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On Artin's conjecture and Euclid's algorithm in global fields.

H.W. Lenstra, Jr.

Introduction.

A famous counjecture of Artin (1927) [3, 9] asserts that for every non-
zero rational number t the set of prime numbers q for which t 1is a
primitive root possesses a density inside the set of all prime numbers. The
original conjecture included a formula for this density, but calculatioms
by D.H. Lehmer [14] indicated that this formula must be wrong. A corrected
version of the conjecture (31, intr., sec. 23; 2, intr.] was proved by Hooley
(11, 12] under the assumption of certaim generalized Riemann hypotheses.

In this paper we are concerned with a generalized form of Artin's
conjecture, which recemktly arose in comnection with Euclid’'s algorithm [23,
30, 19] and the construction of division chaims [5, 201 in global fields.
Our main contribution is a necessary and sufficient condition for the
conjectural density of the set of primes in question to be non—zero. As an
application of this result we prove a theorem about the existence of a
euclidean algorithm in rings of arithmetic type. For an application to
arithmetic codes we refer to [!5].

We discuss the various ways in which Artin's conjecture has been
generalized.

First, instead of the rational numbers one can consider an arbitrary
global field K, as in [3]. Prime numbers are then replaced by non-
archimedean prime divisors p of K.

Secondly, a congruence condition can be imposed on these primes [30,
191. This is even of interest in the case K = @: for example, among all
primes for which 27 1is a primitive root there are no primes which are

-1 mod 4, while, conjecturally, there are infinitely many which are
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In the applications of the conjecture it is obviously relevant to know
under which conditions the conjectural density vanishes. This problem is
less trivial than in the case of Artin's original conjecture, since our
formula is an infinite sum rather than an infinite product. Our solution
is stated in section 4, and the proof occupies sections 5, 6 and 7.

In section 8 we mention various problems to which our results apply.

The application to Euclid's algorithm is considered in detail in sectiom 9.



1. Notations.

In this paper K 1is a global field, i.e. a finite extension of the
rational number field @ or a function field in one variable over a finite

field. In the first case we simply call K a number field, we denote by

Ay its discriminant over @, and we put p = 1. In the second case, K

is called a function field, and p denotes its characteristic.

Throughout this paper we use the letters m, n, d, possibly with
subscripts, to denote squarefree integers > 0 which are relatively prime
to p, also at places where this is not explicitly required. Similarly, by
% we always mean a prime number different from p. The functions of
Moebius and Euler are denoted by u and ¢, respectively; qlr means
that q divides r, and qfr has the opposite meaning. The number of
elements of a set S is denoted by #8S.

Let R be a ring. Then R* is its group of units, rR*?  ig the
subgroup of q-th powers, and if t ¢ R¥ then <t> is the subgroup generated
by t. The ring of integers is indicated by £, and Fq is a finite field
of gq elements.

The restriction of an automorphism o of a field L to a subfield
L' of L is denoted by olL'. If L/L' 1is a Galois extension, then
Gal(L/L') 1is its Galois group, and id, is the identity automorphism of L,

L

The composite of two fields Ll and L2 is denoted by L1~L2. By Cq we

mean a primitive gq-th root of unity.
A prime p of K 1is a non-archimedean prime divisor of K. The

associated normalized exponential valuation is denoted by orqB, and Eﬁ

is the residue class field at p. We put Np = #Eﬁ.

If S 1is a set of primes of K, then the lower and upper Dirichlet

densities d_(S) and d_(S) are defined by
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d (S) = liminf (& Np) S)/(x_ (wp)~S
_(8) sl—imfilo (BES (Np) ")/ ( p (Np) )
d,(8) = Limsup (¥, o (Np)™*)/(x, (p)™®)

s> 140
(the sums in the denominators are over all primes p of K). Generally,
0<d (S) <d.(S) <1. If d_(S) =d,(S) then this common value is denoted

by d(S) and called the Dirichlet density of S. It may be remarked that

all our results remain valid if, in the number field case, we replace

Dirichlet density by natural density. For the function field case this is

not true [3].

If p is a prime of K and L/K is Galois, then the Frobenius symbol

(p, L/K) denotes the set of those ¢ ¢ Gal(L/K) for which there is a prime

q of L extending p such that oq = q and oo = aNE for all a € ?i,

where o is the automorphism of f& induced by o. This is a non-empty

subset of Gal(L/K), and if p is not ramified in L/K then it is a
conjugacy class.

The notations F, C, W, r, k, M, ¥, q(n), Ln, Cn’ a, a are introduced

in section 2, and for "GRH" we refer to sections 3 and 9.



2. The generalized conjecture.

Let there be given a global field K, a finite Galois extension F
of K, a subset C c Gal(F/K) which is a union of conjugacy classes, a
finitely generated subgroup W c K¥ of vrank r 2 1 modulo its torsion

subgroup, and an integer k > 0 which is relatively prime to p. We

il

are interested in the set M = M(K, F, C, W, k) of primes p of K

which satisfy the following conditions:
(p> F/R) < C,
orqg(w) = for all we W,

if ¢: W~ K* 1is the natural map, then the index of (W) in

®* divides k.
b

Notice that we have excluded the case W is finite. In this case it is
easily seen that also M is finite.

The conjecture is that M has a density. In order to state the
formula for the conjectural deunsity we introduce some new notation. For a

prime number & # p let ¢{(2) be the smallest power of ¢ mnot dividing

k and let ]L'Q = R{tr w]/q(z)) be the field obtained by adjoining all

q(2)’
q(2)-th roots of elements of W to K. Notice that q(2) = 2 for all

but finitely many £, and that LR is a finite Galois extension of K,

Similarly, if n 1is a squarefree integer > 0, relatively prime to p,

BTN

then we define q(n) = 1

q(2), Ln = K(Z;q(n) s Clearly, Ln

%in

igs the composite of the fields L 2]ln. Further, we define Cn c

2?
Gal(F-L_/K) by

@]
i

{o € Gal(FoLn/K): (o]F) ¢ C, and (O!LQ) z idL for all %|n}
2

and we put

©
i

# # ° S # L] :
Cn/ Gal(F Ln/K) Cn/[F Ln.K].



If n divides m, then

%
o
v
o

(2.1) a

It follows that the sequence (an) has a limit, if n ranges over all
squarefree integers > 0 prime to p, ordered by divisibility. Let
(2.2) a = 1lim a_.

n

(2.3) Conjecture. The density d(M) exists and is equal to a.

We quickly review the heuristic reasoning underlying the conjecture,

and will at the same time prove half of it:
(2.4) d+(M) < a.
(2.5) Lemma. Let p be a prime of K which satisfies

(2.6) orqﬂ(w) = 0 for all we W,

(2.7) ord£F2°AK) =0 if K is a number field.

Then the index of (W) in f;A divides k if and only if for all prime

numbers £ # p we have

(2.8) (ps L,/K) # [isz}°

Notice that only finitely many p are excluded by (2.6) and (2.7).
Some condition on p 1is necessary: -7 is a primitive root mod 2, but
Proof of (2.5). "If". If the index of ¢(W) in ﬁ; does not divide Kk,
then for some prime number £ it is divisible by ¢q(2); notice that the

index is relatively prime to p, since #?E is. That means

2.9 | #1K
(2.9) q(2) | >



2.10 W) « E*q(z).
( ) (W) D

But, since p satisfies ordp(z'l) = 0 and ordEFw) = 0 for all w e W,
by (2.9) and (2.6), these conditions simply express that p splits

l/q(ﬁ)) -1
»Q,,

completely in K(Cq(l)’ W so (p, LQ/K) = {idL }, contra-

')
dicting (2.8).

"Only if". Let the index of (W) in g; divide k, and let & be
a prime number =% p. If oréR(z-l) >0 then K 1is a number field, and

the presence of the #~-th roots of unity in L implies, by condition (2.7),

L
that p ramifies in LQ/K, so (p, LQ/K) # {isz}. Hence we may assume
that oréR(z-l) = 0. Then if p splits completely in Lz/K, we
necessarily have (2.9) and (2.10) (again using (2.6)), contradicting that
the index of (W) in ﬁﬁ, divides k. We conclude that p does not

split completely in L /K, so (p, LZ/K) # {id; }. This proves (2.5).
£

Now let Mn be the set of those primes p of K for which

(p, F/K) cC
(p» LQ/K) = {id, } for all &|n.
L
Clearly

(2.11) Mn > Mm if njim,

and lemma (2.5) implies that M differs by at most a finite set from the
"limit" nn Mn' We calculate the density of Mh. Formal properties of the

Frobenius symbol imply that Mn differs by at most a finite set from
(2.12) {p: (p, F-Ln/K) c Cn}
so Tchebotarev's theorem [13, ch. VIII, sec. 4] implies that

d(Mn) = #Cn/#Gal(F-Ln/K) = a_.
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Thus we see that conjecture (2.3) is equivalent to the assertion that

(2.13) d(nn Mn) = 1lim d(Mn).
ol

A trivial example shows that (2.13) is certainly not a generality following

from (2.11): if Mn consists of all primes except the first n ones, in

[l
=

some numbering of the primes, then d(Mh) = ] for all n, and nn Mn
so d(nn Mn) = 0. Weinberger [29] proved that (2.13) even can fail in a
situation closely resembling ours.

In any case, it is true that

d, () = d.(n M) <d M) =dl) = a

for all n, which, in the limit, gives (2.4).

(2.14) Proposition. We have

_ u(d)c(d)
2, = X4n [F-L:K]

where

c(d) = #(C n Gal(F/F n Ld)).

Proof. For d{n, put

D, = {0 € Gal(F+L_/K): (olF) ¢ €, and (olL ) = id. for all g|d},
d n [ L

The principle of inclusion and exclusion [221 gives

—4 0#
#C, = Zqjp #(d)-#Dy.

To count Dd’ notice that

Dy ={oe Gal(F-Ln/Ld): (g]F) € C}.
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For every O ¢ Dd’ we clearly have (olF) ¢ C n Gal(F/F n Ld). Conversely,
if 1 e Cn Gal(F/F n Ld), then 1t has precisely one extension to an
element of Gal(F-Ld/Ld), which in turn can be extended in [F-Ln:F-Ld]

ways to an element ¢ of D,. We conclude that

d
#Dd = [F'Ln:F'Ld]°C(d)
so
#
8y T fngzeﬁj = Zdln %é%%ié%%'

This proves (2.14).

Remark. It follows that

u(n)c(n)
n [F-Ln:K]

(2.15) a=7X
since the sum is absolutely convergent, as can be proved by the methods of
sections 5 and 6. The formula leaves something to be desired, since it does
not even enable us to answer the question of when a = 0. We return to

this question in section 4. It will turn out that the definition of a is

a handier tool than formula (2.15).
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3. The status of the conjecture.

(3.1) Theorem., If K is a function field, then conjecture (2.3) is true. If

K is a number field, then conjecture (2.3) is true if for every squarefree
integer n > 0 the g~function of Ln satisfies the generalized Riemann

hypothesis.

We use "GRH" as an abbreviation for the Riemann hypotheses mentioned in
(3.1). In the function field case "GRH" refers to an empty set of hypotheses.
We refer to [27, 12] for a method to find, in the number field case, a

smaller set of Riemann hypotheses which is also sufficient for the validity

of (2.3).

Proof of (3.1). First let K be a function field. In this case Bilharz [3]
proved the original conjecture ~ i.e., F =K, C = {idK}, W infinite
cyclic, k = I - modulo certain Riemann hypotheses for function fields,
which were later shown by Weil to be correct [28, 4]. From what Bilharz
actually proved [3, p. 485, italicized] it is not hard to derive the more
general conjecture. Compare also the details given by Queen [19]. This
finishes our discussion of the function field case.

Next let K be a number field, and assume GRH. Then, according to
Cooke and Weinberger [5, theorem 1.1], conjecture (2.3) is true at least in
the case F =K, C = {idK}. Thus, to prove (3.1) it suffices to prove the

following lemma.

(3.2) Lemma., If (2.3) is true in the case F =K, C = {idK}, then it is

generally true.

Proof. Let M = M(X, F, C, W, k) be as in section 2, and put M’
M(K, K, {id }, W, k). We define a as in (2.2), and a' denotes the

corresponding quantity for M'. We must prove: if d(M') exists and
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equals a', then d(M) exists and equals a.
To see this, let C" be the complement of C in Gal(F/K), put
M" = M(K, F, C", W, k), and let a" correspond to M". Then one easily

sees that

Also, M' differs by only a finite set from the disjoint union M u M",

SO
d_(M') < d_@D + 4 M),

But, by assumption, d_(M') = d(M') = a’, and from (2.4) it follows that
d+(M") < a", We conclude that d_(M) = a' - a" = a, and combined with

(2.4) this gives d(M) = a, as required. This proves (3.2) and (3.1).
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4. The non-vanishing of the density.

(4.1) Theorem. Let h be the product of those prime numbers & # p for

which W ¢ K*qu)° Then the following assertioms are equivalent:

(4.2) a z 03

(4.3) a = 0 for all ng

(4.4) there exists o ¢ Gal(F(gh)/K) such that
(o|F) € C,

(o)L ) = id for every £ with L
2 LQ,

. c F(Ch),
Remark. It is not hard to show that h is finite, cf. (5.1}, (6.1).
The implication (4.2) = (4.3) is trivial, since a_ 2a=20 for all n,

by (2.1). The converse
(4.5) if a # 0 for all n then a = 0

will be proved in sections 5 and 6.

Notice that the existence of o in (4.4) is equivalent to the non-
vanishing of a_, where m is the product of those & for which
L, < F(ch); again, m 1is finite. This remark makes (4.3) = (4.4) obvious,

and the remaining implication (4.4) = (4.3) is proved in section 7.

(4.6) Theorem. Let h be the product of those prime numbers & # p for

which WC:K*q(z). Then if M 1is infinite, there exists 0 ¢ Gal(F(Ch)/K)

with

(c|F) ¢ C

(Ole) £ 1dL2 for every ¢ with Ll c F(Ch)-

Conversely, if such a o exists and GRH is true, then M is infinite and

aM) > 0.
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Proof. If no such o exists then by (4.1) there exists n with a = 0,

S0 = . Then the set (2.12) is empty, so Mn is finite, and the same

(@]
[=]

is then true for M. Conversely, if such o exists and GRH is true, then
a>0 by (4.1) and d(M) = a by (3.1). Hence, d(M) > 0 and M is

infinite. This proves (4.6).

Thus, modulo GRH, the set M can only have density zevo if it is
finite.

In many applications, W satisfies the condition
4.7 there is no integer q > 1 with W c rx4,

This is true, for example, if W 1is the group of units of an integrally

closed subring of K with infinitely many units.

(4.8) Corollary. If W satisfies (4.7) and GRH is true, them M 1is

infinite if and only if C 1is not contained in U2 Gal(F[LR), the union

ranging over those prime numbers £ # p for which LQ c F,

Proof. Apply (4.6), and notice that h = 1. This proves (4.8).
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5. Proof of (4.5): the number field case.

In this section we assume that K is a number field.

(5.1) Lemma. For all but finitely many prime numbers ¢ the natural map

WW > ke k%Y is injective.

Proof. The group K* is the direct sum of a finite group and a free abelian
group of infinite rank. Further, W c K* is finitely generated. These two
facts easily imply that K*¥*/W is again the direct sum of a finite group

and a free abelian group of infinite rank. So for only finitely many prime
numbers £ the group K*¥/W has g&~torsiom, and for all others the map

w/wt - K*/K*l is injective. This proves (5.1).
(5.2) Lemma. Let & be a prime number satisfying

(5.3) 2 does not divide Z»AK

(5.4)  the map W/W* > K*¥/K¥* is injective.

Then [LQ:K] = q(z)r'¢(q(£)), and the largest abelian subextension of

K c Lg is K(gq(z)).

Proof. Clearly, K(Cq(z)) is z subextension of L , and (5.3) implies that

[K(z )):K] = $(q(2)). To calculate [LQ:K(Cq(z))] we first prove that the

q(e

natural map
L '3
(5.5) W/wW +K(cq(z))*/K(Cq(2))*

is injective.
2 2 x¥ - is
Let we W, w¢ W . Then w ¢ K*¥", by (5.4), so w
irreducible over K. Combining this with [K(Cz):K] = § - 1 we see that
over K, and has a

the splitting field of Xl - w has degree 2(2 - 1)

non—abelian Galois group; here we use ¢ # 2. Since K(Eq(z)) has an
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abelian Galois group, the splitting field of Xz - w 1s not contained in
K . We conclude thar w is no f~th power in K thus
establishing that (5.5) is injective.

An easy inductive argument now shows that the matural map W/Wq(l) >

K(cq(l))*/K(( {p}};q ) is also injecrive, so Kummer theory tells us that

Gal(LQ/K(Cq(ﬁ\}) is canonically isomorphic to the character group W =
Hom(wg<gq(£)>)a Thus i} SRIC (R})’ = H# = q(ﬂ,)r (since W has no

g-torsion, by (5.23}), which proves the first assertion of (5.2). Further,
Gal(LQ/K) is isomorphic to the semi/direct product of W by Gal(K(cq(g))/K),
with the latter grnup acting on W via <Cq(2)>° Again using that & = 2

one finds that the compurator subgroup of Gal(Lz/K) equals W, so

K(Cq(x)) ig the maximal abelian subextension of K ¢ LQ. This proves (5.2).

(5.6) Lemma. Let ¢ bLe a prime number satisfying the following conditions.

A

(5.7) g does not divide Z«AF
(5.8) the map w/wﬁ - K*/K*g is injective,
(5.9) there exists no prime p of K for which oréR(l) >0 and

ordp(w) # 0 for some w ¢ W,

Further, let d be a squarefree integer, not divisible by 2. Then the

fields L2 and Ld«F are linearly disjoint over K.

Proof. Since LK/K is Galois it suffices to prove that LQ n Ld-F = K,

Let N = LQ n LdaFu Then N/K is a solvable Galois extension, so if N z K
then there exists an abelian subextension N'/K, N' c N, N' # K. From

N' < LQ and (5.2) we then have N' - K(gq(z)), which by (5.7) implies that
N'/K is ramified at every prime p lying over 2 (i.e., for which

oréR(z) > 0). On the other hand, N' ¢ Ly°F implies that N'/K can only

ramify at primes p of K for which



._]7...

ord (d} > 0,
2
or ord (w) # 0 for some w e W,
or ordEKAF) > 0,

By (d, &) = 1, (5.9) and (5.7) none of these primes lies over £,

contradicting whot we just proved. This proves (5.6).

Proof of (4.5) ip the mwmber field case. Suppose a # 0 for all n. We

prove that a v 0O,

Let & azod d De as in (5.6). Then (5.6), the definition of Cn’

and (5.2) give

LTy FeR T = TLy:R] ML, FsK]
- 3 L wm m?
#cd2 (LLQQK] D] fc,
(5.10) FLQ:KJ = q(0) 9 (q)) = q(%)r+lﬁ(x - /),

50

1
agq = ag" Ul [LQ:K])°

Now let n be the product of those & which violate at least one of the
conditions (5.7), (5.8), (5.9). Then for any multiple m of n it follows

by induction on the number of prime numbers dividing m/n that

a = a H (1 - ““*l~*~)
m an Llm/n [LK:K]

50 in the limit

1
= og e !w—.,:_...._.._._._.___o
(5.11) a a ﬂﬁin ( Lszl;K])

From (5.10) and r > | it is clear that the infinite product converges and

is non-zero. So a # 0 indeed implies that a # 0, This proves (4.5) if

33

K 1is a number field.
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6. Proof of (4.5): the function field case.

In this section K 1is assumed to be a function field, and we denote

by P the free abelian group

the direct sum ranging over all primes p of K. There is a natural group
homomorphism K* - P mapping x to (ordE‘x))Bf and the kernel of this

map is finite, consisting of the non-zero constants in K.

(6.1) Lemma. For all but finitely many £ the induced map W/W2 + P/LP is

injective.
Proof. Similar to the proof of (5.1). This proves (6.1).
(6.2) Lemma. Let m be such that any &|m satisfies

(6.3) K contains no primitive 2-th root of unity;

(6.4)  W/W* > P/2P is injective.

T ,
Then [Lm.K(c ))] = q(m) , and K(Cq(m)) is the largest totally

q{(m

unramified subextension of K c Lm.

Proof. From (6.4) it follows that the natural map W/W2 > K*/K*z is
injective, for any &|m. Using (6.3), one finds by the argument in the
proof of (5.2) that also w/wz > K(cq(m))*/K(cq(m))*Z is injective. Kummer
theory then implies that [Lm:K(Cq(m))] = #(W/Wq<m)), and by (6.3) this
equals q(m)r.

Let N be the maximal totally unramified'subextension of Kc Lm.
Clearly K(Cq(m)) c N, and if the inclusion holds strictly then N
contains wl/jl for some ALlm and some w e W, w ¢ Wx. By (6.4), we then

have zloréﬂ(w) for some prime p of K, so N/K is ramified at this P
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contradiction. This proves (6.2).

(6.5) Lemma. Let n be the product of those prime numbers % # p which

satisfy at least one of the following conditions:

(6.6) K contains a primitive  2~th root of unity;
6.7) the map W/wl + P/4P 1is not injective;
(6.8) there is a prime p of K which ramifies in F/K, with

ramification index divisible by &.

Further, let m be relatively prime to n. Then we have:

(6.9) FeL 0L FeL N K(cq(m)>

i

il

° ® e ° ra e : .
(6.10) [F»an.K] [F Ln.K] q(n) -[F Ln(gq(m)).F Ln]

(6.11) if m=m ", then

1

(F@Ln n Lm )°(F'Ln n Lm ) = F-L nL.

1 2
Proof. (6.9). The inclusion > is clear. By (6.8), all ramification indices
in the extension K < F»Ln are composed of prime numbers dividing pn, and
all ramification indices in K « Lm are composed of prime numbers dividing
m. Since (pn, m) = I, it follows that FeL 0Ly is totally unramified
. impli - . . This implies the

over K, so (6.2) implies that F L nL < K(cq(m)) p
opposite inclusion.

(6.10). We have:

[F-1. :FoL 1 = [FeL <L :FeL ]
nm e} n m n

i

(1. :F-L, n L ]
m n m

i

[Lm:F-Ln n K(;q(m))] by (6.9)

it

Cl(m)r"[K(Cq(m)):F-Ln N R(5y )] by (6.2)

i

T -
q(m) o[FoLn(gq(m)).F-LnJ.



- 20 -

Multiplying by [F-Ln:K] we obtain (6.10).
(6.11), Let G = Gal(K(Cq<m))/K). This is a cyeclic group, since Cq(m)

lies in a finite subfield. Define the subgroups H], HZ’ H of G by

q (m,
H= Gal(K(cq(m))/FeLn n K(cq(m))).

Since m is squarefree, we have (ml, m2) =1 so K(Cq(ml))'K(Cq(mz)) =

K(t ) and H, n H, = {id
q{(m) 1 2 K(Cq(m))

are relatively prime. Then also the index of H in H-H1 is relatively

}. But G 1is cyclic, so #Hl and #HZ

prime to the index of H in H'HZ, so
H-H n HeH_ = H.
In terms of fields, this means

FL 0 K(Cq(ml)))'(F'Ln "Ry my)?) = Pl 0 Ky

2

By (6.9), this is equivalent to (6.11), This proves (6.5).

(6.12) Lemma. Let f, g be two functions defined on squarefree integers

such that

(6.13) f(d) is a real number, O £ f(d) < 1

(6.14) g(d) € Z, g(d) > 0O
for all d, and such that

(6.15) f(dldz)

f(dl)f(dz)

(6.16) g(dldz) = least common multiple of g(dl) and g(dz)

for all dl’ d2 with (dl’ dZ) = 1. Then for all m we have

u(d)f(d) - 4¢))
Zdlm g(d) z rlsle, £ prime a g(z))‘



Proof. See [10, 21]. This proves (6.12).

(6.17) Lemma. Let s be an integer, s >}, and for any integer u > 0

relatively prime to s let e(u) be the smallest integer t > 0 with

St = ] mod u. Then

> 1
u>0, (u,s)=1 u-e(u)

is convergent.

Proof. See [18, Ch. V, Lemma 8.3; 21]. This proves (6.17).

Proof of (4.5) in the function field case. Let n be as defined in (6.5).
We prove that a *# 0 implies that a = 0.

Let m be relatively prime to n. For T € C.» define

i

Cm(T) {0 € Gal(F-an/K): (c!Fan) = 1, and

(oclL ) = id for all &lm},
'3 LZ

]

a (1) #Cm(r)/[F-an:KJ,

a(t) = lim am(T)
m

the limit being over all squarefree integers m > O which are relatively
prime to pn, ordered by divisibility; it is easily seen to exist.

Clearly, we have

Cnm = UTGCn Cm(r) (disjoint union)
anm = z'réCn am(‘T)
a= ZteC a(t).

n

We claim that a(t) > 0 for every =t € Cn‘ Since Cn is non-empty (by
a # 0) this implies a > 0. Put
I if 1t € Gal(F'L /F-L n L)s

c(rt, m) =
0 else.
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Notice that (6.11) implies
(6.18) c(t, m) = c(T, ml)-c(r, mz) if m = m,m,.

Applying the principle of inclusion and exclusion as in (2.14) we find that

_ u(d)-c(r,d)
am(r) - zHlm F-L ,:K
nd

which by (6.10) is equal to

1 p(d)e(r,d)-q(d) "

e T T
IF-LH.K] dlm TF Ln(gq(d)).F Lﬁj

Putting f£(d) = c(v, d)-q(d)*r, g(d) = [F'Ln(gq(d)):F-Ln] we find

_ 1 . p(d)f(d)
am(T) - [F-Ln:K] X3|m g(d)

We are in a position to apply lemma (6.12). Conditions (6.13) and (6.14)
are obviously satisfied, and (6.15) is clear from (6.18). To prove (6.16),

let Q be the largest finite field contained in F-Ln, and notice that
g(d) = [Q(z (4@ =min{t > 0: (HQ = 1 mod q(d)}.

We conclude that

(™) 2 I——T Myim (= 505

N |

The infinite product

f(ﬂ,) - c(t,2)
m prime, 2fnp Q g(ﬁ)) Metn @ g(z)-q(z)r)

is clearly convergent if r = 2, and if r = 1 it converges by lemma (6.17).

It follows that

i

£(2)
a(t) 2 t*——*““j Motn a g(z))

as required. This proves (4.5).
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7. Proof of theorem (4.1).

In this section, h is as defined in (4.1).

(7.1) Lemma. Let % be a prime number # p. Then all prime numbers dividing
[L1°F(ch):P(ch)] are < R, Further, if [L2°F(gh):F(ch)] is not divisible

by %, then L, < F(ch),

Proof. The degree [F(g,,2,):F(5, )] is a divisor of £ -1, and L, F(z,)
is obtained from F(ch, CZ) by successively adjoining zeros of polynomials
Xx - o, At each stage, such a polynomial is either irreducible or
completely reducible. Hence [Lng(ch);F(ch,gz)] is a power of &. This

implies the first assertion of the lemma. Moreover, if £ does not occur

in [LK-F(Ch):F(Ch)], then LQ'F(Ch) = F(ch, Cl), so
(7.2) L, < F(zh, o)

If now Wc K*q(g), then & divides h, so L, ¢ F(z,), and this gives

. 2
Lz c F(Ch), as required. So suppose W 1is not contained in K*q( ). Then

for some w ¢ W the polynomial Xq<£) - w has no zero in K, and this
easily implies that for some v ¢ K with vq(z)/z ¢ W the polynomial

XE -~ v has no zero in K. Then Xz - v is irreducible over K, and it
has a zero in L, and hence in F(g,, ,). Since [F(Eh,ﬁﬁ)tF(Qh)] is
relatively prime to £, it must actually have a zero in F(Eh)- But

F(Ch) is normal over K, so it now follows that all zeros of X'Q - v are

in F(ch). Therefore L, € F(ch), so (7.2) gives Lz c F(Ch). This

proves (7.1).

Proof of (4.1). We must prove that (4.4) implies (4.3). So let m be the

product of those £ for which LR c F(ch); then (4.4) means that Cm z @,

We prove that this implies Cn # ) for every multiple n of m. Then
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a, 2 0 for all n, which is (4.3).

The proof that Cn # ) 1is by induction on the number t of primes
dividing n/m. The case t = 0 1is obvious. So let t > 0, and let £ be
the largest prime number dividing n/m. Put n, = n/%. The inductive

hypothesis tells us that Cn # . Since &fm, we know from (7.1) that ¢
0
divides [LQ'F(Ch):F(Ch>J’ while all prime factors of [LnO~F(ch):F(Ch)]

are < some prime number dividing n, and therefore < 2. We conclude that

LQ'F(Eh) is not contained in LnO-F(ch), so a fortiori

(7.3) Lno-F g LR.LnO.F = Ln-F.

Now let 1T € Cn ; that is, Tt 1is an automorphism of Ln *F with
0 0

(tlF) e C

(T'LE,) 2 idL for all ¢'In

L' 0

By (7.3), we can extend 1 to an automorphism of Ln-F which is not the

identity on L This gives an element of C, so C,6 7 @.

,Q,'

This proves theorem (4.1).
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8. Examples.

Let q be a prime number, and let g be an integer. We say that g

is a Fibonacci primitive root [24, 1] modulo q if g is a primitive root

mod q and satisfies the congruence g2 =g + 1 mod q.

(8.1) Theorem. If GRH is true, then the set S of prime numbers which have

a Fibonacci primitive root has a density, and

aesy = ZLm (1 - TL‘(’E']:‘T)“

38 ) = 0-265705...;

here & ranges over all prime numbers.

Proof (sketch). Let 6 = (1 + ¥5)/2 be a zero of X2 - X -1, and consider

=
il

M), QO Ty, Lidgeg ; yTs <0 1,

=
]

M(Q(0), @8, T,), {1}, <6>, 1)

where 1t is the non-trivial automorphism of @Q(8, CA) over Q(6). Then

it is not hard to see (cf. [24]) that

d({q € S: q =1 mod 4}) = %d(Ml)

d({q € S: q = -1 mod 4}) = d(MZ)
S0

d(s) = %d(Ml) + d(Mz)

if d(M;) and d(Mz) exist. If GRH is true, then (3.1), (5.11) and a short

calculation show that

~ _ 9. _ 1
d@) = dM,) = Zﬁ'nzllo (1 L0 - l))

S0
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3.9 20 1 27

d(S) = Zeete Do) (l - m) = §-§'A

2 40 19 2
where A 1is Artin's constant:

1

t m) = 0’3739558136...

(8.2) A =T (1

(see [32]1). This proves (8.1).

(8.3) Theorem. Let b, ¢ be positive integers,

t#0, 1, -1. Put
d(t) = A .
() = b/t
Then the set of prime numbers q for which

(8.4) q=Db mod ¢

(8.5) t is a primitive root mod g

(b, c) =1,

and let t € Q,

is finite if and, modulo GRH, only if we are in one of the following

situations:

(8.6) gle, b= 1mod &, t ¢ Q*R for some prime number ¢;

8.7 damle, &y -

-d(t)/3

(Kronecker symbol);

(8.8) d(t)!3e, 3ld(t), (—w*g—-“ﬁ = -1, te Q*B.

Proof (sketch). The set we are interested in is
M= M(Q, Q(z), {op}, <t>, 1)

where Gb

is the automorphism of Q(cc) mapping ., to gcb

By (4.6),

this set is finite if and, modulo GRH, only if Q(gc, ;h) does not have an

automorphism satisfying certain requirements; here h = ntEQ*l 2. A

straightforward analysis shows that the only obstructions preventing the

existence of such a o are the conditions (8.6), (8.7) and (8.8). This
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proves (8.3),

We remark that the if-part of (8.3) can be proved directly, using
nothing more than quadratic reciprocity; in fact, one finds that in each of
the situations (8.6), (8.7) and (8.8) the set of primes in question either
is empty or only contains the prime number 2. But the advantage of our
approach is that one need not know beforehand the list of exceptional
situations: they are just the obstructions encountered during the
construction of o, and if in all other situations o can be constructed
one knows that the list is complete (mod GRH).

Using (5.11) it is possible to derive a formula for the conjectural
density of the set of prime numbers satisfying (8.4) and (8.5). In each
case the result is a rational number times Artin's constant (8.2).

The same remarks apply to other sets of primes of a similar type. For

example, we can consider the prime numbers ¢ with the property that a

given rational number t # 0 has residue index k modulo q; i.e., the

subgroup generated by (t mod q) should have index k in FZ. Here k

is a given integer = 1. The set of such q is a subset of

M(Q, Q, {id_ }, <t>, k)

Q

since here it is only required that the residue index of t divides k.

To force equality, we also require that k divides the residue index, i.e.

that q splits completely in F = Q(Ck, tl/k). This leads to the set

tH/k

M = M(Q, Q(Ek, ),{idF}, <t>, k).

Applying (4.6) one finds that M 1is finite if and, modulo GRH, only if one

of the following conditions is satisfied, with t and d(t) as in (8.3):

(8.9) d(t)lk, and k 1is odd;
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(8.10) t = —uz, d(2uw) {2k, k = 2 mod 4 for some u e Q;

(8.11) t = u ) d(-3u) |k, 3/fk, 2™k for some u e Q, me Z>l;

8.12) t=-u> 3, a3k, 3k, 27

(8.13) t = -u®, d(-6u)lk, 3k, k

k for some ue @, me Z>2;

4 mod 8 for some u e Q.

This answers a question left open in [17].
We can combine the various requirements. Thus, with b, ¢, t, k as

before, we can consider the set of prime numbers q satisfying

g = b mod ¢

t has residue index k modulo q.
This set differs by only finitely many elements from

M(Q, F, C, <t>, k)

=
i

where

o a/k
Q(CC’ bka t )

L]
it

and where C consists of those automorphisms ¢ of F for which

-, Db -
O(QC) =C. > a(ck) = Ly o(t

(so #C < 1). It is again possible, by a straightforward but tedious
analysis, to find the complete list of obstructions preventing M from
being infinite (mod GRH).

For more details on a similar example, related to arithmetic codes,
we refer to [15].

In the next section we apply our results to prove a theorem about
euclidean rings. Another application of the same type is found at the end
of Cooke's and Weinberger's paper [5]. Further, our corollary (4.8) can be

used to improve slightly upon a result of Queen [20, th. 1].
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To finish this section we mention some sets of prime numbers to which

our results do not immediately apply. Most of these can be dealt with by

small modifications of our method, and in case (8.16) the GRH can even be

dispensed with.

(8.14) The set of primes

(8.15) The set of primes
power of 2,

(8.16) The set of primes
squarefree (cf. [6]).

(8.17) The set of primes
roots (cf. [161).

(8.18) The set of primes

q for which 2 1is a primitive root modulo

q for which the residue index of 2 is a

q for which the residue index of 2 1is

q for which both 2 and 3 are primitive

q for which a given positive integer t is

the smallest positive integral primitive root (cf. [11]).
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9. Euclid's algorithm.

Let K be a global field, and let S be a non—empty set of prime
divisors of K, containing the set S_ of archimedean prime divisors of K.

We denote by R_ the ring of S-integers in K:

S

= . 2 1 .
R {x € K: ordEFx) 0 for all primes p ¢ S}

Thus, if K is a number field and S = S_, then RS is the ring of

algebraic integers in K.

We ask under which conditions there exists a euclidean algorithm on R

S’
i.e. a function : Rg = {0} > Z,, such that for all b, c € Ry, ¢ 20,

there exist q, r € RS with
b =qc + r, r=0 or ¥(r) < P(c).

If such a ¢ exists, we call RS euclidean. It is well known that a

necessary condition for Rg to be euclidean is that it is a principal ideal

ring. If R, 1is euclidean, then its smallest algorithm 6 is defined by

S

8(x) = minf{y(x): ¢ 1is a euclidean algorithm on RS}.

It is easily verified that 6 is indeed a euclidean algorithm on RS’ cf.
[23].

If S has precisely one element, then R, is euclidean if and only if

S

it is isomorphic to one of the rings

z, I[iQ1 + /=31, El/=11, z[i(1 + V=11,
[/=2), z[3(1 + Y=11)1, FIX]

where F is a finite field. Up to isomorphism there are precisely eight

principal ideal rings RS with #S =1 which are not euclidean. They are
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L1 + v=19)1, ZzZUi(1 + v=43)1],

BLi(1 + Y<67)1, Z[i(1 + Y=163)],

3 + X+ 1),

5. X3 + 1),

¥, (X, Y1/(Y% + ¥ + X
]szx, Y]/(Y2 + Y+ X

FBEX, Y]/(Y2 - X3 + X+ 1),

F,[X, YI/(E° + ¥ + X7 + )

where n ¢ F n ¢ F,. These results can be found in [23, 191,

4°
In the case #S 2 2 we have the following theorem.

(9.1) Theorem. Suppose that R, 1is a principal ideal ring, and that #s 2 2,

S

Further, if K is a number field, assume that for every squarefree integer

n and every finite subset S' © S the ¢-function of the field
K(En, Rgs/n) satisfies the generalized Riemann hypothesis. Then RS is

euclidean, and its smallest algorithm © is given by

(9.2) 8(x) = ;E¢ ordB‘x)-ﬁg (x € R x # 0)

S s’

where the sum is over all primes of K which are not in S, and

n_= 1 if the natural map Rg > EE. is surjective

The Riemann hypotheses mentioned in this theorem will again be denoted
by "GRH".

The function field case of (9.1) is due to Queen [19]. In the number
field case only a partial result was known: Weinberger [30] proved, modulo
certain generalized Riemann hypotheses, that if K has class number one

and S = 8§ , #S > 2, a euclidean algorithm on Rg is given by

Y(x) = ZEF{S OrdE(X)-(nR + 1)
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with n as defined in (9.1). Since this function does not assume the value
1, it is obviously not the smallest algorithm.

We remark that in the number field case all known euclidean rings RS’
#3 <

, are actually euclidean with respect to the norm function

N(x) = #(RS/RSX), x € R

Here no Riemann hypotheses are assumed. The rings Z[Y14], Z[C32] are
examples of rings of unknown character: they are euclidean if GRH is true,
but the norm function is not a euclidean algorithm.

Before giving the proof of (9.1) we introduce some terminology. A
divisor of K is a formal product HB.E?(E)’ m(p) ¢ £, m(p) = 0 for all
but finitely many p, with p ranging over the non-archimedean prime

divisors of K. TFor x ¢ K¥, the principal divisor (x) 1is defined by

(x) = ﬁB.E?rQR(X). The set of divisors of K 1is an abelian group with
respect to multiplication, and the principal divisors form a subgroup. Let

b = ﬁR BF(R) be a divisor with n(p) 2 0 for all p. A subgroup H of

the group of divisors is said to have modulus b if

for every HE-E?(E) e H and all p with n(p) >0

we have m(p) = 0
and

(x) ¢ H for all x ¢ K*¥ satisfying

orqE(x - 1) z n(p) for all p with n(p) > 0.

The primes p of K with p ¢ S are in one-to-one correspondence with
the non-zero prime ideals of RS. We identify the group of fractional
Rs~ideals with the group of those divisors HE.EP(R) for which m(p) = 0

for all P € S.
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Proof of (9.1). Suppose, for the moment, that Rg is euclidean, and let ©

denote its smallest algorithm. If 7 € RS is a prime element, Rs“ = B>

then Samuel's results [23, sec. 4] easily imply that 6(m) 2 n,e Since

further 6(xy) 2 0(x) + 6(y), by [23, prop. 12], we conclude that

° z 0.
6(x) = ;2¢S oqu(x) ?B’ X € RS’ X

So if the right hand side represents an algorithm on Rgs it is
necessarily the smallest one.

In the rest of the proof let 6 be defined by (9.2), and assume GRH.

Let b, ¢ € R

We must prove that 6 is a euclidean algorithm on RS. g?

¢ # 0. We look for an element
r €b + RS'C

with
r=0 or 6(r) < 8().

Dividing b and c¢ by their greatest common divisor — they have one,

since Ry is a principal ideal ring - we may suppose that (b, c) = 1.

Further, replacing S by a finite subset which also yields a principal

ideal ring and gives the same value for 6(c), we may suppose that

2 £ #5 < o,
If 68(e) =0, then ¢ € R¥, so we can take T = 0.
If 6(e) = 1, then c¢ is a prime element: RSC = P> and ?R = 1.

Then the map R§ > f; ES(RS/RSC)* is surjective, so we can find r € Rg

with r = b mod Rge. Clearly, 6(r) =0<1-= B(c).
. P '
If 6(c) = 3, then a suitable generalization of Dirichlet’'s theorem
on primes in arithmetic progressions [ 13! tells us that every residue class

in (R4/Rge)*  contains infinitely many prime elements. In particular, the
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residue class b + Rsc contains a prime element r, and then we have 8(r)
<2 <3 < 8(c).

We are left with the case 08(c¢) = 2. It would, in this case, be
sufficient to find a priﬁe r of K, r ¢S, with the following two
properties:

(9.3) n. = 1

(9.4) r = Rser for some T € b + RSC,

This would give 9(r) = n_ = 1 <2 =0(), as required.

Condition (9.3) simply means that the natural map

* Tk
RS > Kr

is surjective. Clearly, this is a condition of the type considered in
section 2, with W = Rg, k = 1., Notice that the rank of W, modulo its
torsion subgroup, equals #S - 1 = 1,

Using class field theory [13] we translate the condition (9.4) into
one of the type "(p, F/K) < C", as follows. For F we take what has been

called the S-ray class field with modulus c¢. More precisely, F is the

class field of K with respect to the smallest group of divisors with
modulus Rsc which contains all non-archimedean p ¢ S. We call this

group of divisors H. Properties of F are:

(9.5) F/K is abelian
(9.6) the conductor of F/K divides Rge,

(9.7) all p e S split completely in F,

and moreover F 1is the largest field with these properties, inside an

algebraic closure of K; cf. [5].

Let I denote the group of divisors generated by all p mot occurring
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(x) € I}. Since R

in Rsc, and let P be the subgroup {(x) : x ¢ K*, S

is a principal ideal ring, we can write any element of I as the product of

an element of P and a factor ﬂéﬁs EF(E)’ m(p) ¢ I, the product ranging

over the non-archimedean p € S. The latter factor is an element of H, so

I = PH. Translating this statement on divisor groups into one about their

class fields, we find that
(9.8) K is the maximal totally unramified subextension of K < F.

By class field theory, the Frobenius symbol induces an isomorphism I/H =

Gal(F/K). But we have I = P+H, and a short calculation leads to

(9.9) (RS/RSC)*/w(Rg) = Gal(F/K)

where : R§ > (RS/RSC)* is the natural map. Let the automorphism of F/K
corresponding to (b + RSc) mod w(Rg) be denoted by o. Then condition

(9.4) is equivalent to
(9.10) (xr, F/K) < {o}

if r does not divide Rge. We conclude that to prove the existence of r

satisfying (9.3) and (9.4) it certainly suffices to show that the set
M = M(K, F, {0}, Rg, 1)

is infinite. By (4.8) and the GRH assumption we have made, we know that
indeed M 1is infinite, except if o € Gal(F/Lx) for some prime number

£ # p with L < F; here LQ = K(El’ R*l/z). That means

L S

(9.11) L, < o

where F° = {x € F: o(x) = x}. To finish the proof of (9.1) it suffices to

derive a contradiction from (9.11).
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In the function field case we are immediately done. Namely, the

definition of L, makes it clear that L%/K can only ramify at primes in

£
S, if K 1is a function field; but F/K 1is unramified at these primes, by
(9.6) or (9.7), so we can only have (9.11) if LR/K is totally unramified.
By (9.8) this implies Lz = K, which is absurd, since Rg contains
elements which are no f#-th powers in K.

In the remainder of the proof we therefore assume that K 1is a number
field. The only reason that the preceding argument does not apply is that

LR/K may ramify at primes dividing 2. On the other hand, F/K only

ramifies at primes dividing Rsc, s0

(9.12)  there exists a prime £ ¢ S with ord (c) > 0 and ord (2) > 0.

By (9.5) and (9.11), the field Ll is abelian over K. Since Rg contains

elements which are no f£-th powers in K, this implies
(9.13) ¢, €K

and

(9.14) [LQ:K] is divisible by 2

(in fact, it is a power of ).
We distinguish cases. From 6(c) = 2 and (9.12) we see that there are

precisely three possibilities:

or RSc = fem, n, = ?E =1, 2 #m,
2
or o = 1.
Rsc L, ?&
First let RSC = 2, n, = 2. Since ordg(z) > 0, the characteristic

of the field RS[& equals &, so #(RS/&)* = Qf - 1 for some integer



_37._.

.. £
f >0, By (9.11) and (9.9) it follows that [LQ:K] divides & -~ 1,

contradicting (9.14).

n, =n = 1, £ # m. Then (RS/RSC)*s;

(RS[&)*Q(RS/E)*, and the subgroup w(Rg) projects onto (RS/E)* since

Next suppose that RSc = %-m,

f
n = 1. Therefore #((RS/RSC)*/w(Rg)) divides #(RS/&)* =4 -1, for

some integer f > 0, and this leads to the same contradiction as in the

Preceding case.

In the remaining case: Rge = 27, n, = 1, this contradiction

2 .
cannot be derived. Here Gal(F/K) is isomorphic to (Rs/&-)*/w(Rg); since
w(Rg) maps onto (RS[&)* this is a factor group of the kernel of the
natural map (Rs[&z)* > (RS[&)*’ which, in turn, is an elementary abelian

2-group. Therefore Kummer theory and (9.13) tell us that

(9.15) F = K(xi/“, xilg)

. . L
for some integer t = 0 and certain X, € K* X, ¢ K¥”,

Fix i, 1 < i < t, for the moment. Since F/K is unramified outside

L, by (9.6), we have oqu(xi) = 0 mod ¢ for all primes p * % of K.

But Rg is a principal ideal ring, so modifying x; by an #-th power we

can achieve that

orqE(xi) =0 forall p¢ SuU {2},

< -
0 = ordg(xi) < g 1.

We claim that ordﬁ(xi) = 0, In fact, if 1 £ ordﬁ(xi) <% -1 thena

strictly local computation shows that the f-component of the discriminant

1/%

I £—1+2'0rd&(1). The conductor—discriminant
i

of K(x.'”") over K equals 2%

product formula then implies that the #-component of the conductor of

K(x;/g)/K is equal to &} ¥ 2-orq&(z)/(2-1). On the other hand, from

. 2
K(xilg) © F and (9.6) we know that this conductor divides Rsc = 2",



_38_

Therefore 1 + Q-ordl(z)/(k - 1) £ 2, which is impossible. This proves our

claim that ordl(xi) = 0,

= * 1
We now have orqz(xi) 0 for all p ¢ S, so X, € RS for all 1.

By (9.15) this yields

1/2

F c K(Rg ) =L

L

and combining this with (9.11) we find that F c L2 c 70 c F, so F = Lz =
F® and o is the identity automorphism of F. This is no contradiction,
but it solves our problem: namely, o = idF means, by definition of o,
that (b + RS'C) is in the image W(Rﬁ) of Rf, so there exists r ¢ Rg
with r e b + RSc, and then 6(r) = 0 < 2 = 0(c), as required. This
proves (9.1).

It can be shown that the situation encountered at the end of this

proof only occurs for % = 2. An example in which it does occur is given

by

=
[}
H]
w
8

),  S=S,  Rg=1lr],

c = 4, 9 = 2, £ = the prime lying over 2.

Thus, there exists no prime element 7 ¢ Z[CSJ which is 1 mod 4, for
which the natural map Z[CSJ* - (Z[CSJ/Z[CSJW)* is surjective. This

disproves a conjecture of Queen [19, remark 21.
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