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Abstract. Two theorems are proved on perfect codes. The first one states that Lloyd’s theorem
1s true without the assumption that the number of symbols in the alphabet 1s a prime power
The second theorem asserts the impossibility of perfect group codes over non-prime-power-
alphabets.

30. Introduction

Let V be a finite set, IVI=¢g 2 2, and let | < e < n be rational inte-
gers. We put N = {1, 2, .., n}. Forv= ()L, € V", v = (v, € V" we
define d(v, v') = I{i € Nlv, # v }|. A perfect e-error-correcting code of
block length n over V is a subset C C V" such that for every v € V"
there exists exactly one ¢ € C satisfying d(v, ¢) < e.

If ¢ is a prime power, a necessary condition for the existence of such
a code is given by Lloyd’s theorem [6]. This theorem has recently been
used to determine all #, e for which a perfect code over an alphabet V
of ¢ symbols, g a prime power, exists [5; 6] .

In §1 I show that Lloyd’s theorem holds for all g. The proof, which
is modelled after [6, 5.4], makes use of some elementary notions from
commutative algebra. A different proof has been obtained by P. Del-
sarte [2]. It seems hard to use Lloyd’s theorem to prove non-existence
theorems for perfect codes over non-prime-power-alphabets.

In §2 1 prove the following theorem: if G, (1 < i< n) is a group with
underlying set ¥, and C C II'L; G, is a subgroup which as a subset of V"
is a perfect e-error-correcting code, e < n, then ¢ is a prime power and
each G, is abelian of type (p, p, ..., ). A special case of this theorem
was proved in [4].
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§1. Lloyd’s theorem

Theorem 1. If a perfect e-error-correcting code of block length n over
V exists then the polynomial

P = 201 (077 (XT’) (g1,

e—Ii i

where

a\ _ ., a-jtl
l. - ]:1 __,]v" 3

has e distinct integral zeros among 1, 2, ..., n.

Proof. Let X be a field of characteristic zero, and let M be a K-vector
space of dimension ¢” with the elements of V" as basis vectors:

M={z _ .k, vl k,€K for ve V"}.

If D C V" is a subset, we denote - ,v € M by ZD. Define the K-endo-
morphisms ¢, (1 < i< n) of M by

$,(0) =Z{v' = (v))L; € V"I v =y forall j+# i},

v= ()L, € V". One easily checks:
177

(1 0.0, =06, 1<i<j<n),
(2) l=g-9, (1<i<n).
Let K[X;, ..., X, ] be the commutative polynomial ring in n symbols

over K. The ideal generated by {X? — gX,11 < i< n}isdenoted by B,
and R is the factor ring K[ X, ..., X,, | /B. By (1) there exists a K-linear
ring homomorphism K[X,, ..., X, 1 - Endg (M) (the ring of K-endo-
morphisms of M) mapping 1 to the identity and X, to ¢, (1 < ;< n).
The kernel of this ring homomorphism contains B, by (2), so we obtain
a ring homomorphism f:R - Endg (M), mapping x, = (X, mod B) € R
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to ¢, Therefore we can make M into an R-module by defining r-m =
fm)yreR,meM [1,1111,3,1111)
Puty, =1l,c;(x, — 1) €R for/ C N Then

yrrv=2{v e V*lifje N, then v, =y, =) 1},

IC N,ve V" Thewefore, {y;- vl C N} C M 1s linearly independent
over K, forv &€ V" Then certamly{yll I C N} C R s hinearly mdepen-
dent over K Moreover, 1t 1s easily shown that {y,1/ C N} generates R as
a K-vector space This proves {y;1/C N} s a K-basis for R, and
dimg (R) = 2" (by dimg we mean dimension over K)

The permutation group S, on »n symbols acts as a group of K-lineat
ring automorphisms on R by permuting {x,l7 € N} The set of mvariants

A={reRliao(r)=r forall 6€S,}
1s a subring of R Put

z,= Zrey =y Yifor 057<n
Then 1t 1s easy to see that {z,10 < < n} 1s a K-basis for 4, and
3) z/-u=E{U'GV”'d(u,u')=]},OS]Sn,UEV”

Since A 1s a subning of R, M 1s also an A-module

Choose u € V" arbitrary but fixed, and define w(v) = d(v, u) for
ve V" Let SV,, be the full permutation group of V", and let G be the
subgroup G = {0 & SL ol o) = u, and d(v, v') = d(ow), o(v")) for all v,
v' € V"} By permuting the basis vectors, G acts K-linearly on M This
action 1s even A-linear, since foro € G,0<7< n,ve V" we have

o(z, v)=o(Z{v'l d(v,v") =1} = Z{o(W) d(v, V") =7}
= s{v'l dw, o~ ")) =1} = Z{' 1 d(o(),v) =1}

=2z, a(v)




128 HW Lenstra, Jr, Two theorems on perfect codes

Therefore, MG ={m € M| o(m) = m for all 6 € G} is an A-submodule of
M, and the map T: M -~ MC , defined by

T(m) =2 ¢ o(m),
is an A-homomorphism. We wish to determine the structure of MC as
an A-module.
It is not hard to see that the orbits of the G-action on V" are
{{fve V" Iw@) =i} 0<j< n}. Put
m, =Z{ve Viiw)=j1eM, 0<j<n,

then it follows that {m,10 <j < n} is a K-basis for MC . Define the 4-
homomorphism

A% MC by Ya)=a-u
(we consider 4 as an A-module by left multiplication, [1; 31). Then
V() =z u=2Z{ve V”ld(v,u)=]'}=m] )

So y maps a K-basis for A one to one onto a K-basis for M® . This im-
plies that  is bijective. We have shown:

(4) A =M% as A-modules .

Now suppose that a perfect e-error-correcting code C C V" exists.
Then one easily constructs e+ 1 perfect e-error-correcting codes
Cgys -y Co © V" such that i € w[C,] (0 < i< e). We first prove:

(5) {T(ECZ)I 0<i<e} c M® islinearly independent over K.
Proof of (5). Let T(ZC)) = 27k, m, (k,, € K); since C, is e-error-correc-

ting, we have w[C,1 N {0, 1, ..., e} = {i}; therefore, if 0< i< ¢, 0< /< e,
the coefficient k,; is nonzero if and only if / = j, and (5) follows.
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Put

= ve
s E;=0 ZJEA.

By (3), the perfectness of C, implies
§:2C,=2V", 0<i<e.

Applying the A-linear map T we find
s*T(ZCH=T(ZV"), 0<i<e.

Using (5) we conclude dimg {m € M®|s-m =0} > e, and by (4) this is
the same as

(6) dimg{ac Als-a=0}2e.

Therefore it seems useful to study the structure of 4.
For I C N we define the ring homomorphism x;: R - K by

x/(ky=k, kek,
xx,)y=0if iel,
X(x)=q if ig¢l.
The maximal ideals ker(x;) of R are mutaally different, so ker(x;) +

ker(x ;) =R for [+ J. By the Chinese remainder theorem [3, 11.2; 1,
[.8.11] it follows that the K-linear ring homomorphism

X=cpxs R Ty K

is surjective (in Il; -y K addition and multiplication are defined compo-
nentwise); comparison of K-dimension shows that x is injective, so x is

a ring isomorphism. Foro € §,,/ C N, » € R we have Xo[I} (o(r)) =x;(r).
This implies: if 7, J C N satisfy L/l = IJI then x; and v, have the same
restriction to A. Therefore
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X[A) C {(k)yen € ey Kk, =ky af J1=171},

and counting dimension over K shows that this inclusion is in fact an
equality. Putting

IL=1{1,2, .,x}, X, =x,xlA (0<x<n),
we conclude that
X =M Xy A>T K

18 a K-linear ring 1somorphism.
For k = (k,)§ ~o € I} -y K we have obviously

dimg {k' eI _( Kl k-k'=0F= {x10<x<n, k, =0}
Putting k = x'(s) and using (6) we find:
(7 Kx10<x<n,x. (s)=0}>e.

From the definitions we compute

Xx(Z) = Zien, =, xr,(p)

= Zren =D (g - 1T
ot () (73) o
(8) X (8) = Z720 X4 (2))
st (2 () o
= P(x) .
Since P(0) = Zi-o i) (q — )*7" # 0, Lloyd’s theorem now follows

from (7) and (3).



&2 Perfect group codes 131

§2. Perfect group codes

Theorem 2 Ler G,, 1 <1< n, be a group with underlying set V. Suppose
there exists a subgroup C C IT. | G, such that the underlying set of C 1s

a perfect e-error-correcting code of block length n over V, with e < n
Then q 15 a power of a prime p and each G, 15 abelan of type

.o, ,p)

Proof Without loss of generality we may assume that the groups G,
have the same unit element 1 € V (1 <:< ») Putu=(1)2,, and let
w(g)=d(g,u) forge II.;G,, asm §1

Let C CIIL | G, be as i the statement of Theorem 2 Thenu € C
since u 18 the unit element of 1T, G, If

g=(gn-1 € 4G,

satisfies w(g) = ¢ + 1, then the umique element ¢ = (c,)i.; € C for which
d(g, ¢) < e cannot equal u, and therefore w(c) = 2e + 1 Thuis 1s only
compatible with w(g) =e+ 1 and d(g,c) S e1f w(c)=2e+ 1 and ¢, = g,
for all 7 such that g, # 1 We shall use this remark two times below

Choose a, € G, such that the order of a, 1n G, 1s a prime number p,
and choose o, & G,, &, # 1, for 3<1< e+ 1 It1ssufficient to prove

() every a & Gy, o # 1, has order p n Gy,

(11) af = Pa forall @, B € Gy

(WLleta€ Gy ,a# 1 Put
g:(aa az, >ae+1, I, 5 I)E f[;l:lGl

Then w(g) = ¢ + 1 By the above remark, some ¢ € C has the following
shape
c=(a, 0y, 0.4, (exacdy e of the remaming components # 1))

Since C 1s a subgroup, ¢? € C, and
e = (a?, 1, (at most 2¢ 1 of the remaining components # 1))

Therefore w(c?) < 2e which imphies ¢ = u and of = |
(1) Leta, fe Gy, a# 1# 0 Put
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g =(a, 0y, .0y Opiy 1,..,1),
g =B, oy, s Cests Lr o 1)

The above remark yields ¢, ¢’ € C which look hike-

¢ =(a, ay, . . g, (exactly e of the remaining components # 1))
¢'= (B, ay, ... 0psp»> (eXactly e of the remaining components # 1))

Then d(cc', ¢'c) < e + 1, and since cc’, ¢'c € C it follows that c¢' = ¢'c
and af = Ba. This completes the proof of Theorem 2.
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