EUCLID’S ALGORITHM IN CYCLOTOMIC FIELDS
H. W. LENSTRA, IR.

Introduction

For a positive integer m, let {,, denote a primitive m-th root of unity. By ¢ we
mean the Euler ¢-function. In this paper we prove the following theorem.

THEOREM. Let ¢(m) < 10, m # 16, m # 24.  Then Z[(,) is Euclidean for the
usual norm map.

Since Z[(,] = Z[(,,] for m odd, this gives eleven non-isomorphic Euclidean
rings, corresponding tom = 1, 3,4, 5,7, 8,9, 11, 12, 15, 20. The cases m = 1, 3,4,
5,8, 12 are more or less classical [2 (pp. 117-118 and pp. 391-393); 8; 5 (pp. 228-231);
3 (chapters 12, 14 and 15); 4; 7]. The other five cases are apparently new.

For m even, the ring Z[(,,] has class number one if and only if ¢(m) <20 or
m = 70, 84 or 90, see [6]. So there are exactly thirty non-isomorphic rings 7]
which admit unique factorization. If certain generalized Riemann hypotheses would
hold, then all these thirty rings would be Euclidean for some function different from
the norm map [9].

1. The general measure and Euclid’s algorithm

In this section K denotes an algebraic number field of finite degree d over Q, and
Ky is the R-algebra K ®oR. Following Gauss [2; p. 395] we define the general
measure i : Ky — R by

ux) =L lo(x)[?, for xeKg,

the sum ranging over the d different R-algebra homomorphisms ¢: Kg = C, (cf. [1D).
It is easily seen that u is a positive definite quadratic form on the R-vector space Kg.

Let R be a subring of K which is integral over Z and has K as its field of
fractions. Then R is a lattice of maximal rank d in Kg. The fundamental domain F
with respect to R is defined by

F = {xeKy| p(x) < p(x—y) forall yeR}
This is a compact subset of Kg which satisfies
1.1 F+R = Kp.
Let
¢ = max {u(x)| xe F}.

A real number ¢ is called a bound for F if ¢’ = ¢. A bound ¢’ for F is usable if for

every xe F n K satisfying u(x) = ¢’ there is a root of unity ueR such that
u(x—u) = ¢’. Note that every real number ¢’ > ¢ is a usable bound, since no xe F

satisfies pu(x) = ¢’ > c.
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The norm N : Ky — R is defined by
N(x) =TTlo(x)l, for xeKg,

the product ranging over the R-algebra homomorphisms ¢ : Kz — C. The arithmetic-
geometric mean inequality implies

(1.2) N(x)? < (u(x)/d)', for xe Ky,

the equality sign holding if and only if [o(x)|* = |t(x)|* for all R-algebra homo-
morphisms o, 7: Kz —» C.

For xeR, x # 0, we have N(x) = |R/Rx|. The ring R is called Euclidean for the
norm if for every @, b€ R, b # 0, there areq, r € R such thata = gb +rand N(r) < N(b).
Using the multiplicativity of the norm one easily proves that R is Euclidean for the
norm if and only if for each x € K there exists y € R such that N(x—y) < 1.

In the rest of this section we assume that every cube root of unity contained in K
is actually contained in R. This condition is necessary for R to be Euclidean, since
any unique factorization domain is integrally closed inside its field of fractions.
Notice that the condition is satisfied if K = Q((,,) and R = Z[{,,] for some integer
mz=1.

(1.3) LemMa. Let xe K be such that |a(x)|* = 1 and |6(x—u)|* = 1 for some root
of unity ue R and some field homomorphism ¢ : K — C. Then xeR.

Proof. Lety = o(—xu"')eC;thenyj = 1 and y+j7 = —1, s0 y is a cube root of
unity. Since o : K — C is injective, it follows that —xu~! is a cube root of unity
in K. Therefore our assumption on R implies that —xu~! € R; hence

x=(=xu)"'.(—u)eR.
(1.4) ProrosiTiON. Ifd is a usable bound for F, then R is Euclidean for the norm.

Proof. Let xe K be arbitrary; we have to exhibit an element y € R for which
N(x—y) < 1. Using (1.1) we reduce to the case xe F. Then u(x) < d, since d is
a bound for F. If the inequality is strict, then N(x) < 1 by (1.2), and we can take
y = 0. If the equality sign holds, then u(x) = p(x—u) = d for some root of unity
ue R, since d is usable. We get

Nx)? < (p()/d)' = 1,
N(x—u)* < (p(x—w)/d)* = 1.
If at least one strict inequality holds, then we can take y =0 or y = u. If both
equality signs hold, then
lo@)1? = [t lo(x—w)? = [t(x—w)|?
for all o, v: K — C, and since

[TIoC = N2 = 1,
[T lo(e=1)? = Nx—u)* = 1

it follows that |o(x)|? = |a(x—u)|* =1 for all ¢. But then (1.3) asserts xeR,
contradicting x € F since x # 0.
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2. Cyclotomic fields

In the case when K = Q({,) and R = Z[(,] for some integer m > 1, we write
ty Fn and c,, instead of p, F and ¢, respectively. The function Tr,: Q((,)r = R
denotes the natural extension of the trace Q({,) — Q. The field automorphism of
Q(¢,) which sends ¢, to {,,~! extends naturally to an R-algebra automorphism of
Q(¢,)r, Which is called complex conjugation and denoted by an overhead bar. For
x € Q((,)r, we have

(2.1 tm (%) = Tr(xX).
Note that a similar formula holds for arbitrary K, if complex conjugation is suitably
defined.

(2.2) PropPosITION. Let n be a positive divisor of m, and

e = [Q(,): QU] = ¢(m)/p(n).
Then c,, < e*.c,. Moreover, if ¢’ is a usable bound for F,, then e*.c' is a usable bound
for F,.
The proof of (2.2) relies on the relative trace function Q((,) — Q({,) and its

natural extension Q((,,)g — Q({,)r, notation: Tr. This is a Q({,)g-linear map, given by
Tr(x) = ¥ o(x), for xeQ(,)n

E

where G denotes the Galois group of Q((,,) over Q((,), acting naturally on Q({,)g-
We have Tr,, = Tr,oTr, and one easily proves that Tr commutes with complex
conjugation.

(2.3) LeMMA. Let xe Q((,)r and ye Q((,)g. Then

T
um<x>—um<x~y>=e(u,,( T () - ( Tr (x) - y))

Proof. Using (2.1), we find:
1 1
e (.un (‘; Tr (X)) — Hn (‘e— Tr (x)—y))

1 1
=e.Tr, (? Tr (x) y + -e—Tr (i)y—yﬁ)

= Tr,(Tr (x) +Tr (X) y—e.yj)
= Tr, (Tr (xy) +Tr (Xy)—Tr (y7))
= Tr,(xy +Xy—yy)

= (%) = (X = ).

(2.4) LemMa. For xe Q((,)p, we have

1 m .
aum(x) = "; j}::l ,u,,(Tr (meJ))'
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Proof. In the computation below 3, and ¥, refer to summations over G.

jg"l Mn(Tr (mej)) = j§='§1 My (g g'(x[;mf))

$ 5 0 o) ) (™)

ji=1

= Tr,,(

= Tr, (; 2 o(x)(®) (él (e(C) T(Cm)—l)j)) '

For 0, 1€ G, let {, , denote the m-th root of unity ¢(¢,)t((,)”". Then {, , =1 if
and only if ¢ = 7, and

C{;,t=0 if Z.:a-,t#ls
1

M=

J
_ =m if {, .= 1
Hence the above expression becomes
Tr, (Z a(x) a(X) m) = m.Tr,(Tr (xX)) = m.Tr,(x%) = m. fL,(x).
This proves (2.4).

Proof of (2.2). Let xe F,,; we have to prove u,(x) < e*.c,. Applying (2.3) with
yeZ[{,] we find that x € F,, implies (1/e) Tr (x)e F,. Since also x{,;’ belongs to F,,
for je Z, we have in the same way (1/e) Tr (x{,;/) € F,. Therefore

. 1 .
TE L) = ¢y (- Tr () < e,
for all jeZ, and (2.4) implies that u,(x) < e?.c,. This proves that ¢, < e*.c,.

Next assume that ¢’ is a usable bound for F,, and let xe F, n Q((,) satisfy
ta(x) = e*.c¢’. Then the above reasoning implies that ¢’ = ¢, and

1 .
Uy (—e— Tr (meJ)) =c,=c¢ foralljeZ.

Taking j = 0 we find that (1/e) Tr (x) is an element of F, n Q(¢,) for which

1

1y (— Tr (x)) = ¢

e

Since ¢’ is a usable bound for F,, there is a root of unity ue Z[{,] such that
1
. (? Tr (x)—u) =c.

Applying (2.3) with y =u we get u,(x—u) = p,(x) = e?.c¢/, which proves that
e?.c’ is a usable bound for F,,

Without proof we remark that the equality sign holds in (2.2) if m and » are
divisible by the same primes.

Since ¢; = % is a usable bound for F,, we conclude from (2.2) that t¢(m)* is a
usable bound for F,, for any m. If ¢p(m) < 4, then it follows that ¢(m) is a usable
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bound for F,, and that Z[(,,] is Buclidean for the norm, by (1.4). This gives us
exactly the cases m = 1, 3, 4, 5, 8, 12 which were already known. In §4 we will obtain
better results by applying (2.2) to a prime divisor n of m.

3. A computation in linear algebra
Let n > 2 be an integer, and let V be an (2— 1)-dimensional R-vector space with
n
generators e;, 1 < i < n, subject only to the relation Y. e; = 0. The positive definite
i=1

quadratic form g on V is defined by

4= T (=) for x= % xech.

1<i<jsn
Denote by (,): V x ¥V — R the symmetric bilinear form induced by ¢:

(x, ) = Hg(x+y)—q(x)—q(»)).
Then
(x, x) =¢q(x), for xeV,

(e, e)=n—1, for 1<i<n,
(e e)) = —1, for I1<i<

The subgroup L of V generated by {e;| 1 <i < n}is a lattice of rank n—1in V.
The fundamental domain

E={xeV|q(x) <q(x—y) forall yelL}
= {xeV |(xy) <bq(y) forall yelL}

is a compact subset of V, and we put

j<n

b = max{q(x)|xeE}.

(3.1) PROPOSITION. The set of points x € E for which q(x) = b is given by

1 =»
(3.2) {m Y iey | o is a permutation of {1,2, ..., n}} .
n i=1
Moreover,
b= n?—1
12

This proposition is proved after a series of lemmas. We put N = {1, 2, ...,n}. For
AcN,lete,=3,;.4e;. Wecall A proper if & # A # N.

(3.3) LemMA. Let ye L be such that y # e, for all A = N. Then there is an element
z = +e;e L such that

q(z)+q(y—z) <q(y).
Proof. Let y =3 m;e; with m;eZ. Using 3 e; =0 we may assume that
n i=1 i=1
0< ¥ m;<n-1. Forz= +e; we have
i=1

Ha) —q(2)—q(y—2)) = (3,2)~(2,2)

- (nmj_ b m,.) —(n—1).
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If this is >0 for some j and some choice of the sign we are done. Therefore suppose
it is <0 for all j and for both signs. Then for 1 < j < n we have

nm; < (i mi) +(n—1) < 2n—-2 < 2n,
i=1

nmy > (‘Z mi) —(n—=1)= —-n+1> —n,
i=1
so m; e {0, 1} for all j. Hence y = e, for some A = N, contradicting our assumption.
(3.4) LemMA. Let xe V. Then xe E if and only if (x, e,) < 4q(e,) for all A < N.

Proof. The “only if” part is clear. “If”: we know that
(x,e) <%gley) forall A< N
and we have to prove that
(x,y) <4q(y) forall yelL.
This is done by an obvious induction on g(y), using (3.3).
(3.5) LemmMA. Let xqo€E satisfy q(xo) = b. Then there are n—1 different proper

subsets A(i) = N, for 1 <1 < n—1, such that x, is the unique solution of the system of
linear equations

(3.6) (%, eq0) = 3q(eqw)s I<i<n-1

Proof. Put
S = {4 = N|(xp, eq) = 3q(eq)}s

then (xq, e4) < %q(e,) for each A =« N, A¢ S. If the linear span of {e¢,| A€ S} has
dimension n—1, then there are n—1 subsets A(i)e S such that {e ;|1 <i<n—1}
is linearly independent over B. Then clearly x, is the unique solution of (3.6), and
each A(i) is proper since e,;, # 0.

Therefore suppose that the linear span of {e,| 4 € S} has codimension >1 in V.
Then for some ze V, z # 0, we have

(z,e) =0 forall AeS.
Multiplying z by a suitably chosen real number we can achieve that
3.7 (x9,2) = 0
(z,e,) <3qley)—(xp,e,) forall A <N, A¢S.

Then for all A = N we have (x,+2z, e4) < %q(e,), which implies x,+z € E, by (3.4).
But using (3.7) we find that

q(xo+2) = q(x0) +4(2) > q(x0),
which contradicts our assumption g(x,) = b = max {q(x) | x€ E}.
(3.8) LEMMA. Let x,€E, and let A, B < N be such that

(X0, €4) = 3q(e,), (%o, €p) = 3q(ep).
Then A< Bor Bc A.
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Proof. Put C=A4—Band D=B—-A. If C= @ or D= ¢ we are done, so

suppose C # J # D. Then Cn D = & implies
(esnmeson) —(es ep) = —(ec, ep) = |C|.[D] > 0.
Using e,  p+e4 .5 = eq+ep we find that
(%05 €4 ~ )+ (X0 €4 u B) = (%o, €4) + (X0, €5)
= 3q(e4) +3q(ep)

tq(estep)—(ey, ep)
>3q(esnptesvn)—(€snn €sun)
=4q(eq o p)t3q(es o p)-

Hence for X = An B or for X = AU B we have (x,, ey) > 1g(ey), contradicting
Xg€E.

Proof of (3.1). Let x,€E satisfy g(x,) = b, and let {A() |1 <i<n—1} be a
system of n—1 proper subsets of N as in (3.5). By (3.8), this system is linearly
ordered by inclusion. This is only possible if after a suitable renumbering of the
vectors e; and the sets A(i) we have

A = {i+1,i+2,...,n}, for 1<i<n—1.
By (3.5) we have

n
j=};+1 (%0, €)) = qleyy) = 2i(n—i), for 1<i<n-—L

n n
Write xo:jgleef in such a manner that j§1Xj=0' Then (xo, €;) = nx;;

so our system becomes
n .
; Zﬂnxj =4i(n—i), for 0<i<n—-1.
=i

This implies
nx; =i—%(m+1), for 1<i<n,
1 =n
Xy = — Z iei‘
n =1

We renumbered the e; once; so we conclude that x, is in the set (3.2). Since at
least one x, € E satisfies g(x,) = b, it follows for reasons of symmetry that conversely
every element x of (3.2) satisfies xe E and q(x) = b. Finally,
b= % (i—j)*n?® = @*-1)/12.
1<i<j<n
This proves (3.1).
4. Proof of the theorem

(4.1) ProPOSITION. Let n be a prime number. Then ¢, = (n*—1)/12, and this is a
usable bound for F,.

Proof. We apply the results of §3. The R-vector space Q((,)g is generated by n

. . n .
elements (', 1 <i < n, subject only to the relation 3 {,' = 0. For real numbers
i=1
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x;, 1 <i < n, we have

n . n n I
I < > x G =Tr 0 X X X; C,,‘”J)
i1 i=1 =1
n 2 71‘ n
=n. 3 X'— 2 2 XX
i=1 i=1j=1
= X (xi_xj)z‘
1<i<jsn

Therefore there is an isomorphism of quadratic spaces (Q({,)r, i) = (V,q) which
maps {,' to e;, for 1 < i < n. Clearly, Z[{,] corresponds to L, so F, corresponds to E
and ¢, = b. Translating (3.1) we find: ¢, = (n*—1)/12, and the set of xe F, for
which ,(x) = ¢, is given by

1 = .
4.2) — Y it,°D| ¢ is a permutation of {1, 2, ..., n}} .
i=1
Let x be in this set. Putting 6(0) = o(n) we have
1 n-1 . 1 » .
x_Cnﬂ(n) = Z iCnG(l) = Z thtU(J—])‘
n i=0 n j=1

This element belongs to the set (4.2), so pu,(x—{,°") = ¢,, which proves usability
of ¢,.

We turn to the proof of the theorem. The cases m = 1, 3, 4, 5, 8, 12 have been

dealt with in §2. Further, (2.2) and (4.1) imply that

¢y =4< 6=,

co < 3%.c3=6=¢(9),

¢y =10 = ¢(11),

15 < 2%.c5 = 8 = ¢(19),

Cr0 < 2%.c5 = 8 = (20),
and in each of these cases ¢(m) is a usable bound for F,. Application of (1.4) con-
cludes the proof.

Without proof we remark that our method does not apply to other fully cyclotomic
fields:

(4.3) PROPOSITION. Let m > 1 be an integer for which c,, < ¢(m). Then ¢p(m) < 10
and m # 16, m s 24,
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