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Abstract. Two theorems are proved on perfect Codes. The first one States that Lloyd's theorem
is true without the assumption that tha number of Symbols m the alphabet is a pnme power
The second theorem asseits the impossibiüty of perfect group codes over non-pnme-power-
alphabets.

§0. Introduction

Let V be a finite set, l V\ = q > 2, and let l < e < n be rational inte-
gere. We put ΛΤ = {l, 2, . . . ,n}.Forü = (u I)f=l e V, υ = (v',)?=i e V" we
define d(v, v') = l { z e 7A/1 υ, ^ u,'} l . A perfect e-error-correcting code of
block length n over V is a subset C c V" such tfiat for every u e Vn

there exists exactly one c e C satisfying d(v, c) < e.
If q is a prime power, a necessary condition for the existence of such

a code is given by Lloyd's theorem [6]. This theorem has recently been
used to deterrnine all n, e for which a perfect code over an alphabet V
of q symbols, q a prime power, exists [5; 6].

In § l I show that Lloyd's theorem holds for all q. The proof, which
is modelled after [6, 5.4], makes use of some elementary notions from
commutative algebra. A different proof has been obtained by P. Del-
sarte [2]. It seems hard to use Lloyd's theorem to prove non-existence
theorems for perfect codes over non-prime-power-alphabets.

In § 2 I prove the following theorem: if Gt ( l < z < n) is a group with
underlying set V, and C c Π"=1 G, is a subgroup which äs a subset of V"
is a perfect e-error-correcting code, e < n, then q is a prime power and
each G, is abelian of type (p, p, ..., p). A special case of this theorem
was proved in [4].
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§1. Lloyd's theorem

Theorem l.Ifa perfec t e-error-correcting code o f block length n over
V exists then the polynomial

(,-.)·

where

has e distinct integral zeros among l , 2, ..., n.

Proof . Let K be a field of characteristic zero, and let M be a ^-vector
space of dimension q" with the elements of V" äs basis vectors:

M = ( 2 „ fcu · ü l fcu e K for u e K") .

If £> c K" is a subset, we denote Συ6Ξ£)υ e M by Σ/λ Definc the K-endo-
morphisms φ, (l < / < n) of M by

0,(υ) = Σ{υ' = (u;);=1 e F" l ^ = u, for all / Φ i} ,

v = (u;);"=1 e Vn . One easily checks:

(1) 0,0, =0,0, ( ! < / < / < « ) ,

(2) 0 , 2 = < 7 - 0 , ( ! < / < « ) .

Let ^[^j , ..., A^ ] be the commutative polynomial ring in « Symbols
over K. The ideal generated by {Xf - qXt\ ] <i< n} is denoted by B,

and R is the factor ring K[Xl , ..., Xn ] /B. By ( 1 ) there exists a /^-linear
ring homomorphism K[Xl , ..., Xn ] -+ End^(M) (the ring of £-endo-
morphisms of M) mapping l to the identity and Xl to φι (l < / < «).

The kernel of this ring homomorphism contains B, by (2), so we obtain
a ring homomorphism /:/?-» End^ (M), mapping xl = (Xf mod B) e R
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to φ, Therefore we can make M mto an 7?-module by defming r · m =
f(r)(m)(rtR,meM) [ l, II l l , 3, III 1]

Put yl = Hief(xl - 1) e R for / C N Then

v = Σ {v' e F"l if / e TV, then u; - vj ; <£ /} ,

I c Ν,υ £ Vn Theiefore, {y7 · u l / c N} c M is Imearly mdependent
over K, for υ e F" Then certamly { y7 1 / c N} c R is bnearly mdepen-
dent over K Moreover, it is easily shown that {yf \ I c N} generates R äs
a 7<f-vector space This proves {yf 1 1 c N} is a ΛΓ-basis for R, and
dm\K(R) = 2" (by dim^ we mean dimension over K)

The permutation group Sn on n symbols acts äs a group of ÄMmeai
ring automorphisms on R by permutmg {xt\i£ N} The set of mvanants

A = {r e R l a(r) = r for all σ e Sn]

is a subrmg of R Put

Then it is easy to see that {z/ 1 0 < / < «} is a ,ίΓ-basis for yl , and

(3) z - ü = Z{ü'e Κ " Ι ί / ( υ , υ ' ) = / } , 0 < / < η , υ £ F"

Smce A is a subrmg of R, M is also an ,4-module
Choose u e V" arbitrary but fixed, and define w(v) = d(v, u) for

υ e F" Lei S n be the füll permutation group of F" , and let G be the
subgroup G = {σ e S n\ o(u) = u, and d(v, v') = d(o{ü), o(u')) for all D,
ü' e F"} By permutmg the basis vectors, G acts £-lmearly on M This
action is even .4 -linear, smce for σ e G, 0 < ; < n, υ e F" we have

σ(ζ; · y)= σ(Σ{υ'Ι d(v, v") =/}) - Σ{σ(υ')Ι d(u, υ') =/}

- Σ{υ'Ι c/vu, σ^1 (υ')) = ;) = S{u' l d(a(v), v') = ]}

α(υ)
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Therefore, MG = {m e MI a(m) = m for all σ e G} is an ,4-submodule of

M, and the map T: M ->- MG, defined by

T(m) = ZoeG o(m) ,

is an .A-homomorphism. We wish to determine the structure of MG äs
an^4-module.

It is not hard to see that the orbits of the G-action on V" are
{{ue F" l w ( u ) = / } I O < / < « } . Put

m, = Σ{υ e K" l w(u) = /} e M, 0 < / < n ,

then it follows that [m l 0 < / < n) is a ÄT-basis for MG . Define the A-
homomorphism

A ^ MG by ψ(α) = a · u

(we consider A äs an^l-module by left multiplication, [ l ; 3]). Then

ψ(ζ;) = z; · u = Σ{υ G K" l d(u, u) - /} = m, .

So ψ maps a K-basis for A one to one onto a ^-basis for Λίσ . This im-
plies that φ is bijective. We have shown:

(4) A = M as^l-modules.

Now suppose that a perfect e-error-correcting Code C c Vn exists.
Then one easily constructs e + l perfect e-error-correcting codes
CQ, ·.., Ce C V" such that i e w[Ct] (0 < / < e). We first prove:

(5) {r(ZC;)l 0 < / < e} C MG is linearly independent over K.

Proof of (5). Let Γ(ΣΟ;) = Z"=O/C!;OT; (/cv e ÄT); since C;- is e-error-correc-
ting, we have w[C,} n {0, l, ..., e} = {/}; therefore, if 0 < / < e, 0< /< e,
the coefficient Λζ/· is nonzero if and only if i - /, and (5) follows.
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z, E A .

By (3), the perfectness of Cl implies

Applying the A -linear map T we find

Usmg (5) we conclude dim^ {m e vWG l s- m = 0} > e, and by (4) this is
the same äs

(6)

Therefore it seems useful t o study the structure of A.
For / c N we define the ring homomorphism χ7 : Λ -> K by

= k, k&K,

x/(x,) = 0 if / e / ,

Χ /(ΛΓΖ) = q if i$I .

The maximal ideals ker(%7) of /? are mutually different, so ker(\7) +
kerix^) =R for/^ /. By the Chinese remainder theorem [3, II. 2; l,
1.8. 1 1 ] it follows that the ÄMinear ring homomorphism

is surjective (in TljCN K addition and multiplication are defined compo-
nentwise); comparison of/T-dimension shows that χ is injective, so χ is
a ring isomorphism. For σ e Sn, IC N, r e R we have χσ^ (a(r)) = xf(r).
This implies: ifI,JcN satisfy l/l = l/l then χ7 and vy have the same
restriction to A. Therefore
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χ ί Α ] c {(kj)ICN e UICNK\ kj = kr if \J\ = l/'l} ,

and counting dimension over K shows that this inclusion is in fact an
equality. Putting

4 = {1,2, . ..,*}, χχ=χ!χ\Α(0<χ<η),

we conclude that

is a ÄMinear ring isomorphism.
For k = (kx)x=Q e Tlx=0K we have obviously

{/ i 'en^= 0^l/c- /c ' -0}= \{x\0<x<n,kx = 0 ) 1

Putting k = x'(s) and usmg (6) we find:

(7) \{x\Q<x<n, xx(s) = 0}\>e .

From the definitions we compute

1 / 1 \ l/~^v l'(9- D x

(8)

Since /"(O) = Zf=0 i . j (q-lf-'^Q, Lloyd's theorem now follows
from (7) and (8).
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§2. Perfect group codes

a

Theorem 2 Let G(, l < z < «, ö? a group with underlymg set V Suppose
there exists a subgroup C c Π"=1 G; such that the underlymg set ofC is
a perfect e-error-correctmg code of block length n over V, with e < n
Then q is a power of a pnme p and each Gv is abehan of type

(P, P, , P}

Proof Without loss of generality we may assume that the groups Gl

have the same unit element l e V (l < ι < n) Put u = (l)f= 1 , and let
wfe) = d(g, u) for g e Il?=1 Gt, äs m § l

Let C c Hf= ! G, be äs m the statement of Theorem 2 Then ueC
smce u is the unit element of I7/=1 G, If

satisfies w(^) = e + l, then the umque element c = (cl)f=l e C for which
d(g, c)< e cannot equal u, and therefore w(c) > 2e + l This is only
compatible with w(g) = e + l and cf(g, c) < e if w(c) = 2e + \ and c, = g;

foi all z such that g, Φ l We shall use this remark two times below

Choose ö2
 e ^2 suc^ ̂ ^ t^ie order of a2

 m ^2 ls a Pnme numberp,
and choose at 6- Gz, a, ̂  l , for 3 < ι < e + l It is sufficient to prove

(i) every a e Gj , α Φ l , has order p m Gj ,
(n) a/3 = ßa for all α, β e Gi

(i) Let a e G!, a ̂  l Put

Then w(g) = e+ \ By the above remark, some c e C has the followmg

shape
c ~ (a, a 2, , «£+[, (exacdy e of the remaming components ^ 1))

Smce C is a subgroup, cp e C, and

cp = (<xp , l , (at most 2e l of the remaming components Φ 1))

Therefore w(cp ) < 2e which imphes cp = u and ap = l

(π) Let α, β f= G!, a* 1 Put
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g = (a, a 2, ···,

The above remark yields c, c' e C which look hke·

c = (a, a2, . ·, ae+1 , (exactly e of the remaming components Φ 1))

c' = (|3, a2, "oQie+i ' (exactly e of the remaining components + 1)).

Then d(cc' , c'c) <e+ l, and since cc' , c'c e Cit follows that cc' = c'c
and aß = ßu. This completes the proof of Theorem 2.
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