TWO THEOREMS ON PERFECT CODES

H.W. LENSTRA, Jr.
Mathematical Institute, University of Amsterdam, Amsterdam, The Netherlands

Recerved 17 March 1972

Abstract

Two theorems are proved on perfect codes. The first one states that Lloyd's theorem is true without the assumption that the number of symbols in the alphabet is a prime power The second theorem asserts the impossibility of perfect group codes over non-prime-poweralphabets.

§0. Introduction

Let V be a finite set, $|V|=q \geq 2$, and let $1 \leq e \leq n$ be rational integers. We put $N=\{1,2, \ldots, n\}$. For $v=\left(v_{l}\right)_{l=1}^{n} \in V^{n}, v^{\prime}=\left(v_{l}^{\prime}\right)_{l=1}^{n} \in V^{n}$ we define $d\left(v, v^{\prime}\right)=\mid\left\{i \in N\left\{v_{i} \neq v_{l}^{\prime}\right\} \mid\right.$. A perfect e-error-correcting code of block length n over V is a subset $C \subset V^{n}$ such that for every $v \in V^{n}$ there exists exactly one $c \in C$ satisfying $d(v, c) \leq e$.

If q is a prime power, a necessary condition for the existence of such a code is given by Lloyd's theorem [6]. This theorem has recently been used to determine all n, e for which a perfect code over an alphabet V of q symbols, q a prime power, exists $[5 ; 6]$.

In § 1 I show that Lloyd's theorem holds for all q. The proof, which is modelled after [6,5.4], makes use of some elementary notions from commutative algebra. A different proof has been obtained by P. Delsarte [2]. It seems hard to use Lloyd's theorem to prove non-existence theorems for perfect codes over non-prime-power-alphabets.

In § 2 I prove the following theorem: if $G_{\imath}(1 \leq i \leq n)$ is a group with underlying set V, and $C \subset \Pi_{l=1}^{n} G_{i}$ is a subgroup which as a subset of V^{n} is a perfect e-error-correcting code, $e<n$, then q is a prime power and each G_{l} is abelian of type (p, p, \ldots, p). A special case of this theorem was proved in [4].

§1. Lloyd's theorem

Theorem 1. If a perfect e-error-correcting code of block length n over V exists then the polynomial

$$
P(X)=\Sigma_{l=0}^{e}(-1)^{t}\binom{n-X}{e-i}\binom{X-1}{i}(q-1)^{e-t}
$$

where

$$
\binom{a}{i}=\Pi_{j=1}^{l} \frac{a-j+1}{j},
$$

has e distinct integral zeros among $1,2, \ldots, n$.
Proof. Let K be a field of characteristic zero, and let M be a K-vector space of dimension q^{n} with the elements of V^{n} as basis vectors:

$$
M=\left\{\Sigma_{v \in V^{n}} k_{v} \cdot v \mid k_{v} \in K \text { for } v \in V^{n}\right\}
$$

If $D \subset V^{n}$ is a subset, we denote $\Sigma_{v \in D} v \in M$ by ΣD. Define the K-endomorphisms $\phi_{l}(1 \leq i \leq n)$ of M by

$$
\phi_{l}(v)=\Sigma\left\{v^{\prime}=\left(v_{j}^{\prime}\right)_{l=1}^{n} \in V^{n} \mid v_{j}^{\prime}=v_{j} \text { for all } j \neq i\right\},
$$

$v=(v)_{j=1}^{n} \in V^{n}$. One easily checks:

$$
\begin{array}{ll}
\phi_{l} \phi_{J}=\phi_{l} \phi_{l} & (1 \leq i \leq j \leq n), \\
\phi_{l}^{2}=q \cdot \phi_{l} & (1 \leq i \leq n) . \tag{2}
\end{array}
$$

Let $K\left[X_{1}, \ldots, X_{n}\right]$ be the commutative polynomial ring in n symbols over K. The ideal generated by $\left\{X_{t}^{2}-q X_{1} \mid 1 \leq i \leq n\right\}$ is denoted by B, and R is the factor ring $K\left[X_{1}, \ldots, X_{n}\right] / B$. By (1) there exists a K-linear ring homomorphism $K\left[X_{1}, \ldots, X_{n}\right] \rightarrow \operatorname{End}_{K}(M)$ (the ring of K-endomorphisms of M) mapping 1 to the identity and X_{t} to $\phi_{l}(1 \leq i \leq n)$. The kernel of this ring homomorphism contains B, by (2), so we obtain a ring homomorphism $f: R \rightarrow \operatorname{End}_{K}(M)$, mapping $x_{t}=\left(X_{t} \bmod B\right) \in R$
to ϕ_{l} Therefore we can make M into an R-module by defining $r \cdot m=$ $f(r)(m)(r \in R, m \in M)[1$, II 11,3 , III 1]

Put $y_{I}=\Pi_{l \in I}\left(x_{1}-1\right) \in R$ for $I \subset N$ Then

$$
y_{I} \cdot v=\Sigma\left\{v^{\prime} \in V^{n} \mid \text { if } \jmath \in N, \text { then } v_{J}=v_{J}^{\prime} \Leftrightarrow \jmath \notin I\right\},
$$

$I \subset N, v \in V^{n}$ Theiefore, $\left\{y_{I} \cdot v \mid I \subset N\right\} \subset M$ is linearly independent over K, for $v \in V^{n}$ Then certanly $\left\{v_{l} \mid I \subset N\right\} \subset R$ is linearly independent over K Moreover, it is easily shown that $\left\{y_{I} \mid I \subset N\right\}$ generates R as a K-vector space This proves $\left\{y_{I} \mid l \subset N\right\}$ is a K-basis for R, and $\operatorname{dim}_{K}(R)=2^{n}$ (by dim din_{K} we mean dimension over K)

The permutation group S_{n} on n symbols acts as a group of K-lineal ring automorphisms on R by permuting $\left\{x_{i} \mid l \in N\right\}$ The set of invariants

$$
A=\left\{r \in R \mid \sigma(r)=r \text { for all } \sigma \in S_{n}\right\}
$$

is a subring of R Put

$$
z_{J}=\Sigma_{I \subset N|I|=,} y_{I} \text { for } 0 \leq J \leq n
$$

Then it is easy to see that $\left\{z_{j} \mid 0 \leq j \leq n\right\}$ is a K-basis for A, and

$$
\begin{equation*}
z_{j} \cdot v=\Sigma\left\{v^{\prime} \in V^{n} \mid d\left(v, v^{\prime}\right)=j\right\}, 0 \leq \jmath \leq n, v \in V^{n} \tag{3}
\end{equation*}
$$

Since A is a subring of R, M is also an A-module
Choose $u \in V^{n}$ arbitrary but fixed, and define $w(v)=d(v, u)$ for $v \in V^{n}$ Let $S_{V^{n}}$ be the full permutation group of V^{n}, and let G be the subgroup $G=\left\{\sigma \in S_{I} \mid \sigma(u)=u\right.$, and $d\left(v, v^{\prime}\right)=d\left(\sigma(v), o\left(v^{\prime}\right)\right)$ for all v, $\left.v^{\prime} \in V^{n}\right\}$ By permuting the basis vectors, G acts K-linearly on M This action is even A-linear, since for $\sigma \in G, 0 \leq 1 \leq n, v \in V^{n}$ we have

$$
\begin{aligned}
\sigma\left(z_{j} \cdot v\right) & =\sigma\left(\Sigma\left\{v^{\prime} \mid d\left(v, v^{\prime}\right)=\jmath\right\}\right)=\Sigma\left\{\sigma\left(v^{\prime}\right) \mid d\left(v, v^{\prime}\right)=\jmath\right\} \\
& =\Sigma\left\{v^{\prime} \mid d\left(v, \sigma^{-1}\left(v^{\prime}\right)\right)=\jmath\right\}=\Sigma\left\{v^{\prime} \mid d\left(\sigma(v), v^{\prime}\right)=\jmath\right\} \\
& =z_{\jmath} \cdot \sigma(v)
\end{aligned}
$$

Therefore, $M^{G}=\{m \in M \mid \sigma(m)=m$ for all $\sigma \in G\}$ is an A-submodule of M, and the map $T: M \rightarrow M^{G}$, defined by

$$
T(m)=\Sigma_{\sigma \in G} \sigma(m)
$$

is an A-homomorphism. We wish to determine the structure of M^{G} as an A-module.

It is not hard to see that the orbits of the G-action on V^{n} are $\left\{\left\{v \in V^{n} \mid w(v)=j\right\} \mid 0 \leq j \leq n\right\}$. Put

$$
m_{j}=\Sigma\left\{v \in V^{n} \mid w(v)=j\right\} \in M, 0 \leq j \leq n
$$

then it follows that $\left\{m_{l} \mid 0 \leq j \leq n\right\}$ is a K-basis for M^{G}. Define the A homomorphism

$$
A \xrightarrow{\psi} M^{G} \text { by } \psi(a)=a \cdot u
$$

(we consider A as an A-module by left multiplication, [1;3]). Then

$$
\psi\left(z_{j}\right)=z_{j} \cdot u=\Sigma\left\{v \in V^{n} \mid d(v, u)=j\right\}=m_{j} .
$$

So ψ maps a K-basis for A one to one onto a K-basis for M^{G}. This implies that ψ is bijective. We have shown:

$$
\begin{equation*}
A \cong M^{G} \text { as } A \text {-modules } \tag{4}
\end{equation*}
$$

Now suppose that a perfect e-error-correcting code $C \subset V^{n}$ exists. Then one easily constructs $e+1$ perfect e-error-correcting codes $C_{0}, \ldots, C_{e} \subset V^{n}$ such that $i \in w\left[C_{l}\right](0 \leq i \leq e)$. We first prove:

$$
\begin{equation*}
\left\{T\left(\Sigma C_{\imath}\right) \mid 0 \leq i \leq e\right\} \subset M^{G} \text { is linearly independent over } K \tag{5}
\end{equation*}
$$

Proof of (5). Let $T\left(\Sigma C_{\imath}\right)=\Sigma_{j=0}^{n} k_{t j} m_{j}\left(k_{l j} \in K\right)$; since C_{i} is e-error-correcting, we have $w\left[C_{l}\right] \cap\{0,1, \ldots, e\}=\{i\}$; therefore, if $0 \leq i \leq e, 0 \leq i \leq e$, the coefficient $k_{i j}$ is nonzero if and only if $i=j$, and (5) follows.

Put

$$
s=\sum_{j=0}^{e} \quad z_{j} \in A
$$

By (3), the perfectness of C_{l} implies

$$
s \cdot \Sigma C_{1}=\Sigma V^{n}, \quad 0 \leq i \leq e
$$

Applying the A-linear map T we find

$$
s \cdot T\left(\Sigma C_{\imath}\right)=T\left(\Sigma V^{n}\right), \quad 0 \leq i \leq e
$$

Using (5) we conclude $\operatorname{dim}_{K}\left\{m \in M^{G} \mid s \cdot m=0\right\} \geq e$, and by (4) this is the same as

$$
\begin{equation*}
\operatorname{dim}_{K}\{a \in A \mid s \cdot a=0\} \geq e \tag{6}
\end{equation*}
$$

Therefore it seems useful to study the structure of A.
For $I \subset N$ we define the ring homomorphism $\chi_{I}: R \rightarrow K$ by

$$
\begin{aligned}
& \chi_{I}(k)=k, \quad k \in K \\
& \chi_{I}\left(x_{\imath}\right)=0 \text { if } i \in I \\
& \chi_{I}\left(x_{\imath}\right)=q \text { if } i \notin I
\end{aligned}
$$

The maximal ideals $\operatorname{ker}\left(\chi_{I}\right)$ of R are mutually different, so $\operatorname{ker}\left(\chi_{I}\right)+$ $\operatorname{ker}\left(\chi_{J}\right)=R$ for $I \neq J$. By the Chinese remainder theorem $[3, I I .2 ; 1$, I.8.11] it follows that the K-linear ring homomorphism

$$
\chi=\Pi_{I \subset N} \chi_{I}: R \rightarrow \Pi_{I \subset N} K
$$

is surjective (in $\Pi_{I \subset N} K$ addition and multiplication are defined componentwise); comparison of K-dimension shows that χ is injective, so χ is a ring isomorphism. For $\sigma \in S_{n}, I \subset N, r \in R$ we have $\chi_{\sigma[I]}(\sigma(r))=\chi_{I}(r)$. This implies: if $I, J \subset N$ satisfy $|I|=|J|$ then χ_{I} and γ_{J} have the same restriction to A. Therefore

$$
\chi[A] \subset\left\{\left(k_{I}\right)_{I \subset N} \in \Pi_{I \subset N} K \mid k_{J}=k_{J^{\prime}} \text { if }|J|=\left|J^{\prime}\right|\right\},
$$

and counting dimension over K shows that this inclusion is in fact an equality. Putting

$$
I_{x}=\{1,2, \ldots, x\}, \quad \chi_{x}=\chi_{I_{x}} \mid A(0 \leq x \leq n)
$$

we conclude that

$$
\chi^{\prime}=\Pi_{x=0}^{n} \chi_{x}: A \rightarrow \Pi_{x=0}^{n} K
$$

is a K-linear ring isomorphism.
For $k=\left(k_{x}\right)_{x=0}^{n} \in \Pi_{x=0}^{n} K$ we have obviously

$$
\operatorname{dum}_{K}\left\{k^{\prime} \in \Pi_{x=0}^{n} K \mid k \cdot k^{\prime}=0\right\}=\left|\left\{x \mid 0 \leq x \leq n, k_{x}=0\right\}\right| .
$$

Putting $k=\chi^{\prime}(s)$ and using (6) we find:

$$
\begin{equation*}
\left|\left\{x \mid 0 \leq x \leq n, \chi_{x}(s)=0\right\}\right| \geq e \tag{7}
\end{equation*}
$$

From the definitions we compute

$$
\begin{aligned}
\chi_{x}\left(z_{j}\right) & =\Sigma_{I \subset N,|I|=j} \chi_{I_{x}}\left(y_{I}\right) \\
& =\Sigma_{I \subset N,|I|=j}(-1)^{\left|I \cap I_{x}\right|} \cdot(q-1)^{\left|I-I_{x}\right|} \\
& =\Sigma_{i=0}^{\prime}\binom{x}{i}\binom{n-x}{j-i}(-1)^{l}(q-1)^{y-1},
\end{aligned}
$$

$$
\begin{align*}
\chi_{x}(s) & =\Sigma_{j=0}^{e} \chi_{x}\left(z_{j}\right) \tag{8}\\
& =\Sigma_{i=0}^{e}(-1)^{l}\binom{n-x}{e-i}\binom{x-1}{i}(q-1)^{e-i} \\
& =P(x) .
\end{align*}
$$

Since $P(0)=\Sigma_{i=0}^{e}\binom{n}{e-i}(q-1)^{e-l} \neq 0$, Lloyd's theorem now follows from (7) and (8).

§2. Perfect group codes

Theorem 2 Let $G_{t}, 1 \leq_{t} \leq_{n}$, be a group with underlying set V Suppose there exists a subgroup $C \subset \Pi_{t=1}^{n} G_{t}$ such that the underlying set of C ts a perfect e-error-correcting code of block length n over V, wath $e<n$ Then q is a power of a prime p and each G_{l} is abeltan of type (p, p, \quad, p)

Proof Without loss of generality we may assume that the groups G_{t} have the same unit element $1 \in V\left(1<_{l \leq n}\right)$ Put $u=(1)_{l=1}^{n}$, and let $w(g)=d(g, u)$ for $g \in \prod_{i=1}^{n} G_{i}$, as in § 1

Let $C \subset \prod_{l=1}^{n} G_{l}$ be as in the statement of Theorem 2 Then $u \in C$ since u is the unat element of $\prod_{l=1}^{n} G_{i}$ If

$$
g=\left(g_{l}\right)_{l^{-1}}^{n} \in \prod_{l=1}^{n} G_{l}
$$

satisfies $w(g)=\rho+1$, then the umque element $c=\left(c_{l}\right)_{l=1}^{n} \in C$ for which $d(g, c) \leq e$ cannot equal u, and therefore $w(c) \geq 2 e+1$ This is only compatible with $w(g)=e+1$ and $d(g, c) \leq e$ if $w(c)=2 e+1$ and $c_{2}=g_{1}$ for all l such that $g_{l} \neq 1$ We shall use this remark two times below

Choose $\alpha_{2} \in G_{2}$ such that the order of α_{2} in G_{2} is a prime number p, and choose $\alpha_{l} \in G_{l}, \alpha_{l} \neq 1$, for $3 \leq_{l} \leq e+1$ It is sufficient to prove
(1) every $\alpha \in G_{1}, \alpha \neq 1$, has order p in G_{1},
(11) $\alpha \beta=\beta \alpha$ for all $\alpha, \beta \in G_{1}$
(1) Let $\alpha \in G_{1}, \alpha \neq 1$ Put

$$
g=\left(\alpha, \alpha_{2}, \quad, \alpha_{e+1}, 1, \quad, 1\right) \in \prod_{l=1}^{n} G_{l}
$$

Then $w(g)=e+1 \mathrm{By}$ the above remark, some $c \in C$ has the following shape

$$
c=\left(\alpha, \alpha_{2}, \quad, \alpha_{\epsilon+1},(\text { exacdy } e \text { of the remaining components } \neq 1)\right)
$$

Since C is a subgroup, $c^{p} \in C$, and

$$
c^{p}=\left(\alpha^{p}, 1,(\text { at most } 2 e \quad 1 \text { of the remanning components } \neq 1)\right)
$$

Therefore $w\left(c^{p}\right) \leq 2 e$ which mphes $c^{p}=u$ and $\alpha^{p}=1$
(11) Let $\alpha, \beta \not G_{1}, \alpha \neq 1 \neq \beta$ Put

$$
\begin{aligned}
& g=\left(\alpha, \alpha_{2}, \ldots, \alpha_{e+1}, 1, \ldots, 1\right) \\
& g^{\prime}=\left(\beta, \alpha_{2}, \ldots, \alpha_{e+1}, 1, ., 1\right)
\end{aligned}
$$

The above remark yields $c, c^{\prime} \in C$ which look like.

$$
\begin{aligned}
& c=\left(\alpha, \alpha_{2}, \ldots, \alpha_{e+1},(\text { exactly } e \text { of the remaining components } \neq 1)\right) \\
& c^{\prime}=\left(\beta, \alpha_{2}, \ldots, \alpha_{e+1},(\text { exactly } e \text { of the remaining components } \neq 1)\right)
\end{aligned}
$$

Then $d\left(c c^{\prime}, c^{\prime} c\right) \leq e+1$, and since $c c^{\prime}, c^{\prime} c \in C$ it follows that $c c^{\prime}=c^{\prime} c$ and $\alpha \beta=\beta \alpha$. This completes the proof of Theorem 2 .

References

[1] N. Bourbaki, Algebre I (Hermann, Parıs, 1970)
[2] P. Delsarte, Linear programming associated with coding theory, MBLL Res. I ab. Rept. R 182 (Brussels, 1971).
[3] S. Lang, Algebrd (Addıson-Wesley, Reading, Mass, 1965)
[4] B. Lindstrom, On group and nongroup perfect codes in q symbols, Math. Scand 25 (1969) 149-158.
[5] A. Tietavainen, On the non-existence of perfect codes over finite fields, SIAM J Appl Math., to appear.
[6] J.H, van Lint, Coding theory, Lectures Notes in Math 201 (Springer, Berlın, 1971)

