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Let R be a noethenan ring, and G(R) the Grothendieck group of fmitely generated modules
over K For a fmite abelian group π, we descnbe G(Rn) äs the direct sum of groups G(Rf). Each
R' is the form R^„, l/n], where n is a positive integer and {„ a primitive nl\\ root of unity. As an
application, we descnbe the structure of the Grothendieck group of pairs (H, u), where H is an
abelian group and u is an automorphism of H of fmite ordei

0. Introduction

The Grothendieck group G( if ) of an abelian category <€ is defined by generators
and relations. There is one generator [M] for each object M of V, and one relation
[M] = [M'] + [M"\ for every exact sequence 0->M'->M->M"-»-0 in %.

Let R be a left noetherian ring with l . We write G(R) for the Grothendieck group
of the category of finitely generated left /?-modules.

For a group π, we denote by Rn the group ring of n over R. Let ρ be a finite cyclic
group of order n, with generator τ, and denote by Φη the «th cyclotomic poly-
nomial. As we shall see in Section 2, the two-sided ideal Φη(τ)Κρ of RQ does not
depend on the choice of τ, and we put

These are also left noetherian rings; the zero ring is not excluded.

0.1. Theorem. Lit R be a left noetherian ring with l and π α finite abelian group.
Then we have, with the above notations

where π' ranges over all subgroups of π for which π/π' is cyclic.

For a description of the isomorphism we refer to the proof of the theorem, which
is given in Section 4. It is not in any obvious way induced by the natural ring homo-
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morphism Rn^>Y[n- /?<π/π'>. Sections l, 2 and 3 contain some preparatory
material. In Section 5 we describe the behaviour of the isomorphism under change
of groups and change of rings.

0.2. Theorem. Lei π be a finite cyclic group of order n. Then

G(Z7t)s ® (Z©C(Z[fAl/d]))
d\n

where ζά denotes a primitive Ah root of unity, C(Z[£</, \/d]) denotes the ideal class
group of the Dedekind ring Ζ[ζα, l /d], and the direct sum ranges over the divisors d
of n.

This theorem is fairly immediate from Theorem 0.1, see Section 7. More
generally, for R a Dedekind domain and π finite abelian we have

G(Rn)= ® (1®€(Κ(χ})) (0.3)
X

where χ ranges over a certain set of characters of π and R (χ) is a certain Dedekind
domain; see 7.4 for details. The groups G(Rn) and 1®C(R(x)) = G(R{x)) have
natural ring structures induced by the tensor product over R and R {χ) respectively,
cf. [8, Corollary 1.1]. One might wonder whether (0.3) is a ring isomorphism if
multiplication is defined componentwise in the direct sum. Checking the image of
the unit element [R] of G(Rn) one finds that this is only true in the trivial case when
the order of π is a power of the characteristic of R.

For a discussion of the relation between 0.2 and Reiner's description of Ο(Ζπ) for
π cyclic [7], we refer to Section 7.

Sections 8 and 9 are devoted to the group SSF which was investigated by Bass [1]
and Grayson [2]. It is defined äs follows. Let ,</ be the category of all pairs (H, u),
where H is a finitely generated abelian group and u an automorphism of H for
which u" - id/y is nilpotent for some positive integer n; here id// is the identity on H.
A morphism in !/' from (H, u) to (H', u') is defined to be a group homomorphism
/ : H->H' for which/ ° u = u' ° f. The pair (H, u) is called apermutation module if
H admits a Z-basis permuted by u. Let P be the subgroup of the Grothendieck group
G(.9') generated by the classes of all permutation modules. Then SSF=G(.(/)/P.

0.4. Theorem. We have SSF= ©ffaiC(Z[£„, l/«]).

This theorem is proved in Section 8. In Section 9 we obtain an almost complete
description of SSF äs an abelian group, using methods from algebraic number
theory.

Rings in this paper are always supposed to have a unit element, and modules are
left modules. By Z and (Q we denote the ring of integers and the field of rational
numbers, respectively. Set-theoretic difference is denoted by - , and cardinality
by # .
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1. The Grothendieck group of R[\/n]

In this section n denotes a positive integer. By Z[l/«] we denote the subring of Q
generated by l/n, and if Mis an abelian group we putM[l/«] = M(x)/Z[l/«]. If R is
a ring, then R[\/n] is a ring isomorphic to R[X]/(nX- l)R[X], and the element
l <g) (l/«) of /?[!/«] is simply denoted by l/n. For any Ä-module Mthere is a natural
/?[l/«]-module structure on M[\/n], and the functor from the category of R-
modules to the category of Ä[l/«]-modules mapping M to M[\/n] is exact.

1.1. Proposition. Let R be a left noetherian ring. Then R[l/n] is a left noetherian
ring, and G(R[l/n]) is isomorphic to G(R)/H, where H is the subgroup of G(R)
generated by all symbols [M], with M ranging over thefinitely generated R-modules
for which «·Μ=0.

Proof. The ring R[l/n] is left noetherian because every left ideal of R[l/n] is of the
form o[l/«], where α is a left ideal of R.

Since the functor M<-*M[l/n] from the category of Ä-modules to the category of
Ä[l/«]-modules is exact, and since M[l/n] = 0 if η·Μ=0, there is a group homo-
morphism

λ : G(R)/ff-+G(R[l/n])

mapping the coset of [M] mod H to [M[l/n]].
Let conversely 7V be a finitely generated R[l/n]-moaule, and let M be a finitely

generated Ä-submodule of TV which generates TV äs an R[l/n]-modu\e. By a straight-
forward argument one shows that ([M] mod H) e G(R)/H depends only on 7V, and
that there is a group homomorphism

μ : G(R[l/n})-+G(R)/H

for which μ([Ν]} = ([Μ] mod H) in the Situation just described.
To prove ].] it now suffices to check that λ and μ are inverse to each other. If

TV.Mare äs in the definition of μ, then one easily proves that N~iM[l/n], so λμ is
the identity on G(R[\/n]). Let now M be a finitely generated /?-module, and let Mo
be the irnage of M under the natural map M->M[l//7]. Then μλ([Μ] mod H)
= ([Mo] mod //), so to prove that μλ is the identity on G(R)/H it suffices to show
that [M] = [Mo] mod H. The kernel L of the natural surjection M~>-Mo is given by

3/eZ, />0 : n'.x = 0}.

Since R is noetherian, L is finitely generated, so «^«L = 0 for some £ e Z , k>0.
Therefore we have [M] — [Mo] = [L] eH, äs required. This proves 1.1.

1.2. Corollary. Let R be a left noetherian ring and ρ afinite cyclic group of order n.
Then we have, with the notatiom of the introduction
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where H is the subgroup of G(R(ß)) generated by all Symbols [M], with M ranging
over the finitely generated R(g)-modules for which η·Μ—0.

Proof. Immediate from 1.1.

2. Filtrations of Απ-modules

Let ρ be a finite cyclic group of Order n, with generator τ, and denote by Φη the
«th cyclotomic polynomial. If / is any ring homomorphism from Ι_ρ to C which is
injective when restricted to ρ, then the kernel of /is generated by Φη(τ). Hence the
ideal Φ«(τ)/ρ of Ζρ does not depend on the choice of τ.

Let R be a ring. It follows that the two-sided ideal Φη(τ)Κρ is independent of the
choice of τ. We define the ring R(Q) by

R(ρ)=Rρ/Φn(τ)Rρ.

The ring Ζ(ρ) is a domain isomorphic to Ζ[ζη], where ζη denotes a primitive nth root
of unity. Its field of fractions may be identified with <Ρ(ρ). The group of units of
Ζ(ρ) contains ρ in a natural way. For arbitrary R, we have /?(ί>) = /?®ζ2(ρ). As
an Ä-module, R(g) is free on tp(n) generators, where φ is the function of Euler.
Hence, if R is left noetherian then so is /?(£>). If ρ' is a subgroup of ρ, then there is a
natural inclusion

2.1. Lemma. Let ρ be a finite cyclic group oforder n, and suppose that pk divides n,
where p is prime and keZ, k>\. Then in ϊ(ρ) we have \\σ(\ -σ)=ρ, where σ
ranges over the elements of ρ of Order pk.

Proof . The number of such σ equals pk -pk~l, and they are zeros of Xpk - l but not
of X?k~ ' - l . Since Ζ(ρ) is a domain this implies that

in Ζ(ρ)[Χ], and the desired result follows if we substitute l for X. This proves 2.1.

2.2. Lemma. Let ρ be a finite cyclic group of Order n. Denote, for every prime p
dividing n, by ρρ the p-primary subgroup of ρ. Let fürt her R be a ring and M an
R^)-module for which η·Μ = 0. Then there is a finite chain of R^)-submodules
M = Mo DM] D · · OM, = 0 of M such that for every / e { l, 2, .. ., /} there is a prime p
dividing n for which ρρ acts trivially on M,-\/M, and ρ·(Μ,-ι/Μ,) = 0.

Proof. If n =ρ\ρϊ···ρ^ with p, prime, then in the chain of Ä(£>)-submodules
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every quotient ριρ2···ρ,-\Μ/ρ\ρ2···ριΜ is annihilated by some prime dividing n.
Hence it suffices to prove the lemma under the added assumption that ρ·Μ=0,
where p is a prime dividing n.

Let//= #ρρ, andlet σι, σι, . . ., σ? be the elements of ρ ο ί order/^; so t=pk~pk-'(.
Then each σ, is a generator of QP. Put M, = (l -σι)(1 -σ2>···(1 -σ,)·Μ, for Ο </'</.
These are .R(£>)-submodules of M, and

σ2)—(1-σ()·Μ=ρ·Μ=0, by2.1,
AfoDMiD--OAfi.

Each module Μ,-ι/Μι is annihilated by l - σ,, and since σ, generates ρ/; this implies
that QP acts trivially on M,~i/M,, for every /e {1,2,...,?}. Also /?·(Μ,-ι/Μ,) = 0
since p*M=0. This proves 2.2.

Now let π be a finite abelian group. A factor group of π is a group of the form
π/π', where TI'C π is a subgroup. We stress that two factor groups π/π' and π/π" of
π are only to be considered equal if π' = π" äs subgroups of π. The set of cyclic
factor groups of π is denoted by ΛΓ(π).

Let ρεΑ"(π), and let R be a ring. Then there are natural surjective ring homo-
morphisms Κπ^>Κρ-*Κ(ρ), and this enables us to identify the jR(£>)-modules with
the Λπ-modules annihilated by ker (Λπ-*/?(ρ)), äs we will do in the sequel.

2.3. Lemma. Let π be a finite abelian group, R a ring, and ρ', ρ"€Χ(π), ρ'Φρ".
Suppose that M is an Rn-module which is both an R(Qr)-module and an Α(ρ")-
module. Then ρ·Μ-0 for some prime number p dividing #ρ' or #ρ".

Proof. Let ρ' = π/π' and ρ"=π/π" . Interchanging ρ' and ρ", if necessary, we may
assume that π"<£π'. Choose σ ε π" - π ' . Replacing σ by a suitable power we can
achieve that ap e π' for some prime number p. The image σ of σ in ρ' then has order
p, so p divides #£»'.

SinceMis a Ζ(ρ")-ηιοαυ1ε and σ ε π" = 1<6Γ (π-»ρ"), the action of σ onMis trivial.
Hence M is, ds a ZfeO-module, annihilated by l - σ. Applying 2.1 topk=p we find
that also/? annihilates M. This proves 2.3.

For QeX(n), denote by m^ the kernel of the ring homornorphism QTT
Since >Ρ(ρ) is a field, m^ is a maximal ideal of (Ε)π, and from

σ - lerne ** σe rker(π-*ρ)

(for σβπ) we see that m ^ n v for ρ Φ ρ'. Hence the Chinese remainder theorem
implies that the combined map

(Ρπ^ Π Q(ö) (2.4)
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is a surjective ring homomorphism. It is also Q-linear, and to prove that it is an iso-
morphism it suffices to show that the Q-dimensions #π and ΣβεΧΜ φ(#ρ) are the
same.

Let π be the set of group homomorphisms from π to the unit circle. Then
π/ker (χ) eX(n) for all xen. Conversely, for each geX(n) there are precisely
φ(#ρ) distinct χεπ for which ρ = π/ker Oc). Hence Eeexw </>(#ρ) = # π = #π,
and (2.4) is an isomorphism.

Since / π is contained in φπ, it follows that the map Ζπ->Πέ>εΛ·(ττ) /(ρ) is
injective, so if we put pe = ker (Ζπ-»·Ζ(ρ)) = ηιβΠΖπ then we have Πί?εΛ·(π) Ρρ = 0.

2.5. Lemma. Zei R be a ring, π afinite abelian group, and M an Rn-module. Then
there is a finite chain of R π-submodules M = Mo D M\ D · · O M t = 0 o/ M SMC/J ίΛα/
/ev e«c/! / e { l, 2, . . ., t } there exists geX(n) for which M, _ i /M, is an R(o)-module.

Proof. Write Χ(π) = {ρ\,ρ2, ...,ßt} and choose M, = ρρι···ρρ,Μ for 0 < / < i . Here the
pe are äs above, and Mis considered äs a Ζπ-module via the obvious map Ζπ-^Rn.
Since the actions of R and Ζπ on M commute, the M, are R π-submodules of M.
Further Mo = M, andM< = 0 since Ve]---Ve,cf}eexw Ρρ = 0. Finally, each M, _i /M, is
annihilated by pe, and is therefore a module over /?®Ζ(ρ/) = /?(ρ,), for l </< i. This
proves 2.5.

3. Notation for the proof of Theorem 0.1

In this section we establish the notation used in Section 4. By π we denote a finite
abelian group and by R a left noetherian ring. Instead of "finitely generated
module" we simply write "module". The class of an Απ-module M in G(Rn) is
denoted by {M, π].

As in the previous section, we denote by ^"(π) the set of cyclic factor groups of π,
and for QeX(n) we identify the /ite)-modules with the Απ-modules annihilated by
the kernel of the natural surjective ring homomorphism Rn~+R(g). Using 1.2, we
will view the group G(/?<£>» äs being defined by generators and relations; one
generator [M, <ρ>] for each Ä(ß)-module M, one relation [M, <ρ>] = [Μ', <ρ>]
+ [M", <ρ>] for each exact sequence 0->M'->M->M"->0 of 7?(ß)-modules, and one
relation [M, <ρ>] =0 for each Ä(£)-module M with ( # ρ ) · Μ = 0 . For ρ'εΧ(π), we
consider G(R(Q')) äs being embedded in ©Q<=x(n)G(R(Q)) in the obvious way. This
allows us to add Symbols [M, <ρ>] with distinct ρ's.

By Ρ(π) we denote the set of prime numbers dividing # π. If p is a prime number,
then τίρ is the /»-primary part of π. There is a canonical isomorphism π = ©ppnmeTT/,,
and π^ is non-trivial if and only if p ε -Ρ(π). Let S be a set of prime numbers, and let
ns denote the subgroup of π generated by πρ for p ε S. Then π ^ π χ φ π ρ ^ - χ , and
the composite of the canonical maps π-^πχ-^π induces a ring homomorphism
Rn~+Rn. The functor from the category of Λπ-modules to itself induced by this ring
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homomorphism is denoted by Ns. Thus, if Mis anÄTr-module, then NsMis equal to
M äs an R-module, and the actions of ns on NsM and M coincide, but πρ(π)-8 acts
trivially on NsM. Hence NsM=Mover Κπ if and only if πρ(π)-5 acts trivially on M.
Further we have NsNrMsNsnrM for any two sets of prime numbers 5 and Tand
any Απ-module M.

Let ge Χ(π), and let S again be a set of prime numbers. Since there are canonical
surjections π-^ρ-^Qs we may consider QS äs an element of Χ(π). Also, QS is, äs a
subgroup of ρ, equal to the image of ns under the canonical map π -> ρ; so
Since the diagram of natural maps and inclusions

\\ t
R(ßs)cR(e)

is commutative we see that for every /?(£)-module Afthe Απ-module NsMis actualiy
an JR(£)s)-module. This remark will play an essential role in Section 4.

4. Proof of Theorem 0.1

In this section we establish the isomorphism

©

Let ρ€:Χ(π). We claim that there is a group homomorphism

φΰ : G(R<Q»^G(Rn)

for which

<f>e(lM,<e>I)= Σ (-1Γ'(Ρ(ρ)-8)·[Ν5Μ,π].
scp(e)

To prove this, we have to show that this assignment respects the relations defining
Ο(/?<ρ», cf. Section 3. This is certainly true for the relations arising from short
exact sequences of /?(ρ)-ιηοαυί68, since Ns is obviously an exact functor. So it
suffices to check that if (#ρ)·Μ=0, then

By Lemma 2.2 we may assume that ρρ acts trivially on Mand that ρ·Μ = 0, for some
peP(ß). Then Νρ(β)~{Ρ}Μ=Μ, so for every ScPfe) we have

NsM=.NsNp(Q)-{p}MS:Ns-{p}M over Rn
and
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Thus we find

£ (
SCP(P)

as required. This proves that φβ is well defined.
Combining the maps φρ we obtain a group homomorphism

φ : © G(R(Q))^G(Rn).
ρεΧ(π)

Before defining a map in the other direction we prove a lemma.

4.1. Lemma. Let ρ',ρ" e Χ(π), andsuppose that M is an Rn-module which is both an
R(ßr)-module and an R(g")-module. Then we have

Σ [7VsM,<^>]= Σ
scP(e) scP(g)

in the group

Proof . Let S be any subset of Ρ(π). We prove that S yields the same contribution on
both sides. This is certainly true if, on each side, 5 gives the zero contribution or no
contribution at all. So suppose it gives a non-zero contribution on the left hand side,

i.e.:

If now ßs = ß's, then S = P(g's)=Pte's)CP(e"), so S gives on both sides the contri-
bution [NsM, <£>s>], as required. If Qs^e's t h e n applying Lemma 2.3 to NsM, Q'S,
ρ s we find that ρ·Ν$Μ=0 for some prime p dividing #Q'S or #£>£. Then peS
= P(ß's), sop'NsM = Q implies that (#g's).NsM=0, contradicting our assumption
that [NSM, <£>s>]*0. This proves 4.1.

If M is an Απ-module which for some ρ'εΧ(π) is an R(ßr)-module we put

ψ(Μ)= Σ {NsM,<ß's>]e ® G(R(ß)).

By Lemma 4.1 this only depends on M, not on the choice of ρ'. If M is an .
module and M'CM is an Απ-submodule, then M' and M/M' are /?(gO-modules,
and

ψ(Μ) = {//(M1) + ψ(Μ/ΜΓ}. (4. 2)

Now let M be any Απ-module. By Lemma 2.5 there exists a finite chain of sub-
modules

0 (4.3)
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such that each Μ,-ι/Μ, is an Ä(^,)-module for some ρ,€Χ(π), i=\,2,...,t. We
consider the expression

Σ ψ(Μ,..ι/Μ,). (4.4)

By (4.2), this expression does not change if the chain (4.3) is replaced by a refine-
ment. It is also clear that the expression does not change if (4.3) is replaced by an
equivalent chain, i.e. a chain M=M'0DM'1D---DM', = 0 for which M-i/M,
=M'a(l)_i/M'a(l) for some permutation σ of {1,2,...,(} and all ie {l,2, ...,t}. Since
by Schreier's theorem any two chains have equivalent refinements, we conclude that
the expression (4.4) only depends on M; let us denote it by ψ(Μ),

If M'CM is a submodule then combining a chain for M' and a chain for M/M'
into one for M we see that ψ(Μ) = ψ(Μ") + ψ(Μ/ΜΓ). Hence ψ is additive for short
exact sequences and therefore induces a group homomorphism

ψ :
eeX(K)

denoted by the same letter, for which

ψ([Μ,ττ})= Σ Σ [AW
1 = 1 scP(e,)

if M,, ρ, are äs above.
To conclude the proof of Theorem 0.1 it now suffices to check that φ and ψ are

inverse to each other.
First we consider ψφ. Let ρ&Χ(π), and let Mbe an /?fe)-module. Then

ψφ({Μ,<ρ>]) = ψ( Σ (-D*(p^-S)'[NsM,7t])
scP(e)

= Σ (~1)*(Ρ(β)~^'ψ([Ν5Μ,π]).
SCP(Q)

Each NsM is an Ä(^s)-module, so

ψ([ΝϋΜ,π})= Σ (NTNSM,

Hence we find

= Σ [ΝτΜ,(ρτ>].
TCS

<<?>])= Σ (~l)*(p(e)~S)' Σ(ΝτΜ,<ρτ>]
SCPfe) TcS

= Σ
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where we have used the trivial identity

γ i
LJ \ / l f\ * C T1 i r»/ \

S,TCSCP(<>) i 0 if ΤΦΡ(ρ).

This proves that ψφ is the identity on
Finally we check that φψ is the identity on G(Rn). It suffices to prove that

φψ([Μ, π]) = [M, π] for every Απ-module M which is an /?(£>)-module for some
ßeX(n), since by Lemma 2.5 the group G(Rri) is generated by the classes of these
modules. For such M and ρ we have, using the same identity äs before:

φψ([Μ, π]) =

= Σ Σ ( - 1)* ( S"Γ )·[NTNSM, π]

y

TCP

= [Νρ(β)Μ, π] = [Μ, π],

äs required.
This completes the proof of Theorem 0. l.

5. Change of groups and change of rings

In this section we investigate the behaviour of the isomorphism of Theorem 0. l
under change of groups and change of rings. The notation introduced in Section 3
remains in force.

First, let R be a left noetherian ring, π and π' finite abelian groups, and π-*π' a
group homomorphism. This homomorphism induces a functor, which we denote by
F, from the category of Απ'-modules to the category of Απ-modules. Since F is
exact, it gives rise to a group homomorphism

Let ρ'ε ΑΓ(πΟ, and let ρ be the image of the composed map π-»π'-»ρ'. Then ρ may
be considered äs an element of Χ(π). Since R(g)CR(gr), there is a natural forgetful
functor, which again may be denoted by F, from the category of JR(£>')-modules to
the category of Ä(g)-modules. If in addition Ρ(ρ') = Ρ(ρ), then a map

isinduced. If Ρ(ρ'}ΦΡ(ρ), let

be the zero map.
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5.1. Proposition. The following diagram is commutative:

G(R(Q'·»
π1 Ι

Here the vertical maps are induced by the tnaps defined above, and the horizontal
isomorphisms come from 0. l .

Proof. It suffices to check that, for an Rfa^-module M, the two images of
[M,nr\eG(Rnr) in ®eeX(Ti)G(R{g}) coincide. This is routine, and left to the
reader.

5.2. Corollary. If the map π~*π' is surjective, then X^1) may be considered äs a
subset of Χ(π), and the map G(Rn')^G(Rn) defined above corresponds to the
natural inclusion

© G(R{Q})
eeX(r,"l esX(7i)

under the isomorphisms ofO.l.

Proof. Left to the reader.

In particular, we see that G(Rn1)-^ G(Rn) is injective if π~+π' is surjective, a fact
which seems not to be obvious otherwise.

Next let R and R' be left noetherian rings, and let an exact functor F from the
category of Ä-modules to the category of R '-modules be given. Let π be an abelian
group. Then F can be used to transport π-actions, and therefore gives rise to an
exact functor from the category of Απ-modules to the category of Α'π-modules,
thus inducing a map G(Rn)->G(P'n). It is not difficult to see that in a similar way a
map G(R{Q))^G(R'{g)) is induced, for any finite cyclic group ρ.

5.3. Proposition. The following diagram is commutative:

G(Rn)=
j

'n)= © G(R'<e».
e-XM

Here the vertical mups are those just defined, and the horizontal isomorphisms
come from 0. l .

Proof. Immediate, and left to the reader.
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6. Abelian categories

All results obtained in Secüons 2 to 5 can be formulated and proved more generally,
by replacing the category of finitely generated left modules over a left noetherian
ring R by an arbitrary abelian category A. The category A π then has äs its objects
pairs consisting of an object of A and an action of π on this object. Morphisms of
Απ are morphisms of A respecting the π-actions. If ρ is cyclic of order n, with
generator τ, then A (ρ) is defined to be the füll subcategory of Αρ consisting of those
pairs for which the action of Φη(τ) on the object is the zero action. We define
Ο(Α(ρ)) in the way suggested by 1.2:

where H is the subgroup of G(A(g)) generated by the classes of those objects M of
A (ρ) for which #ρ·Μ=0. The Grothendieck group of Απ can now be described äs
in Theorem 0.1:

G(An) = ® G(A{S)).
QcX(n)

Up to terminology, the proof of this result is identical to the proof of 0.1. The
results of Section 5 generalize in a similar way.

7. Dedekind rings

In this section R denotes a noetherian domain, i.e. a commutative noetherian ring
without zero-divisors and with l Φ 0. The field of fractions of R is denoted by K and
its characteristic by char (K). If n is divisible by char (K) then R[l/n] is the zero
ring. If n is not divisible by char (K), then R[l/n] may be identified with the subring
of K generated by R and the inverse of n· l. For these n, we denote by („ a primitive
rtth root of unity in a fixed algebraic closure R of K. We call R a Dedekind ring if it
is integrally closed inside K and every non-zero prime ideal of R is maximal. The
class group of a Dedekind ring R is denoted by C(R). The following lemma is well
known.

7.1. Lemma. Let R be a Dedekind ring. Then G(R) = I_@C(R).

Proof. From [7, § 6, (4)] (with A =R) or [8, Proposition 1.1] (with n= 1) we know
that G(R)~Ko(R), where Ko(R) denotes the Grothendieck group of the category of
finitely generated projective /?-modules. By [6, Corollary 1.11] we have Ko(R)
= Z@C(R). This proves 7.1.

For later use we remark that [R] is mapped to l e Z under the projection
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7.2. Theorem. Let π be afinite abelian group. Then

)s ©

with Χ(π) äs defined in Section 2.

Proof. Immediate from 0.1, 7.1 and the observation that Ζ<.ρ) = Ζ[ζ#ρ, 1/#ρ] is a
Dedekind domain. This proves 7.2.

If π is cyclic of order n, then π has exactly one cyclic factor group of order d for
every divisor d of n. Hence Theorem 0.2 is a special case of 7.2. It can also be
derived from the description of Ο(Ζπ) given by Reiner [7, § 6, (27)]:

) 5 ( ©

where W7 is a certain subgroup of ©d|«C(Z [£</]) defined by Reiner. Let Λ' be the
automorphism of ©rf|nC(Z[£(f]) induced by all norm maps

for i/ 1 e \n, gcd (

Then it is not difficult to check that W îs "diagonalized" by N:

N(W} = ® Wd

d\n

where WdCC(Z[(d]) is the subgroup generated by the classes of the prime ideals
dividing d. Since it is well known that C(Z[(d])/Wd=C(Z[(d, \/d]), this yields a new
proof of 0.2. The two isomorphisms obtained in this way differ only by an auto-
morphism of ©d|nZ, if the inclusions 1\ζα] C Ζ[ζβ] used for the above norm maps
are well chosen.

Before generalizing 7.2 to Dedekind domains we introduce some terminology. By
a character of a finite abelian group π we mean a group homomorphism from n to
the multiplicative group of K. Two characters χ, χ' of π are called conjugate over K
if χ = a ° χ' for some #-automorphism σ of K. If χ is a character of π then π/ker (χ)
belongs to Χ(π}, and has ord.er not divisible by char (K). Conversely, if ρ e Χ(π) has
order n, with n not divisible by char (K), then the set of Ä"-conjugacy classes of
characters χ for which p = n/ker (χ) is in bijective correspondence with the set of
monic irreducible factors of Φη in K[X]. For a character χ, let Κ(χ} be the subring
of Ä" generated byÄ, theimage of χ, and the inverse of #χ{π]·\. The exponent of π
is the I.e. m. of the Orders of the elements of π.

7.3. Proposition. Let R be a noetherian domain and π α finite abelian group.
Suppose that for every n dividing the exponent of π but not divisible by char (K), at
least one of the irreducible factors of Φη in K[X] has coefficients in R[\/n] and
leading coefficient l . Then

G(R(x»
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where Υ is a sei of representatives for the K-conjugacy classes of characters of n.

Proof. Let ρ&Χ(π) have order n, with n not divisible by char (K), and let/be an
irreducible factor of Φη which has coefficients in /?[!/«] and leading coefficient 1.
Let ζη eK be a zero of/. This is a primitive «th root of unity, and/= \[deH(X- i«)
for a certain finite set H of integers containing l . Every monic irreducible factor of
Φη \nK[X] is of the form/fl = Π«/ε// (Χ-ζ"η) for someaeZ, gcd (a,n) = \. By the
main theorem on Symmetrie functions all these/, have coefficients in R[l/n]. The
resultant of any two distinct/«, fb divides the discriminant of X" - l, which equals
± n", and is therefore a unit in R[\/ri\, Thus any two distinct/ff,/i, generate the unit
ideal in R[l/n ][X]. The Chinese remainder theorem now yields

Rll/n][X]/4>„R{l/n][X]sliR{l/n][X]/faR[l/n][X],

the product ranging over the distinct irreducible factors/, of Φη in K[X].
The left hand ring is isomorphic to /?<£>>. If ^ e Υ satisfies ß=n/ker (χ) and

corresponds to the irreducible factor fa of Φη, then

R(X)=R[\/n}[X}/faR[\/n}[X}.

Thus we have proved that

Π

This formula is also valid if char(Ä") does divide #ρ, since in that case both sides
are the zero ring. Hence

Π
ßeX(n) χεΥ

Taking the Grothendieck groups of both sides and applying 0.1 we obtain 7.3.

We observe that the condition on Φη in 7.3 is satisfied if R is integrally closed
inside K, and in particular if R is a Dedekind ring.

7.4. Theorem. Let R be a Dedekind ring, n a finite abelian group and Υ äs in 7.3.
Then for each χ e Υ the ring R {χ), defined before 7.3, is a Dedekind ring, and

G(Rn)= ® (l®C(R{x))).
χεΥ

Proof. L e t ^ e Fand n= #χ[π]. Then R(x)=R[l/n]^„], where /(C„) = 0 for some
irreducible factor /of Φ« in R[X], The discriminant of/ divides the discriminant of
X"-l, which equals ±n", and is therefore a unit in R[l/n]. Hence /?[!/«][£«] is the
integral closure of R[l/n] in Κ(ζη). Since R is a Dedekind ring, so is R[l/n], and the
theorem of Krull-Akizuki now implies that the same is true for /?[!/«][£«]. Thus we
have proved that R(x) is a Dedekind ring, and the rest of 7.4 follows from 7.3
and 7.1.
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For the calculation of the class groups occurring in 7.2 and 7.4 it may further be
remarked that

( 7. 5 )

for R a Dedekind ring and n not divisible by char(Ä'); here Rn denotes the integral
closure of R in Κ(ζη), and Wn the subgroup of C(R„) generated by the classes of the
Rn-ideals dividing nR„.

8. The group SSF

In this section we prove Theorem 0.4. For the definitions of y, "permutation
module", P and SSF we refer to the Paragraph of the introduction preceding 0.4.

Let ΐ/'ϋ be the füll subcategory of y consisting of all (H, u) for which u has finite
order. Every object of y admits a finite filtration with successive quotients in %, so
the Schreier refinement theorem implies that the natural map G(^)-*G(^) is an
isomorphism. The permutation modules belong to %, and we conclude that

where P is now considered äs a subgroup of G{9o).
For a positive integer n, let 9'„ be the füll subcategory of % consisting of all (H, u)

with u" = iUH, and let Pn be the subgroup of G(yn) generated by the classes of the
permutation modules belonging to y„. There is an obvious isomorphism

G(.9O)=z lim G(.%},
n

the limit ranging over the positive integers, ordered by divisibility. It follows that

SSF= lim G(y„)/P„. (8.1)
n

For a positive integer «, let πη be a cyclic gi oup of order n with a fixed generator
τ«. Letting the action of u correspond to multiplication by τ«, we have an iso-
morphism

Under this isomorphism, P„ corresponds to the subgroup of Ο(Ζπη) generated by
the elements [ine] of G(Znn), for e\n; here ΖπΛ acts on Ζπβ via the map πη-*πβ

sending r« to re.
By Theorem 0.1 there is an isomorphism

d\n

Checking the definition of ψ in Section 4 one finds that

rf|n
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for e\n, where

Mde = 0 if d does not divide e,

(i t is easy to give a f ormula for Mde if d \ e, d Φ Ρ, but it will not be used in the sequel) .
Composing ψ with the isomorphism of Lemma 7.1 and the canonical projections
Z©C(Z<7w»->-Z we obtain a map

A : G(Zn„)—^ ® G(Z(nd})-—^ ® (Z0C(Z<nrf»)-> Θ Z.
rf|« </|n d\n

Using the remark following 7.1 we see that

= (ßrfe)rf|„e ® Z,

for ej«, where

ßrf<? = 0 if i/ does not divide e,
ff«? = l .

Letting e ränge over the divisors of n we obtain a triangulär matrix (ßi/e)rf|n,e|n of
determinant l , and therefore A mduces an isomorphism

Pn - : — » ® Z.
d\n

We conclude that there is an isomorphism

G(f/n}/Pn——> ® C(Z<7W».
a\n

Further, if n divides m, then a straightforward verification depending on 5.2 shows
that the diagram

G(7„)/P„ — ^ © C(Z<7r(/>)
a\n

:—> ® C(Z(nd})
d\m

is commutative, the left hand vertical arrow being induced by the inclusion % C %
and the right hand vertical map being the obvious inclusion. Thus (8.1) becomes

SSF= lim © C(Z<7w»s © CiZ<7w».
~~n ii\n rf>l

Since Z<^rf>sZ[frf, \/d], this proves Theorem 0.4.



Grothendieck groups of abelian group rings 1 89

9. The structure of SSF

In this section we investigate the structure of SSF äs an abelian group. If n is a
prime power > l , then every prime ideal of Ζ[ζη] dividing n is generated by l - ζη

and therefore principal, so (7.5) yields

Since €(Ζ[ζη]) = 0 for only finitely many positive integers n, cf. [5], it follows that
infinitely many of the groups €(Ζ[ζη, l/n]) are non-zero. Hence SSFis an infinite
abelian group.

Since each group C(Z[£„, l/«]) is finite, SSFcnn be written äs the direct sum of a
collection of finite cyclic groups. It is reasonable to conjecture that

® (Z/rtZ) (non-canonically)

which can be more sensibly written äs

SSF= @ ® (Z///"Z)<°°>
p pnmc m = l

where M(oo) denotes the direct sum of a countably infinite collection of copies of M.
The following theorem shows that only the 2-primary part of this conjecture

escapes me.

9.1. Theorem. There is a strictly increasing sequence (m,)T= i of positive integers such
that

SSF=[ ® (Z/2m'Z)<°°>]©[ © © (Z/ /« / 0 0 ' ] .
i>\ p prime m>l

P*3

It is not asserted that the »somorphism in 9.1 is canonical. It would be of interest
to study the structure of SSF äs a module over the Galois group of [_)η>ι^)(ζ,,)
over Q.

We begin the proof of 9.1 with a series of lemmas. For background in algebraic
number theory we refer to [4]. Notation: RK is the ring of integers of K; if KcL is a
Galois extension, thün Gal(L/K) is its Galois group; [a] is the ideal class of a; and
the exponent exp(/i) of a finite group A is the I.e. m. of the orders of its elements.

9.2 Lemma. For any positive integer m there exists a quadratic number field K of
discriminant relatively prime to m, such that exp(C(-Rtf)) is divisible by m.

Proof. This follows from [9, Theorem l or 2].

9.3. Lemma. Lei K be a quadratic number field of discriminant Δ . Then Kc Q(£| Δ \),
and the cokernel of the norm map €(Ζ\ζ\Α\\)-^€(Κκ) has exponent <2.
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Proof. There is a unique decomposition Δ = l\'l=iAh where each A, belongs to the
set {-4, - 8 , 8} U (p: p is prime, p=l mod 4}U{ -q: q is prime, q = 3 mod 4}. If
\Δ, is prime, then <Ρ(ίμ,|) has a unique quadratic subfield, and checking the
ramification behaviour one finds that this must be the field Q(]/zT) of discriminant
A,. Hence <P(]/2T)C(p(C|zi,|), an inclusion which can be verified directly for
4,e {-4, -8,8}. So Ä'=Q(l^")CL = Q(i/2h,...,^Z"/)C<P(f|/i1|,...,fM(|) = (p(f|/i|).
Again checking the ramification behaviour, one finds that Gal((Q(f|/]|)/X) is
generated by the inertia groups of the primes dividing A . Therefore the only subfield
McQ(£|/j|) which is a totally unramified extension of L is M = L itself.

Now let F be the maximal totally unramified extension of K inside Q(f^|).
Applying the above to M = L*F we find that FC.L; in fact, one can check that F
equals L if Δ<0 and the maximal real subfield of L if Δ >0. Hence Gal(F/Ä") is a
quotient of Gal(L/K) and therefore of exponent <2.

Let H κ denote the Hubert class field of K. Then Gal(HK/K) = C(RK), and the
subfield corresponding to the image of the norm €(Ζ[ζ\/\\])->€(Κκ) equals
ΗκΓ\<$(ζ\Α\) = Ρ. Therefore the cokernel of C(l^\A\])-*C(RK) is isomorphic to
Gäl(F/K), and we have just seen that this group has exponent <2. This proves 9.3.

9.4. Lemma. For any positive integer q there exists a positive integer n relatively
prime to q such that exp(C(Z[C«, l/«])) is divisible by q.

Proof. Let A" be a quadratic number field of discriminant A relatively prime to q,
such that exp(CCR#)) is divisible by 4q. The existence of such a K is guaranteed by
9.2, with m=4q. Put n = \A\. By 9.3 the cokernel of the norm map €(1[ζ\Α\])
-+C(Ri<) has exponent <2. Factoring out the subgroup generated by the classes of
the prime ideals dividing n, we see that also the cokernel of the induced map
C(/[C«, l/n])->C(Rj<[l/n]) has exponent <2. Hence to prove that €(Ζ[ζη, l/n]) has
exponent divisible by q it suffices to prove that €(Κκ[\/η]) has exponent divisible
by2q.

If p is a prime of RK dividing n = \ Δ \ , then p2 is generated by a rational prime
number and is therefore principal. This shows that the kernel of the surjective map
C(RK)-*C(RK[\/n\) has exponent <2. Since exp(C(RK)) is divisible by 4q it follows
that exp(C(RK[l/n])) is divisible by 2q, äs required. This proves 9.4.

9.5. Lemma. Let n and r be positive integers, and let p be a prime number not
dividing φ(ηή/φ(η); here φ denotes the Euler function. Then the p-primary sub-
group o/C(Z[C«, l/«/"]) is isomorphic to a direct summand ο/€(Ι\ζηΓ, 1/nr]).

Proof. The ring Ζ[ζηΓ, l/nr] is the integral closure of /[£„, 1/nr] in Q(£«/·), so there
are natural group homomorphisms

U l/nr])

N : C(Z[C«., l /«/·]) ̂ C(Z[C«, l/nr])
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such that N°i(c) = cm for all ceC(Z[C„, l /«/·]), where m = [(Q(C«r) : Q(C„)]
= φ(ηΓ)/φ(η). SincegcdOc7,0(/z/-)/0(rt))=l, the restriction of 7V ° / to the^-primary
part of €(Ζ[ζπ, 1/nr]) is an automorphism, and 9.5 follows.

9.6. Lemma. For every positive integer n there exist infinitely many positive integers
r such that the 2-primary part of C(Z[C„, l /«]) is isomorphic to a direct summand of

Proof . If n is a power of 2, then according to a theorem of Weber (cf . [3]) the class
number of Q(£„) is odd. In that case the 2-primary part of C(Z[£„, l /n]) is trivial,
and the lemma is obvious. Assume, therefore, that n is not a power of 2, and let q
be an odd prime number dividing n. Then for r = qk, with £eZ>o, we have
gcd (2,0(w)/0(n)) = gcd (2,ςτ*) = 1, and Ζ[ζη,1/η] = Ζ[ζη,1/ηΓ}. Hence 9.5 shows
that for each of the infinitely many choices of k the 2-primary part of €(Ζ[ζη, l/«])
is a direct summand of C(Z[£«/·, l /«r]). This proves 9.6.

9.7. Lemma. ££/ /> £e an odd prime number, n a positive integer which is not
divisible by p, and c e C(Z[fn, l /«]). Then there exist infinitely many prime numbers
r such that

(i) r = l mod n, r * l mod p;
(ii) there is a prime ideal r ο/Ζ[ζη, \/n] with /-er whose ideal class is c.

Proof. Let F be the maximal abelian totally unramified extension of Q(C«) in which
all primes dividing n split completely. By class field theory there is an isomorphism

λ : €(Ζ[ζη, Ι / « ] ) — *Gal(F/<P(f„))

such that

= (p, jF/(p(C«)) (the Artin symbol)

for every non-zero prime ideal p of 1\ζη, Ι/Λ]·
The field T7 is a Galois extension of (Q and it is unramified at p since /? does not

divide n. Therefore ^ης>(£ρ) = (ρ, and G a l ^ C ^ / Q i s G a K F ^ x G a K Q C Q / Q ) .
Let σ e Gal(F(0,)/<P) be such that

σ\Ρ=λ(έ), σ <Σ)(ζρ) Φ identity

(| denotes restriction); here we use that/7^2. By the theorem of Tchebotarev, there
are infinitely many prime numbers r not dividing np for which

[r', Ρ(ζΡ)/(^} = σ (the Frobenius symbol)

for some prime r' of Ρ(ζρ) lying over r.
Let r be such a prime number. We claim that (i) and (ii) are satisfied. From

σ | Q(f„) = A(c) | Q(C«) = identity,
σ | (p(Cp)^ identity
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it follows that r splits completely in Q(£«) but not in <£)(ζρ). This implies (i), since r
does not divide np. As for (ii), let r' be äs above and let r be its restriction to <Σ)(ζη).
Then r has degree one over r, and therefore the Artin symbol (r, Ρ/<£)(ζη)) is equal to
the first power of a\F. This yields

and therefore [r] =c, äs required. This proves 9.7.

9.8. Lemma. Let q be an odd prime power and n a positive integer relatively prime
to q for which exp (C(Z[£„, l/«])) is divisible by q. Then there are infinitely many
positive integers r such that C(Z[(nr, l/nr]) has a cyclic direct summand of order q.

Proof. Let G = Gal(Q(£n)/Q), and choose Ci,c2, ...,oeC(Z[C«, l/n]) such that they
generate C(Z[£«, l/«])9 äs a module over ZG. Let/» be the prime number dividing q
(assuming that q±\). Applying 9.7 to c = c, we find prime ideals n,..., r/ of
Z[£„, l/«] and prime numbers r, er< such that /·,^/> for i±j and

[r(] = ct, r, = l mod n, ηΦΐ mod />.

Let r=H'l=lr,. Then the prime ideals of Ζ[ζη,1/η] dividing r are precisely the
conjugates under G of π, ..., τι, and the classes of these prime ideals generate
€(Ζ[ζη,1/η])ΐ. Therefore

Since <? divides the exponent of €(Ζ[ζη,1/η]), it follows that C(Z[£„,l/w]) has a
cyclic direct summand of order g.

From r,^ l mod p we see that/» does not divide φ(ητ)/φ(η) = Πί=ι(/Ί- 1)· Hence
we can apply 9.5, and we find that C(Z [£„,·, l/nr]) also has a cyclic direct summand
of order q. Since there are infinitely many choices for t,r\,...,rt this finishes the
proof of 9.8.

Proof of 9.1. Applying 0.4 and writing each group C(Z[f„, l /n]) äs a direct sum of
finitely many cyclic groups of prime power order we see that SSF can be written äs
the direct sum of countably many cyclic groups of prime power order. The question
is, which prime powers occur, and how often. From 9.4 it follows that arbitrarily
high powers of any fixed prime occur. Further, every power of 2 which does occur,
occurs infinitely often, by 9.6. Finally, every odd prime power occurs infinitely
often, by 9.4 and 9.8. This proves 9.1.

Remark. From the above proof it is clear that to prove the conjecture stated before
9.1, it suffices to show that every power of 2 occurs äs the order of a cyclic direct
summand of C(Z[£„, l/n]) for some n.

By techniques similar to those used above it can be shown that mn \ -~m,<3 for
all / > ! in Theorem 9.1.
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