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PRIMALITY TESTING WITH FROBENIUS SYMBOLS

H.W. Lenstra, Jr.

In this lecture we discuss several primality testing algorithms that are

based on the following trivial theorem.

Theorem. Let n be a positive integer. Then n is prime if and only if

every divisor of n is a power of n.

In the actual primality tests one does not check that any r dividing n

is a power of n, but that this is true for the images of r and n in

certain groups: in Galois groups, in (ZZ/sffi) * for certain auxiliary num-

bers s, or in the group of values of a Dirichlet character. We remark

that it suffices to consider prime divisors r of n.

We begin with a few considerations from algebraic number theory. Let

K be a finite abelian extension of the rational number field $, and

suppose that the discriminant of K is relatively prime to n. By the

Kronecker-Weber theorem, we have K c φ(ζ ) for some integer s with
S

gcd(s, n) = 1 ; here ζ denotes a primitive s-th root of unity. Por any

integer r that is coprime to s let σ^ be the restriction to K of

the automorphism of φ(ζ ) sending ζ to ζ . Then σ belongs to the
S o S 3Γ

Galois group G of K over φ. If r is prime, then σ is the Frobe-

nius symbol of r for the extension Κ/φ, and the field K
 r
 = {x e K:

σ (χ) = χ} is the largest subfield of K in which r splits completely.

Let now A be the ring of integers of K
 n
. If n is actually prime, then

it is a prime that splits completely in K
 n
, so there is a ring homomor-

phism A -» ffi/nZS (mapping l to 1). Also, this ring homomorphism is

usually not difficult to find. Suppose, for example, that α e A is such

that the index of 22[a] in A is finite and relatively prime to n, and

let f be the irreducible polynomial of α over ZZ. Then finding a ring
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homomorphism Ä -» E/nE is equivalent to finding a zero of (f mod n)

in Z/nE. There are good algorithms to find such a zero if n is prime.

If conversely a zero is found, it does not follow that n is prime. But

it does follow, by composing the map A -» 2Z/n2Z with the natural map

-» E/r2Z, that for every prime divisor r of n there is a ring

homomorphism Ä -* 2Z/rE. This implies that r splits completely in K n,

so K n c κ r
, and therefore σ is a power of σ in the group G,

for every divisor r of n. If K = φ (ζ ) this just means that r is

congruent to a power of n modulo s. We shall see below how such Infor-

mation can be used to decide whether n is prime or not.

If n is composite then the zero-finding routine that is used may not

converge. Therefore it is advisable to apply the primality tests discussed

in this lecture only if one is morally certain that n is prime. This

certainty can be obtained by subjecting n to several pseudo-prime tests.

The question is how to prove that n is prime.

We consider a special case of the test described above. Let s be the

largest divisor of n - l that one is able to factor completely, and let

K = φ (ζ ) . Then σ is the identity on K, and Ä = Κ[ζ ]. The irreducible
s n s

polynomial of ζ over 2Z is the s-th cyclotomic polynomial Φ . If
Ξ S

a 6 Z, satisfies

a s l mod n,

gcd(a - l, n) = l for every prime q dividing s,

then (a mod n) is a zero of (Φ mod n) in !2/ηΣΖ. If n is actually
S

prime, then such an a is usually not difficult to find, by manipulating

with elements of the form (b mod n) . Conversely, if an a äs above

has been found then by the result proved above we know that any divisor r

of n is congruent to a power of n modulo s, i.e. is congruent to l
1/2

mod s. If we have s > n then it follows immediately from this that n

is prime. If the weaker inequality s > n is satisfied we can also
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easily finish the primality test. Namely, if n is not prime then

n = (xs + 1)(ys + 1), χ > 0, y > 0, xy < s

for certain integers x, y. Prom (x-1) (y-1) > 0 we obtain 0 < x + y < s,

and since x + y s (n- l)/s mod s this means that we know the value of x + y.

We also know that n = (xs + l)(ys + l), so χ and y can now be solved

from a quadratic equation. The result teils us immediately whether n is

prime or not.

The test just described is a classical one, and its correctness can

easily be proved without Frobenius symbols. There are several refinements and

extensions that we do not go into here.

Let now s be a positive integer that is coprime to n. We assume that

the complete prime factorization of s is known. Instead of assuming that s

divides n - l we now require that the order t of (n mod s) in the unit

group (IZ/SZ2)* is relatively small. If n is prime, then the residue class

field of any prime ideal of 2![ζ ] containing n is the finite field 3F
 t
.

Also, if a e 3F*
t
 is the image of ζ then

n s

a
s
 = l,

a
S / q

 - l € F*t for each prime q dividing s,

t-1 ni
ΓΤ. (X - a ) has coefficients in f .
i=0 n

The latter property comes from the fact that the polynomial TT.~ (X - ζ
η
 )

i—u s

has coefficients in the ring previously denoted by A (for K = φ(ζ )).
S

There are, again, good methods to construct 3?
 t
 and a as above, if n is

prime. Suppose, oonversely, that one has constructed a ring extension R of

ffl/nZZ and an ölement a e R having the above properties, with F
nt' •!Fn

replaced by R, S/nZ2. Then there is a ring homomorphism ΖδΓζ D -* R mapping
s
 i

ζ to a, and the subring generated by the coefficients of g = Π (X - ζ )
s i—u s

is mapped to 2Z/nZ5. But from the fact that g is the irreducible polynomial

of ζ over A it is easy to derive that this subring is equal to A. That
S

gives us the desired ring homomorphism A -* 2Z/nZ, which permits us to
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conclude that every divisor of n is congruent to a power of n modulo s .

1/2
If s > n then this conclusion immediately leads to the complete factor-

ization of n, by trying the remainders of l, n, ..., n modulo s äs

1/3divisors. The weaker condition s > n is also sufficient to finish the

test, by a procedure that is somewhat more complicated than the one described

before.

As an example we treat the Lucas-Lehmer test for Mersenne numbers n =

2 - l, with m > 2. Let e. = 4, e.+1 = e. - 2 . Then it is asserted that

n is prime if and only if e . = 0 mod n. The case that m is even is
m— l - '

easy and uninteresting , by looking mod 3. So let m be odd, and define
f\

R = (ZZ/nZ;)[T]/(T - /2~·Τ - 1)

where /2~ = (2 mod n) e Z/nE. Denote the image of T in R by a,

— 1 9

and let b = /2~ - a = -a be "the" other zero of X - /2~·Χ - l in R. Then

2
1
 2

1

a + b = (e . mod n) . If n is prime then one easily checks that R is

a field in which a and b are conjugate, so a = b by the theory of finite

2
m
 2

m
~

1
 2

m
~

1

fields. Multiplying by a one gets a = -l , so (e mod n) = a + b

2
m-l _

2
m-l

 m
"

1

= a + a = 0 . Conversely, assume that (e mod n) = 0 . Then
"2

m

a = -l , a = 1

n 2
m
-l -l

and from a = a = -a = b we find

(X - a) (X - a") = (X - a) (X - b) = X
2
 - /2-X - l,

a polynomial with coefficients in 2Z/nZS. Applying the preceding theory with

s = 2 , t = 2 we conclude that every divisor of n is congruent to l or

n mod s. From s > n it now follows that n is prime.

To prove that, in the general case, a suitable value for s can always

be founä we invoke a result of Pomerance and Odlyzko. They proved that for

each n > e e there exists a positive integer t with

. c logloglog n
t < (log n) * 3 * ,

where c is an absolute effectively computable constant, such that the number

S = n q prime, q-1 divides t q
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exceeds n . if gcd (s, n) = 1 then Fermat's theorem implies that n

= l mod s, so the order of (n mod s) in (ZS/sE) * is relatively small.

This value for s can be used for all n of the same order of magnitude.

Given n, one can often make better choices of s by employing known prime

factors of n - l for various small values of i.

It is probably possible to treat Adleman's new primality test (see

Seminaire Bourbaki, exp. 576) from the same point of view. Let s, t be äs

in the result of Pomerance and Odlyzko. The φ (ζ ) can be written äs the

compositum of a collection of cyclic fields, each of which has prime power

k k
degree p and prime conductor q, with p dividing t and q dividing

s. These fields have much smaller degrees over φ than φ (ζ ), and are
5

therefore more attractive from a computational point of view. Employing

Gaussian sums äs Lagrange resolvents for these fields one can design tests

that, äs before, permit one to conclude that every divisor of n is congruent

to a power of n modulo s. It is, in fact, more efficient to do the actual

calculations with Jacobi sums, in the rings E[ζ ]ς]/η22[ζ ^1. This version

of Adleman's test is being programmed by H. Cohen on the minicomputer in

Bordeaux.
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