which utilize fixed maximum power and effi-
ciency points of the PEMFC stack are not very functional when the
PEMFC goes under degradation. However, one important factor that
has not been considered in these works is the online adaptation of
the battery pack model to the real conditions. In this regard, unlike
the discussed similar studies, this paper puts forward an EMS based
on QP for a FCHEV considering the online updating of both the
PEMFC model and battery pack. The online adaptation of the mod-
els prevents the EMS from malfunction owing to the performance
drifts of the power sources. To show the importance of the online
modeling in EMS formulation, the influence of the power sources’
performance drifts over the hydrogen consumption of the FCHEV is
scrutinized for different cases. The rest of the paper is organized as
follows. Section 2 describes the powertrain modeling of the FCHEV.
Section 3 deals with the online identification of power sources.
Section 4 explains the EMS development. The obtained results from
the EMS are discussed in section 5. Finally, a conclusion is given in
section 6.

Fig. 1: Structure of the utilized FCHEV

Table 1 FCHEV parameters

Parameters Specification Value

Wheel radius 
Rolling resistance 
Aerodynamic drag 
Density of air 
Gravitational constant 
Mass 
Gear ratio 
Maximum speed 
Transmission efficiency 

Battery 
Fuel cell 

AC Traction 

0.2865 (m) 
0.015 
0.42 
1.225 (kg/m3)

9.81 (m/s2) 
872.5680 (kg)
5.84 
85 (km/h) 
0.95 

80 V, 40 Ah 
15.4 (kW) 

15 (kW) 

Vehicle’s parameters

Power sources

Motor

flat road. 

Ft = v(mv
d

dt
v(t) + Fa(t) + Fr(t) + Fg(t)) (1)











Fa = 0.5ρACxv
2

Fg = mvg sin(α)

Fr = mvCrg cos(α)

(2)

The requested power is obtained as:

Preq = Ft(t)v (3)

Pmotor = Preq/Eff (4)

Pbus = Pmotor/ηConverterηDC/AC (5)

where Preq is the required Power, Pmotor is the electric motor
required power, Eff is the electric motor efficiency, Pbus is the
power bus power to be provided by the battery and FC according to
the control strategy, ηDC/AC is the converter efficiency.

2.1 Lithium–ion battery model

An electrical circuit network (ECN) named 1RC Thevenin model is
employed as the battery cell model [38]. This model is comprised
of a voltage source in series with a single resistance which repre-
sents the cell internal resistance and a parallel resistance-capacitor
which represents the cell polarization effect. The model is shown in
Fig. 2 where Vbat is the terminal voltage, OCV is the open circuit
voltage, Ibat is the battery load current, Rs is the internal ohmic
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Fig. 2: Thevenin 1RC model [38]

Table 2 Battery specifications 

Battery type 
Nominal capacity 
Max. current discharge 
Charging temperature 
Battery weight 

LiFePO4 (3.2 V)
14 (Ah) 
6 C 
0-45 C̊  
340 g 

resistance, and Rc and Cc are the equivalent polarization resistance
and capacitance respectively.

The governing dynamic equation of the ECN model can be
described as:







V̇c =
Ibat
Cc

−
Vc

RcCc
Vbat = OCV − Vc(t)−RsIbat

(6)

Vbat = OCV + (Rs +Rc)Ibat −RcCc
dvbat
dt

+RsRcCc
dIbat
dt

(7)

The state of charge (SOC) of battery is also calculated using coulomb
counting method [39]:

SOCbat = SOCinit −
100

(8) 

where SOCinit is the initial SOC of the battery, Ibat is the bat- 
tery current, and Qbat is the maximum battery capacity. The battery 
pack comprises three parallel cell strings. Each string also includes 
25 cells connected in series. Table 2 shows the employed lithium-ion
cell specifications. For the purpose of this study, two battery models,
namely new and degraded, are required to investigate the effect of
battery ageing on the EMS performance. In this respect, the model
based on the specified characteristics in Table 2 is considered as the
new battery model. Regarding the degraded battery, based on which
the degraded model is built, 20 percent capacity fade and 100 percent
increase in the internal resistance are considered. Therefore, the SOC
calculation in these scenarios will be based on the new and degraded
battery characteristics. The cell parameters, including the open cir-
cuit voltage (OCV), internal resistance (Rs), polarization resistance 
(Rc), and polarization capacitance (Cc), are identified through an
online model identification approach. To do that, the cell is subjected 
to extensive charge tests during which the cell current and the termi-
nal voltage are measured. Fig. 3 illustrates the laboratory test setup.
Fig. 4 also depicts the schematic diagram of the experimental setup.
The test setup comprises a climate chamber in which the battery
cell’s temperature is controlled. To extract the required characteris-
tics of the battery to be used as the reference for validating the online
estimation of the 1RC Thevenin model parameters, a pulse charge
and discharge test has been done. This test allows characterizing the
battery voltage response (cell dynamics) at various SOC levels [40].
To perform these pulse tests, a charged cell has been subjected to
twenty-one discharge pulses at 1C rate. Subsequently, after an hour 

3600Qbat

∫
Ibatdt, 0 < SOCbat < 1

Fig. 3: Battery cell test setup

of rest, the discharged cell has been charged using twenty-one charge
pulses at 1C rate. These tests have been conducted at 25◦C. Fig. 5 
demonstrates the cell current and the terminal voltage measurements
during the complete pulse discharge and charge experimental tests.
The collected experimental data are used with a sampling time of
1 s to validate the effectiveness of the KF. Moreover, the extracted
relationship of the battery SOC with each of open circuit voltage,
internal resistance changes in charge and internal resistance changes
in discharge is shown in Fig. 5c. 

Fig. 4: Illustration of the experimental setup
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Fig. 5: Battery characteristics 
a Current and voltage in charge profile 
b Current and voltage in discharge profile 
c Open circuit voltage and Equivalent resistors 

2.2 PEMFC model

Vst = N [Vo − b log(J) − RinternalJ + αJσ ln(1 − βJ)] (9)

where N is the number of cells, Vst is the output voltage of the 
stack (V), Vo is the reversible cell potential (V), b is the Tafel slope 
(Vdec−1), J is the actual current density (Acm−2), Rinternal is 
the cell resistance (cm2Ω), α is a semi-empirical parameter related

to the diffusion mechanism (Vcm2A−1), σ (between 1 and 4) is 
a dimensionless number which is related to the water flooding
phenomena, and β is the inverse of the limiting current density 
(cm2A−1). As reported in Table 3, the utilized PEMFC in this paper 
has a maximum current of 300 A, and its active area is considered 
to be 285.5 cm2 [44] which yields the value of 0.951 cm2A−1 for 
β. Vo, b, Rinternal and α will be estimated by the KF, explained in 
section 3. The characteristics of the utilized PEMFC are shown in 

The existing PEMFC models in the literature fall into three cate-
gories of black box, grey box, and white box [31–36, 38]. The white
box models are based on the system differential equations and can
be used when the detailed parameters of the system are available.
On the contrary, the black box models are based on input-output
experimental data and do not go through the details of physical
phenomena interpretations. Fuzzy logic and neural network mod-
els fall into this category. The grey box models, also known as
semi-empirical models, are based on the polarization behavior of
PEMFCs, easy to implement, and effective to be used for designing
EMSs [41]. In this paper, a PEMFC semi-empirical model, pro-
posed by Squadrito et al. [42], is utilized to emulate the polarization
behavior of a FCvelocity R⃝-9SSL PEMFC stack technology manu-
factured by Ballard Power Systems for transportation application.
This semi-empirical model has been recommended for the EMS
design of FCHEV in several papers [43]. The general formulation
of this electrochemical PEMFC model is as follows:

Table 3.
The power of the PEMFC system (Pfc) is obtained by consider-

ing the losses from the balance of plant as [45, 46]:

Pfc = (Pst − Pcomp − Pfan) (10)

Pcomp = η−1
compWaircpTamb((Pca/Pamb)

(( γ−1

Pst = VstIst 

Wair = λWo2/χo2 

Wo2 = Mo2Nfcifc/2F 
Po2 = 0.2Pca 

PH2 = 0.99Pan 

Pca = a1 + a2Ist + a3Ist
2 + a4Ist

3 

Pan = Pca + 20000 

where Pcomp is the consumed power by the compressor (W), Pca is 
the pressure in the cathode side (bar), Pfan is the consumed power 
by the FC fan (200 W), ηcomp is considered as the average com-

pressor efficiency (0.70), Wair is the rate of used air (gs−1), cp is 
the air specific heat capacity (1005 J kg−1), Pamb is the ambient 
pressure (bar), γ is the ratio of specific heats of air (1.4), λ is the 
oxygen excess ratio which is 2, Wo2 is the oxygen consumption rate 
(g s−1), χo2 is the oxygen mass fraction (0.233), Mo2 is oxygen 
molar mass (32 gr mol−1), F is the Faraday constant, Pan is the 
pressure in the anode side (bar), Ist is the current of the stack (A), 
Pst is the power of the stack (W), and ai (i=1. . . 4) are the experi- 
mentally obtained coefficients, described in [46]. The hydrogen flow 
(qH2) is calculated based on an experimental formula as below [47]. 

(19) 

γ
)−1)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

qH2 = 0.00696IstN

Based on the described equations, the efficiency of the FC system
is calculated considering the power losses of the auxiliaries:

ηsys = (Pfc − Pcomp − Pfan)/(qH2HHV ) (20)

where the generated hydrogen power is the product of hydrogen flow

and the high heating value of hydrogen (HHV = 286 kjmol−1).
The converter efficiency is also multiplied by the FC system effi-
ciency to know the efficiency in the DC bus.
Similar to the battery modeling, new and degraded PEMFC mod-
els are required for the purpose of this article. In this respect, the
new PEMFC model is based on the available characteristics in the
datasheet of FCvelocity R⃝-9SSL PEMFC stack [47].
However, the degraded PEMFC model is generated using a degra-
dation model proposed in [48]. This degradation model takes into
account the voltage drop of the PEMFC stack under constant current
load and frequent start-stop switches as below.

Vfc = Vst exp(α, t)−∆V K (21)

Where Vfc is the voltage of the degraded PEMFC, Vst is the
stack voltage of the PEMFC, α is a constant coefficient, K is the
number of on/off cycles, t is the operation time, and ∆V is the FC
voltage drop owing to one start-stop cycle. According to the per-
formed degradation test in [49], ∆V is assumed as 13.79 µV/cycle.
The other parameters of the degradation model have been tuned in a
way to reach a twenty-percent decline in the maximum power of the

Table 3 FC stack characteristics 

Component Parameter Variable Value

Number of cell N 80
Max power Pfc,max 15.4 kW

FC Max current Ist,max 300 A
Power of fan Pfan 200 W
Stack mass FCmass 13.1 kg
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PEMFC stack. It should be noted that since the main purpose of this
paper is to check the influence of a degraded PEMFC and battery
over the performance of the vehicle, the adopted models are ade-
quate enough to meet this objective and developing very accurate
degradation models are not necessary. As Fig. 6b shows, the rela-
tion of PEMFC system efficiency versus its power can be defined by
a quadratic function. Hence, a quadratic formula has been fitted to
each curve, as illustrated in Fig. 6b. 
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3 Online model identification

As mentioned earlier, the characteristics of the FCHEV power
sources are time-varying since they are influenced by degradation
and operating conditions variation. The main purpose of this section
is to utilize an identification technique to deal with these uncertain-
ties which can decrease the performance of an EMS in terms of fuel
economy. The process of parameter identification can be done offline
and online concerning the requirement of the problem. In offline
identification, the measured data is first recorded in a data storage,
and then they are transferred to a computer for further evaluation by
batch processing of data. However, in online identification, which
is the main focus of this work, the data is treated as each sample
is received by utilizing recursive filters. In this work, Kalman fil-
ter (KF) is employed to estimate the parameters of the Battery and
PEMFC models online. The online identification of battery model
provides the EMS with the battery parameters including internal
resistance, polarization resistance, polarization capacity, and OCV
which are necessary for calculating the battery response variables
and tracking the health state of this power source. Regarding the
SOC calculation, the capacity is very important whose identifica-
tion is not in the scope of this work. However, the battery internal
resistance has been employed for the estimation of the battery state
of health and its impact on the performance of EMS is studied.
The online parameters estimation of the PEMFC model provides the
EMS with some significant characteristics, such as maximum effi-
ciency and maximum power points, which have an important role
in the performance of the power sharing algorithm. KF has been
already suggested for the EMS design of FCHEV due to its robust-
ness [39]. It is perceived as an optimal estimator which concludes

the targeted parameters of interest from inaccurate and uncertain
observations. Firstly, it estimates the current state variables and then
updates them when the next measurement is received. The structure
of KF is as follows.

{

x(t+ 1) = F (t+ 1|t)x(t) + w(t)

y(t) = H(t)x(t) + v(t)
(22)

(State space model)

x̂−(t) = F (t|t− 1)x̂−(t− 1) (23)

(State estimate propagation)

P−(t) = F (t|t− 1)P (t− 1)FT (t|t− 1) +Q(t− 1) (24)

(Error covariance propagation)

G(t) =P−HT (t)[H(t)P−(T )HT (t) +R(t)]−1
(25)

(Kalman gain matrix)

x̂(t) = x̂−(t) +G(t)(y(t)−H(t)x̂−(t)) (26)

(State estimate update)

P (t) = (I −G(t)H(t))P−(t) (27)

(Error covariance update)

Where t is the discrete time, x(t) is the state vector, which is
unknown and here it is the parameters vector, x̂(t) is the estimate

of the state vector, x̂−(t) denotes priori estimate of the state vector,
F (t+ 1|t) is the transition matrix, which takes the state vector from
time t to time t+ 1 and is assumed to be an identity matrix, w(t)
is the process noise, y(t) is the output, H(t) is the measurement
matrix, v(t) is the measurement noise, P (t) is the error covari-
ance matrix, Q(t) is the process noise covariance matrix, G(t) is
the Kalman gain, R(t) is the measurement noise covariance matrix,
and I is the identity matrix. Table 4 specifies the state vector and the
measurement matrix for each of the battery and PEMFC models in
this work.

3.1 Results analysis

The obtained results from the online identification process are dis-
cussed in this section. The estimated characteristics of the battery
model using KF are presented in Fig.7. To avoid the repetition of
the results presentation, only the estimated characteristics for charg-
ing the battery are illustrated. From Fig. 7a, it is obvious that the
estimated equivalent resistor (Rs +Rc) is in the same range as the
reference points calculated by the following equation introduced in
[50] .

Rbat(SOC) =
OCV (SOC)− Vbat(SOC)

Ibat(SOC)
(28)

Although this method for determining the reference equivalent resis-
tance is sensitive to the sensors’ noise, it is adequate to provide an
estimated range for the battery’s resistance to validate the proposed
online parameter identification technique. Fig. 7b shows the evolu-
tion of the capacitor element (Cc). The comparison of the estimated
OCV and its reference value is shown in Fig. 7c. Fig. 7d repre-
sents the estimation of the battery terminal voltage, which confirms
the accuracy of the performed identification. Regarding the PEMFC
stack, Fig. 8a shows the applied current to the PEMFC system. From
Fig. 8b, it can be seen that the output voltage estimation of the stack
has been done successfully by a very good accuracy. To show the
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Table 4 KF customization for the identification problem

Operators Symbols PEMFC Battery

State vector x(t) V0, b, Rinternal, α RcCc,−RsRcCc, Rs + Rc, OCV

Measurement vector H(t) 1,−logj, Jσln(1 − βl) V̇bat, İbat, Ibat, 1
Transition matrix F (t + 1|t) Identity matrix Identity matrix
Measured output y(t) Measured VFC from the PEMFC Measured Vbat from the battery

main use of this PEMFC online estimation in EMS design, Fig. 8c
presents the estimated power curve of the stack at 200 s. The maxi-
mum power point can be easily extracted from this curve and utilized
to update the constraints of the EMS. In fact, such characteristics
can be extracted from the power sources online, while the vehicle is
under operation, to adapt the performance of the EMS to the present
SOH of the power sources.
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4 Energy management strategy

Battery and PEMFC system are used to supply the requested power
(Preq) from the electric motor side. Consequently, the hydrogen
economy of an FCHEV depends to a great extent on the distribution
of the power between the PEMFC and the battery. In this manuscript,
the aim of the EMS is to determine an online optimal power split tra-
jectory which maximizes the PEMFC efficiency while respecting the
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c The estimated power curve at 200 s

limitations of the system.

Preq = ηDC−DC Pfc + PBat (29)

Where PBat is the battery power and ηDC−DC is the DC −
DC converter efficiency. Fig. 9 shows the employed online EMS
in this manuscript. According to this figure, the parameters of the
PEMFC and battery models are estimated online by KF. Afterwards,
the required characteristics are extracted from the updated models
of the power sources and sent to the power split strategy where a
QP algorithm determines the portion of the power which should be
supplied by the PEMFC and the remainder is asked from the battery.
The relation of PEMFC system efficiency versus its power can be
modeled by a quadratic function as:

J = max(
N
∑

k=1

α2(k)P
2
fc + α1(k)Pfc(k) + α0(k)) (30)

n =
t

∆t
, n ∈ N (31)

where t is the driving cycle duration which is discretized to n time
points concerning the time interval (∆t). The defined cost function
in (30) can be solved by classical QP method as it is convex in the
bounded power range shown in Fig. 6b. However, the following lim-
itations are taken into account to keep the operation of the power

6



Fig. 9: The architecture of the proposed online EMS

sources within a safe zone.

SOCmin 6 SOCk 6 SOCmax (32)

PFC,min 6 Pfc,k 6 Pfc,max (33)

∆PRise,k − Slewrate,rise 6 0 (34)

∆PFall,k − Slewrate,fall 6 0 (35)

Where SOCmin is 50%, SOCmax is 90%, Pfc,min is the maxi-
mum efficiency point of the PEMFC extracted from the online identi-
fication, Pfc,max is the maximum power point of the PEMFC deter-
mined by the online model, ∆PRise,k is the positive PEMFC power
change, Slewrate,rise is the rising dynamic limitation, ∆PFall,k is
the negative PEMFC power change, and Slewrate,fall is the falling

dynamic limitation. A dynamic limitation of 50 Ws−1, which means
a maximum of 10% of the maximum power per second for rising,
and also 30% of the maximum power per second for falling, as sug-
gested in [51], are considered for the operation of the PEMFC stack.
It should be noted that that as the optimization variable in (30) is
PFC , the battery SOC should be reformulated based on PFC . The
SOC calculation in (36) can be represented as:

SȮC(k) = f(SOC(K), Pbat(k)) (36)

where the battery power can be replaced by the difference between
requested power and the PEMFC system power as:

SȮC(k) = f(SOC(K), Preq(k)− ηDC−DCPfc(k)) (37)

(38) 

It is worth reminding that the proposed EMS is fed with the 
updated characteristics of the PEMFC and battery by the help of
the developed online models. In this regard, if the battery SOC or
PEMFC output power change owing to the variation of temperature
and ageing, the online models provide the EMS with the updated 

since Preq(k) is obtained by imposing acceleration to the system,
(37) can be rewritten in terms of PEMFC power, which is the
optimization variable, by using a new function (F).

SȮC(k) = F (SOC(K), Pfc(k))

characteristics to avoid the mismanagement of the power sources. 

5 Results and discussion

In order to investigate the impact of the battery and FC degrada-
tion on the performance of the EMS, three different scenarios under
two standard driving cycles, namely Urban Dynamo meter Driving
Schedule (UDDS) and Worldwide harmonized Light vehicles Test
Procedures (WLTC) (class 2), are considered in this study. In the
first scenario, which is called QPnew in this section, the battery and
FC are both in their beginning of life (BOL) and the QP based EMS
is set up for the online identification performed based on the new
characteristics of the power sources. In the second scenario, called
QPdegraded, the battery and FC are degraded and the EMS updates
its policy respecting the degraded models via identification of the
parameters of the degraded models. The comparison of the first and
second scenarios illustrates the effect of the power sources’ degra-
dation on the hydrogen economy of the studied FCHEV when the
proposed EMS is aware of these drifts. In the third scenario, called
false input feedback (QPFIF ), although both battery and FC are
degraded, the EMS is not aware of these performance drifts and
still operates using the tuned model parameters based on the BOL’s
characteristics. The philosophy behind studying this scenario is to
highlight how heath-unawareness of an EMS can impact the fuel
consumption of the investigated FCHEV. In other words, to what
extent a false input feedback owing to an inaccurate model identifi-
cation can affect the EMS performance. The key parameters in the
EMS are SOC, maximum efficiency, and maximum power of the
PEMFC that are strongly dependent on the identified parameters of
the power sources’ models. Fig. 10 shows the two driving cycles uti-
lized in this study and their corresponded requested power profiles
(Preq) extracted from the FCHEV model. WLTC driving cycle has
a higher average speed (9.92 m/s) compared to UDDS (8.46 m/s).
However, UDDS contains a lot of start-and-stop cycles. Fig. 11 rep-
resents the variation of the battery SOC for each of the driving cycles
employed to test the performance of the FCHEV in different sce-
narios. From this figure, it is clear that the first explained scenario
(QPnew), has achieved the highest final SOC followed by QPFIF
and QPdegraded scenarios in both of WLTC and UDDS driving
cycles. From 0 to almost 500 s, the strategy recharges the battery
from 0.7 to a minimum of 0.8. From 500 s to the end of the test,
the SOC fluctuates between a high of 0.8 to a low of 0.9 in different
cases.

Fig. 12 presents the distribution of the drawn power and current
from the PEMFC stack in different considered case studies of this
work. According to this figure, the developed EMS is able to oper-
ate the PEMFC at its highest efficiency point at most of the time
during each specific test, and it is in agreement with the defined
cost function for the QP strategy which is supposed to maximize
the PEMFC efficiency. Looking more carefully at Fig. 12, it is seen
that the PEMFC performs in high efficiency region (from 2200 W
to almost 2650 W) for over 800 s during UDDS test while this
duration decreases to less than 700 s for WLTC. This is due to
the different dynamic characteristics of the mentioned driving pro-
files. As expected, the maximum efficient power region of the new
PEMFC (QPnew scenario) is higher than the degraded PEMFC 
(QPdegraded scenario). However, regarding the QPF IF scenario 
which utilizes the degraded PEMFC, this region is located between 
the QPnew and QPdegraded scenarios. This is due to the fact that 
the EMS receives a false input feedback in QPF IF scenario and
accordingly attempts to reach the same power level as the new 
PEMFC. As a result, it reaches a higher power level than the aged
PEMFC, which is not the best efficiency region for this FC and can-
not reach the same level as the new PEMFC since it is aged and has
more losses than the new one. To better grasp the performance of the
proposed EMS, the current allocation between the PEMFC and bat-
tery for the case of QPnew is presented in Fig. 13. From this figure, 
it can be seen that the battery pack absorbs most of the sudden peaks 
in the requested current. 

To completely comprehend the difference between the perfor-
mance of the studied scenarios, it is vital to compare the archived
hydrogen consumption of each particular case. Fig. 14 demonstrates
the comparison of the hydrogen consumption for all the considered
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cases in this manuscript. As the proposed EMS is real-time and the
final battery SOCs, shown in Fig. 11, cannot be the same, the battery
in both of QPFIF and QPdegraded scenarios have been recharged
at the end of each test to reach the same final SOC level as the
QPnew scenario. To recharge the battery at the end of each cycle, the
PEMFC is set at its highest efficiency point to perform this recharg-
ing step with the minimum hydrogen consumption. Comparison of
QPnew and QPdegraded scenarios reveals that as the PEMFC has
got aged, the hydrogen consumption has increased by almost 3% for

WLTC and 3.2% for UDDS. Moreover, the comparison of QPnew

and QPFIF scenarios illustrates that when the EMS is not aware of
the health state of the power sources, the hydrogen consumption can
increase by almost 14% and 17% in WLTC and UDDS respectively.

Fig. 12: The distribution of the requested power and its correspond-
ing current from the PEMFC in different scenarios
a PEMFC power distribution for WLTC class2

b PEMFC current distribution for WLTC class2

c PEMFC power distribution for UDDS

d PEMFC current distribution for UDDS
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Fig. 13: The allocation of the requested current between the FC and
the battery for the QPnew scenario. 
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Fig. 14: Hydrogen consumption comparison of different case stud-
ies

6 Conclusion 

This paper explores the performance variation influence of the 
PEMFC and battery pack owing to ageing over the hydrogen econ-
omy of a FCHEV. In this respect, an online parameters estimation
procedure based on KF is developed first to track the performance
of both power sources in real-time. The battery online estimation is
validated using the experimental data of a developed setup, and the
PEMFC characteristics are gathered from the manufacturer’s man-
ual (Ballard FCvelocity⃝R -9SSL). In the second step, an online EMS
based on QP is developed with the aim of maximizing the PEMFC
efficiency while supplying the requested power of the vehicle. The
operation of the EMS is evaluated through three scenarios, namely
QPnew , QPdegraded, and QPF IF . In the first scenario, an EMS 
based on QP is developed for the case that both of the power sources 
are new, and in the second scenario, a QP is formulated for the
degraded power sources. The main point here is that the EMS is
aware of the health states of the power sources in these two cases
and adapts its policy to the current state of the sources by utiliz-
ing the developed online parameter identification. However, in the
third scenario, the QP is designed for a false input feedback case
study where the power sources are degraded while the maximum
efficiency curve of the PEMFC as well as the other factors, such as
battery SOC calculation and PEMFC maximum power point, are not
updated considering the health state of the sources. In fact, the QP is
unaware of the power sources’ SOH and acts as a health-unconscious
strategy in this scenario. The obtained results from the performed
analyses reveal that when the power sources become degraded, the
hydrogen economy decreases up to 3.2% for the studied vehicle.
Furthermore, the performance comparison of QPnew and QPF IF 
highlight that not updating the characteristics of the power sources 
can lead to a noticeable hydrogen consumption increase (up to 17%).
This manuscript has provided a proof of concept for the integration
of both battery and PEMFC online characteristics estimation in the
design of an EMS for a FCHEV. Looking forward, the use of more
complex cost functions considering more aspects, such as degrada-
tion of the power sources, could be investigated in further studies
since they have an important influence on the hydrogen consumption
and lifetime of the system. Moreover, the effect of temperature vari-
ation on the performance of the EMS and degradation of the power
sources can be considered in future endeavours. 
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