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On Artin's conjecture and Euclid's algorithm in global fields.

H.W. Lenstra, Jr.

jEntroductiop.

A famous conjecture of Artin (1927) [3, 9] asserts that for every non-

zero rational number t the set of prime numbers q for which t is a

primitive root possesses a density inside the set of all prime numbers. The

original conjecture included a formula for this density, but calculations

by D.H. Lehmer [14] indicated that this formula must be wrong. A corrected

Version of the conjecture [31, intr„, sec, 23; 2, intr.3 was proved by Hooley

[11, 12] under tue assumpticm of certain generalized Riemann hypotheses.

In this paper we are concerned with a generalized form of Artin's

conjecture, which recently arose in connection with Euclid's algorithm [23,

30, 19] and the construction of division chains [5, 20] in global fields.

Our main contribution is a necessary and sufficient condition for the

conjectural density of the set of primes in question to be non-zero. As an

application of this result we prove a theorem about the existence of a

euclidean algorithm in rings of arithmetic type. For an application to

arithmetic codes we refer to [15].

We discuss the various vays in which Artin's conjecture has been

generalized.

First, instead of the rational numbers one can consider an arbitrary

global field K, äs in [3]. Prime numbers are then replaced by non-

archimedean prime divisors p_ of K,

Secondly, a congruence condition can be imposed on these primes [30,

19], This is even of interest in the case K = (Q: for example, among all

primes for which 27 is a primitive root there are no primes which are

-l mod 4, while, conjecturally., there are infinitely many which are
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In the applications of the conjecture it is obviously relevant to know

under which conditions the conjectural density vanishes. This problem is

less trivial than in the case of Artin's original conjecture, since our

formula is an infinite sum rather than an infinite product. Our solution

is stated in section 4, and the proof occupies sections 5, 6 and 7.

In section 8 we mention various problems to which our results apply.

The application to Euclid's algorithm is considered in detail in section 9.
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1. Notations.

In this paper K is a global field, i.e. a finite extension of the

rational number field Q or a function field in one variable over a finite

field. In the first case we simply call K a number_field, we denote by

Δ,, its discriminant over ü), and we put p = I. In the second case, K
κ

is called a function__field, and p denotes its characteristic.

Throughout this paper we use the letters m, n, d, possibly with

subscripts, to denote squarefree integers > 0 which are relatively prime

to p, also at places where this is not explicitly required. Similarly, by

£ we always mean a prime number different from p. The functions of

Moebius and Euler are denoted by μ and φ, respectively; q|r means

that q divides r5 and q/r has the opposite meaning. The number of

elements of a set S is denoted by #S.

Let R be a ring. Then R* is its group of units, R* is the

subgroup of q-th powers, and if t e R* then <t> is the subgroup generated

by t. The ring of integers is indicated by l, and F is a finite field

of q elements.

The restriction of an automorphism σ of a field L to a subfield

L' of L is denoted by o|L'. If L/L' is a Galois extension, then

Gal(L/L') is its Galois group, and id is the identity automorphism of L.
L·

The composite of two fields Lj and L„ is denoted by L.·!̂ · By ζ we

mean a primitive q-th root of unity.

A prime ]3 of K is a non-archimedean prime divisor of K. The

associated normalized exponential valuation is denoted by ord , and K

is the residue class field at _p_. We put N£ = #K .

If S is a set of primes of K, then the lower and upper Dirichlet

densities d_(S) and d (S) are defined by
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~S ~S
d (S) = liminf (Ση ς (N£))/(I (Np)~S)

s->l+0 £ £.

d+(S) = limsup (Σ (N£)~S)/a (N£)~S)

s -> 1+0 ·*- ·*-

(the sums in the denominators are over all primes p of K). Generally,

0 < d_(S) < d+(S) < 1. If d_(S) = d+(S) then this common value is denoted

by d(S) and called the Dirichlet density of S. It may be remarked that

all our results remain valid if , in the number field case, we replace

Dirichlet density by natural density. For the function field case this is

not true [3].

If £ is a prime of K and L/K is Galois, then the Frobenius symbol

Cp_, L/K) denotes the set of those σ e Gal(L/K) for which there is a prime

£ of L extending £ such that σ£ = £ and σα = α ̂ · for all α e L ,

where a is the automorphism of L induced by σ. This is a non-empty

subset of Gal(L/K), and if £ is not ramified in L/K then it is a

conjugacy class.

The notations F, C, W, r, k, M, ψ, q(n), L , C , a , a are introduced
n n n

in section 2, and for "GRH" we refer to sections 3 and 9.
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2. The

Let there be given a global field K5 a finite Galois extension F

of K, a subset C c Gal(F/K) which is a union of conjugacy classes, a

finitely generated subgroup W c K* of rank r > l modulo its torsion

subgroups and an integer k > 0 which is relatively prime to p, We

are interested in the set M = M(K, F, C, W, k) of primes £ of K

which satisfy the following conditions:

(£, F/K) c Cs

ord (w) - 0 for all w e Ws

if φ s W ->- K* i s the natural map, then the index of ψ (W) in
Ju.

K* divides k,
£

Notice that we have excluded the case W is £ ini te . In thts case it is

easily seen that also M is finite,

The conjecture is that M has a density. In order to state the

formula for the conjectural density we introduce some new notation. For a

prime number £ # p let q(£) be the smallest power of £ not dividing

k and let L = Κ(ζ > . , W q ) be the field obtained by adjoining all
£ (} (SL)

q(£)-th roots of eleinents of W to K. Notice that q(£) = £ for all

but finitely many £s and that L is a finite Galois extension of K.
Λί

Similarly, if n is a squarefree integer > 0, relatively prime to p,

then we define q(n) = Π . q(£), L = Κ(ζ , Λ , W). Clearly, L
£|n n qin^ n

is the composite of the fields L , £|n. Further, we define C c
JG **

Gal(F-L /K) by

C = {σ e Gai(F-L /K): (a|F) e C, and (a|L ) * id for all £|n}
Ϊ* Ϊ1 A/ fl

and we put

a = #C /#Gal(F-L /K) « #C /[F-L :K].
n n n n n
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If n divides m, then

(2.1) a > a > 0.
n m

It follows that the sequence (a ) has a limits if n ranges over all

squarefree integere > 0 prime to p, ordered by divisibility. Let

(2.2) a = lim a .

n

(2.3) Conjecture,, The density d(M) exists and is equal to a.

We quickly review the heuristic reasoning underlying the conjecture,

and will at the same time prove half of it:

(2.4) d+(M) < a.

(2.5) Lemma. Let £ be a prime of K which satisfies

(2.6) ord (w) - 0 for all w e W9

(2.7) ord (2-A„) =0 if K is a number field.
£ K

Then the index of ψ (W) in K* divides k if and only if for all prime

numbers SL # p we have

(2.8) (£, L /K) * [id }.
J6 L£

Notice that only finitely many £ are excluded by (2.6) and (2.7),

Some condition on £ is necessary: -7 is a primitive root mod 2, but

(2,

Proof of (2.5). "If". If the index of ψ (W) in K* does not divide k,

then for some prime number l it is divisible by q(£); notice that the

index is relatively prime to p, since #K* is. That means

(2.9) q(£)j#K*
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(2.10) ψ(W) c K*q(£).

But, since p satisfies ord (£·!) = 0 and ord (w) = 0 for all w e W,
*· £ £

by (2.9) and (2.6), these conditions simply express that £ splits

completely in Κ(ς (£), W1/q(Ä)) = L£, so <£, L£/K) = {idL }, contra-
X«

dicting (2.8).

"Only if". Let the index of ψ(W) in K* divide k, and let l be

a prime number * p. If ord (λ·1) > 0 then K is a number field, and

the presence of the £-th roots of unity in L implies, by condition (2.7),
Λ/

that p ramifies in L ./K, so (p_, L /K) * {id }. Hence we may assume
£ J6 i,A

that ord (Ä-l) = 0. Then if p splits completely in L/K, we
£. ^

necessarily have (2.9) and (2.10) (again using (2.6)), contradicting that

the index of ψ(W) in K* divides k. We conclude that p_ does not

split completely in L /K, so (p_, L /K) * {id }. This proves (2.5).
!L L· ι

Now let M be the set of those primes £ of K for which

(£, F/K) c C

(£, L /K) # {id. } for all i|n.

£ LÄ

Clearly

(2.11) M o M if n|m,
n m

and lemma (2.5) implies that M differs by at most a finite set from the

"limit" Π M . We calculate the density of M . Formal properties of the

Frobenius symbol imply that M differs by at most a finite set from

(2.12) {£: (£, F-Ln/K) c Cn>

so Tchebotarev's theorem [13, eh. VIII, sec. 4] implies that

d(M ) = #C /^Gal(F«L /K) = a .
n n n n
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Thus we see that conjecture (2.3) is äquivalent to the assertion that

(2.13) d(n M ) = lim d(M ).
n n n

n

A trivial example shows that (2.13) is certainly not a generality following

from (2.11): if M consists of all primes except the first n ones, in

some numbering of the primes, then d(M ) = l for all n, and Π Μ = 0
n n n

so d(n M ) = 0. Weinberger [29] proved that (2.13) even can fail in a

Situation closely resembling ours.

In any cases i t is true that

= d(Mn) -

for all n, which, in the limit, gives (2.4)

(2.14) Proposition. We have

y(d)c(d)

an Ed|n CF-L.:K]
d

where

c(d) = #(C n Gal(F/F n L.)).
d

Proof . For d|n, put

D. = {σ e Gal(F-L /K): (CT|F) e C, and (a|L„) = id for all £Jd},
a n a ii

The principle of inclusion and exclusion [22] gives

n
..

n H d

To count D,, notice that

Dd = {σ e Gal(F.Ln/Ld): (ajF) e C}
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For every σ e D , we clearly have (a|F) e C n Gal(F/F n L,). Conversely,

if τ e C n Gal(F/F n L,), then τ has precisely one extension to an

element of Gal(F-L ,/L,), which in turn can be extended in [F-L :F*L,]
d a n d

ways to an element σ of D... We conclude that

#D, = [F-L :F-L,]-c(d)
d n d

so

= n = T
n [F-L :K] d|n

y(d)c(d)

n
,:
d

This proves (2.14),

Remark. It follows that

(2.15) a » Σ
n [F-L :K]

n

since the sum is absolutely convergent, äs can be proved by the methods of

sections 5 and 6. The formula leaves something to be desired, since it does

not even enable us to answer the question of when a = 0. We return to

this question in section 4. It will turn out that the definition of a is

a handier tool than formula (2.15).



_3^ The Status of the conj_ec_ture.

.O_.J) Theorem. If K is a function field, then conjecture (2.3) is true. If

K is a number field, then conjecture (2.3) is true if for every squarefree

integer n > 0 the ζ-function of L satisfies the generalized Riemann

hypothesis.

We use "GRH" äs an abbreviation for the Riemann hypotheses mentioned in

(3„1). In the function field case "GRH" refers to an empty set of hypotheses.

We refer to [27, 12] for a method to find, in the number field case, a

smaller set of Riemann hypotheses which is also sufficient for the validity

of (2.3).

Proof of (3.1), First let K be a function field. In this case Bilharz [3]

proved the original conjecture - i.e., F = K, C = {id }, W infinite
K

cyclic, k = I - modulo certain Riemann hypotheses for function fields,

which were later shown by Weil to be correct [28, 43. From what Bilharz

actually proved [3, p. 4859 italicizedl it is not hard to derive the more

general conjecture. Compare also the details given by Queen [19]. This

finishes our discussion of the function field case,

Next let K be a number field, and assume GRH. Then, according to

Cooke and Weinberger [5, theorem 1.1], conjecture (2.3) is true at least in

the case F = K, C = {id }. Thus, to prove (3.1) it suffices to prove the

following lemma.

(3.2)Lemma. If (2.3) is true in the case F = K, C = {idR}5 then it is

generally true.

Proof. Let M = M(K, F, C9 W, k) be äs in section 2, and put M' =

M(K, K, Ud,,}, W, k). We define a äs in (2.2), and a' denotes the
K.

corresponding quantity for M!. We must prove: if d(Mf) exists and
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equals a', then d(M) exists and equals a.

To see this, let C" be the complement of C in Gal(F/K), put

M" = M(K, F, C", W, k), and let a" correspond to M". Then one easily

sees that

Also, M1 differs by only a finite set from the disjoint union M u M",

so

d_(Mf) < d_(M) + d+(M").

But, by assumption, d__(M') = d(M') = a', and from (2.4) it follows that

d ,(M") < a". We conclude that d (M) > a' - a" = a, and combined withT ""*

(2.4) this gives d(M) = a, äs required. This proves (3.2) and (3.1).
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.4. The non-vanishing of the density.

,C4_. l) Tneojrem. Let h be the product of those prime numbers £ * p for

which W c K*q . Then the following assertions are equivalents

(4.2) a x 0;

(4.3) a * 0 for all n;
n

(4.4) there exists σ e Gal(F(c, )/K) such that
h

(σ (L ) * id for every l with L c Ρ(ζ,)
χ/ !_ι . χ, Εί,

£

Remark. It is not hard to show that h is finite, cf. (5.1)9 (6.1),

The implication (4.2) =*· (4.3) is trivial,, since a > a ä 0 for all n,

by (2.1). The converse

(4.5) if a * 0 for all n then a * 0
n

will be proved in sections 5 and 6.

Notice that the existence of σ in (4.4) is equivalent to the non-

vanishing of a , where m is the product of those £ for which

L. c ρ(ζ, ); again, m is finite. This remark makes (4.3) =* (4.4) obvious,

and the remaining implication (4.4) =» (4.3) is proved in section 7.

(4.6) Theorem. Let h be the product of those prime numbers £ * p for

which WcR*q^ . Then if M is infinite, there exists σ e Gal(F(ch)/K)

with

(a|F) e C

(a|L£) * idL for every £ with L£ c F(ch>.

Conversely, if such a σ exists and GRH is true9 then M is infinite and

d(M) > 0.



14 -

Proof. If no such σ exists then by (4.1) there exists n with a = 0,i.i_jir-HM.Li..iii l · Q̂

so C =0. Then the set (2.12) is empty, so M is finite, and the same

is then true for M. Conversely, if such σ exists and GRH is true, then

a > 0 by (4.1) and d(M) = a by (3.1). Hences d(M) > 0 and M is

infinite. This proves (4.6).

Thus, modulo GRH, the set M can only have density zero if it is

finite.

In many applications, W satisfies the condition

(4.7) there is no integer q > l with W c K*̂ .

This is true, for example, if W is the group of units o£ an integrally

closed subring of K with infinitely many units.

(4.8) Corollary. If W satisfies (4.7) and GRH is true, then M i s

infinite if and only if C is not contained in U. Gal(F/L ), the union
X- A/

ranging over those prime numbers £ * p for whicb L c F.
X«

Proof. Apply (4.6), and notice that h = 1. This proves (4,8).
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jj._ Proof of (4.5): the number field case.

In this section we assume that K is a number field.

jJ ) Lgmma· jror an but finitely many prime numbers £ the natural map

W/W£ ·* K*/K*Ä is injective.

Pjroof . The group K* is the direct sum of a finite group and a free abelian

group of infinite rank. Further, W <= K* is finitely generated. These two

facts easily imply that K*/W is again the direct sum of a finite group

and a free abelian group of infinite rank. So for only finitely many prime

numbers £ the group K*/W has £~torsions and for all others the map

W/WÄ -> K*/K*£ is injective. This proves (5.1).

(5.2) Lemma. Let £ be a prime number satisfying

(5.3) £ does not divide 2°A„
is.

(5.4) the map W/W£ -»· K*/K*£ is injective.

Then [L :K] = ς(£)Γ·φ(ς(£)) , and the largest abelian subextension of
A/

K C L £ 1S

Proof. Clearly, Κ(ζ , ,) is a subextension of L , and (5.3) implies that

[Κ(ζ /Ä)):K] = φ(ς(£)). Το calculate [L :Κ(ζ ( ,)] we first prove that the

natural map

(5.5) W/W

is injective.

Let w e W, w / W£. Then w / K*£, by (5.4), so XÄ - w is

irreducible over K. Combining this with [Κ(ς ):K] = £ - l we see that
Xl

the Splitting field of X - w has degree £(£ - 1) over K, and has a

non-abelian Galois group; here we use £ * 2. Since (̂ζ /«\) has an
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£
abelian Galois group9 the Splitting field of X - w is not contained in

Κ(ζ (9\~)· We conclude that w is no £-th power in Κ(ζ /„\)> thus

establishing that (5.5) is injective.

An easy inductivc argument now shows that the natural map W/W ->·

Κ(ζ , ,)*/Κ(ζ >„·*)* * ' i« aiso jTijf;ctive, so Kummer theory teils us that
C[ V J6 / *"11 Λ /

Gal(L /Κ(ζ /j^)) >-s c'.inonicalJy isonnorphic to the character group W =

Hom(W,<c /„)>)· 'riius I~L :Kfc , ,)J - #W = q(£)r (since W has no

£~torsions by (ü.3)), whlch prowcs the first assertion of (5.2). Further,

Gal(L /K) i s isoTtiorphic to the semj'direct product of W by 6α1(Κ(ζ . v)/K),
A. <J \ Χ* ̂

with the latter group acting oo W via <ζ . . >. Again using that £ * 2

one finds that the coiraouiator subgroup of Gal(L /K) equals W, so
ÄJ

Κ(ζ /.%) is the maximal abeJian subextension of K c L = This proves (5.2).
*ΐ v £/ £

(5.6) Lumina. Let *, be a ptiroe number satisfying the following conditions.

(5.7) £ does not divide 2"/\γ

(5.8) the map W/W£ - K*/K*£ i s injective»

(5.9) there exists no prime p of K for which ord (£) > 0 and_ 2

ord (w) *" 0 for some v c W,

Further, let d be a squarefree integer, not divisible by £. Then the

fields L and L "F aie linearly disjoint over K.
A/ Q.

Proof. Since L /K is Gnlois it suffices to prove that L n L,-F = K.
. £ £ d

Let N = L n I^-F. Then N/K is a solvable Galois extension, so if N * K
x, o.

then there exists an abelian subextension N'/K, N' c N, N' # K. From

N1 c L and (5.2) we then have N" r- Κ(ζ , . ), which by (5.7) implies that
Λ q (, Je.)

N'/K is ramified at evt-ry prime p iying over £ (i.e., for which

ord (£) > 0). On the other hands N' c i^-F iniplies that N'/K can only

ramify at primes j> of K for which
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ord (d) > 0,
£

or ord (w) # 0 for some w e W,
£

or ord (AF) > 0.

By (d, £) = I, (5.9) and (5.7) none of these primes lies over £,

contradictin£ what we jucl proved« This proves (5,6).

_Pro_of_jjf (4.5) tn tbe n^imbcT_J^ld_ca.se. Suppose a * 0 for all n. We

prove thaL a * 0«,

Let £ ariü d be äs in (5.6). Then (5.6), the definition of Ĉ ,

and (5.2) give

(5.10) TL£:KJ - q{£)r"<Kqa)) = ς(Α)Γ+1·(Ι - I/A),

so

n .
ad

Now let n be the product of those £ which violate at least one of the

conditions (5.7), (5.8), (5.9), Then for any multiple m of n it follows

by inductiori ou the number of piime numbers dividing m/n that

= i < Ι ί f l — —____'* «A ''n! / "· Γτ rr~I>m n £|m/n LL„:KJ

so in Lhe limit

(5.11) a = a -Π . (l
n x/n 'n

From (5.10) and r > I it is ciear that the infinite product converges and

is non-zero. So a * 0 indeed implies that a * 0. This proves (4.5) ifl S »-11

K is a number fneld.
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6. Proof of (4.5); the function field case.

In this section K is assumed to be a function field, and we denote

by P the free abelian group

P = Φ Z,
£

the direct sum ranging over all primes £ of K. There is a natural group

homomorphism K* -»· P mapping χ to (ord (x)) , and the kernel of this

map is finite, consisting of the non-zero constants in K.

ü
(.6.1) Lemma.. For all but finitely many ü the induced map W/W ->- P/ÄP is

injective.

Proof_. Similar to the proof of (5.1). This proves (6.1).

(6̂ 2) Lemma. Let m be such that any £|m satisfies

(6.3) K contains no primitive Ä-th root of unity;

(6.4) W/W£ ->· P/ÄP is injective.

Then iLm:K(C , .)] = q(m)r, and Κ(ζ (m)) is the largest totally

unramified subextension of K c L .
m

_Proo_f. From (6.4) it follows that the natural map W/W£ -> K*/K*£ is

injective, for any £|m. Using (6.3), one finds by the argument in the

proof of (5.2) that also W/W£ + Κ(ζ , Λ)*/Κ(ζ , .)*£ is injective. Kummer
<Hm/ qvm)

theory then implies that Ε̂ ιΚίζ (m))] = ̂ (W/Wq(m)), and by (6.3) this

equals q(m) .

Let N be the maximal totally unramified subextension of K c L .
m

Clearly Κ(ζ , .) c N, and if the inclusion holds strictly then N

l /£ Jl
contains w for some £|m and some w e W, w i w . By (6.4), we then

have £/ord (w) for some prime £ of K, so N/K is ramified at this £,
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contradiction. This proves (6.2).

Jj6j150_J[£nma. Let n be the product of those prime numbers l * p which

satisfy at least one of the following conditions:

(6.6) K contains a primitive £~th root of unity;

(6,7) the map W/W -> P/AP is not injective;

(6.8) there is a prime £ of K which ramifies in F/K, with

ramification index divisible by Ä.

Further, let m be relatively prime to n. Then we have:

(6.9) F-L n L = F«L n Κ(ζ ( ,)
n m n q̂(m)'

(6.10) [F-L :K] = CF-L :K]-q(n)r-[F'L (ζ ( ,):F-L ]
nm n n q(m) n

(6.11) if m = m.-m„, then

(F-L n L )-(F-L n L ) = F-L n L .
n m ' n m„ n m

Proof. (6.9). The inclusion => is clear. By (6.8), all ramification indices

in the extension K c F»L are composed of prime numbers dividing pn, and

all ramification indices in K c L are composed of prime numbers dividing
m

m. Since (pn, m) = l, it follows that F-L n Lffl is totally unramified

over K, so (6.2) implies that F-L n L <= Κ(ζ /ffl))· Tnis i™plies the

opposite inclusion.

(6.10). We have:

[F-L :F-L 3 = [F- L -L :F«L ]
nm n n m n

= CL :F-L n L l
m n m

=q(m)r«CK(cq(m)):F.LnnK(?q(m))] by (6.2)
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Multiplying by [F-L :K] we obtain (6.10).

(6.11). Let G = Gal(K(C , O/K). This is a cyclic group, since ζ , .

lies in a finite subfield. Define the subgroups H., H_, H of G by

H. — Gal(K̂  , \)/Κ(ζ ,· χ)), i — l, 2,

H =

Since m is squarefree, we have (m., m„) = l so
J / VJVlllj/ VJ^ll»-^

Κ(ζ , .) and H, n H„ = {id,., ,}. But G is cyclic, so #H, and #H0
q(m) l 2 κ(ζη/™\) ' 2

are relatively prime. Then also the index of H in Η·Η. is relatively

prime to the index of H in H-H„, so

H-H n Η·Η2 = H.

In terms of fields, this means

(F-L n Κ(ζ f J)-(F-L n κ(ζ .)) = F-L n Κ(ζ , .
n Vbq(mj)x/ n V"q(m2)" n q(m)

By (6.9), this is equivalent to (6.11). This proves (6.5).

(6. 12) Lemma. Let f, g be two functions defined on squarefree integers

such that

(6.13) f(d) is a real number, 0 < f(d) < l

(6.14) g(d) € Z, g(d) > 0

for all d, and such that

(6.15) f(djd2) = f(d,)f(d2)

(6.16) g(djd„) = least common multiple of g(d ) and g(d )

for all dj, d^ with (dj, d^ = 1. Then for all m we have

r y(d)f(d) n ( f(Jl).
dlm g(d) Alm, £ prime v g(Ä);*
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Proof. See [10, 2l], This proves (6.12).

_(_6.17) Lemma. Let s be an integer, s > l, and for any integer u > 0

relatively prime to s let e(u) be the smallest integer t > 0 with

s s ι mo(j u. Then

l

u>0, (u,s)=l u-e(u)

is convergent.

Proof. See [18, Gh. V, Lemma 8.3; 21]. This proves (6.17).

Proof of (4.5) in the function field case. Let n be äs defined in (6.5)

We prove that a * 0 implies that a & 0.

Let m be relatively prime to n. For τ e C , define

C (τ) = {σ e Gal(F-L /K): (olF-L ) - τ, and
m nm n

(alL ) * idL for all Alm},

a (τ) = #C (O/tF'L :K],
m m nm

a(r) = lim a (τ)
m

m

the limit being over all squarefree integers m > 0 which are relatively

prime to pn, ordered by divisibility; it is easily seen to exist.

Clearly, we have

C = U C (τ) (disjoint union)
nm T^C m

11 am(T)

n

"n

We claim that a (τ) > 0 for every τ e. C . Since C is non-empty (by

a * 0) this implies a > 0. Put
n

l if τ e Gal(F-L /F-L n L ),
C(T, m) H π η m

0 eise.
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Notice that (6.11) implies

(6.18) c(t, m) = C(T, m.)«c(T, m„) if m = nunu.

Applying the principle of inclusion and exclusion äs in (2.14) we find that

a (r̂  - T V(d)-c(T,d)
VT; ~ Ld|m [F.L ,:K]

nd

which by (6.10) is equal to

l _ y(d)'c(T>d)-q(d)"r
CF-L :Kl* ci|m [F.L (ς , .):F-L ]·

n n qv."/ n

Putting f(d) = C(T, d)-q(d)"r, g(d) = [F-L (ζ ,,.):?·! ] we find
n q(d) n

mVL' [F-Ln:KJ ci|m g(d) '

We are in a position to apply lemma (6.12). Conditions (6.13) and (6.14)

are obviously satisfied, and (6.15) is clear from (6.18). To prove (6.16),

let Q be the largest finite field contained in F*L , and notice that

g(d) = [ρ(ζ ,,J:Q] =min{t > 0: (#Q)fc = l mod q(d)}.
qw;

We conclude that

n

The infinite product

n n
"Ä prime, A/np u

is clearly convergent if r ä 2, and if r = l it converges by lemma (6.17)

It follows that

äs required. This proves (4.5)



- 23 -

of theorem (4.1).

In this section, h is äs defined in (4.1).

(7 . l ) Lemma . Let £ be a prime number * p. Then all prime numbers dividing

[L «Ρ(ζ , ):Ε(ζ ,)] are < £. Further, if [L ·Ρ(ζ. ) :Ρ(ζ, ) ] is not divisible
& π π x- n n

by £, then L. c Ρ(ζ, ).
χ. η

Proof. The degree [Ρ(ζ̂ ζΑ):Ρ(ζ )] is a divisor of i - l, and L^-F^)

is obtained froni Ρ(ζ, 9 ζ.) by successively adjoining zeros of polynomials
fl J6

Ä
X - a. At each stages such a polynomial is either irreducible or

completely reducible. Hence [L.-F(C ):Ρ(ζ, ,ζ.)] is a power of £. This
•v n π Λ-

implies the first assertion of the lerana. Moreover, if Ä does not occur

in [L£'Fah):FUh)], then L£'P(ih> = F(Ch, ζ̂ ), so

(7.2) LÄ

If now W c K * q , then £ divides h, so ζ e F(?h)» and this gi

L c Ρ(ζ ), äs required. So suppose W is not contained in K* . Then

for some w e W the polynomial Xq - w has no zero in K, and this

easily implies that for some v e K with vq e W the polynomial

ί- η
X - v has no zero in K. Then X - v is irreducible over K, and it

has a zero in L and hence in F(?h > ?ff). Since Ρ̂(ζ, ,ζ.) :Ρ(ζ̂ )] is

relatively prime to £, it must actually have a zero in F(C)· But

£
Ρ(ζ ) is normal over K, so it now follows that all zeros of X - v are

in F(c). Therefore ζ e F(?), so (7.2) gives L c F(Ch>. Thish . £ h , . £

proves (7.1).

Proof c>f (4.1). We must prove that (4.4) implies (4.3). So let m be the

product of those l for which L c Ρ(ζ ); then (4.4) means that Cm * 0.

prove that this implies C # 0 fOr every multiple n of m. ThenWe
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a * 0 for all n, which is (4.3).

The proof that C * 0 is by induction on the number t of primes

dividing n/m. The case t = 0 is obvious. So let t > 0, and let £ be

the largest prime number dividing n/m. Put n,- = n/£. The inductive

hypothesis teils us that C * 0. Since A/m, we know from (7.1) that £

no

divides [L ·Ρ(ζ, ) :Ρ(ζ, )], while all prime factors of [L ·Ρ(ζ, ) :Ρ(ζ, ) ]
χ h h n,. h h

are s some prime number dividing n^ and therefore < £. We conclude that

L *F(c,) is not contained in L *F(c,). so a fortiori
£ h n« h

(7.3) L -F c L «L «F = L -F.
n0 * Ä n0

Now let τ e C ; that is, τ is an automorphism of L »F with

no no

(r|F) e C

(τ|L ,) * id for all £'Jnn.
£ L£' °

By (7.3), we can extend τ to an automorphism of L -F which is not the

identity on L . This gives an element of C , so C * 0.
)ii ΤΙ Ϊ1

This proves theorem (4.1).
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8. Examples.

Let q be a prime number, and let g be an integer. We say that g

is a Fibonacci primitive root [24, 13 modulo q if g is a primitive root

2
mod q and satisfies the congruence g = g + l mod q.

18.1) Theorem. If GRH is true, then the set S of prime numbers which have

a Fibonacci primitive root has a density, and

d(S) = |̂ ·Π£(1 - A(A - i)) = 0-265705...;

here £ ranges over all prime numbers.

Proof (sketch). Let θ = (l + /5)/2 be a zero of X2 - X - l> and consider

= M(Q(6), Q(0, ζ4), {idQ(6j? j}, <θ>, 1),

= M(Q(0), Q(0, ζ), {τ},

where τ is the non-trivial automorphism of Q(6, ζ/) over Q(9). Then

it is not hard to see (cf. [24]) that

d({q e S: q β l mod 4}) = |d(Mj)

d({q e S: q = -l mod 4» = d(M_)

so

d(S) = id(Mj) + d(M2)

if d(Mj) and d(M2> exist. If GRH is true, then (3.1), (5.11) and a short

calculation show that

d(V =

so
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Q Ο ΟΠ 1
d(s) = fJL.2.f -πΛ (i -

where A i s Ar t in 's constant:

(8.2) A = Γί£ (l - — — ) - 0-3739558136.

(see [32]). This proves (8.1).

(8.3) Theorem. Let b, c be positive integers, (b, c) = l , and let t e Q,

t * 0, l, -l . Put

d(t) -

Then the set of prime numbers q for which

(8.4) q s b mod c

(8.5) t is a primitive root mod q

is finite if and, modulo GRH, only if we are in one of the following

situations :

(8.6) Ä,|c, b s l mod A, t c Q* for some prime number £;

(8.7) d(t)|c, ( ) = l (Kronecker symbol) ;

(8.8) d(t)|3c, 3|d(t), ("d(̂ )/l) = -l, t e Q*3.

Proof (sketch). The set we are interested in is

M = M(QS

where σ, is the automorphism of (̂ζ ) mapping ζ to ζ . By (4.6),
D t* G C

this set is finite if and, modulo GRH, only if {}(ζ , ς, ) does not have an

automorphism satisfying certain requirements; here h = Π +^ £. A

straightforward analysis shows that the only obstructions preventing the

e^istence of such a σ are the conditions (8.6), (8.7) and (8.8). This
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proves (8.3).

We remark that the if-part of (8,3) can be proved directly, using

nothing more than quadratic reciprocity; in fact, one finds that in each of

the sltuations (8.6), (8.7) and (8.8) the set of primes in question either

is empty or only contains the prime number 2. But the advantage of our

approach is that one need not know beforehand the list of exceptional

situations: they are just the obstructions encountered during the

consttuction of σ , and if in all other situations σ can be constructed

one knows that the list is complete (mod GRH) .

Using (5.1!) it is possible to derive a formula for the conjectural

density of the set of prime numbers satisfying (8.4) and (8.5). In each

case the resul t is a rational number times Artin's constant (8.2).

The same remarks apply to other sets of primes of a similar type. For

exaitiple? we can cousider the prime numbers q with the property that a

given rational raimber t * 0 has residue index k modulo q; i.e., the

subgroup generated by (t mod q) should have index k in F . Here k

is a given integer > l „ The set of such q is a subset of

M(q, <Q, {id..}, <t>, k)
*l

since here it is only required that the residue index of t divides k.

To force equalitys we also require that k divides the residue index, i.e.

that q splits completely Ln F = (ζ(ζ , t!/k). This leads to the set
K

M = M(Q, Q(Ck/ t),{idp}, <t>9 k).

Applying (4.6) one finds that M is finite if and, modulo GRH, only if one

of the following conditions is satisfied, with t and d(t) äs in (8.3):

(8.9) d(t)|k, and k is odd;
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(8.10) t = -u2, d(2u)i2ks k s 2 inod 4 for some u e Q;

9m~ ' λ m
(8.11) t » u , d(-3u)|k, 3|ks 2m|k for some u e Q, m e Z

(8.12) t = ~u2 *3, d(-3u)|k, 3/k, 2m+1|k for some u e Q, m e

(8.13) t = -u6, d(-6u)|k, 3/k, k s 4 mod 8 for some u e Q.

This answers a question left open in [17].

We can combine the various requirements. Thus, with b, c, t, k äs

before, we can consider the set of prime numbers q satisfying

q s b mod c

t has residue index k modulo q.

This set differs by only finitely many elements from

M = M(Q9 F, Cs <t>5 k)

where

F - Q(C? C i t1/k)

and where C consists of those automorphisms σ of F for which

σ(ζο) - ?cb, σ(ζ]ς) - cfc, Ö(t1/k) - t1/k

(so #C < 1). It is again possible, by a straightforward but tedious

analysis, to find the coraplete list of obstructions preventing M from

being infinite (mod GRH) .

For more details on a similar example* related to arithmetic codes,

we refer to [15].

In the next section we apply our results to prove a theorem about

euclidean rings. Another application of the same type is found at the end

of Cooke's and Weinberger 's paper [53. Further, our corollary (4.8) can be

used to improve slightly upon a result of Queen [20, th. 1].
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Το finish this section we mention some sets of prime numbers to which

our results do not immediately apply. Most of these can be dealt with by

small modifications of our method, and in case (8.16) the GRH can even be

dispensed with.

(8.14) The sct of primes q for which 2 is a primitive root modulo

2
q .

(8.15) The set of primes q for which the residue index of 2 is a

power of 2.

(8.16) The set of primes q for which the residue index of 2 is

squarefree (cf. [6]).

(8.17) The set of primes q for which both 2 and 3 are primitive

roots (cf. [16]).

(8.18) The set of primes q for which a given positive integer t is

the sinailest positive integral primitive root (cf. [11]).
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9. Euclid's algorithm.

Let K be a global field, and let S be a non-empty set of prime

divisors of K, containing the set SOT of archimedean prime divisors of K.

We denote by R the ring of S-integers in K:
O

R = {x e K: ord (x) ̂  0 for all primes £ «i S}.
£**

Thus, if K is a number field and S - Ŝ , then R_ is the ring of

algebraic integers in K.

We ask under which conditions there exists a euclidean algorithm on R ,
O

i.e. a function ψ: Rc - {Öl -*· Z>n such that for all b, c e Rc, c * 0,
>0

there exist q, r e R_ with
D

b = qc + r, r = 0 or Ψ(Γ) < ψ(ο).

If such a ψ exists, we call R0 euclidean. It is well known that a
D —————— —

necessary condition for R to be euclidean is that it is a principal ideal
o

ring. If R_ is euclidean, then its smallest algorithm θ is defined byD "' · '"" J '-' Ί ir-ir.Vi. ·. n .i.._j...— T~ -

θ (x) = min{ψ(x): Ψ is a euclidean algorithm on Rc}.
o

It is easily verified that θ is indeed a euclidean algorithm on Rc, cf .
O

[23].

If S has precisely one element, then Rc is euclidean if and only if
t>

it is isomorphic to one of the rings

z, zci(i + /=!)], zE/̂ l, zCi(i

zC/̂ I], zCiO + /ΠΤ)], FCx]

where F is a finite field. Up to isomorphism there are precisely eight

principal ideal rings Rc with #S = l which are not euclidean. They are
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IC H ι + /ΓΤ9)3, z[i(i + v^

" , Z[|(l + /:T63)],

F2fX, Y]/(Y2 + Υ + X3 + X + 1),

F2fX, Y]/(Y2 + Υ + X5 + X3 + 1),

F3CX, Yl/(Y2 - X3 + X + 1),

F4CX, Y]/(Y2 + Υ + X3 + η)

where η £ F., n i F2> These results can be found in C23, 19].

In the case #S ä 2 we have the following theorem.

J9. 1) Theorem. Suppose that R is a principal ideal ring, and that #S > 2,
- - "·" D

Further,, if K is a number field, assume that for every squarefree integer

n and every finite subset Sf c S the ζ-function of the field

Κ(ζ , Rgi ) satisfies the generalized Riemann hypothesis. Then Rg is

euclidean, and its smallest algorithm θ is given by

(9.2) θ(χ) = Σ Jc ord (x)-n (x e R_, x * 0)
_PJfS £ £ S

where the sum is over all primes of K which are not in S, and

n = l if the natural map R* -*- K* is surjective
£ s £

n = 2 eise.
£

The Riemann hypotheses mentioned in this theorem will again be denoted

by "GRH".

The function field case of (9.1) is due to Queen Cl9]. In the number

field case only a partial result was known: Weinberger [30] proved, modulo

certain generalized Riemann hypotheses, that if K has class number one

and S = Sm, #S > 2, a euclidean algorithm on Rg is given by

ψ(χ) = Σ , ord (x)-(n + 1 )
£ £
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with n äs defined in (9.1). Since this function does not assume the value
£

l, it is obviously not the stnallest algorithm.

We remark that in the number field case all known euclidean rings Rc,
O

#S < °°, are actually euclidean with respect to the norm function

N(x) = #(Rg/Rgx)s x e Rg, x * 0.

Here no Riemann hypotheses are assumed. The rings Ζ[/ΪΤ], Ζ[ζ~~] are

examples of rings of unknown character: they are euclidean if GRH is true,

but the norm function is not a euclidean algorithm.

Before giving the proof of (9.1) we introduce some terminology. A

divisor of K is a formal product Π £ %- , m(p_) e Z, m(£) = 0 for all

but finitely many £, with £ ranging over the non-archimedean prime

divisors of K. For χ e K*, the principal divisor (x) is defined by

(χ) = Π £°r £ „ The set of divisors of K is an abelian group with

respect to multiplication, and the principal divisors form a subgroup. Let

£ = Π £ *- be a divisor with n(£) ä 0 for all £. A subgroup H of

the group of divisors is said to have modulus b if

for every Π £ ·*- e H and all £ with n(£) > 0

we have m(£) = 0

and

(χ) € Η for all χ e K* satisfying

ord (x - 1) ̂  n(£) f°r all P_ with n(£) > 0.

The primes £ of K with £ i S are in one-to-one correspondence with

the non-zero prime ideals of R . We identify the group of fractional

Rg-ideals with the group of those divisors Π £m<1£/ fOr which m(£> = 0

for all £ e S.
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P£oofof (9.1). Suppose, for the moment, that Rc is euclidean, and let θ
O

denote its smallest algorithm. If π e R is a prime element, Rgir = jo,

then Samuel's results C23, sec. 4l easily imply that θ(π) > n . Since

further 8(xy) > θ(χ) + 6(y), by C23, prop„ 12], we conclude that

θ(χ) > Σ ord (χ) »n , χ e R_, x * 0.
Ẑ  P. P. ^

So if the right hand side represents an algorithm on Rg, it is

necessarily the smallest one.

In the rest of the proof let θ be defined by (9.2), and assume GRH.

We must prove that θ is a euclidean algorithm on Rg. Let b, c e Rg,

c * 0. We look for an element

r e b + R -c
O

with

r = 0 or θ (r) < 6(c).

Dividing b and c by their greatest common divisor - they have one,

since R is a principal ideal ring - we may suppose that (b, c) = l .
u

Further, replacing S by a finite subset which also yields a principal

ideal ring and gives the same value for 0(c), we may suppose that

2 < "s < ».

If 9(c) = 0, then c e R*, so we can take r = 0.
D

If 6(c) = l, then c is a prime element: Rgc = £, and n = 1.

Then the map R* + K* ~ (Rc/Rcc)* is surjective, so we can find r e R*
D p D D

with r Ξ b mod Rgc. Clearly, θ (r) = 0 < l = 6(c).

If 0(c) ̂  3, then a suitable generalization of Dirichlet's theorem

on primes in arithmetic progressions Cl3] teils us that every residue class

in (RS/RSC)* contains infinitely many prime elements. In particular, the
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residue class b + R c contains a prime element r, and then we have θ(r)
D

< 2 < 3 < 9(c).

We are left with the case 6(c) =2. It would, in this case, be

sufficient to find a prime r of K«, r_ i S, with the following two

properties:

(9.3) nr = l

(9.4) r = R *r for some r e b + R<,c.
O £>

This would give θ(r) = n^ = l < 2 = 9(c), äs required.

Condition (9.3) simply means that the natural map

R* -> K*
D ΪΓ

is surjective. Clearly, this is a condition of the type considered in

section 2S with W = R*s k = I, Notice that the rank of W, modulo its

torsion subgroups equals #S - l > 1.

Using class field theory [!3J we translate the condition (9.4) into

one of the type "(p_> F/K) c c", äs follows. For F we take what has been

called the ~̂'£̂ S-Sî Ŝ -̂ 2£̂ L̂ L̂Ĵ ]̂î L c· More precisely, F is the

class field of K with respect to the smallest group of divisors with

modulus E c which contains all non-archimedean £ e S. We call this

group of divisors H. Properties of F are:

(9.5) F/K is abelian

(9.6) the conductor of F/K divides R„c,
O

(9.7) all p e S split completely in Fs

and moreover F is the largest field with these propn.rties, inside an

algebraic closure of K; cf. [5].

Let I denote the group of divisors generated by all £ not occurring
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in RgC, and let P be the subgroup f (χ) : χ e K*, (x) e l}. Since Rg

is a principal ideal ring, we can write any element of I äs the product of

an element of P and a factor Π gg g ™ , m(£) e Z, the product ranging

over the non-archimedean £ e S. The latter factor is an element of H, so

I = Ρ·Η. Translating this Statement on divisor groups into one about their

class fields, we find that

(9.8) K is the maximal totally unramified subextension of K c P.

By class field theory, the Frobenius symbol induces an isomorphism I/H e;

Gal(F/K). But we have I = P-H, and a short calculation leads to

(9.9) (Rs/Rgc)*AKR*) =Gal(F/K)

where ψ: R* -*· (R /R c)* is the natural map. Let the automorphism of F/K
O O u

corresponding to (b + R c) mod ψ (R*) be denoted by σ. Then condition
O D

(9.4) is equivalent to

(9.10) (r, F/K) c {σ}

if £ does not divide R c. We conclude that to prove the existence of r_
O

satisfying (9.3) and (9.4) it certainly suffices to show that the set

M = M(K, F, {σ}, R*, 1)

is infinite. By (4.8) and the GRH assumption we have made, we know that

indeed M is infinite, except if σ e Gal(F/L.) for some prime number
X/

£ * p with L c p; here L = Κ(ζ , R*1//£). That means
X· J6 J6 o

(9.11) L c F°
Χί

where Fa = {x e F: σ(χ) = χ}. Το finish the proof of (9. D it suffices to

derive a contradiction from (9.11).
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In the function field case we are immediately done. Namely, the

definition of L makes it clear that L /K can only ramify at primes in

S, if K is a function field; but F/K is unramified at these primes, by

(9.6) or (9.7), so we can only have (9.11) if L /K is totally unramified.
A/

By (9.8) this implies L = Ks which is absurd, since R* contains
Κι ο

elements which are no £-~th powers in K.

In the remainder of the proof we therefore assume that K is a number

field. The only reason that the preceding argument does not apply is that

L /K may ramify at primes dividing £, On the other hand, F/K only

ramifies at primes dividing R^c, so

(9.12) there exists a prime l i S with ord (c) > 0 and ord„(£) > 0.
~. A

By (9.5) and (9.11), the field L is abelian over K. Since R* contains
A/ S

elements which are no £~th powers in K, this implies

(9.13) ζ£ e K

and

(9.14) [L :K] is divisible by £
A/

(in fact, it is a power of £,) .

We distinguish cases. From 0(c) = 2 and (9.12) we see that there are

precisely three possibilities:

Rgc » jt, n£ =· 2,

or R c = £-m, n. = n = l, £_ * m,
O *~~ iC "l

9 ~
or R r = 9 n - l .

g — 5 £

First let Rgc = _£, n£ = 2. Since ord£(£) > 0, the characteristic

of the field Rg/£ equals £, so #(Rg/O* = £f - l for some integer



_ oy _

f > 0. By (9.11) and (9.9) it follows that Cl^rK] divides £ - l,

contradicting (9.14).

Next suppose that Rnc = £*m, n. = n = 1 , Ä * m. Then (R /R c)* s
S — — .£ m — — o o

(Rc/£)*®(R/m)*, and the subgroup ψ(Κ*) projects onto (R- /m)* since
O ~~ O ~~ b

n - 1. Therefore #((Rc/Rcc)*/<KRi)) divides #(R<,/A)* = * ~ '» for
m b ο ο ί>

some integer f > 0, and this leads to the same contradiction äs in the

preceding case.

9
In the remaining case: R c = £ , n„ = l , this contradiction

b - JC
2

cannot be derived. Here Gal(F/K) is isomorphic to (Rg/A )*/<KRcj); since

Ψ (R*) maps onto (Rc/£)* this is a factor group of the kernel of the
b b

natural map (Rc/£2)* -> (R0/£)*, which, in turn, is an elementary abelian
O — D

A-group. Therefore Kummer theory and (9.13) teil us that

(9.15) F = K(x]/Ä, ..., x[/Ä)

£
for some integer t ä 0 and certain x. e K*, x. i K* .

Fix i, l < i < t, for the moment. Since F/K is unramified outside

£_, by (9.6), we have ord (x.) s 0 mod £ for all primes £ " l of K.

But R_ is a principal ideal ring, so modifying x. by an £-th power we
b J-

can achieve that

ord (x.) = 0 for all -p i S u {£},£ j. r. _

0 < ord (x.) < £ - 1.
JG 3-

We Claim that ord (x.) * 0. In fact, if l < ord (x.) ̂  Ä - l then a
J6 l X« J-

strictly local computation shows that the jl-component of the discriminant

of K(x!/£) over K equals ̂ ~W'°̂ W . The conductor-discriminant
l —

product formula then implies that the _£-component of the conductor of

K(x!/£)/K is equal to ̂  + A-ord^O/U-l)^ On the other hand, front
o

K(x!/Ä) c p and (9.6) we know that this conductor divides Rgc - l_ .
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Therefore l + £*ord.(£)/(£ - 1) a 2, which is impossible. This proves our
A/

claim that ord (x.) = 0.
J6 l

We now have ord (x.) - 0 for all p / S5 so x. £ R* for all i.
P 3. X b

By (9.15) this yields

F c K(R*1/£) - LA

and combining this with (9.l O we find that F c L£ c F° c Fs so F = L£ =

F° and σ is the identity automorphism of F. This is no contradiction,

but it solves our problemt namelys σ = id means, by definition of σ,

that (b + R *c) is in the image ψ(R*) of R* so there exists r e R*
S £> a D

with r e b + Rcc, and then θ(r) = 0 < 2 = 0(c), äs required. This
L>

proves (9.1).

It can be shown that the Situation encountered at the end of this

proof only occurs for £, == 2. An example in which it does occur is given

by

K = Q(?5), S = Sro? Rg = Z[?5]s

c = 4, £ = 2 , _£_ = the prime lying over 2.

Thus, there exists no prime element ττ e Ζ[ζ_] which is l mod 4, for

which the natural map Ζ[ζ,-]* ·* (̂ ίζ,̂ /Ί-ίζ̂ Ι-π')* is surjective. This

disproves a conjecture of Queen [19, remark 2],
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