EUCLID'S ALGORITHM IN CYCLOTOMIC FIELDS

H. W. LENSTRA, JR.

Introduction

For a positive integer m, let ζ_{m} denote a primitive m-th root of unity. By ϕ we mean the Euler ϕ-function. In this paper we prove the following theorem.

Theorem. Let $\phi(m) \leqslant 10, m \neq 16, m \neq 24$. Then $\mathbf{Z}\left[\zeta_{m}\right]$ is Euclidean for the usual norm map.

Since $\mathbf{Z}\left[\zeta_{m}\right]=\mathbf{Z}\left[\zeta_{2 m}\right]$ for m odd, this gives eleven non-isomorphic Euclidean rings, corresponding to $m=1,3,4,5,7,8,9,11,12,15,20$. The cases $m=1,3,4$, $5,8,12$ are more or less classical [2 (pp. 117-118 and pp. 391-393); 8; 5 (pp. 228-231); 3 (chapters 12,14 and 15); 4;7]. The other five cases are apparently new.

For m even, the ring $\mathbb{Z}\left[\zeta_{m}\right]$ has class number one if and only if $\phi(m) \leqslant 20$ or $m=70,84$ or 90 , see [6]. So there are exactly thirty non-isomorphic rings $\mathbf{Z}\left[\zeta_{m}\right]$ which admit unique factorization. If certain generalized Riemann hypotheses would hold, then all these thirty rings would be Euclidean for some function different from the norm map [9].

1. The general measure and Euclid's algorithm

In this section K denotes an algebraic number field of finite degree d over \mathbf{Q}, and $K_{\mathbf{R}}$ is the \mathbf{R}-algebra $K \otimes_{\mathbf{Q}} \mathbf{R}$. Following Gauss [2; p. 395] we define the general measure $\mu: K_{\mathbf{R}} \rightarrow \mathbf{R}$ by

$$
\mu(x)=\sum_{\sigma}|\sigma(x)|^{2}, \quad \text { for } \quad x \in K_{\mathbf{R}},
$$

the sum ranging over the d different \mathbf{R}-algebra homomorphisms $\sigma: K_{\mathbf{R}} \rightarrow \mathbf{C}$, (cf. [1]). It is easily seen that μ is a positive definite quadratic form on the \mathbf{R}-vector space $K_{\mathbf{R}}$.

Let R be a subring of K which is integral over \mathbf{Z} and has K as its field of fractions. Then R is a lattice of maximal rank d in $K_{\mathbf{R}}$. The fundamental domain F with respect to R is defined by

$$
F=\left\{x \in K_{\mathbf{R}} \mid \mu(x) \leqslant \mu(x-y) \text { for all } y \in R\right\} .
$$

This is a compact subset of $K_{\mathbf{R}}$ which satisfies

$$
\begin{equation*}
F+R=K_{\mathbf{R}} . \tag{1.1}
\end{equation*}
$$

Let

$$
c=\max \{\mu(x) \mid x \in F\} .
$$

A real number c^{\prime} is called a bound for F if $c^{\prime} \geqslant c$. A bound c^{\prime} for F is usable if for every $x \in F \cap K$ satisfying $\mu(x)=c^{\prime}$ there is a root of unity $u \in R$ such that $\mu(x-u)=c^{\prime}$. Note that every real number $c^{\prime}>c$ is a usable bound, since no $x \in F$ satisfies $\mu(x)=c^{\prime}>c$.

The norm $N: K_{\mathbf{R}} \rightarrow \mathbf{R}$ is defined by

$$
N(x)=\prod_{\sigma}|\sigma(x)|, \quad \text { for } \quad x \in K_{\mathbf{R}}
$$

the product ranging over the \mathbf{R}-algebra homomorphisms $\sigma: K_{\mathbf{R}} \rightarrow \mathbf{C}$. The arithmeticgeometric mean inequality implies

$$
\begin{equation*}
N(x)^{2} \leqslant(\mu(x) / d)^{d}, \quad \text { for } \quad x \in K_{\mathbf{R}} \tag{1.2}
\end{equation*}
$$

the equality sign holding if and only if $|\sigma(x)|^{2}=|\tau(x)|^{2}$ for all \mathbf{R}-algebra homomorphisms $\sigma, \tau: K_{\mathbf{R}} \rightarrow \mathbf{C}$.

For $x \in R, x \neq 0$, we have $N(x)=|R / R x|$. The ring R is called Euclidean for the norm if for every $a, b \in R, b \neq 0$, there are $q, r \in R$ such that $a=q b+r$ and $N(r)<N(b)$. Using the multiplicativity of the norm one easily proves that R is Euclidean for the norm if and only if for each $x \in K$ there exists $y \in R$ such that $N(x-y)<1$.

In the rest of this section we assume that every cube root of unity contained in K is actually contained in R. This condition is necessary for R to be Euclidean, since any unique factorization domain is integrally closed inside its field of fractions. Notice that the condition is satisfied if $K=\mathbf{Q}\left(\zeta_{m}\right)$ and $R=\mathbf{Z}\left[\zeta_{m}\right]$ for some integer $m \geqslant 1$.
(1.3) Lemma. Let $x \in K$ be such that $|\sigma(x)|^{2}=1$ and $|\sigma(x-u)|^{2}=1$ for some root of unity $u \in R$ and some field homomorphism $\sigma: K \rightarrow \mathbf{C}$. Then $x \in R$.

Proof. Let $y=\sigma\left(-x u^{-1}\right) \in \mathbf{C}$; then $y \bar{y}=1$ and $y+\bar{y}=-1$, so y is a cube root of unity. Since $\sigma: K \rightarrow \mathbf{C}$ is injective, it follows that $-x u^{-1}$ is a cube root of unity in K. Therefore our assumption on R implies that $-x u^{-1} \in R$; hence

$$
x=(-x u)^{-1} \cdot(-u) \in R
$$

(1.4) Proposition. If d is a usable bound for F, then R is Euclidean for the norm.

Proof. Let $x \in K$ be arbitrary; we have to exhibit an element $y \in R$ for which $N(x-y)<1$. Using (1.1) we reduce to the case $x \in F$. Then $\mu(x) \leqslant d$, since d is a bound for F. If the inequality is strict, then $N(x)<1$ by (1.2), and we can take $y=0$. If the equality sign holds, then $\mu(x)=\mu(x-u)=d$ for some root of unity $u \in R$, since d is usable. We get

$$
\begin{gathered}
N(x)^{2} \leqslant(\mu(x) / d)^{d}=1, \\
N(x-u)^{2} \leqslant(\mu(x-u) / d)^{d}=1 .
\end{gathered}
$$

If at least one strict inequality holds, then we can take $y=0$ or $y=u$. If both equality signs hold, then

$$
|\sigma(x)|^{2}=|\tau(x)|^{2}, \quad|\sigma(x-u)|^{2}=|\tau(x-u)|^{2}
$$

for all $\sigma, \tau: K \rightarrow \mathbf{C}$, and since

$$
\begin{aligned}
& \prod_{\sigma}|\sigma(x)|^{2}=N(x)^{2}=1 \\
& \prod_{\sigma}|\sigma(x-u)|^{2}=N(x-u)^{2}=1
\end{aligned}
$$

it follows that $|\sigma(x)|^{2}=|\sigma(x-u)|^{2}=1$ for all σ. But then (1.3) asserts $x \in R$, contradicting $x \in F$ since $x \neq 0$.

2. Cyclotomic fields

In the case when $K=\mathbb{Q}\left(\zeta_{m}\right)$ and $R=\mathbb{Z}\left[\zeta_{m}\right]$ for some integer $m \geqslant 1$, we write μ_{m}, F_{m} and c_{m} instead of μ, F and c, respectively. The function $\operatorname{Tr}_{m}: \mathbf{Q}\left(\zeta_{m}\right)_{\mathbf{R}} \rightarrow \mathbf{R}$ denotes the natural extension of the trace $\mathbf{Q}\left(\zeta_{m}\right) \rightarrow \mathbf{Q}$. The field automorphism of $\mathbf{Q}\left(\zeta_{m}\right)$ which sends ζ_{m} to $\zeta_{m}{ }^{-1}$ extends naturally to an \mathbf{R}-algebra automorphism of $\mathbf{Q}\left(\zeta_{m}\right)_{\mathbf{R}}$, which is called complex conjugation and denoted by an overhead bar. For $x \in \mathbf{Q}\left(\zeta_{m}\right)_{\mathbf{R}}$, we have

$$
\begin{equation*}
\mu_{m}(x)=\operatorname{Tr}_{m}(x \bar{x}) \tag{2.1}
\end{equation*}
$$

Note that a similar formula holds for arbitrary K, if complex conjugation is suitably defined.
(2.2) Proposition. Let n be a positive divisor of m, and

$$
e=\left[\mathbf{Q}\left(\zeta_{m}\right): \mathbf{Q}\left(\zeta_{n}\right)\right]=\phi(m) / \phi(n)
$$

Then $c_{m} \leqslant e^{2} . c_{n}$. Moreover, if c^{\prime} is a usable bound for F_{n}, then $e^{2} . c^{\prime}$ is a usable bound for F_{m}.

The proof of (2.2) relies on the relative trace function $\mathbb{Q}\left(\zeta_{m}\right) \rightarrow \mathbf{Q}\left(\zeta_{n}\right)$ and its natural extension $\mathbf{Q}\left(\zeta_{m}\right)_{\mathbf{R}} \rightarrow \mathbf{Q}\left(\zeta_{n}\right)_{\mathbf{R}}$, notation: Tr. This is a $\mathbf{Q}\left(\zeta_{n}\right)_{\mathbf{R}}$-linear map, given by

$$
\operatorname{Tr}(x)=\sum_{\sigma \in G} \sigma(x), \text { for } x \in \mathbf{Q}\left(\zeta_{m}\right)_{\mathbb{R}},
$$

where G denotes the Galois group of $\mathbf{Q}\left(\zeta_{m}\right)$ over $\mathbf{Q}\left(\zeta_{n}\right)$, acting naturally on $\mathbf{Q}\left(\zeta_{m}\right)_{\mathbf{R}}$. We have $\operatorname{Tr}_{m}=\operatorname{Tr}_{n} \circ \mathrm{Tr}$, and one easily proves that Tr commutes with complex conjugation.
(2.3) Lemma. Let $x \in \mathbf{Q}\left(\zeta_{m}\right)_{\mathbf{R}}$ and $y \in \mathbf{Q}\left(\zeta_{n}\right)_{\mathbf{R}}$. Then

$$
\mu_{m}(x)-\mu_{m}(x-y)=e\left(\mu_{n}\left(\frac{1}{e} \operatorname{Tr}(x)\right)-\mu_{n}\left(\frac{1}{e} \operatorname{Tr}(x)-y\right)\right) .
$$

Proof. Using (2.1), we find:

$$
\begin{aligned}
e\left(\mu_{n}\right. & \left.\left(\frac{1}{e} \operatorname{Tr}(x)\right)-\mu_{n}\left(\frac{1}{e} \operatorname{Tr}(x)-y\right)\right) \\
& =e \cdot \operatorname{Tr}_{n}\left(\frac{1}{e} \operatorname{Tr}(x) \bar{y}+\frac{1}{e} \operatorname{Tr}(\bar{x}) y-y \bar{y}\right) \\
& =\operatorname{Tr}_{n}(\operatorname{Tr}(x) \bar{y}+\operatorname{Tr}(\bar{x}) y-e \cdot y \bar{y}) \\
& =\operatorname{Tr}_{n}(\operatorname{Tr}(x \bar{y})+\operatorname{Tr}(\bar{x} y)-\operatorname{Tr}(y \bar{y})) \\
& =\operatorname{Tr}_{m}(x \bar{y}+\bar{x} y-y \bar{y}) \\
& =\mu_{m}(x)-\mu_{m}(x-y) .
\end{aligned}
$$

(2.4) Lemma. For $x \in \mathbf{Q}\left(\zeta_{m}\right)_{\mathbf{R}}$, we have

$$
\mu_{m}(x)=\frac{1}{m} \sum_{j=1}^{m} \mu_{n}\left(\operatorname{Tr}\left(x \zeta_{m}^{j}\right)\right)
$$

Proof. In the computation below \sum_{σ} and \sum_{τ} refer to summations over G.

$$
\begin{aligned}
\sum_{j=1}^{m} \mu_{n}\left(\operatorname{Tr}\left(x \zeta_{m}^{j}\right)\right) & =\sum_{j=1}^{m} \mu_{n}\left(\sum_{\sigma} \sigma\left(x \zeta_{m}{ }^{j}\right)\right) \\
& =\operatorname{Tr}_{n}\left(\sum_{j=1}^{m} \sum_{\sigma} \sum_{\tau} \sigma(x) \sigma\left(\zeta_{m}^{j}\right) \tau(\bar{x}) \tau\left(\zeta_{m}{ }^{-j}\right)\right) \\
& =\operatorname{Tr}_{n}\left(\sum_{\sigma} \sum_{\tau} \sigma(x) \tau(\bar{x})\left(\sum_{j=1}^{m}\left(\sigma\left(\zeta_{m}\right) \tau\left(\zeta_{m}\right)^{-1}\right)^{j}\right)\right)
\end{aligned}
$$

For $\sigma, \tau \in G$, let $\zeta_{\sigma, \tau}$ denote the m-th root of unity $\sigma\left(\zeta_{m}\right) \tau\left(\zeta_{m}\right)^{-1}$. Then $\zeta_{\sigma, \tau}=1$ if and only if $\sigma=\tau$, and

$$
\begin{aligned}
\sum_{j=1}^{m} \zeta_{\sigma, \tau}^{j} & =0 \quad \text { if } \quad \zeta_{\sigma, \tau} \neq 1 \\
& =m \quad \text { if } \quad \zeta_{\sigma, \tau}=1
\end{aligned}
$$

Hence the above expression becomes

$$
\operatorname{Tr}_{n}\left(\sum_{\sigma} \sigma(x) \sigma(\bar{x}) m\right)=m \cdot \operatorname{Tr}_{n}(\operatorname{Tr}(x \bar{x}))=m \cdot \operatorname{Tr}_{m}(x \bar{x})=m \cdot \mu_{m}(x)
$$

This proves (2.4).
Proof of (2.2). Let $x \in F_{m}$; we have to prove $\mu_{m}(x) \leqslant e^{2} . c_{n}$. Applying (2.3) with $y \in \mathbf{Z}\left[\zeta_{n}\right]$ we find that $x \in F_{m}$ implies $(1 / e) \operatorname{Tr}(x) \in F_{n}$. Since also $x \zeta_{m}{ }^{j}$ belongs to F_{m}, for $j \in \mathbb{Z}$, we have in the same way $(1 / e) \operatorname{Tr}\left(x \zeta_{m}{ }^{j}\right) \in F_{n}$. Therefore

$$
\mu_{n}\left(\operatorname{Tr}\left(x \zeta_{m}^{j}\right)\right)=e^{2} \cdot \mu_{n}\left(\frac{1}{e} \operatorname{Tr}\left(x \zeta_{m}^{j}\right)\right) \leqslant e^{2} \cdot c_{n}
$$

for all $j \in \mathbf{Z}$, and (2.4) implies that $\mu_{m}(x) \leqslant e^{2} . c_{n}$. This proves that $c_{m} \leqslant e^{2} \cdot c_{n}$. Next assume that c^{\prime} is a usable bound for F_{n}, and let $x \in F_{m} \cap \mathbf{Q}\left(\zeta_{m}\right)$ satisfy $\mu_{m}(x)=e^{2} . c^{\prime}$. Then the above reasoning implies that $c^{\prime}=c_{n}$ and

$$
\mu_{n}\left(\frac{1}{e} \operatorname{Tr}\left(x \zeta_{m}^{j}\right)\right)=c_{n}=c^{\prime} \quad \text { for all } j \in \mathbf{Z}
$$

Taking $j=0$ we find that $(1 / e) \operatorname{Tr}(x)$ is an element of $F_{n} \cap \mathbf{Q}\left(\zeta_{n}\right)$ for which

$$
\mu_{n}\left(\frac{1}{e} \operatorname{Tr}(x)\right)=c^{\prime}
$$

Since c^{\prime} is a usable bound for F_{n}, there is a root of unity $u \in \mathbf{Z}\left[\zeta_{n}\right]$ such that

$$
\mu_{n}\left(\frac{1}{e} \operatorname{Tr}(x)-u\right)=c^{\prime}
$$

Applying (2.3) with $y=u$ we get $\mu_{m}(x-u)=\mu_{m}(x)=e^{2} . c^{\prime}$, which proves that $e^{2} . c^{\prime}$ is a usable bound for F_{m}.

Without proof we remark that the equality sign holds in (2.2) if m and n are divisible by the same primes.

Since $c_{1}=\frac{1}{4}$ is a usable bound for F_{1}, we conclude from (2.2) that $\frac{1}{4} \phi(m)^{2}$ is a usable bound for F_{m}, for any m. If $\phi(m) \leqslant 4$, then it follows that $\phi(m)$ is a usable
bound for F_{m}, and that $\mathbb{Z}\left[\zeta_{m}\right]$ is Euclidean for the norm, by (1.4). This gives us exactly the cases $m=1,3,4,5,8,12$ which were already known. In $\S 4$ we will obtain better results by applying (2.2) to a prime divisor n of m.

3. A computation in linear algebra

Let $n \geqslant 2$ be an integer, and let V be an $(n-1)$-dimensional \mathbf{R}-vector space with generators $e_{i}, 1 \leqslant i \leqslant n$, subject only to the relation $\sum_{i=1}^{n} e_{i}=0$. The positive definite quadratic form q on V is defined by

$$
q(x)=\sum_{1 \leqslant i<j \leqslant n}\left(x_{i}-x_{j}\right)^{2}, \text { for } x=\sum_{i=1}^{n} x_{i} e_{i} \in V
$$

Denote by (,):V×V $\rightarrow \mathbf{R}$ the symmetric bilinear form induced by q :

$$
(x, y)=\frac{1}{2}(q(x+y)-q(x)-q(y))
$$

Then

$$
\begin{array}{lll}
(x, x)=q(x), & \text { for } & x \in V \\
\left(e_{i}, e_{i}\right)=n-1, & \text { for } & 1 \leqslant i \leqslant n, \\
\left(e_{i}, e_{j}\right)=-1, & \text { for } & 1 \leqslant i<j \leqslant n
\end{array}
$$

The subgroup L of V generated by $\left\{e_{i} \mid 1 \leqslant i \leqslant n\right\}$ is a lattice of rank $n-1$ in V. The fundamental domain

$$
\begin{aligned}
E & =\{x \in V \mid q(x) \leqslant q(x-y) \text { for all } y \in L\} \\
& =\left\{x \in V \left\lvert\,(x, y) \leqslant \frac{1}{2} q(y)\right. \text { for all } y \in L\right\}
\end{aligned}
$$

is a compact subset of V, and we put

$$
b=\max \{q(x) \mid x \in E\} .
$$

(3.1) Proposition. The set of points $x \in E$ for which $q(x)=b$ is given by

$$
\begin{equation*}
\left\{\left.\frac{1}{n} \sum_{i=1}^{n} i e_{\sigma(i)} \right\rvert\, \sigma \text { is a permutation of }\{1,2, \ldots, n\}\right\} \tag{3.2}
\end{equation*}
$$

Moreover,

$$
b=\frac{n^{2}-1}{12}
$$

This proposition is proved after a series of lemmas. We put $N=\{1,2, \ldots, n\}$. For $A \subset N$, let $e_{A}=\sum_{i \in A} e_{i}$. We call A proper if $\varnothing \neq A \neq N$.
(3.3) Lemma. Let $y \in L$ be such that $y \neq e_{A}$ for all $A \subset N$. Then there is an element $z= \pm e_{j} \in L$ such that

$$
q(z)+q(y-z)<q(y) .
$$

Proof. Let $y=\sum_{i=1}^{n} m_{i} e_{i}$ with $m_{i} \in \mathbf{Z}$. Using $\sum_{i=1}^{n} e_{i}=0$ we may assume that $0 \leqslant \sum_{i=1}^{n} m_{i} \leqslant n-1$. For $z= \pm e_{j}$ we have

$$
\begin{aligned}
\frac{1}{2}(q(y)-q(z)-q(y-z)) & =(y, z)-(z, z) \\
& = \pm\left(n m_{j}-\sum_{i=1}^{n} m_{i}\right)-(n-1)
\end{aligned}
$$

If this is >0 for some j and some choice of the sign we are done. Therefore suppose it is $\leqslant 0$ for all j and for both signs. Then for $1 \leqslant j \leqslant n$ we have

$$
\begin{aligned}
& n m_{j} \leqslant\left(\sum_{i=1}^{n} m_{i}\right)+(n-1) \leqslant 2 n-2<2 n \\
& n m_{j} \geqslant\left(\sum_{i=1}^{n} m_{i}\right)-(n-1) \geqslant-n+1>-n
\end{aligned}
$$

so $m_{j} \in\{0,1\}$ for all j. Hence $y=e_{A}$ for some $A \subset N$, contradicting our assumption.
(3.4) Lemma. Let $x \in V$. Then $x \in E$ if and only if $\left(x, e_{A}\right) \leqslant \frac{1}{2} q\left(e_{A}\right)$ for all $A \subset N$.

Proof. The " only if" part is clear. "If": we know that

$$
\left(x, e_{A}\right) \leqslant \frac{1}{2} q\left(e_{A}\right) \quad \text { for all } \quad A \subset N
$$

and we have to prove that

$$
(x, y) \leqslant \frac{1}{2} q(y) \text { for all } y \in L
$$

This is done by an obvious induction on $q(y)$, using (3.3).
(3.5) Lemma. Let $x_{0} \in E$ satisfy $q\left(x_{0}\right)=b$. Then there are $n-1$ different proper subsets $A(i) \subset N$, for $1 \leqslant i \leqslant n-1$, such that x_{0} is the unique solution of the system of linear equations

$$
\begin{equation*}
\left(x, e_{A(i)}\right)=\frac{1}{2} q\left(e_{A(i)}\right), \quad 1 \leqslant i \leqslant n-1 . \tag{3.6}
\end{equation*}
$$

Proof. Put

$$
S=\left\{A \subset N \left\lvert\,\left(x_{0}, e_{A}\right)=\frac{1}{2} q\left(e_{A}\right)\right.\right\}
$$

then $\left(x_{0}, e_{A}\right)<\frac{1}{2} q\left(e_{A}\right)$ for each $A \subset N, A \notin S$. If the linear span of $\left\{e_{A} \mid A \in S\right\}$ has dimension $n-1$, then there are $n-1$ subsets $A(i) \in S$ such that $\left\{e_{A(i)} \mid 1 \leqslant i \leqslant n-1\right\}$ is linearly independent over \mathbb{R}. Then clearly x_{0} is the unique solution of (3.6), and each $A(i)$ is proper since $e_{A(i)} \neq 0$.

Therefore suppose that the linear span of $\left\{e_{A} \mid A \in S\right\}$ has codimension $\geqslant 1$ in V. Then for some $z \in V, z \neq 0$, we have

$$
\left(z, e_{A}\right)=0 \quad \text { for all } A \in S
$$

Multiplying z by a suitably chosen real number we can achieve that

$$
\begin{align*}
& \left(x_{0}, z\right) \geqslant 0 \tag{3.7}\\
& \left(z, e_{A}\right) \leqslant \frac{1}{2} q\left(e_{A}\right)-\left(x_{0}, e_{A}\right) \quad \text { for all } A \subset N, \quad A \notin S
\end{align*}
$$

Then for all $A \subset N$ we have $\left(x_{0}+z, e_{A}\right) \leqslant \frac{1}{2} q\left(e_{A}\right)$, which implies $x_{0}+z \in E$, by (3.4). But using (3.7) we find that

$$
q\left(x_{0}+z\right) \geqslant q\left(x_{0}\right)+q(z)>q\left(x_{0}\right)
$$

which contradicts our assumption $q\left(x_{0}\right)=b=\max \{q(x) \mid x \in E\}$.
(3.8) Lemma. Let $x_{0} \in E$, and let $A, B \subset N$ be such that

$$
\left(x_{0}, e_{A}\right)=\frac{1}{2} q\left(e_{A}\right), \quad\left(x_{0}, e_{B}\right)=\frac{1}{2} q\left(e_{B}\right) .
$$

Then $A \subset B$ or $B \subset A$.

Proof. Put $C=A-B$ and $D=B-A$. If $C=\varnothing$ or $D=\varnothing$ we are done, so suppose $C \neq \varnothing \neq D$. Then $C \cap D=\varnothing$ implies

$$
\left(e_{A \cap B}, e_{A \cup B}\right)-\left(e_{A}, e_{B}\right)=-\left(e_{C}, e_{D}\right)=|C| \cdot|D|>0
$$

Using $e_{A \cap B}+e_{A \cup B}=e_{A}+e_{B}$ we find that

$$
\begin{aligned}
\left(x_{0}, e_{A \cap B}\right)+\left(x_{0}, e_{A \cup B}\right) & =\left(x_{0}, e_{A}\right)+\left(x_{0}, e_{B}\right) \\
& =\frac{1}{2} q\left(e_{A}\right)+\frac{1}{2} q\left(e_{B}\right) \\
& =\frac{1}{2} q\left(e_{A}+e_{B}\right)-\left(e_{A}, e_{B}\right) \\
& >\frac{1}{2} q\left(e_{A \cap B}+e_{A \cup B}\right)-\left(e_{A \cap B}, e_{A \cup B}\right) \\
& =\frac{1}{2} q\left(e_{A \cap B}\right)+\frac{1}{2} q\left(e_{A \cup B}\right) .
\end{aligned}
$$

Hence for $X=A \cap B$ or for $X=A \cup B$ we have $\left(x_{0}, e_{X}\right)>\frac{1}{2} q\left(e_{X}\right)$, contradicting $x_{0} \in E$.

Proof of (3.1). Let $x_{0} \in E$ satisfy $q\left(x_{0}\right)=b$, and let $\{A(i) \mid 1 \leqslant i \leqslant n-1\}$ be a system of $n-1$ proper subsets of N as in (3.5). By (3.8), this system is linearly ordered by inclusion. This is only possible if after a suitable renumbering of the vectors e_{i} and the sets $A(i)$ we have

$$
A(i)=\{i+1, i+2, \ldots, n\}, \text { for } 1 \leqslant i \leqslant n-1
$$

By (3.5) we have

$$
\sum_{j=i+1}^{n}\left(x_{0}, e_{j}\right)=\frac{1}{2} q\left(e_{A(i)}\right)=\frac{1}{2} i(n-i), \quad \text { for } \quad 1 \leqslant i \leqslant n-1 \text {. }
$$

Write $x_{0}=\sum_{j=1}^{n} x_{j} e_{j}$ in such a manner that $\sum_{j=1}^{n} x_{j}=0$. Then $\left(x_{0}, e_{j}\right)=n x_{j}$; so our system becomes

$$
\sum_{j=i+1}^{n} n x_{j}=\frac{1}{2} i(n-i), \quad \text { for } \quad 0 \leqslant i \leqslant n-1 .
$$

This implies

$$
\begin{gathered}
n x_{i}=i-\frac{1}{2}(n+1), \quad \text { for } \quad 1 \leqslant i \leqslant n, \\
x_{0}=\frac{1}{n} \sum_{i=1}^{n} i e_{i} .
\end{gathered}
$$

We renumbered the e_{i} once; so we conclude that x_{0} is in the set (3.2). Since at least one $x_{0} \in E$ satisfies $q\left(x_{0}\right)=b$, it follows for reasons of symmetry that conversely every element x of (3.2) satisfies $x \in E$ and $q(x)=b$. Finally,

$$
b=\sum_{1 \leqslant i<j \leqslant n}(i-j)^{2} / n^{2}=\left(n^{2}-1\right) / 12 .
$$

This proves (3.1).

4. Proof of the theorem

(4.1) Proposition. Let n be a prime number. Then $c_{n}=\left(n^{2}-1\right) / 12$, and this is a usable bound for F_{n}.

Proof. We apply the results of $\S 3$. The \mathbf{R}-vector space $\mathbf{Q}\left(\zeta_{n}\right)_{\mathbb{R}}$ is generated by n elements $\zeta_{n}{ }^{i}, 1 \leqslant i \leqslant n$, subject only to the relation $\sum_{i=1}^{n} \zeta_{n}{ }^{i}=0$. For real numbers
$x_{i}, 1 \leqslant i \leqslant n$, we have

$$
\begin{aligned}
\mu_{n}\left(\sum_{i=1}^{n} x_{i} \zeta_{n}{ }^{i}\right) & =\operatorname{Tr}_{n}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \zeta_{n}{ }^{i-j}\right) \\
& =n \cdot \sum_{i=1}^{n} x_{i}{ }^{2}-\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \\
& =\sum_{1 \leqslant i<j \leqslant n}\left(x_{i}-x_{j}\right)^{2} .
\end{aligned}
$$

Therefore there is an isomorphism of quadratic spaces $\left(\mathbf{Q}\left(\zeta_{n}\right)_{\mathbf{R}}, \mu_{n}\right) \cong(V, q)$ which maps $\zeta_{n}{ }^{i}$ to e_{i}, for $1 \leqslant i \leqslant n$. Clearly, $\mathbb{Z}\left[\zeta_{n}\right]$ corresponds to L, so F_{n} corresponds to E and $c_{n}=b$. Translating (3.1) we find: $c_{n}=\left(n^{2}-1\right) / 12$, and the set of $x \in F_{n}$ for which $\mu_{n}(x)=c_{n}$ is given by

$$
\begin{equation*}
\left\{\left.\frac{1}{n} \sum_{i=1}^{n} i \zeta_{n}^{\sigma(i)} \right\rvert\, \sigma \text { is a permutation of }\{1,2, \ldots, n\}\right\} \tag{4.2}
\end{equation*}
$$

Let x be in this set. Putting $\sigma(0)=\sigma(n)$ we have

$$
x-\zeta_{n}^{\sigma(n)}=\frac{1}{n} \sum_{i=0}^{n-1} i \zeta_{n}^{\sigma(i)}=\frac{1}{n} \sum_{j=1}^{n} j \zeta_{n}^{\sigma(j-1)} .
$$

This element belongs to the set (4.2), so $\mu_{n}\left(x-\zeta_{n}{ }^{\sigma(n)}\right)=c_{n}$, which proves usability of c_{n}.

We turn to the proof of the theorem. The cases $m=1,3,4,5,8,12$ have been dealt with in $\S 2$. Further, (2.2) and (4.1) imply that

$$
\begin{aligned}
c_{7} & =4<6=\phi(7) \\
c_{9} & \leqslant 3^{2} \cdot c_{3}=6=\phi(9) \\
c_{11} & =10=\phi(11) \\
c_{15} & \leqslant 2^{2} \cdot c_{5}=8=\phi(15) \\
c_{20} & \leqslant 2^{2} \cdot c_{5}=8=\phi(20),
\end{aligned}
$$

and in each of these cases $\phi(m)$ is a usable bound for F_{m}. Application of (1.4) concludes the proof.

Without proof we remark that our method does not apply to other fully cyclotomic fields:
(4.3) Proposition. Let $m \geqslant 1$ be an integer for which $c_{m} \leqslant \phi(m)$. Then $\phi(m) \leqslant 10$ and $m \neq 16, m \neq 24$.

References

1. J. W. S. Cassels, "On a conjecture of R. M. Robinson about sums of roots of unity ", J. Reine Angew. Math., 238 (1969), 112-131.
2. C. F. Gauss, Werke, Zweiter Band (Göttingen, 1876).
3. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers (Oxford, 1938).
4. R. B. Lakein, " Euclid's algorithm in complex quartic fields", Acta Arith., 20 (1972), 393-400.
5. E. Landau, Vorlesungen über Zahlentheorie, Band 3 (Leipzig, 1927).
6. J. M. Masley, On the class number of cyclotomic ficlds (thesis, Princeton University, 1972).
7. " On cyclotomic fields Euclidean for the norm map", Notices Amer. Math. Soc., 19 (1972), A-813 (abstract 700-A3).
8. J. Ouspensky, "Note sur les nombres entiers dépendant d'une racine cinquième de l'unité ", Math. Ann., 66 (1909), 109-112.
9. P. J. Weinberger, " On Euclidean rings of algebraic integers ", Proc. Symp. Pure Math., 24 (Analytic Number Theory), 321-332 (Amer. Math. Soc., 1973).

Mathematisch Instituut,
Universiteit van Amsterdam,
Amsterdam, The Netherlands.

