
EUCLID'S ALGORITHM IN CYCLOTOMIC FIELDS 

H. W. LENSTRA, JR. 

Introduction 

For a positive integer m, let (,,, denote a primitive m-th root of unity. By cp we 

mean the Euler qi-function. In this paper we prove the following theorem. 

THEOREM. Let <f>(m) ~ 10, m #- 16, m ,t 24. Then Z[Cm] is Euclidean for the 

usual norm map. 

Since Z[Cm] = Z[(2mJ for m odd, this gives eleven non-isomorphic Euclidean 

rings, corresponding tom= I, 3, 4, 5, 7, 8, 9, 11, 12, 15, 20. The cases m = l, 3, 4, 

5, 8, 12 are more or les(classical [2 (pp. l 17-118 and pp. 391--393); 8; 5 (pp. 228-231 ); 

3 (chapters 12, 14 and 15); 4; 7]. The other five cases are apparently new. 

For m even, the ring Z[(m] has class number one if and only if </>(m) :;:; 20 or 

m = 70, 84 or 90, see [6]. So there are exactly thirty non-isomorphic rings Z[(m] 

which admit unique factorization. If certain generalized Riemann hypotheses would 

hold, then all these thirty rings would be Euclidean for some function different from 

the norm map [9]. 

1. The general measure and Eitclid's algorithm 

Jn this section K denotes an algebraic number field of finite degree d over Q, and 

Ka is the R-algebra K ®QR Following Gauss [2; p. 395] we define the general 

measure µ : Kn -+ R by 

11(x)=:Z:.:lo-(x)l2, for xEKn, 
" 

the sum ranging over the d different R-algebra homomorphisms a: Kn --i, C, (cf [l]). 

It is easily seen that µ is a positive definite quadratic form on the R-vector space Ka. 

Let R be a subring of K which is integral over Z and has K as its field of 

fractions. Then R is a lattice of maximal rank d in Kn, The fundamental domain F 

with respect to R is defined by 

F = {xEKn I µ(x),,;; µ(x-y) for all yeR}. 

This is a compact subset of Ka which satisfies 

(1. 1) 

Let 

c = max {11(x) I x E F}. 

A real number c' is called a bound for F if c' ~ c. A bound c' for Fis usable if for 

every x E F n K satisfying p(x) = c' there is a root of unity u ER such that 

ft(x-u) = c'. Note that every real number c' > c is a usable bound, since no XE F 

satisfies Jt(x) = c' > c. 
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The norm N : K 8 ._,. R is defined by 

N(x) = TT /a(x)/, for xEKn, 
(I 

the product ranging over the R-algebra homomorphisms u : K 8 -, C. The arithmetic­
geometric mean inequality implies 

(l .2) N(x) 2 ~(µ(x)/d)'1, for XEK!!, 

the equality sign holding if and only if jcr(x)/ 2 = Jr(x)l 2 for all R-algebra homo­
morphisms er, r: KR ~ C. 

For xER, x i= 0, we have N(x) "'" /R/Rx/. The ring R is called Euclidean/or the 
norm if for every a, b ER, b -f.- 0, there areq, r ER such that a ~~ qb +rand N(r) < N(b). 
Using the multiplicativity of the norm one easily proves that R is Euclidean for the 
norm if and only if for each x EK there exists y ER such that N(x-y) < 1. 

In the rest of this section we assume that every cube root of unity contained in K 
is actually contained in R. This condition is necessary for R to be Euclidean, since 
any unique factorization domain is integrally closed inside its field of fractions. 
Notice that the condition is satisfied if K = Q(lm) and R = Z[(,nl for some integer 
m~ I. 

(1. 3) LEMMA. Let x EK be such that /a-(x)/ 2 = I and ia(x- u)/ 2 = I for some root 
of unity u ER and some field homomorphism er : K -+ C. Then x ER. 

Proof Let y = a( - xu- 1 ) EC; then y y = l and y + y = - I, soy is a cube root of 
unity, Since er: K ~ C is injective, it follows that --xu- 1 is a cube root of unity 
in K. Therefore our assumption on R implies that --xu- 1 ER; hence 

X= (-xuf 1 .(-u)ER. 

(1 .4) PROPOSITION. If dis a usable bound for F, then R is Euclidean for the norm. 

Proof Let x EK be arbitrary; we have to exhibit an element y ER for which 
N(x-y) < L Using (1.1) we reduce to the case x E F. Then p(x) ~ d, since d is 
a bound for F. If the inequality is strict, then N(x) < I by (1.2), and we can take 
y = 0. If the equality sign holds, then p(x) = p(x--u) = d for some root of unity 
u e R, since d is usable. We get 

N(x)2::;; (µ(x)/d)d = 1, 

N(x--u) 2 ~ (µ(x-u)/d)d = I. 

If at least one strict inequality holds, then we can take y 0= 0 or y = u. If both 
equality signs hold, then 

la(x)l 2 = lr(x)/2, 

for all er_, r : K -+ C, and since 

/a(x-u)/ 2 = /r(x--u)l2 

rI ja(x)/ 2 = N(x) 2 = 1, 
" 

TI l(J(x-u)/ 2 = N(x--u) 2 = 1 
cr 

it follows that /a(x)l2 = /er(x-u)/ 2 = I for all u. But then (1 .3) asserts xER, 
contradicting x E F since x i-0 0. 
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2. Cyclotomic fields 

In the case when K = Q({m) and R = Z[("'] for some integer m ~ 1, we -write 

µ,m Fm and cm instead of µ, F and c, respectively. The function Trm: Q((m)11 -+ R 

denotes the natural extension of the trace Q((m) --~ Q. The field automorphism of 

Q(tm) which sends tm to -- l extends naturally to an R-algebra automorphism of 

Q(tm)11 , which is called complex conjugation and denoted by an overhead bar. For 

x E Q((111)R, we have 

(2. 1) 

Note that a similar formula holds for arbitrary K, if complex conjugation is suitably 

defined. 

(2. 2) PROPOSITION. Let n be a positive divisor Cl/ m, and 

e = [Q((m) : Q((n)J = (p(m)/rp(n). 

Then cm ,,,:; e2 • Cw Moreover, if c' is a usable bound for Fm then e2 . c' is a usable bound 

for F,n-

The proof of (2. 2) relies on the relative trace function Q(tm) -+ Q(C,,) and its 

natural extension QGm)R -+ Q(tn)n, notation: Tr. This is a Q((11)a-linear map, given by 

Tr (x) = L cr(x), for x E Q(tm)n, 
fIE G 

where G denotes the Galois group of Q(("') over Q((,,), naturally on Q(tm)R. 

We have Trm = Trn o Tr, and one easily proves that Tr commutes with complex 

conjugation. 

(2. 3) LEMMA. Let x E Q(tm)R and y E Q((n)R. Then 

I , 1 - l )') 
µ,,,(x)-µm(x--y) = e ~p,, (-;; Tr (x)) -p11 (-~~-Tr (x)-y 1 

, 

Proof. Using (2.1), we find: 

e (11 11 (+Tr (x)) -µ,. (-} Tr (x)-y)) 

= e. Trn (+ Tr (x)y+ + Tr (x)y-yy) 

= Trn(Tr(x)y+Tr(x)y-e.yy) 

= Trn (Tr (xy) + Tr (xy)-Tr (yy)) 

= Tr m(xy + .xy - yy) 

= µm(x)- µm(x-y). 

(2.4) LEMMA. For XEQ((m)n, we have 

1 "' . 
.Um(x) = - 2.~ µ11(Tr (x(m1)). 

m j 1 
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Proof. In the computation below La and I:, refer to summations over G. 

J1 µn(Tr (x(mi)) = iil µn (~ a(x(mi)) 

= Trn Ct ~ ~ a(x) a((mi) t(.x) t((m - i)) 

= Trn ( ~ ~ a(x) t(.x) Ct ( a((m) t((m)- 1)i)) . 
For a, t E G, let (,,,, denote the m-th root of unity a((m) t((m)- 1• Then '"·, = I if 
and only if a = r, and 

m 

I: (L = 0 if '"·, =I= I, 
j=l 

= m if '"·, = 1. 
Hence the above expression becomes 

Trn ( ~,a(x) a(x) m) = m. Trn(Tr (xx)) = m. Trm(xx) = m. µm(x). 

This proves (2 .4). 

Proof of (2. 2). Let x E Fm; we have to prove µm(x) ~ e2 • en. Applying (2. 3) with 
y E Z[(nJ we find that x E Fm implies (1/e) Tr (x) E Fn- Since also x(mi belongs to Fm, 
for j E Z, we have in the same way (1/e) Tr (x(mi) E Fn. Therefore 

( ·) 2 (I ·) 2 µn Tr (x(m1) = e . µn e Tr (x(m1) ~ e . Cn 

for all j E Z, and (2 .4) implies that µm(x) ~ e2 • en- This proves that Cm ~ e2 • en­
Next assume that c' is a usable bound 'for F"' and let x E Fm n Q((m) satisfy 
µm(x) = e2 .c'. Then the above reasoning implies that c' = en and 

µn ( + Tr (x(mi)) = en = c' for all j E Z. 

Takingj = 0 we find that (1/e) Tr (x) is an element of Fn n Q((n) for which 

µn (+ Tr (x)) = c'. 

Since c' is a usable bound for F"' there is a root of unity u E Z [(nJ such that 

µn ( + Tr (x)-u) = c'. 

Applying (2.3) with y = u we get µm(x-u) = µm(x) = e2 .c', which proves that 
e2 • c' is a usable bound for F m· 

Without proof we remark that the equality sign holds in (2. 2) if m and n are 
divisible by the same primes. 

Since c1 =¼is a usable bound for F 1, we conclude from (2.2) that ¼</J(m)2 is a 
usable bound for Fn,, for any m. If <jJ(m) ~ 4, then it follows that <p(m) is a usable 
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bound for Fm, and that Z[CmJ is Euclidean for the norm, by (1.4). This gives us 

exactly the cases m = 1, 3, 4, 5, 8, 12 which were already known. In §4 we will obtain 

better results by applying (2. 2) to a prime divisor n of m. 

3. A computation in linear algebra 

Let n ~ 2 be an integer, and let V be an (n - I)-dimensional R-vector space with 
n 

generators e;, 1 ~ i :( n, subject only to the relation I: e; = 0. The positive definite 

quadratic form q on V is defined by i= 1 

n 

q(x) = L (xi-x)2 , for x = L X; e; E V. 
1~i<j~n i=1 

Denote by (,) : V x V --. R the symmetric bilinear form induced by q: 

(x, y) = ½(q(x+y)-q(x)-q(y)). 
Then 

(x, x) = q(x), for XEV, 

(e;, e;) = n- I, for l ~ i ~ 71, 

(e;, ej) = -1, for 1 :( i < j ~ n. 

The subgroup L of V generated by {e; 11 :( i ~ n}·is a lattice of rank n- 1 in V. 

The fundamental domain 

E={xEVlq(x)~q(x-y) forall yEL} 

= {xE VI (x, y) :( ½q(y) for all YE L} 

is a compact subset of V, and we put 

b = rnax {q(x) Ix EE}. 

(3 .1) PROPOSITION. The set of points x e E for which q(x) = b is given by 

(3 .2) 

Moreover, 

{~--it ierr(i) I a is a permutation of {l, 2, ... , n}} . 

712 __ J 
b=--· 

12 

This proposition is proved after a series of lemmas. We put N = {l, 2, ... , n}. For 

A c N, let eA = L; EA e;, We call A proper if .0 i= A f=. N. 

(3. 3) LEMMA. Let y EL be such that y # e A for all A c N. Then there is an element 

z = ± ei EL such that 

q(z) +q(y-z) < q(y). 

n n 

Proof Let y = L m; e; with m; E Z. Using Le;= 0 we may assume that 
11 i= 1 i= 1 

0 ~ I: m;,;;; n-1. For z = ±ej we have 
I~ I 

½(q(y)-q(z)-q(y-z)) = (y,z)-(z,z) 

= ± (nmj- .±. m1)-(n-l). 
l- = l 
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If this is > 0 for some j and some choice of the sign we are done. Therefore suppose 
it is :::;O for all j and for both signs. Then for 1 :::; j :;;; n we have 

nmi:;;; Ct mi) +(n-1):::; 2n-2 < 2n, 

nmi ~ Ct mi) -(n-l) ~ -n+l > -n, 

so mi E {O, 1} for allj. Hence y = eA for some Ac N, contradicting our assumption. 

(3.4) LEMMA. Let xE V. Then xEE if and only if(x, eA):;;; ½q(eA)for all Ac N. 

Proof The "only if" part is clear. "If": we know that 

(x, eA) :;;; ½q(eA) for all A c N 

and we have to prove that 

(x, y) :;;; -½q(y) for all y EL. 

This is done by an obvious induction on q(y), using (3. 3). 

(3. 5) LEMMA. Let x 0 EE satisfy q(x0 ) = b. Then there are n- l different proper 
subsets A(i) c N,for 1 :::; i :;;; n- l, such that x 0 is the unique solution of the system of 
linear equations 

(3 .6) I:;;;i:;;;n-1. 

Proof Put 

S = {A c NI (x0 , eA) = -½q(eA)}, 

then (x0 , eA) < -½q(eA) for each Ac N, At S. If the linear span of {eA I AES} has 
dimension n-1, then there are n-1 subsets A(i) ES such that {eA(i) 11 :::; i ~ n-1} 
is linearly independent over R. Then clearly x0 is the unique solution of (3. 6), and 
each A(i) is proper since eA(i) -:/= 0. 

Therefore suppose that the linear span of { e A I A E S} has codimension ~ 1 in V. 
Then for some z E V, z -:/= 0, we have 

(z, eA) = 0 for all A ES. 

Multiplying z by a suitably chosen real number. we can achieve that 

(3.7) (x0 ,z) ~ 0 

(z, eA):;;; ½q(eA)-(x0 , eA) for all Ac N, At S. 

Then for all A c N we have (x0 +z, eA) :;;; ½q(eA), which implies x 0 +z EE, by (3 .4). 
But using (3. 7) we find that 

q(x0 +z) ~ q(x0 ) +q(z) > q(x0 ), 

which contradicts our assumption q(x0) = b = max {q(x) Ix EE}. 

(3. 8) LEMMA. Let x 0 EE, and let A, B c N be such that 

(xo, eA) = ½q(eA), (x0 , eB) = ½q(eB). 

Then A c B or B c A. 
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Proof Put C =A-Band D = B-A. If C =" 0 or D = 0 we are done, so 
suppose C ,;f 0 ¥- D. Then C n D = 0 implies 

(eA"n,eAun)-(eA,en) = -(ec,en) = 

Using eA r. n +eA u n = eA +en we find that 

.!DI> 0. 

(xo, eA "n) + (xo, e A u n) = (xo, e A)+ (xo, eB) 

= -!q(eA) +½q(en) 

= ½q(eA +en)·-

> ½q(eA r. B +eA u n)-(eA "n, eA u n) 

= ½q(eA,., a) +½q(eA u n)-

Hence for X = An B or for X = A u B we have (x0 , ex) > ½q(ex), contradicting 
x 0 EE. 

Proof of (3 .1). Let x0 EE satisfy q(x0 ) = b, and let {A(i) 11 ~ i ~ n- l} be a 
system of n- I proper subsets of N as in (3. 5). By (3. 8), this system is linearly 
ordered by inclusion. This is only possible if after a suitable renumbering of the 
vectors ei and the sets A(i) we have 

A(i) = {i+I, i+2, ... , n}, for 1 ~ i ~ n-I 

By (3. 5) we have 

n 

. ~ (x0 , e) = }q(eA(i) = ½i(n-i), for l ~ i ~ n-I. 
J ~ ,+ 1 

n n 
Write x 0 = I: xj ej in such a manner that L xi = 0. Then (x0 , ej) = nxi; 

j= 1 j= 1 

so our system becomes 

This implies 

I! 

L nxi = ½i(n-i), for O ~ i ~ n-1. 
j= ;+ 1 

nxi = i-½(n+I), for I::,:;; i,:;; n, 

l n, . 
x0 = - L ze;, 

n i=1 

We renumbered thee; once; so we conclude that x 0 is in the set (3.2). Since at 
least one x 0 EE satisfies q(x0 ) = b, it follows for reasons of symmetry that conversely 
every element x of (3 .2) satisfies x EE and q(x) = b. Finally, 

b= L (i-j)2/n2 =(n2 -1)/I2. 
1~i<j~n 

This proves (3 .1). 

4. Proof of the theorem 

(4.1) PROPOSITION. Let n be a prime number. Then en= (rz2- l)/I2, and this is a 
usable bound for F n· 

Proof. We apply the results of §3. The R-vector space Q((n)R is generated by n 
n 

elements (/, I :::;; i ~ n, subject only to the relation L (n' = 0. For real numbers 
i" l 
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X;, 1 :,:; i ~ n, we have 

n n n 

=n. L x;2- :Z.:: L X;Xj 
i=l i=1 j=l 

Therefore there is an isomorphism of quadratic spaces ( Q((,,)n, p,,) ~ (V, q) which 

maps(,/ toe;, for l ~ i ~ n. Clearly, Z[(nl corresponds to L, so F11 corresponds to E 

and c,, = b. Translating (3. J) we find: c11 = (n 2 - 1 )/12, and the set of x E Fn for 

which µn(x) = c,, is given by 

(4.2) { 
] n } • Y a( i) · , , . , • • · ") -- _L !i, 11 I a 1s d per,rmtac1on of { l, ~, ... , n} . 
11 ,.=1 

Let x be in this set. Putting a(O) = a(n) we have 

} n-1 1 r. 
x-c,,a<n) =·--·I: i(,,"u) =-·--I: .iC,,"u-n_ 

n i=O n i= 1 

This element belongs to the set (4.2), so pn(x-(/<11l) = cm which proves usability 

of Cw 

We turn to the proof of the theorem. The cases m = 1, 3, 4, 5, 8, 12 have been 

dealt with in §2. Further, (2.2) and (4. l) imply that 

C7 = 4 < 6 = cp(7), 

C9 ~ 32 .C3 = 6 = efi(9), 

C11 = 10 = efi(ll), 

C15 ~ 22 .Cs = 8 = </J(l5), 

C20 ~ 22 .C5 = 8 = </J(20), 

and in each of these cases qi(m) is a usable bound for F,n- Application of (1. 4) con­

cludes the proof. 

Without proof we remark that our method does not apply to other fully cyclotomic 

fields: 

(4.3) PROPOSITION. Let m ~ 1 be an integer/cir which c"' ~ <fi(m). Then ef>(m) :c:; 10 

and m ¥ 16, m ,f 24. 
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