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Primality test, prime

In this paper we prove the following simplification
of Miller’s primality cuterion {2]

Theorem 1 Assume that for every mteger d that s

I mod 4 and either prime or the product of two
primes, the L function 23—, (k/d) k ° satisfies the
generalized Riemann hypothesis, where (k/d) denotes
the Jacobi syinbol, defined below Let n be an odd
wmteger,n > 1, and writen  1=2" u, with tand u
integers, and u odd Then n 1s a prime number 1f and
only 1f for every prime number a < ¢ (log n)?, a #n,
we have

@’ =1 mod u )

J
a® "= lmodn forsomewmntegers, 0<;<zt (2)
Hetre ¢ 1s some constant not depending on #, and log
denotes the natural logarithm

This theorem differs 1 two 1espects from Miller’s
result In the first place, we 1equire the geneialized
Riem inn hypothesis for a smaller set of I functions
that Miller does This results from a simplification
of Miller’s proof, which has been obseived by several
people and which consists in ehminating the modified
Caimichael function fiom the argument In the sec
ond place, we have suppressed Miller’s condition that
n 1s no peifect power 1e n -~ m® for all integeis m, s
with s 2 2 Thus pomnt could have been dealt with by
applymg Monigomery’s version of Ankeny’s theorem
[3 Theorem 13 1] to a chaiacter ot oider p that 1s
defined modulo p2, tor p prime but this would have
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required the generalized Riemann hypothesis for the
L functions attached to such characters Instead we
give a completely elementary aigument, which
requires no unproved hypotheses, and which leads
to the following two results

Theorem 2 Let n be a positive wnteger, n = 4, and
assume that a* =1 = 1 mod n for every prime number
a < (log n)? Then n s the product of distinct prime
numbers

Theorem 3 Let p be an odd prime number Then we
have @®~1 # 1 mod p2 for some prume number
a<. 4 (logp)

It will be clear from the prootf of Theoiem 3, that
for every € >0 we can take a < (42 +¢) (log p)?
for all p exceeding a bound depending on e, here
4e™?=054134

Theorem 3 1s probably fai from best possible,
since 1t 1s likely that we can takea =2 org = 3 for
every p The heurnistic aigument for this 1s as follows
Fix an integer @ > 1 Fermat’s hittle theorem [5,
Theorem 13] asserts that, for p a prime not dividing
a, the ‘Fermat quotient’ (@* ™! — 1)/p 1s an integer
Let us regaid 1t as an ‘mbitrary’ mntege: modulo p,
and assume that 1t 1s divisible by p with ‘probability’
1/p Then we are led to expect that the total number
of primes p < x for which o? =1 mod p? 1s asymp
totically equal to

Zp prime, p<x 1/p ~ log log x

for a tending to infinity, an expectation that is boine
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out by the numerical material of Brillhart, Tonascia
and Weinberger {1]. Let now p be a prime >3. As-
suming that the ‘events’ 27! =1 mod p? and 3~ 1 =
1 mod p? are independent, we find that they occur
simultaneously with ‘probability’ (1/p)?. But

T, prime(1/p)? is convergent, so it is likely that the
number N (x) of primes p < x for which we have both
2P =1 mod p? and 3?1 =1 mod p® tends to a
finite limit as x - oo, Since N(3 - 10°) =0, by [1], it
is reasonable to conjecture that this limit is zero. In a
similar way one is led to expect that, for any fixed
integer a > 1, there exist only finitely many primes
for which ¢P~! = 1 mod p3.

Proof of Theorem 3. By [1], we may assume that
p>3-10°.Putd=4"(logp), K =2 -log p/log A,
and let k be the greatest integer <K. We denote the
number of primes <4 by M;by [4], we have M >
Allog A.

Suppose that every prime a < 4 satisfies ¢?~1 =
1 mod p2. If b is an integer which can be written as
the product of at most k primes <4, then we have

0<bh<A4X =p?, BP~'=1 mod p?.
The number of such b is

M+1)-(M+2) -~ (M+k)>M"
k! i

E

and all these b are mutually incongruent modulo p2.
But it is well known that the congruence xP~! =

1 mod p? has only p — 1 solutions modulo 2 We
conclude that

Mk

o <p-1<p.

On the other hand, using Stirling’s inequality -

k
< (f) 1020 . o

e
where e1/(12%) . /37x is a monotonically increasing
function of x, for x 2 1/6, we find that
M+ eA ¥
7cT>( ) (102 /3yt

k-logA

e-d \k |
> (02K . Sy

2-logp
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> (2e - log p)X—1 - (V2K .\ S2mK)y~ L |
Forp >2 - 1012 we have
ek >2e - logp - (V02 -\/27K)

and therefore

Mk
e logp) =ak2=p,

contradicting what we found before. To deal with
the remaining cases, we observe that

MK > 8- 10° ifp >3-10%,
M¥[i! > 1010 ifp >8-10°%,
MR >6 - 1011 ifp >10'°,

MYkt >3- 1012 ifp >6-10'1,

so M¥/k! >p for all p with 3 - 10° <p < 2 - 102,
This proves Theorem 3.

Proof of Theorem 2. Suppose that # is not the product
of distinct prime numbers. Then p? divides n for some
prime number p. We have 2 < (log n)? since n # 4, so
2"~1 =1 mod n by the hypothesis of the theorem. It
follows that n, and hence p, is odd.

Let @ < 4 - (log p)* be a prime number. Then g <
(log n)?,s0 "1 =1 mod n, and a fortiori "1 =
1 mod p?2. Therefore the multiplicative order of a
modulo p? is a divisor of # — 1; in particular, it is
relatively prime to p. Since by Euler’s theorem [5,
Theorem 14] this multiplicative order is also a divisor
of the Euler function ¢(p?)=p({ — 1) we conclude
that it is a divisor of p — 1. Hence ¢?~! = 1 mod p?
for every prime a < 4 - (log p)?, contradicting The-
orem 3. This proves Theorem 2.

The Jacobi symbol (k/d), which occurs in Theorem
1, is defined for integers &k and positive, odd integers
d, in the following way. If p is an odd prime number,
then Fermat’s little theorem easily implies that
kP~1/2 = _1 0 or 1 mod p, for every integer k; and
(k/p) is defined to be the unique element from the
set {—1,0, 1} for which kXP~1/? = (k/p) mod p. For
non-prime values of d, the symbol (k/d) is defined by
repeated applications of the rule (k/dydy) = (k/d)(k/d2).
Notice that we have

(k1ko/d) = (k1/d)&a/d) (3)
for all integers ky, k, and positive, odd integers d.
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Proof of Theorem 1. If n is prime, then for every
integer « not divisible by n we have ¢2# =¢""1 =

1 mod n, so if g% # 1 mod n then the last element in
the sequence a*, a*%, ..., a2~ *# which is not 1 mod n
is —1 mod n. Hence (1) or (2) holds. Next suppose
that 7 is not a prime number. We have to prove that
there exists a prime ¢ < ¢(log #)? for which (1) and
(2) both fail.

Let p, ¢ be primes such that pg dividesn. If p =¢
then by Theorem 2 there exists a prime « < (log n)?
with 2”1 2 1 mod n, and clearly this # does not
satisfy (1) or (2). Hence suppose that p # ¢q. Inter-
changing p and ¢, if necessary, we can achieve that
p — 1 is divisible by at least the same power of 2 as
qg—1lis.Putd=pgifp— 1andq — 1 are in fact
divisible by the same power of 2, and d = p otherwise.
Notice that d = 1 mod 4.

Denote by a the smallest positive integer for which
the Jacobi symbol (¢/d) equals —1. From (3) it is ob-
vious that g is a prime number, and Montgomery’s
version of Ankeny’s theorem {3, Theorem 13.1] im-
plies that ¢ < c(log d)* < ¢(log n)? if the L-function

Zr=1(k/d) k™ satisfies the generalized Riemann hypo-

thesis. Here ¢ is some constant not depending on d.
We show that ¢ does not satisfy (1) or (2).

Put b =4". Since u is odd, we have (/d) = (@/d) =
—1. In particular, b # 1 mod d, so (1) does not hold.
If (2) holds, then

»=_1modp, ¥ =-1modg

for some j, 0 <j <¢, so the multiplicative order of b
modulo p and the multiplicative order of b modulo ¢
are both equal to 271,

Let now first d =p. Then p — 1 is divisible by a
higher power of 2 than g — 1. But by Fermat’s little
theorem, g — 1 is divisible by the order of b mod g,
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which equals 27*1. Consequently, (p — 1)/2 is divisible
by 2771 1t follows that 5P~1/2 =1 mod p, so
(/p) = 1, contradicting that (b/p) = (b/d) = —1.

Next suppose that d =pq. Then (b/p)- (b/q) = —1,
so interchanging p and g, if necessary, we can achieve
that (b/p)=—1 and (b/q)= 1. Then p@ D2 =
1 mod g, so the order of b mod g, which equals 2/*1,
divides (g — 1)/2. But (g — 1)/2 is divisible by the
same power of 2 as (p — 1)/2, so 27*! also divides
(p — 1)/2. As in the first case, this implies that
(b/p) = 1, which is again a contradiction.

This proves Theorem 1.
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