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Pnmality test, pnme

In this papei we prove Ihe followmg simphfication
of Miller's pnmaiity cutenon [2]

Theorem l Assume that for every integer d (hat is
l mod 4 and either pnme or the pwduct oftwo
primes, the L function Σ^-ι (k/d) k s wtisfies the
generahzed Riemann hypothesis, where (k/d)denotes
the Jacobi i>yinbol, defmed below Let n be an odd
integer, n > \, and wnte n l = 2 r u, with t and u
mtegers, and u odd Then n is a pnme number if and
only if for every pnme number a < c (log n)2, ai=n,
we have

a" = l mod n (1)

α 2 "— l mod n for some integer}, 0 < / < t (2)

Heie c is some constant not dependmg on «, and log
denotes the natural loganthm

lins 'heoiem differs m two lespects from Miller's
lesult In the first place, we lequire the geneiahzed
Riem mn hypothesis for a smallei set of L functions
thd'i Miller does This results from a simphfication
of Millei's proof, which has been obseived by several
people and which consists in ehminatmg the modified
Cannichael function fiom the argument In the sec
ond place, we have suppressed Miller's condition that
n is no peifect power i e n -/= ms for all mtegeis m, s
with s > 2 This pomt could ha/e becn dealt with by
applying Monlgomeiy's version of Ankeny's theorem
[3 Theorem 13 1] to a chaiacter öl oiderp that is
defmed modulo p 2 , toi p pume but this would have

required the generali/ed Riemann hypothesis for the
L functions attached to such characters Instead we
give a completely elementaiy aigument, which
requires no unproved hypotheses, and which leads
to the followmg two results

Theorem 2 Let n be a positive integer, n Φ 4, and
azurne that a"~l = l mod n for every pnme number
a < (log n ) 2 Then n is the product ofdistmct pnme
numbers

Theorem 3 Let p be an odd pnme number Then we

have a
p~~l

l mod p for some pnme number

a .4 (log p ) 2

It will be tlear from the proof of Theoiem 3, that
foi every e > 0 we can take a < (4e~ 2 + e) (log p ) 2

for all p exceedmg a bound dependmg on e, here

Theorem 3 is probably fai from best possible,
since it is hkely that we can take a = 2 or a = 3 for
every p The heunstic aigument for this is äs follows
Fix an integer a > l Feimat's little theorem [5,
Theorem 13] asserts that, for p a pnme not dividmg
a, the 'Fermal quotient' (ap~~l - l)/p is an integer
Let us regaid it äs an 'aibitraiy' integei modulo p ,
and assunie that it is divisible by p with 'probabihty'
l Ip Then we are led to expect that the total number
of primes p < χ for which op 1 = l mod p2 is asymp
totically equal lo

Σρ pnme, p<x l/P ~ l°g l

for λ tending to infmity, an expectation that is bome
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out by the numerical material of Brillhart, Tonascia
and Weinberger [1]. Let now p be a prime >3. As-
suming that the 'events' 2P~1 Ξ l mod p2 and 3P~~1 Ξ
l mod p 2 are independent, we find that they occur
simultaneously with 'probability' (l/p)2. But
Σ ρ prime (l /P)2 is convergent, so it is likely that the
number N(x) of primes p < χ for which we have both
2P~1 = l mod p 2 and 3 P " J = l mod p 2 tends to a
finite h'mit äs χ -> °°. Since N(3 · l O9) = 0, by [l ], it
is reasonable to conjecture that this limit is zero. In a
similar way one is led to expect that, for any fixed
integer a > l, there exist only finitely many primes
for which ap~l = l mod p 3 .

Proof of Theorem 3. By [1], we may assume that
p > 3 · 109. Put A = 4 · (log p)2, K = 2 · log p/log A,
and let k be the greatest integer <K. We denote the
number of primes -C4 by M; by [4], we have M >
A/log A.

Suppose that every prime a <.A satisfies ap~l =
l mod p 2 . If b is an integer which can be written äs
the product of at most k primes <A, then we have

Q<b<AK=p2, bp~1 = lmoap2.

The number of such b is

(M+ 1) · (M + 2) - (M + fc) Mk

kl kl

and all these b are mutually incongruent modulo p2 .
But it is well known that the congruence xp~1 ^
l mod p2 has only p - l Solutions modulo p2 . We
conclude that

M^

kl
- Kp.

On the other hand, using Stirling's inequality

where e1^12*) · \jl-nx is a monotonically increasing
function of x, for χ > 1/6, we find that

· ( e l/(12fc)

•log p

> (2e · log p ) * - 1

For p >2 · 1012 we have

e i r > 2 e - l o g

and therefore

contradicting what we found before. To deal with
the remaining cases, we observe that

Mk/k\ > 8 · 109 i f p > 3 - 1 0 9 ,

Mk/kl>10i0 i f p > 8 - 1 0 9 ,

Mk/k\ > 6 · 1011 i f p > 1 0 1 0 ,

M"/k! > 3 · 101 2 i f p > 6 - 1 0 u ,

soMk/k\ >p for all p with 3 · 109 < p < 2 · 1012.
This proves Theorem 3.

Proof of Theorem 2. Suppose that n is not the product
of distinct prime numbers. Then p 2 divides n for some
prime number p. We have 2 < (log n)2 since n Φ 4, so
2"""1 Ξ l mod n by the hypothesis of the theorem. It
follows that n, and hence p, is odd.

Let a < 4 · (log p) 2 be a prime number. Then a <
(log «)2, so α"" 1 Ξ l mod n, and a fortiori a"~* =
l mod p 2 . Therefore the multiplicative order of α
modulo p 2 is a divisor of n - l ; in particular, it is
relatively prime to p. Since by Euler's theorem [5,
Theorem 14] this multiplicative order is also a divisor
of the Euler function φ(ρ2) = p (p — 1) we conclude
that it is a divisor of p - l . Hence ap~1 = l mod p 2

for every prime a < 4 · (log p) 2, contradicting The-
orem 3. This proves Theorem 2.

The Jacobi symbol (k/d), which occurs in Theorem
l, is defined for integers k and positive, odd integers
d, in the following way. If p is an odd prime number,
then Fermat's little theorem easily implies that
fc(p-i)/2 = - l , 0 or l mod p, for every integer k; and
(k/p) is defined to be the unique element from the
set {-1,0, 1} forwhich&(p~1)/2s(fc/p)modp. For
non-prime values of d, the symbol (k/d) is defined by
repeated applications of the rule (fc/c?^) = (k/difä/dz
Notice that we have

) (3)
for all integers klt fc2 and positive, odd integers d.
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Proof of Theorem 1. If « is prime, then for every
integer a not divisible by n we have ö2 '" = a"~l =
l mod n, so if a" φ l mod n then the last element in
the sequence a", a2",..., a2^1" which is not l mod n
is - l mod n. Hence (1) or (2) holds. Next suppose
that n is not a prime number. We have to prove that
there exists a prime a < c(log n)2 for which (1) and
(2)bothfail.

Let p, q be primes such that pq divides n. lfp=q
then by Theorem 2 there exists a prime a < (log n)2

withß"^1 φ l mod n, and clearly this α does not
satisfy (1) or (2). Hence suppose that p Φ q. Inter-
changingp and q, if necessary, we can achieve that
p - l is divisible by at least the same power of 2 äs
q — l is. Put d -pq if p — l and q — l are in fact
divisible by the same power of 2, and d=p otherwise.
Notice that d = l mod 4.

Denote by α the smallest positive integer for which
the Jacobi symbol (α/d) equals —1. From (3) it is ob-
vious that a is a prime number, and Montgomery's
version of Ankeny's theorem [3, Theorem 13.1] im-
plies that a < c(log d)2 < c(log n)2 if the I-function
Σ)Γ=ι (k/d) k~s satisfies the generalized Riemann hypo-
thesis. Here c is some constant not depending on d.
We show that a does not satisfy (1) or (2).

Put b - a". Since u is odd, we have (b/d) = (a/d) =
— 1. In particular, b Φ l mod d, so (1) does not hold.
If (2) holds, then

,/ ' _ , , , / _

b = — l mod p , b = — l mod q

for some/, 0 </ < t, so the multiplicative order of b
modulo p and the multiplicative order of b modulo q
are both equal to 2I+1.

Let now first d=p. Then p - l is divisible by a
higher power of 2 than q - 1. But by Fermat's little
theorem, q - l is divisible by the order of b mod q,

which equals 2 / + 1 . Consequently, (p - l)/2 is divisible
by 2 / + I . It follows that b(p~l)l2 Ξ l mod p, so
(b/p) = l, contradicting that (b/p) - (b/d) = - l .

Next suppose that d - pq. Then (b/p) · (b/q) = - l ,
so interchanging p and q, if necessary, we can achieve
that (b/p) = - 1 and (b/q) = l. Then b(q~1)/2 =
l mod q, so the order of b mod q, which equals 2 ; + 1 ,
divides (q - l)/2. But (q - l)/2 is divisible by the
same power of 2 äs (p - l)/2, so 2>+1 also divides
(p - l)/2. As in the first case, this implies that
(b/p) = l, which is again a contradiction.

This proves Theorem l.
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