PRIMALITY TESTING WITH FROBENIUS SYMBOLS

H.W. Lenstra, Jr.

In this lecture we discuss several primality testing algorithms that are based on the following trivial theorem.

Theorem. Let n be a positive integer. Then n is prime if and only if every divisor of n is a power of n.

In the actual primality tests one does not check that any r dividing n is a power of n, but that this is true for the images of r and n in certain groups: in Galois groups, in ($\mathbb{Z} / s \mathbb{Z}) *$ for cextain auxiliary numbers s, or in the group of values of a Dirichlet character. We remark that it suffices to consider prime divisors r of n.

We begin with a few considerations from algebraic number theory. Let K be a finite abelian extension of the rational number field Q, and suppose that the discriminant of K is relatively prime to n. By the Kronecker-Weber theorem, we have $K \subset \mathscr{L}\left(\zeta_{S}\right)$ for some integer s with $\operatorname{gcd}(s, n)=1$; here ζ_{s} denotes a primitive s-th root of unity. For any integer x that is coprime to s let σ_{r} be the restriction to k of the automorphism of $Q\left(\zeta_{s}\right)$ sending ζ_{s} to ζ_{s}^{r}. Then σ_{r} belongs to the Galois group G of K over \mathbb{Q}. If r is prime, then σ_{r} is the frobenius symbol of r for the extension K / Q, and the field $K^{\sigma_{r}}=\{x \in K$: $\left.\sigma_{r}(x)=x\right\}$ is the largest subfield of K in which r splits completely. Let now A be the ring of integers of $K^{\sigma} n$. If n is actually prime, then it us a prime that splits completely in $K^{\sigma}{ }^{n}$, so there is a ring homomorphism $A \rightarrow \mathbb{Z} / n \mathbb{Z}$ (mapping 1 to 1). Also, this ring homomorphism is usually not difficult to find. Suppose, for example, that $\alpha \in A$ is such that the index of $\mathbb{Z}[\alpha]$ in A is finite and relatively prime to n, and let f be the irreducible polynomial of α over \mathbb{Z}. Then finding a ring
homomorphism $A \rightarrow \mathbb{Z} / n \mathbb{Z}$ is equivalent to finding a zero of ($f \bmod n$) in $\mathbb{Z} / n \mathbb{Z}$. There are good algorithms to find such a zero if n is prime. If conversely a zero is found, it does not follow that n is prime. But it does follow, by composing the map $A \rightarrow \mathbb{Z} / n z \mathbb{w i t h}$ the natural map $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / x \mathbb{Z}$, that for every prime divisor r of n there is a ring homomorphism $A \rightarrow \mathbb{Z} / r \mathbb{Z}$. This implies that r splits completely in $K^{\sigma_{n}}$, so $K^{\sigma_{n}} \subset K^{\sigma_{r}}$, and therefore σ_{r} is a power of σ_{n} in the group G, for every divisor r of n. If $K=Q\left(\zeta_{s}\right)$ this just means that r is congruent to a power of n modulo s. We shall see below how such information can be used to decide whether n is prime or not.

If n is composite then the zero-finding routine that is used may not converge. Therefore it is advisable to apply the primality tests discussed in this lecture only if one is morally certain that n is prime. This certainty can be obtained by subjecting n to several pseudo-prime tests. The question is how to prove that n is prime.

We consider a special case of the test described above. Let s be the largest divisor of $n-1$ that one is able to factor completely, and let $K=\Phi\left(\zeta_{s}\right)$. Then σ_{n} is the identity on K, and $A=\mathbb{Z}\left[\zeta_{s}\right]$. The irreducible polynomial of ζ_{s} over \mathbb{Z} is the s-th cyclotomic polynomial Φ_{s}. If $a \in \mathbb{Z}$ satisfies

$$
\begin{aligned}
& a^{s} \equiv 1 \bmod n, \\
& \operatorname{gcd}\left(a^{s / q}-1, n\right)=1 \quad \text { for every prime } q \text { dividing } s,
\end{aligned}
$$

then $(a \bmod n)$ is a zero of $\left(\Phi_{S} \bmod n\right)$ in $\mathbb{Z} / n \mathbb{Z}$. If n is actually prime, then such an a is usually not difficult to find, by manipulating with elements of the form $\left(b^{(n-1) / s} \bmod n\right)$. Conversely, if an a as above has been found then by the result proved above we know that any divisor x of n is congruent to a power of n modulo s, i.e. is congruent to 1 mod s. If we have $s>n^{1 / 2}$ then it follows immediately from this that n is prime. If the weaker inequality $s>n^{1 / 3}$ is satisfied we can also
easily finish the primality test. Namely, if n is not prime then

$$
\mathrm{n}=(\mathrm{xs}+1)(\mathrm{ys}+1), \quad \mathrm{x}>0, \mathrm{y}>0, \mathrm{xy}<\mathrm{s}
$$

for certain integers x, y. From $(x-1)(y-1) \geq 0$ we obtain $0<x+y \leq s$, and since $x+y \equiv(n-1) / s$ mod s this means that we know the value of $x+y$. We also know that $n=(x s+1)(y s+1)$, so x and y can now be solved from a quadratic equation. The result tells us immediately whether n is prime or not.

The test just described is a classical one, and its correctness can easily be proved without Frobenius symbols. There are several refinements and extensions that we do not go into here.

Let now s be a positive integer that is coprime to n. We assume that the complete prime factorization of s is known. Instead of assuming that s divides $n-1$ we now require that the order t of (n mod s) in the unit group $(\mathbb{Z} / \mathrm{sZ})^{*}$ is relatively small. If n is prime, then the residue class field of any prime ideal of $\mathbb{Z}\left[\zeta_{s}\right]$ containing n is the finite field $\mathbb{F}_{n} t$. Also, if $a \in \mathbb{F}_{n}^{*} t$ is the image of ζ_{s} then

$$
\begin{aligned}
& a^{s}=1, \\
& a^{s / q}-1 \in F_{n^{*}}^{t} \quad \text { for each prime } q \text { dividing } s, \\
& \Pi_{i=0}^{t-1}\left(X-a^{n^{i}}\right) \text { has coefficients in } \mathbb{F}_{n} .
\end{aligned}
$$

The latter property comes from the fact that the polynomial $\prod_{i=0}^{t-1}\left(x-r_{s}^{n^{i}}\right.$) has coefficients in the ring previously denoted by A (for $K=Q\left(\zeta_{s}\right)$). There are, again, good methods to construct $\mathbb{F}_{n t}$ and a as above, if n is prime. Suppose, conversely, that one has constructed a ring extension R of $\mathbb{Z} / \mathrm{nZZ}$ and an element $a \in R$ having the above properties, with $\mathbb{F}_{n t}{ }^{\prime} \mathbb{F}_{n}$ replaced by $R, \mathbb{Z} / n \mathbb{Z}$. Then there is a ring homomorphism $\mathbb{Z}\left[\zeta_{S}\right] \rightarrow R$ mapping ζ_{s} to a, and the subring generated by the coefficients of $g=\Pi_{i=0}^{t-1}\left(x-\zeta_{s}^{n^{i}}\right.$) is mapped to $\mathbb{Z} / n \not Z Z$. But from the fact that g is the irreducible polynomial of ζ_{S} over A it is easy to derive that this subring is equal to A. That gives us the desired ring homomorphism $A \rightarrow \mathbb{Z} / n \mathbb{Z}$, which permits us to
conclude that every divisor of n is congruent to a power of n modulo s. If $s>n^{1 / 2}$ then this conclusion immediately leads to the complete factorization of n, by trying the remainders of $1, n, \ldots, n^{t-1}$ modulo s as divisors. The weaker condition $s>n^{1 / 3}$ is also sufficient to finish the test, by a procedure that is somewhat more complicated than the one described before.

As an example we treat the Lucas-Lehmer test for Mersenne numbers $n=$ $2^{m}-1$, with $m>2$. Let $e_{1}=4, e_{i+1}=e_{i}^{2}-2$. Then it is asserted that n is prime if and only if $e_{m-1} \equiv 0 \bmod n$. The case that m is even is easy and uninteresting, by looking mod 3 . So let m be odd, and define

$$
\mathrm{R}=(\mathbb{Z} / \mathrm{nZ})[T] /\left(\mathrm{T}^{2}-\sqrt{2} \cdot T-1\right)
$$

where $\sqrt{2}=\left(2^{(m+1) / 2} \bmod n\right) \in \mathbb{Z} / n \mathbb{Z}$. Denote the image of T in R by a, and let $b=\sqrt{2}-a=-a^{-1}$ be "the" other zero of $x^{2}-\sqrt{2} \cdot x-1$ in R. Then $a^{2^{i}}+b^{2^{i}}=\left(e_{i} \bmod n\right)$. If n is prime then one easily checks that R is a field in which a and b are conjugate, so $a^{n}=b$ by the theory of finite fields. Multiplying by a one gets $a^{2^{m}}=-1$, so $\left(e_{m-1} \bmod n\right)=a^{2^{m-1}}+b^{2^{m-1}}$ $=a^{2^{m-1}}+a^{-2^{m-1}}=0$. Conversely, assume that $\left(e_{m-1} \bmod n\right)=0$. Then

$$
a^{2^{m}}=-1, \quad a^{2^{m+1}}=1
$$

and from $a^{n}=a^{2^{m}-1}=-a^{-1}=b$ we find

$$
(x-a)\left(x-a^{n}\right)=(x-a)(x-b)=x^{2}-\sqrt{2} \cdot x-1
$$

a polynomial with coefficients in $\mathbb{Z} / \mathrm{nzZ}$. Applying the preceding theory with $s=2^{m+1}, t=2$ we conclude that every divisor of n is congruent to 1 or n mod s . From $\mathrm{s}>\mathrm{n}$ it now follows that n is prime.

To prove that, in the general case, a suitable value for s can always be found we invoke a result of Pomerance and Odlyzko. They proved that for each $n>e^{e}$ there exists a positive integer t with $t<(\log n)^{c} \log \log \log n$,
where c is an absolute effectively computable constant, such that the number

$$
s=\Pi_{q} \text { prime, } q-1 \text { divides } t^{q}
$$

exceeds $n^{1 / 2}$. If $\operatorname{gcd}(s, n)=1$ then Fermat's theorem implies that n^{t} $\equiv 1 \bmod s$, so the order of $(n \bmod s)$ in $(\mathbb{Z} / s \mathbb{Z})^{*}$ is relatively small. This value for s can be used for all n of the same order of magnitude. Given n, one can often make better choices of s by employing known prime factors of $n^{i}-1$ for various small values of i. It is probably possible to treat Adleman's new primality test (see Séminaire Bourbaki, exp. 576) from the same point of view. Let s, t be as in the result of Pomerance and odlyzko. The $Q\left(\zeta_{s}\right)$ can be written as the compositum of a collection of cyclic fields, each of which has prime power degree p^{k} and prime conductor q, with p^{k} dividing t and q dividing s. These fields have much smaller degrees over Φ than $\Phi\left(\zeta_{S}\right)$, and are therefore more attractive from a computational point of view. Employing Gaussian sums as Lagrange resolvents for these fields one can design tests that, as before, permit one to conclude that every divisor of n is congruent to a power of n modulo s. It is, in fact, more efficient to do the actual calculations with Jacobi sums, in the rings $\mathbb{Z}\left[\zeta_{p} k\right] / n \mathbb{Z}\left[\zeta_{p} k\right]$. This version of Adleman's test is being programmed by H. Cohen on the minicomputer in Bordeaux.
H.W. Lenstra, Jr.

Mathematisch Instituut

Universiteic van Amsterdam

Roetersstraat 15
1018 WB Amsterdam

