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The three-mode principal component model—here referred to as
the Tucker3 model—was first formulated within the context of the
behavioral sciences by Ledyard Tucker (1963). In subsequent
articles, Tucker extended the mathematical description and its
programming aspects (1964, 1966). In the context of multidimen-
sional scaling, references to his model occur frequently (Carroll
and Chang 1972; Takane, Young, and de Leeuw 1977; Jennrich
1972), as the Tucker3 is the general model comprising many other
individual differences models. A discussion of the relation be-
tween multidimensional scaling and three-mode principal component
analysis can be found in Tucker (1972), Carroll and Wish (1974),
Takane, Young, and de Leeuw (1977), and Carroll and Arabie
(1980). Other approaches to three-mode analysis include three-
mode common factor analysis within the context of linear struc-
tural equation models (Bloxom 1968; Bentler and Lee 1978, 1979;
Law and Snyder 1981). Sands and Young (1980) presented a
restricted form of three-mode principal component analysis in the
spirit of Harshman's PARAFAC2 model (1972), but they included
an optimal scaling phase in their algorithm to accommodate data
with lower measurement levels, missing data, and different data
conditionalities (see also Young 1981).

In this chapter, we first present the three-mode principal
component model. on a conceptual level by providing various
informal ways of looking at it. Secondly, we provide an outline
of some technical aspects connected with analyzing this type of
model. Finally, an example treating data from attachment theory
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is used to illustrate some of the major aspects and possibilities of
analyzing three-mode data with the three-mode principal com-
ponent model.* (The method to solve the estimation of the model
used and described here has been treated in full by Kroonenberg
and de Leeuw [1980].)

THEORY

Informal Descriptions

In this section, we present three more or less different ways of
looking at three-mode principal component analysis. First, we
start with questions a researcher might ask about three-mode data
and discuss the way in which these questions fit into the frame-
work of a three-mode principal component model. Next, we take
a structural point of view, postulating some structural relation-
ships and investigating how real data might be described by a
combination of structural parameters. Third, we will take a
methodological point of view and demonstrate how three-mode
principal component analysis is a generalization of standard prin-
cipal component analysis and so-called singular value decomposi-
tion.

Research Questions Arising from Three-Mode Data

After collecting information from a number of subjects on a large
number of variables, one often wants to know whether the ob-
served scores could be described as combinations of a smaller
number of more basic variables or so-called latent variables. As
a first approximation, one generally looks for linear combinations
of such underlying variables, which either account for the larger
part of the variation—principal components—or reproduce the
covariation matrix—factors.

As an example, one could imagine that the scores on a set of
variables are largely determined by linear combinations of such
latent variables as the arithmetic and verbal content. The latent
variables—arithmetic and verbal content—can be found by a
standard principal component analysis.

Suppose now, in the same example, that the researcher has
administered the variables a number of times under various condi-
tions of stress and time limitations. The data are now classified
by three different types of quantities or modes of the data:
subjects, variables, and conditions. First of all, the researcher
is again interested in the components of the variables that explain
a larger part of the variation in the data. Second, he wants to
know if general characteristics can be defined for subjects as
well. To put it differently, the researcher wants to know if it is
possible to see the subjects as linear combinations of "idealized"
subjects. In the example, we could suppose that the subjects are
linear combinations of an exclusively mathematically gifted person

*This chapter aims to be comprehensible for the relatively
uninitiated. A basic working knowledge of standard principal
component analysis is, however, essential, as is an insight into
oigcnvahio-eicpnvertor nrohlpm«?.
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and an exclusively verbally gifted person. Such persons are
clearly "ideal" types. Finally, a similar question could arise with
respect to conditions: Can the conditions be characterized by a
set of "idealized" or "prototype" conditions?

Each of these questions can be answered by performing princi-
pal component analyses for each type of quantity or mode. In
fact, the same variation present in the data is analyzed in three
different ways; therefore, the components extracted must in some
way be related. The question is, of course, how? In order to
avoid confusion in answering this question, we will call the vari-
able components latent variables, the subject components idealized
subjects, and the condition components prototype conditions.

Considering the relationship between the components of the
three modes, one could ask: Do idealized subject 1 and idealized
subject 2 react differently to latent variable 2 in prototype con-
dition 1? Or, is the relation between the idealized subjects and
the latent variables different under the various prototype condi-
tions?

By performing three separate component analyses, such ques-
tions are not immediately answerable, as one does not know how
to relate the various components. The three-mode principal
component model, however, specifies explicitly how the relations
between the components can be determined. The three-mode
matrix that embodies these relations is called the core matrix, as
it is assumed to contain the essential characteristics of the data.

Structure: Row Scores Derived from Idealized Quantities

It is often useful to look at three-mode principal components
starting from the other end—the core matrix. For example, we
pretend to know how an exclusively mathematically gifted person
scores on a latent variable that has only mathematical content and
on a latent variable that has only verbal content. Furthermore,
we pretend to know these scores under a variety of prototype
conditions. In other words, we pretend to know how idealized
subjects react to latent variables under prototype conditions.
However, in reality, we deal with real subjects, variables, and
conditions. Thus, we have to find some way to construct the
actual from the idealized world. A reasonable way to do this is
to suppose that a real subject is a mixture of the idealized indi-
viduals and then make an analogous assumption for variables and
conditions; the real scores can then be thought of as combinations
of mixtures of idealized entities.

What is still lacking is some rule that indicates how the ideal-
ized quantities can be combined into real values. One of the
simplest ways to do this is to weight each and then add the
weighted contributions. (For instance, each latent variable could
be weighted according to its average contribution over all sub-
jects and conditions.) In more technical terms, each real variable
is a linear combination of the latent variables.

We will show how to construct the score of an individual ; on a
test ƒ under condition k from known idealized quantities. Sup-
pose we have at our disposal 2 idealized persons (p\, p2), 2
latent variables (q\, q%> • and 2 prototype conditions (r\, r^^-
We also know the scores of:

r
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subject p i on variable q i under condition r\'.
cPl ( / J / - J or G U I !

subject Pi on variable q j under condition r2:
or

subject p i on variable q2 under condition r\:

2rl
 or C 12l ! and

subject pi on variable q2 under condition r 2'-
or C1 2 2 .

Similarly we know the scores of subject p2'-
C211' C 2 1 2 ' C221 ' and C222 '

In other words, we know all the elements of the core matrix.
As mentioned above, we want to construct the score of real
subject ƒ on a real variable ƒ under a real condition k. We will
do this sequentially and assemble all of the findings at the end.

We start with the observation that the score of a real subject ;'
on the latent variable q\ under a prototype condition r j is a
linear combination of the scores of the idealized persons p j and
p2 , using weights g/P l and g/p2:

S / t / j r j " 9ipl
cqlrl

 + 9ip2Cp2qlr-i

si\l = 9 / l c l l l + 9/2c211 •

Similarly, for variable q2 under condition r\i

s/21 ~ S'/p1Cp1(??/-1
 + 9ip2Cp2q2rl

- 9 i \C\2\ + 9 /2C221 •

and the other variable-condition combinations:

S /12 = Qi\Cl\2 + 9/2C212 •

S/22 = 9i\C\22 + 9 /2^222 •

The weights gn and g/ 2 thus indicate to what extent the idealized
subjects P! and p2 determine the real subject ;'. The assumption
in this approach is that these g / j and g/2 are independent of the
test and the conditions under which the subject is measured. All
interrelationships between subjects, variables, and conditions are
the consequence of interrelationships between the idealized enti-
ties, as reflected in the core matrix (see later section on inter-
pretations of core matrices).

Our next step is to construct the scores for subject ; on a
real variable /' instead of on the latent variables q j and q2, as
was done in the above procedure.

The score for subject ƒ on real variable ƒ under prototype
condition r\ is:
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= h + h j 2Si 2 1 .

Similarly, on real variable ƒ under prototype condition r2 , we
have

Vij2 ~ hj\Si\2 + h/2Si22 •

where the weights hj\ and h, 2 indicate to what extent the latent
variables determine the real variable /.

Finally, we combine the idealized conditions. Subject i's score
on test / under condition k may be written as

'/V* = ek\ vij\ + ek2vi/2 •

where the weights e^ j and e/< 2 indicate to what extent each
idealized condition determines the real condition k.

Assembling the results from the three steps we get:

o

2 2 2
2 U k = I ekrvljr = I ekr{ I

r=l r=l qr=l

which can be compactly written as

'/ q * l q r .

2 2
zijk = I ekr {

/•=! q=l
''/gr ( l ÇipCpqr)

P-J

where

L 9ipcpqr is the linear combination of subjects

*s *ne linear combination of variables
q\ and q^; and

is the linear combination of
conditions A"i and r2

p = l

2

/, "/
(7=1

2

2

',< I
p = l

2

and

9icpqr

2
/q

or
2 2 y

= 1 1 1
p= 1 <?= 1 r= 1

as it is usually written.
As can be seen in the next section — Formal Descriptions — this

is the definition of the three-mode principal component model. In
Bloxom (chapter 4) , the nested form of the three-mode model is
described as well, but there, the model is developed as an ex-
ample of a third-order factor analysis model, in which the s are
the second order and the v the third order factors.
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Methodology: Extending Standard Principal Component Analysis

From a methodological point of view, three-mode principal com-
ponent analysis is a generalization of standard principal com-
ponent analysis, or rather, of singular value decomposition.
Figure 3-1 schematically shows the relationship between standard
principal component analysis and singular value decomposition. In
essence, singular value decomposition—(or two-mode principal
component analysis)—is a simultaneous analysis of both the indi-
viduals and the variables, in which the relationship between the
components of the variables and the subjects is represented by
the core matrix C. In Figure 3—1, the core matrix is diagonal
with s diagonal elements Cpp (p - 1 s). These C„p are
equal to the square roots of the eigenvalues associated with the
pth components of both the variables and the subjects. When G
and C are combined to form A, as shown in Figure 3—1, we have
the standard principal component solution; and when H and C are
combined, we have what could be called (in Cattell's terms
[1966]) "Q"-principal component analysis. Figure 3-2 shows the
decomposition of a three-mode matrix according to the three-mode
principal component model. Comparison of Figure 3—1 and Figure
3—2 shows the analogy between the singular value decomposition
and three-mode principal component analysis. The core matrix
now has three modes, and the relationships between the singular
values or elements of the core matrix and the eigenvalues of the
various modes are less simple than in the two-mode case (see
later section on interpretations of core matrices).

Examples of Applications

In this section, we present some examples of the types of prob-
lems that can be handled successfully by three-mode principal
component analysis.

Semantic Differential Data

A classical example of three-way classified data can be found in
the work of Osgood and associates (Osgood, Suci, and Tannen-
baum 1957). In the development and application of semantic
differential scaling, subjects have to judge various concepts using
bipolar scales of adjectives. Such data used to be analyzed after
averaging over subjects, but the advent of three-mode principal
component analysis and similar techniques has made it possible to
analyze the subject mode as well in order to detect individual
differences with regard to semantic organization of the relations
between the scales and the concepts. Examples of such studies
can be found in Snyder and Wiggins (1970) and Kroonenberg
(1983a).

Similarity Data

Three-way similarity data—consisting of stimuli by stimuli by
subjects—are generally analyzed with individual differences scal-
ing programs, such as INDSCAL (Carroll and Chang 1970) and
ALSCAL (Takane, Young, and de Leeuw 1977). However, when



70 / RESEARCH METHODS FOR MULTIMODE DATA ANALYSIS

Figure 3—1. Singular Value Decomposition and Principal
Component Analysis

DATA

SINGULAR VALUE DECOMPOSITION

the data are asymmetric and/or a more general model is required,
three-mode principal component analysis can provide useful in-
sight. (See Carroll and Wish [1974] for details on individual
differences scaling and its relation to three-mode component
analysis. )

Asymmetric Similarity Data

Van der Kloot and Van den Boogaard (1978) collected data from
60 subjects who rated 31 stimulus persons on 11 personality trait
scales. In the original report, the data—which can be considered
asymmetric similarity data—were analyzed by canonical discrimi-
nant analysis using the stimulus persons as groups. This analy-
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Figure 3-2. Three-Mode Principal Component Analysis
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sis yielded a circular configuration for the scales and a similar
configuration for the stimuli. Van der Kloot and Kroonenberg
(1982) used three-mode principal component analysis on the
original data, recovering essentially the same configurations for
the scales and the stimuli. However, in their analysis, it was
possible to show that the two spaces were in fact identical. In
addition, it was possible to assess the individual differences
between subjects. These differences manifested themselves pri-
marily in the size rather than the shape of their configurations.
These differences can be explained as differences in response
style (extreme versus nonextreme) , rather than differences in
judgmental processes.

Multivariat« Longitudinal Data

In the social sciences, multivariate longitudinal data pose problems
for many standard techniques. There are often too few observa-
tions and/or too many points in time for the analysis of covari-
ance approach (Jöreskog and Sorbom 1976), or too few points in
time and/or too many variables for multivariate time series analy-
sis by some kind of A R I M A model (see, for example, Glass,
Willson, and Gottman 1975; Cook and Campbell 1979, ch. 6). In
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such situations, three-mode principal component analysis can be
very useful, especially for exploratory purposes.

Lammers (1974) presented an example of longitudinal data with
a relatively large number of variables and only a limited number
of points in time. Data were available for 188 hospitals measured
on 22 variables in 11 consecutive years. The aim of this study
was to determine if various kinds of hospitals showed different
patterns or rates of growth. The general results of this study
revealed that, over the years, large hospitals stayed large in
relation to the initially small ones and that all hospitals grew
roughly in the same manner. There were, however, a small
number of hospitals that showed a specific growth pattern in a
special group of variables. A reanalysis of these data can be
found in Kroonenberg (1983a). (A complete survey of applica-
tions of three-mode factor and principal component analysis can
be found in Kroonenberg [1983b].)

Formal Descriptions

In this section, we present a rather superficial description of the
Tucker3 and Tucker2 models since our purpose here is to provide
just enough detail for understanding the main principles involved.
A more detailed treatment can be found in Kroonenberg and de
Leeuw (1980).

TuckerB Model

The general three-mode principal component model, or Tucker3
model, can be formulated as the factorization of the three-mode
data matrix Z = ? / * » such that:

-pqr

i

r r r
7ijk = i, J. 4, 9iphjqekrCf

for /' = l / ; / ' = ! , . . . , m; k - \ n.

The coefficients g/p , h,q , and e^r are the entries of the
component matrices G ( / x s), H(m x t), and E (n x tv) ; /, m, and
n are the number of elements (= rows), and s, t, and u are the
number of components of the first, second, and third mode,
respectively. We will always assume that G , H, and E are col-
umnwise orthonormal real matrices, with the number of rows
larger than or equal to the number of columns. The cpqr are the
elements of the three-mode core matrix C(s x f x y).

In practice, the three-mode data matrix is not decomposed into
all its components, since one is usually only interested in the
first few. Therefore, one seeks an approximate decomposition Z
that is minimal according to a least-squared loss function. Spe-
cifically, one solves for a Z such that:

/ m n

l l l (zak - * / /*> 2 with
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s t u
Z / j k * l L l QiphjqekrCpgr

p=1 <7=1 r=1

attains a minimum. The algorithm to solve this minimization
problem is implemented in the program TUCKALS3 (Kroonenberg
1981a). (Details about the existence and uniqueness of a mini-
mum, the algorithm itself, and its implementation can be found in
Kroonenberg and de Leeuw [1980].)

Tucker2 Model

An important restriction of the general TuckerS model can be
obtained by equating the component matrix E with the identity
matrix. We will refer to this model as the Tucker2 model; it has
also been called the generalized subjective metrics model.
The TuckerZ model can be written as

= L t <3iphjqcpqk <'*

or in matrix notation

Zk = GC*H' (k = 1 n) ,

where Z^ C x m) is the kth frontal plane or slice of the data
matrix, and C/^(s * t) is the extended core matrix, respectively.

The core matrix is called "extended" because the dimension of
the third mode is equal to the number of conditions in the third
mode rather than to the number of components, as is the case in
the TuckerS model. The Tucker2 model only specifies principal
components for the / subjects and m variables but not for the n
conditions. The relationships between the components of the
subjects and the variables can be investigated for all conditions
together, as well as for each condition separately.

The loss function for the TuckerZ model has the form

l m n

l l l dk - ï/M)1 , with

'/ƒ* = 1 1

The algorithm to solve this minimization problem is implemented in
the program TUCKALS2 (Kroonenberg 1981b).

One important advantage of the methods discussed in this
chapter over the standard procedures outlined by Tucker (1966,
297 ff) is that the estimates of the parameters are least-squares
rather than estimates with ill-defined properties. Another advan-
tage of the definition of loss functions is that it becomes possible
to look at residuals (see later discussion on interpretation of
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m.'

and

r = 1,

When Cr is not square, only the first m i n ( s , f ) components can be
used. The procedure can be interpreted as rotating the com-
ponent matrices by an orthonormal matrix, followed by a stretch-
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residuals). A third advantage is that there exists a direct
relationship between the eigenvalues of the configurations and the
size of the elements in the core matrix (see introductory sections
of this chapter).

Miscellaneous Topics

Various kinds of auxiliary information can be useful for the
interpretation of results from a three-mode principal component
analysis. Some of the most important ones will be presented
here, including joint plots, component scores, use of residuals,
scaling of input data, and rotations. Various ways to interpret
core matrices will be discussed later in this chapter.

Joint Plots

After the components have been computed, the core matrix will
provide the information about the relations between these com-
ponents. It is very instructive to investigate the component
loadings of the subjects jointly with the component loadings of,
say, the variables, by projecting them together into one space,
as it then becomes possible to specify what they have in common.
The plot of the common space is called a joint plot.

Such a joint plot of every pair of component matrices for
each of the components of the third mode—such as E , in the
TUCKALS3 case—and for the average core plane in the
TUCKALS2 case, is constructed in such a way that g / ( i =
I s) and h / ( j - 1, . . . , t) (the columns of G and H,
respectively) are close to each other. Closeness is measured as
the sum of all s x t squared distances d2(g/, h/) over all / and /.

The plots are constructed as follows. For each component r of
E, the components G and H are scaled by dividing the core plane
associated with that component, Cr , between them (by using
singular value decomposition), and then weighting the scaled G
and H by the relative number of elements in the modes to make
the distances comparable:

Dr= GCAH' = G(UAArV/)H'
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ing or shrinking of the rotated components. Similar procedures
for plotting two sets of vectors into one figure have been devel-
oped by Schiffman and Falkenberg (1968). (See also Schiffman et
al. 1981, eh. 14; Gabriel 1971, biplot; Carroll 1972, MDPREF;
Benzecri 1973, correspondence analysis; Gifi 1981, ch. 4.)

Component Scores

In some applications, it is useful to inspect the scores of all
combinations of the elements of two modes on the components of
the third mode. For instance, for longitudinal data the scores of
each subject-time combination (or ik-combination) on the variable
(/') components can be used to inspect the development of an
individual's score on the latent variable over time. In the ex-
ample presented here, these component scores in fact turn out to
be the most successful summary of the relationships involved.

The component scores on the rth component of the third mode
have the form

= I I or Dr = G C r H '
= l <?=!

But by using other combinations of component matrices, three
different sets of scores can be calculated. In general, only a few
of these will be useful in a particular application.

One of the interesting aspects of the component scores d/jr is
that they are at the same time the inner products,

min ( s , f )

thus expressing the closeness of the elements from different
modes in the joint plot.

Residuals

Kroonenberg (1983a) shows that for both the Tucker3 and the
Tucker2 models the following is true:

/ m n l m n

I I l f a - l l l f a
;=1 7=1 *=1 / '=l 7=1 *=l

- * / • * > 2 •
/=! 7 = 1 A r = l

where the z// fr values are the data "reconstructed" from the
estimated parameters. This is, of course, a standard result in
least-squares analyses. Less numerically, this may be written as

SS(Data) = SS(Fit) + SS(Residual) .

In addition, it is shown that for each element f of a mode,
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SS(Data,) = SS(Fit,) + SS(Residualf).

By comparing the fitted sum of squares and the residual sum of
squares for the fth element, one can gauge the correspondence of
the fth element's configuration with the overall configuration.
Large residual sums of squares indicate that a particular element
does not fit very well into the structure defined by the other
quantities.

Clearly, the size of the SS(Residual) depends on the
SS(Total). Therefore, one should focus on the relative residual
sum of squares (or relative residual, for short), which is equal
to SS(Residual)/SS(Total) when assessing the role of a particular
element in the final solution. Similarly, one could look at the
relative fit (= SS(Fit)/SS(Total) ) . Of course, these two quanti-
ties convey essentially the same information.

The SS(Res) and the SS(Fit), as well as their relationships,
can be shown directly in a so-called sums-of-squares-plot, which
is explained and illustrated in the section on fit of the scales,
episodes, and children.

Scaling of Input Data

In standard principal component analysis, the input data are often
transformed into standard scores without much thought about the
consequences. In other words, correlation matrices are generally
analyzed with principal component analysis rather than cross-
product matrices or covariance matrices. In three-mode analysis,
the question of scaling the input data mus't be approached with
more care, as there are many ways to standardize or center the
data.

Two basic rules can be formulated with regard to the scaling
of input data: (a) those means should be eliminated (set equal to
zero) that cannot be interpreted or that are incomparable within a
mode; and (b) those variances should be eliminated (set equal to
one) that are based on arbitrary units of measurement or that are
incomparable within a mode. If all quantities are measured in the
same (possibly arbitrary) units, it is not necessary to eliminate
the variances and perhaps is not even desirable.

Common scaling procedures include: (a) centering or standard-
izing the variables over all subject-condition combinations (/-
centering), so that the grand mean of a variable over all subjects
and conditions is zero and/or its total variance over all subjects
and conditions is one; (b) centering or standardizing the vari-
ables over all subjects for each condition separately (jk-ccnter-
ing); and (c) double-centering, or centering per condition over
both variables and subjects (Ik-, ik-centering). (As before,
subjects, variables, and conditions here indicate first, second,
and third mode quantities, respectively.)

The decision as to which centering or standardization method
is appropriate in any particular data set depends on the re-
searcher's assessment of the origin of the variability of his data.
In other words, one must assess which means and variances can
be meaningfully interpreted. Harshman (chapters S and 6) and
Kruskal (chapter 2) discuss these issues in greater detail. (For
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a somewhat different perspective, see Kroonenberg [forth-
coming] . )

Rotation of Components and Core Matrix

In standard principal component analysis and factor analysis, it is
customary to rotate the solution of the variables to some kind of
"simple structure," mainly by Kaiser's (1958) varimax procedure.
This and other rotational procedures have been extensively ap-
plied in three-mode principal component analysis (see Kroonenberg
1983b). Various authors have advocated some particular rotation
for a specific type of data. Lohmoller (1981), for instance,
recommends rotation of time components to orthogonal polynomials,
a proposal also put forward by Van de Geer (1974). Subject
modes tend to be transformed in such a way that the axes coin-
cide with centroids of clusters of individuals. Tucker discusses
several of the above possibilities and advocates that the "first
priority for these transformations should be given to establishing
meaningful dimensions for the object space (variables)" (1972,
10-12).

The emphasis in the literature on rotating the component
matrices first is clearly a consequence of the familiarity with such
procedures in standard principal component analysis. In three-
mode analysis, the core matrix is the most difficult to interpret,
due to its trivariate character (see later section on interpretation
of core matrices). This leads to the recommendation to concen-
trate on the simplicity of the core matrix rather than that of the
component matrices. Simplicity here means a large number of
zeros or very small values in the core matrix, preferably in the
off-diagonal elements. The most simple structure would be a core
matrix (for the Tucker3 model), with only non-zero elements on
the body diagonal (cpqr * 0, if p = q = r). In such a case,
each component of a mode is exclusively linked to one component
of another mode, so that they can be equated or at least be given
the same interpretation. This model is then the orthonormal
version of the PARAFAC/CANDECOMP model discussed in Harsh-
man and Lundy (chapter 5).

An interesting observation drawn from a large number of
applications is that the principal component solution already seems
to produce such simple structures if they are present in the data
and if they are compatible with the model employed. At present,
this is just an empirical finding, but it is conjectured that it can
be shown to be true for at least a number of specific cases. On
the basis of this conjecture, it appears that rotating the compo-
nent matrices to some kind of structure in fact destroys the
simplicity of the core matrix and thus introduces unnecessary
complications in its interpretation.

AN EXAMPLE FROM ATTACHMENT THEORY

Design and Data Description

To familiarize the reader with some practical aspects of three-
mode analysis and to illustrate the main points of the previous
sections, we will analyze data collected by Goossens (forthcoming)
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on the reactions of two-year-old children to a stranger and to
their mothers in an unfamiliar environment within the context of a
standardized observation procedure called the "Strange Situation,"
from Patterns of Attachment (Ainsworth et al. 1978). The prac-
tical aspects and theoretical considerations that form the founda-
tion of the strange situation are covered in many publications
(including the above) as the measurement procedure has become a
standard one in developmental psychology. Our main purpose
here is to illustrate three-mode principal component analysis
rather than to dwell in detail on the strange situation itself. We
will, therefore, treat its aspects only insofar as it is necessary to
understand the data and the analysis.

In the course of the strange situation, the child is subjected
to increasingly stressful circumstances (such as the arrival of a
stranger, leaving of the mother, and being left alone) in order to
elicit "attachment behaviors." Attachment itself is defined as "the
affectional bond or tie that an infant forms between himself and
his mother figure—a bond that tends to be enduring and inde-
pendent of specific situations." Attachment behaviors are defined
as "the class of behaviors that share the usual or predictable
outcome of maintaining a desired degree of proximity to the
mother figure" (Ainsworth et al. 1978, 302) .

As Ainsworth et al. point out, the sequence of episodes was
very powerful both in eliciting the expected behaviors and in
highlighting individual differences (1978, 33). The major purpose
of the procedure is to assess the quality of the attachment rela-
tionship of a child to its mother-figure. (A summary of the
procedure is given in Table 3—1.) The major types of attachment
are secure attachment (S-children), anxiously resistant attach-
ment (C-children), and anxiously avoidant attachment (A -chil-
dren). Ainsworth et al. (1978, eh. 3) have developed a more
detailed classification system, which is presented in Table 3—2.
The classifications of the children are made by trained judges on
the basis of the children's scores on so-called interactive scales,
which range from 1 to 7 (see Table 3-3). The child's behavior
corresponding to each of the 7 categories has been explicitly
defined and can be summarized as going from 1 (virtually non-
existent) to 7 (very often, very intense). The scores are award-
ed by trained observers while viewing videotapes of the strange
situation. In the present analysis, the following scales were
used: proximity seeking ( P R O X ) , contact maintaining ( C M ) ,
resistance (RES), avoidance ( A V O I ) , and distance interaction
( D l ) .

The data of the present study consisted of observations on 65
two-year-old children on the 5 interactive scales during 4 epi-
sodes (S4, A f 5 , 57, MB), where S indicates the presence of the
stranger and M that of the mother. Details on the data and the
reasons for discarding the earlier episodes can be found in
Goossens (for thcoming). One might argue that a three-mode
analysis is not a proper technique for these data; for instance,
proximity seeking toward the stranger might not be the same
variable as proximity seeking toward the mother. Also, the
relationships between the scales in the stranger episodes might be
different from those in the mother episodes. However, since the
basic purpose of the strange situation is to assess children on the
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TABLE 3-1. Description of Strange Situation

Situation

Number

Persons

Involved

Duration

of Situation Brief Description of Action

mother, child, 30 sees,

observer

mother, child 3 min.

Observer introduces mother and baby to

experimental room, then leaves.

Mother is nonparticipant while child

explores; if necessary, play is stimu-

lated after two minutes

stranger, 3 min.

mother, child

stranger,

child (Si»)

mother,

child (M5)

chil d al one

3 min. or

less 1)

3 mi n. or

more 2)

3 min. or

less 1)

Stranger enters. First minute: stranger

silent. Second minute: stranger con-

verses with mother. Third minute:

stranger approaches child. After three

minutes mother leaves unobstrusively.

First separation episode. Stranger's

behavior is geared to that of the child.

First reunion episode. Mother greets

and/or comforts child, then tries to

settle it again in play. Stranger

leaves unobtrusively in the meantime.

Mother leaves saying "bye bye."

Second separation episode.

stranger, 3 min. or Continuation of second separation,

child (S7) less 1) Stranger enters and gears behavior to

that of the child.

mother, 3 min. Second reunion episode. Mother enters,

child (M8) greets child, then picks it up. Mean-

whle stranger leaves unobtrusively.

Note: The episode is curtailed if the child is unduly distressed, and the

episode is prolonged if more time is required for the child to become reinvolved

in play.

Source: Ainsworth et al. (1978, 37).

basis of their reactions to the entire strange situation—and not to
specific parts of it—it seems justified to treat a scale as the same
variable regardless of the adult to which the behavior is directed.

Before analysis, the overall scale means were removed; specifi-
cally, the scales were centered over all children-episode combina-
tions (/-centering). (See previous section on Scaling of Input
Data.) No equalization of variances was performed. This
decision was based on the consideration that the individual differ-
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TABLE 3-2. Ainsworth Classif icat ion System

Behavior toward the mother

PROX CM RES AVOI 01

AI - ++

A2 +(+) - (+) ++

Bl ( + ) - ++

B2 +(+) (+) - (+) +(+)

B3 ++ ++ - -/++

B<* ++ ++ ( + )

C1 ++ ++ ++

C2 ( + ) ( + ) -H- - ( + )

Most salient

feature

di sinterested

mixed feelings

secure

secure
very secure

secure

angry, ambivalent

passive

Behavior toward

stranger

Treatment more or less

1 i ke mother

Friendly toward stranger

but mother is clearly

preferred and sought after

Treatment more or less

li ke mother

- = lowj ( + ) = low to moderate; + = moderate; +•( + ) = moderate to high;

++ * high.

Source: Ainsworth et al. (1978, 59-63); Sroufe and Waters (1977).

TABLE 3-3. Interactive Scales

Proximity (or contact) seeking (PROX)

Contact maintaining

Resistance

Avoi dance

Distance interaction

(CM)

(RES)

(AVOI]

(Dl)

A measure for the degree of active

initiative a child shows in seeking

physical contact with or proximity to

an adult.

A measure for the degree of active

initiative a child exerts in order to

maintain physical contact with a

person, once such contact is achieved.

A measure for the degree of angry and/

or resistant behavior to an adult. It

is shown by physically rejecting an

adult who tries to come into contact or

initiate interaction with the child.

A measure for the degree of avoiding

proximity and interaction with an

adult, for instance by ignoring or

looking away.

A measure for the degree in which a

child interacts with an adult from a

distance, for instance, by showing

toys and talking.

ences between children were of more interest than the overall
scoring levels of the children on the interactive scales. This
centering ensures that the meaningful differences in scoring
levels between episodes that carry important information are
retained. However, a disadvantage of using the mean values for
generalization is that they are sample-dependent. For more
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extensive studies, some standard norm for centering scales should
be devised. (It should be mentioned that this centering is not
recommended by Harshman [chapter 6] or Kruskal [chapter 2 ] ,
but their starting point is different from ours [see Kroonenberg,
forthcoming].)

Analyses and Fit

Analyses

The main analysis reported here is a Tucker3 (T3) analysis with
two components each for the first mode (episodes), second mode
(interactive scales), and third mode (children). It will be re-
ferred to as the 2 x 2 x 2-solution, and it will be compared with
a 3 x 3 x 3-solution using the same data. We will also refer to a
Tucker 2 (T2) analysis with two components for the first two
modes, or the 2 x 2-solution. (It is, by the way, not necessary
to have equal numbers of components, but it is often more con-
venient. )

Fit

Table 3—4 shows that the fit increases with an increasing number
of components but that the increase in fit in going from the
2 x 2 x 2-solution (fit = .59) to the 3 x 3 x 3-solution (fi t = .68)
involves estimating an additional 93 parameters. At least 60% of
the variation in the (/-centered) data is accounted for by the
three-mode model. Considering the relative difficulty of reliably
measuring children's behavior and the variability inherent in it,
this seems quite satisfactory.

When using the Tucker2 model—computing only components for
episodes and interactive scales—a better overall fit is possible
than with the Tucker3 model using the same number of compo-
nents ( .67 for the 2 x 2-solution versus .59 for the 2 * 2 x 2 -

TABLE 3-1». Characteristics of the Solution

T3 T3 T2
2x2x2 3x3x3 2x2

Standardized total sum of squares--SS(Total ) 1.00 1.00 1.00

Approximation of SS(Fit) from separate PCA

on mode 1 .77 .91 .77

on mode 2 .83 .92 .83

on mode 3 .63 .71

Fitted sum of squares from simultaneous

estimation--SS(Fit) .59 .68 .67

Residual sum of squares from simultaneous

estimation--SS(Res) ."*1 .32 .33

Improvement in fit compared to initial

configuration .03 .01 .001

Parameters to be estimated 156 249 278
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solution). But due to leaving the third mode uncondensed, there
are more parameters in the former case (278 versus 156). Com-
paring the two T3-solutions, it is difficult to decide which is the
"best" solution to look at in detail. No goodness-of-fit tests are
available; furthermore, it seems largely a content-specific problem
as to how much detail one wants to go into in describing the
relations.

The "approximate fit" from the initial configuration for each of
the modes, which are derived from the standard Tucker (1966)
Method I solution, are upper bounds for the SS(Fit) of the simul-
taneous solution. Obviously, the smallest of the three is the
least upper bound, which, in this case, is the one based on the
third mode ( .63) . The initial configurations are used as starting
points for the main TUCK ALS algorithms. The improvement in fit
indicates how much the iterative process improves the simultane-
ous solution over the starting solution. In this case, the improve-
ment is not large—in other words, we might have settled for the
Tucker method as far as fit is concerned. This does not mean,
however, that the changes in the component matrices G, H , and E
are also negligible.

Another point worth mentioning is the ratio of components to
variables. In standard principal component analysis, it seems ill-
advised to attempt to extract, for instance, three components for
the four episodes. However, due to the presence of another
mode, the order of the solutions in three-mode analysis may be
larger than in the standard situation (see also Kruskal 1976,
1977).

Configurations of the Three Modes

One of the advantages of three-mode principal component analysis
over separate analyses for each episode or each interactive scale
is that one common space can be found for all episodes together,
for instance, instead of one for each. The common component
spaces for each mode are given in Tables 3-5, 3—6, and 3—7,
respectively. In Figure 3—3, the components for scales and
episodes are plotted and in Figure 3—4 those for the children are
plotted. In Figure 3—3, but not Figure 3—4, the components have
been multiplied by the square root of their component weights so
that the plots reflect the relative importance of the axes.

The general remark can be made that the choice of a particular
solution is not very crucial with respect to interactive scales and
episodes. The first two components of both the scale space and
the episode space are the same within reasonable bounds (roughly
± .05 and the order is preserved in all but two cases). The
differences illustrate, by the way, that the solutions are not
nested.

A point that should be made at the outset of the interpretation
is that it is rather di f f icul t to link the details of our results to
those in Ainsworth et al. (1978); the latter refer mainly to one-
year olds and Goossens' study deals with two-years olds.
Previous research (summarized in Ainsworth et al. 1978) shows
that the reaction of older children in the strange situation is
different from that of one-year-olds for whom it has been vali-
dated (see also Goossens et al. 1982).
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TABLE 3-5. Component Spaces—Episodes (Mode 1)

T3: 2X2X2

nr.

i*

5
7
8

adult

stranger

mother

stranger

mother

S*
M5
S7
M8

E1

.26

.1*7

.38

.75

E2

-.kit

.25
-.77

.39

T3: 3x3x3

E1

.25

.52

.<t1

.71

E2

-.37

.28
-.80

.38

E3

.1*5

.68
-.23

-.53

T2:
E1

.26

.1*8

.1*1»

.71

2X2

E2

-.1*5

.27
-.73

.1*3

component weight .37 .22 .M .21 .07 .1*2 .25

U )
P

Note: Labels for components: E1 = stress of situation; E2 = mother versus

stranger; E3 = early versus late.

TABLE 3-6. Component Spaces--lnteractive Scales (Mode 2)

T3: 2x2x2 T3: 3x3x3 T2: 2x2

Scales S1 S2 S1 S2 S3 51 S2

Proximity seeking

Contact maintaining

Resistance

Avoidance

Distance interaction

PROX

CM
RES
AVOI

Dl

.32

.26

.33

.27
-.81

.69

.35
-.1*1

-.1*8

.07

.37

.26

.30

.25
-.80

.68

.31*

-.39

-.50

.12

.01*

.11*

.85
-.1*6

.21*

.35

.28

.30

.25
-.80

.67

.31*

-.39

-.53

.10

Component weight .37 .22 .1*3 .24 .02 .1*0 .27

'V
Note: Labels for components: 51 = intensity of reaction; S2 = security seeking;

S3 = interest in adult.

One of the aims of the present analysis, with regard to the
content of the research, is to investigate how individual differ-
ences between the children can be traced back to their different
behavior in the various episodes based solely on the interactive
scales. These results will then be compared with the classifi-
cation subcategories resulting from the scoring instructions in
Ainsworth et al. (1978) (see Goossens, in preparation).

One qualification should be made in advance, as the research
project from which these data have been derived is not yet fin-
ished. The results presented here should be seen as preliminary
and not yet def in i t ive ; such final results will be published else-
where at a later date.
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TABLE 3-7. Component Spaces—Children (Mode 3)

Number

55
39
38
18
62
20
48
61
24
3
W
2

41
11

13
34

14
57
4
12
27
22
50
65
28
9
25
5

CD50
46
1

36

23
45

ACC

B4
B4
B4
B4
B4
B4
B4
B4
B4
B4
B3
B4
C1

B3/4
B3
B3

B3
B3
B3
B3
B3
B3
B3
B3
83
B3
B3
83
D7B3

B3

83

83

B3

83

C1

.34

.33

.30

.28

.27

.25

.22

.22

.20

.19

.19

.18

.18

.15

.14

.08

.08
-.04
.01

-.01
.04

-.01
-.04
.01
.02
-.00
-.09
-.09
- .07
-.03
-.07
-.08
-.10
-.00

C2

.08

.12

.07

.09
-.03
-.03
.14
-.02
.05
.08

-.02
.06

-.01
.07
.14
.10

.26

.21

.20

.19

.19

.18

.18

.18

.17

.17

.16

.16
* 16
.15
.15
.14
.15
.15

Number

52
32
40
19
7
33
64
42
59
60
17
47
30
56
16
29
hiH j

26
6
63
15
21
10
31
35
8
49
53
51

54
37

component
(V )

r

ACC

B3
B3
B3
83
B3
83
B3
B3
B3
83
82
83
82
B3
83
82
RI99
81

BI
B2
B2
83
B2
83
BI
81
7

82
B2

A1
A1

weight

C1

-.03
-.02
-.05
-.07
-.07
-.06
-.06
-.05
-.08
-.08
-.04
-.06
-.02
-.04
-.05
-.09
- no* . uy
-.03
-.00
-.03
-.05
-.07
-.04
.04

-.02
-.02
.07
-.04
-.01

-.03
.08

.50

C2

.14

.14

.14

.14

.14

.13

.13

.13

.12

.11

.11

.10

.09

.09

.09

.08
("17.U/

.07

.06

.05

.04

.04

.00
-.01
-.02
-.04
-.06
-.08
-.09

-.17
-.21

.09

B4.

Note: ACC = Ainsworth's classification category; ? = unclassified; B3/4 « 83 or

Episodes

With just four episodes, there is really no need to label the axes,
but for further reference we will try to name them anyway. The
first axis ( E l ) reflects the overall variability of the scores in the
episodes, and it does not seem unreasonable to associate increas-
ing variability with greater sfress placed on the child. The
second axis (£2) contrasts the behavior toward the mother with
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Figure 3—3. Component Spaces (Scaled): Episodes and Interactive
Scales

EPISODES

.MS

•S4

•S7

INTERACTIVE SCALES

-MB

Dl
5 « J l

•PROX

•CM

t Î 3 4

.RES
'AVOI

Figure 3-4. Child Space (Unsealed)

that toward a stranger. Finally, the third axis (£3) contrasts
the early and late episodes, namely, those episodes before and
after episode 6, in which the child has been left alone.
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Interactive Scales

The first axis (51) reflects the overall variability of the children-
episode combinations around the overall scale mean. This varia-
bility is approximately equal for PROX, CM, RES, and A VOI and
considerably larger for Dl. It is clear that high scores on dis-
tance interaction reflect an opposite reaction compared to high
scores on the other scales and that the same holds for low
scores. This is, of course, to be expected as proximity seeking
more or less precludes distance interaction and vice versa. The
special position of distance interaction has been noted before;
therefore, a number of researchers do not include it in their
analyses (for example, see Waters 1977; Grossman et al, 1981).
In Ainsworth et al, (1978), for instance, it is noted that for
one-year-olds, distance interaction is a low-stress behavior of low
intensity and that it differentiates less among the classification
subcategories (Ainsworth et al. 1978, 246) . Whether this is true
for two-year-olds is still a matter for investigation; we will come
back to this point later. An acceptable label for the first scale
component therefore seems to be intensity of the reaction.

The second component (S2) distinguishes between attachment
behaviors, proximity seeking and contact maintaining, and behav-
iors antithetical to attachment, including avoidance and resist-
ance. It might be labeled as security seeking. We will not
discuss the third axis (S3) , due to the small amount of variation
explained by it ( 2%) , even though it shows a theoretically im-
portant contrast between resistance and avoidance.

Children

Table 3—7 and Figure 3—4 show the two-dimensional child space for
the 2 x 2 x 2-solution. The children have been labeled both by a
sequence number and their Ainsworth classification subcategory
(see Table 3—2). These classifications are based on the same
interactive scales as those in this analysis. However, it is pri-
marily the behavior toward the mother that is taken into account,
instead of that toward both the mother and the stranger, as is
the case in our analysis. The classification instructions are
contained in Ainsworth et al. (1978, 59—62; see also Swaan and
Goossens 1982) and require extensive training. One of the aims
of applying three-mode principal component analysis to these data
is to assess the adequacy of the scoring instructions. For in-
stance, it is known from psychological and medical research that
people do not necessarily combine multivariate information in a
very reliable way (see Sawyer 1966; Einhorn 1972).

With respect to these data, we will try to answer two ques-
tions: (a) whether the classification system is consistent; namely,
whether the children who occupy the same region in the child
space have the same Ainsworth classification; and (b) whether the
same scales are responsible for the grouping of the children to
the same extent , as is specified in the scoring instructions; it
could b r > that the observed grouping in our analysis is the result
of d i f f e r e n t combinations of scores. In other words, the present
a n , ' an attempt to validate the classification rules.
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Ainsworth et al. (1978, eh. 6) applied discriminant analysis to
check the adequacy of the classification system, but this involved
the interactive scales twice: once to make the classification and
then again to evaluate this classification by using the interactive
scales as predictors in the discriminant functions. Here we use
the interactive scales to group the children and to assess their
contribution to this grouping simultaneously; only after that do
we check the grouping against the classification. This provides a
more adequate check of the appropriateness of the classification
procedure.

The first general impression is that a reasonable separation is
possible between the ß-subcategories, although on the basis of
our analysis alone the divisions could not have been made. In
addition, the two A 1-children are in their proper places, as their
score pattern on the interactive scales should be the mirror-image
of the ß3-children (see Table 3-2). Furthermore, the one Cl-
child does not occupy a separate place. Finally, there are some
63-children seemingly belonging to the B4-children, and they
have been labeled "63-prox" for reasons to be discussed in the
last section of this chapter, where we will also try to provide the
answers to the above questions. In the meantime, we will use the
Ainsworth classification to label the children, pretending we have
already established its appropriateness.

Interpretations of Core Matrices

In this section, we will discuss the interpretational possibilities of
the core matrices of the Tucker3 and Tucker2 models, both in
general and within the context of the example. Three ways to
interpret the values in the core matrix are given: (a) percentage
of explained variation; (b) three-mode interactions; and
(c) scores of idealized (latent) quantities.

Explained Variation

The core matrix indicates how the various components of the
three modes relate to one another. For instance, the element
c l n (= 19.9) of the T3 core matrix (Table 3-8) indicates the
strength of the relation between the first components of the three
modes, and C 2 2 i (= 13.5) indicates the strength of the relation
between the second components of the first and second modes in
combination with the first of the third mode. The interpretation
of the elements of the core matrix is facilitated if one knows that
the sum over all squared elements of the core matrix is equal to
the unstandardized SS(Fit). In other words, c£qr indicates how
much the combination of the pth component of tne first mode, the
qth component of the second mode, and the rth component of the
third mode contributes to the overall fit of the model, or how
much of the total variation is accounted for by this particular
combination of components. Thus, as seen in Table 3—8, 30% of
the SS(Total) is accounted for by the combination of the first
components of the three modes, another 14% by c£ 2 i and 3% each
by 0^21 and c§n. Together the contributions of the elements of
the first frontal plane add up to 50%, which is equal to the
standardized weight of the first component of the third mode, as
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it should be. The core matrix thus breaks up the SS(Fit) into
small parts, through which the complex relations between the
components can be analyzed. It is in this way that we can
interpret the core matrix as the generalization of eigenvalues or
of the singular values of the singular value decomposition. It
constitutes a further partitioning of the explained variation, as is
indicated by the eigenvalues of standard principal component
analysis.

In the present example, we see that the differences between
the children on the first component (Cl) explain half of the fitted
variation. This 50% can be partitioned as follows:

a. due to c in (30%): intensity of reaction (Si) due to the
stress of situation ( E l ) for ß4-children versus REST (Cl);

b. due to c 221 (14%): security seeking (52) with the mother
versus stranger (£2) for ß4-children versus REST (C l ) ;

c. due to c 121 (3%): security seeking (S2) with stress of situa-
tion (£1) for ß4-children versus REST (Cl ) ; and

d. due to c 211 ( 3 % ) : intensity of reaction (Si) with mother
versus stranger (£2) for ß4-children versus REST (Cl) .

The differences between the children on the second component
(C2) contribute the remaining 9% explained variation, which can
be divided as follows:

e. due to C u j (3%) : intensity of reaction (Si) due to the stress
of the situation ( E l ) for ß3(dist)-children versus ^1-children
(C2);

f . due to c 222 ( 5 % ) : level of attachment (S2) with mother-
stranger (£2) for ß3(dist)-children versus A I-children (C2) ;
and

g. due to c 122 ( 1 % ) : security seeking (S2) with stress of the
situation ( E l ) for ß3(dist)-children versus A I-children (C2).

Three-Mode Interactions

The percentages of explained variation only point to the important
combinations but do not indicate the direction of the relationship.
This information can be found in the original, not-squared core
matrix. The problem is, however, what the cpqr themselves
represent. Their squares are variation explained; and the Cpqr
themselves refer to what we call three-mode interactions.

To illustrate this three-mode interaction between loadings on
components, we will look at Cm (= +19.9). The plus sign indi-
cates that:

a. positive loadings on Cl, SI, and £1 occur together the more
ß4-like children are, the more intensely they react (= the
higher their scores are above average on all scales except 01)
in more stressful situations (= AJ5 /S7 and M 8 ) ;

b. negative loadings on Cl and Si, occur together with positive
loadings on El: the more negative a child loads on Cl the
less intensely it reacts (= scores below average on all scales
except D l ) in more stressful situations (= M5/S7 and M8);

c. positive loadings on Cl and negative loadings on Si and £1
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go together; and
d. negative loadings on Cl and £1 go together with positive

scores on Si.

However, these combinations (c and d) do not occur in practice
as all episodes load positively on £1.

Similarly, for each element cpqr of the core matrix, such a set
of statements can be made. Clearly, having four statements to
explain each element of the core matrix is not particularly easy to
comprehend. The situation can be simplified by omitting state-
ments about negligible elements in the core matrix (here, C2 1 2
and C1 2 2) &na by making "conditional statements." For instance,
a, b, c, and d can be simplified as:

a. for S4-children (with positive loadings on C l ) , intensity of
the reaction (SI) and stress of the situation (£1) are posi-
tively related; and

b. for children with negative loadings on Cl, intensity of the
reaction and stress of the situation are negatively related.

Another way to gain insight in the three-mode interactions is
to try and produce plots of these relationships. Making plots
"conditional" upon one of the modes turns out to be singularly
effective. Both the joint plots (Figure 3-5, Parts A and B) and
the plots of the component scores (Figure 3-6, Parts A and B)
are examples of this approach. Here these plots are made condi-
tional on the child components. In general, the subject matter
and the way the data have been generated will determine which
mode can be best used for conditioning.

Scores of Idealized Quantities

This interpretation was the basis for the earlier explanation of
the model at the beginning of this chapter. Each element of the
core matrix represents the score of a "pure" or "ideal" child on a
latent interactive scale in a prototype episode. For Goossens'
data, this means that an ideal 64-child reacts intensely in stress-
ful situations ( C j j j = 19.9), seeks much security with its mother-
figure (c22i = 13.5), seeks moderate security in stressful situa-
tions ( c 1 2 j = 5 .8 ) , and reacts with moderately low intensity to
the mother-figure (c2 1 J = -5.8).

The difference with the interpretation in the previous section
is that there the interpretations were based on relationships
between loadings on components, and here we construct interpre-
tations in terms of the components themselves. In some applica-
tions, the former method will be easier to handle and in other
applications, the latter. In the present example, using very few
elements in the episode and scale modes, the naming of compo-
nents is somewhat uncertain and the former approach seems more
helpful. In other cases, especially when the labeling of the
components as continuous variables is more adequately defined,
the latter approach will be easier to use.
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Figure 3-5, Parts A and B. Joint Plots of Episodes and Inter-
active Scales
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Extended Core Matrix of Tucker2 Model

So far we have only looked at the interpretation of the core
matrix of the Tucker3 model. The extended core matrix can be
interpreted in essentially the same way as the T3 core matrix, in
terms of the amount of explained variation. Again the sum of the
squared elements equals the fitted sum of squares, but now the
sum of the squared elements of a frontal plane, Cfr , equals the
contribution of the kth element (child) to this fitted sum of
squares.

We already noted the near equality of the components for the
interactive scales and the episodes in the 2 * 2-solution and
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Figure 3—6, Parts A and B. Component Scores for Episode-Scale
Combinations
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2 « 2 * 2-solution in connection with Table 3-5 and Table 3-6,
and thus interpretations of those spaces are the same as before.
The relationships between these components, as embodied in the
frontal planes of the T2 core matrix, are given for a few selected
children in Table 3-9. Four of the children were chosen because
they are relatively close to one of the axes in the child space
(namely, 38, 57, 29, 37) and can thus be considered "ideal
individuals" (Tucker and Messick 1963).

Thus, the frontal planes indicate how the axes of the common
space are related for each child, as was the case in the Tucker3
model for "ideal" children. For instance, for child 38 (a /Ï4-
child), intensity of reaction (51) and stress of the situation (£1)
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are positively related (see Table 3-9), as are security seeking
( 5 2 ) and the mother versus stranger distinction ( E 2 ) ; the other
combinations are immaterial. In comparison, for child 35 (a
Si-child), none of the relationships seem very relevant (see the
last section for a discussion of this phenomenon). Note also that
the two A 1-children (37 and 54) have very different patterns of
relationships, despite their similar position in the child space
(Figure 3-4).

Basically, one can conclude that children on the first child
dimension (Cl) weight the intensity-stress (£1,51) combination
and the mother versus stranger-security seeking (£2,52) combi-
nation with a ratio similar to that of Cm to 0221 in the T3 analy-
sis. The overall size of the elements determines their position on
the Cl component. High, positive numbers on the diagonal of the
T2 core plane (for child 41 and child 38) lead to highly positive
loadings on Cl and moderately negative numbers (for child 29)
lead to moderately negative loadings. On the negative side of the
second child component (C2) , there are children who emphasize
the (£1,51) combination but not the (£2,52) combination (37).
On the positive side of C2 (57), the situation is reversed: (£2,
52) is high and (£l ,Sl) is low. This distinction corresponds
with the opposite signs in the second frontal plane of the T3
analysis.

Direction Cosines

In those cases in which two modes are equal or the components
define the same space, an additional interpretation of the core
matrix is possible. For instance, within the context of multi-
dimensional scaling of individual differences, the input similarity

TABLE 3-9. Core Matrices--TUCKALS2 Core Planes for Selected Children

E1
E2

*)

E1
E2

S1

5.
-0.

•

S1

0.
2.

M

7
',

10

A l

6
3

(38)
S2

0.9
5.1

.07

(54)
S2

-2.2
-0.8

B3
S1

-2.1
-0.7

-.04

A1

SI

3.0
-0.1

(57)
S2

-0.7
1.4

.21

(37)
S2

-3.2
0.4

B2
SI

-2.4
0.4

-.09

Cl
SI

3.7

-1.0

(29)
S2

-0.2
-0.6

.08

OH)
S2

-.07
2.9

B1
S1

-0.2
1.1

-.02

B2
SI

0.5
0.2

(35)
S2

-1.0
0.1

-.02

(51)
S2

-0.0
-0.9

*) -0.3 -.17 .08 -.21 .18 -.01 -.01 -.09

Note; B4 (38): child number 38--Ainsworth c lassi f icat ion category B4; SI (S2) :
first (second) scale component; E1 (E2) : first (second) episode component; *): T3
component loadings (see Table 3-7).



94 / RESEARCH METHODS FOR MULTIMODE DATA ANALYSIS

matrices satisfy these conditions. Within this field, an inter-
pretation has been developed in terms of correlations and direc-
tion cosines of the axes of the spaces common to two (generally
the first and second) modes (see Tucker 1972, 7; Carroll and
Wish 1974, 91).

In such situations, it makes sense to speak about the angle
between the first and second component of the common space.
This angle can be derived from the off-diagonal elements of the
core planes, as they can be looked upon as a direction cosine or
correlation between component p and component q, provided Cpqr

is scaled by dividing it by Cp^k and c^^.and that the compo-
nents are standardized. The direction cosine indicates the angle
under which the /cth condition "sees" the axes or components of
the common space. In the present example, the approach is not
applicable, but in Kroonenberg (1981a) and Van der Kloot and
Kroonenberg (1982), the method has been successfully used.

Joint Plots

The approach in the previous section toward the core matrices
was in the spirit of Tucker's three-mode scaling (1972) and
Harshman's PARAFAC2 (1972), as indicated in Carroll and Wish

y . (1974) and Dunn and Harshman (1982). The joint plots, on the
other hand, are more similar to Carroll and Chang's (1970, 1972)
approach to treating the core matrix, in which the extended core
matrix is decomposed by either eigenvalue-eigenvector or singular
value decompositions. As pointed out earlier, the purpose of the
joint plots is that elements of two modes can be plotted in one
figure in order to express the relationships between the com-
ponents in terms of the original variables, such as scales and
episodes in our example. An advantage is that the components
are now automatically scaled in accordance with their relative
importance via the core plane.

With the joint plots, we can examine in some detail the rela-
tionships between the interactive scales and the episodes for each
ideal-type child or child component. In Figure 3-5, Parts A and
B, we present the joint plots for the two child components. The
following characterization for the children loading on the positive
side of the first component Cl can now be made.

a. They have high scores on proximity seeking and contact
maintaining toward the mother (in episodes M5, MB), and they
score about twice as high in MS as in M5. With a high score,
we mean relatively to the overall scale means, as we have
removed these means for all interactive scales.

b. They have high scores on resistance and avoidance toward
the stranger (in S4 and 57), nearly twice as high in S7 as in
S4.

c. They show roughly average resistant and avoidant behavior
toward the mother in M5 and MS and even somewhat below
average behavior on avoidance. Similarly, proximity seeking
and contact maintaining toward the stranger have average
values.

d. The scores on distance interaction do not discriminate between
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the mother and the stranger and they are below average.
There is less distance interaction in the later episodes.

These interpretations are derived from the fact that the scales
can be seen as points and the episodes as vectors or directions in
the common space, and vice versa. In this case, the former
approach is to be preferred because the episodes are fixed;
specifically, they are elements of the design. The relative impor-
tance of the various scales at any episode can then be assessed
from their perpendicular projections on the vectors as is shown
for M5 and M8 combined. The values of the projections^ are
contained in the matrix of the scaled inner products Dr = G r f \ f
= G C / - H ' (see earlier discussion of component scores).

For the positive scores on the second child component—the
63(dist)-children—the characterization is (see Figure 3—5, Part
B):

a. low scores on resistance and avoidance toward the mother,
coupled with average contact maintaining and proximity seek-
ing; high distance interaction increasing further in M8;

b. low scores on proximity seeking and contact maintaining
toward the stranger, with lower scores on proximity seeking;
average resistance, avoidance, and distance interaction with a
slight increase in the avoidance measures in S7.

For 37, an >41-child, the mirror image of the above observations
is true as he lies on the negative side of the second child compo-
nent ( C 2 ) .

Component Scores

As remarked earlier in this chapter, the values of the inner
products on which the above observations were made are at the
same time the component scores on the child component in ques-
tion; thus, they can serve as an intermediate level of condensa-
tion between the raw data and the three-mode model.

As we are looking here for characterizations of "ideal" chil-
dren, it is not very useful to display the component scores in the
two-dimensional child space. It is far more useful to plot the
component scores of the interactive scales for each episode, as is
done in Figure 3-6. In fact, for the present data—together with
that of the children's loadings—these plots are the best summary
of the results. Certainly they are easier to read than the joint
plots with their projections on vectors. It has been noted that in
longitudinal data, these plots have a similar appeal when the
points in time are placed on the horizontal axis (see Kroonenberg
1983»).

Fit of the Scales, Episodes, and Children

In essence, the analysis could stop with the above interpreta-
tions. All that the technique has to offer toward breaking down
complex relationships into small intelligible pieces is contained in
the analysis so far. However, it is beneficial to have some
additional information available to assess if there are no irregu-
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larities in the data, such as outliers, unduly influential points,
and points that are not sufficiently accounted for. A useful way
to investigate such questions is to inspect the residual sums of
squares in conjunction with the fitted sums of squares (see
earlier discussion of residuals). Whereas the core matrix informs
us about the contributions of the components and their interrela-
tionships, the sums of squares broken down by the elements or
variables of the modes inform us about the contributions of these
elements to the solutions.

In Table 3-10 and Table 3—11, the sums of squares for the
scales and episodes are shown, respectively. From the
SS(Total)s for episodes, we see that the variability as expressed
by the sums of squares increases with the later episodes, as
children deviate more from the scale means or perhaps show more
variation among themselves. Which of the two is more important
cannot be unequivocally determined from the present analysis and
should be assessed separately. With respect to the scales, we
see that contact maintaining has relatively little variability, while
distance interaction has considerably more variation. From the
residual sums of squares we note that the scales fit more or less
equally well, irrespective of their total sum of squares, but that
the configurations derived and discussed above are for a large
part determined by the last two episodes. The structure de-
scribed is therefore more representative of the later behaviors
than the early ones. This explains, for instance, why an added
third episode component shows an early versus late character;
primarily the earlier episodes will then be fitted better.

Figure 3-7 is a so-called sums-of-squares-plot, which shows
the residual sums of squares versus the fitted sums of squares
for the children from the 2 x 2 x 2-solution. By plotting the
sums of squares directly, rather than taking the relative sums of
squares, the total sums of squares are also contained in the plot,
and unusually large elements can be spotted directly. Moreover,
it can be seen if the larger SS(Fit)s resulted only from larger
total sums of squares, as is to be expected from least-squares
procedures. Furthermore, whether the variations of the elements

TABLE 3-10. Sums of Squares for Episodes (Mode 1)

2x2x2-solution

Episode

S4

M5
57

MB

SS(Total )

STD

.16

.21

.29

.33

SS(Fit)

STD

.07

.09

.18
,M

REL

.40

.M

.63

.74

SS (Res)

STD

.10

.12

.11

.09

REL

.60

.56

.37

.26

3x3x3-solution

SS (Res)

STD

.10

.06

.09

.08

REL

.59

.27

.30

.23

r

Overall 1.00 .59 .32

Note: STD = standardized or divided by the overall SS(Total); REL = relative

sum of squares, which is defined as:

relative SS(Res) of episode 54 =
SSjResidual) of episode 54

SSlTotal) of episode S4
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TABLE 3-11. Sums of Squares for Interactive Scales (Mode 2)

2x2x2-solution

Scale

PROX

CM
RES
AVOI

Dl

SS(Total)

STD

.23

.10

.15

.17

.35

SS(Fit)

STD

.14

.05

.08

.08

.24

REL

.61

.54

.52

.44

.68

SS(Res)

STD

.09

.05

.07

.09

.11

REL

.39

.46

.48

.56

.32

3x3x3-solut1on

SS(Res)
STD

.06

.04

.06

.08

.07

REL

.27

.41

.41

.46

.21

Overall 1.00 .59 .41 .32

Note: STD * standardized or divided by the overall SS(Total); REL » relative

sum of squares, which is defined as:

SS(Residual) of PROX
relat,ve SS(Res) of PROX = ss(Tota1, of PROX

have been equalized is evident from the arrangement of the
elements on a line at an angle of -45° to the positive x-axis.
Note that because the axes represent sums of squares, the total
sums of squares are obtained by directly adding the x-value and
the y-value (according to the city-block metric).

Another interesting feature of these plots is that they show
which elements have equal residual sums of squares with different
total sums of squares. In other words, it becomes possible to
separate points that have large residual sums of squares (because
they do not fit well) from the points that have a large SS(Res)
(because they have a large total sum of squares). Without a
residual analysis, it is uncertain whether a point in the middle of
a configuration on the first principal components is an ill-fitting
point or just a point with little overall variation.

Finally, by drawing the line through (0 ,0 ) and (av.SS(Fit) ,
av .SS(Res) ) , and appropriate similar lines above and below it,
something similar to confidence bands can be constructed around
the former line to assess the extremity of certain elements. The
lines are the loci of points with equal relative residual sums of
squares. A guide line for what is "appropriate" in this case—for
instance, how much the individual element may deviate in relative
residual sum of squares from the overall sum of squares—has not
been developed yet.

A number of features should be noted for the present data.
The B4-children fit well, have large sums of squares, and domi-
nate the solution. (For a more detailed discussion of these
64-children and the relation to the other ß-groups, see Van
Uzendoorn et al. 1983.) Furthermore, there is a large group of
ß3-children that have small total sums of squares; thus they
score about average on all scales and most of their variation is
fitted well. Conversely, none of the 61- and S2-children fit
very well into the overall pattern, but we have to remember that
there are only few of them. Their total sums of squares are not
very large, but their relative residual sums of squares are.
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Finally( there is a number of peculiar children, and one should
hesitate to draw definitive conclusions about them without further
analysis. They couple considerable sums of squares with little
fit, indicative of either another organization of the scale and
episode relationships or of large amounts of random variation. In
fact, the two /41-children (37 and 54) belong to this group.

Discussion

Keeping in mind the preliminary character of the data, there are
some conclusions that can be drawn with respect to the example.
In the first place, we note that three-mode principal component
analysis succeeded in showing individual differences between the
children and characterizing the kind and degree of these differ-
ences. Furthermore, the analysis presented here supports to a
large degree the consistency of the classification procedures, as
described by Ainsworth et al. (1978), especially for the B-
children. The consistency follows from the grouping of children
belonging to the same category. The presence of only two A-
children and a single C-child precludes any serious statements
about these classification categories, apart from the observation
that their position in the child space (Figure 3—4) agrees with
what one would expect, but this might be accidental.

We noted earlier the presence of two groups of 03-children.
In Figure 3-4, they were labeled 63-prox and 63-d/sf. The
classification instructions in Ainsworth et al. (1978, 61) for
SS-children (see also Swaan and Goossens 1982) also suggest that
there are two types of 03-children: those who actively seek
physical contact with their mothers (63-prox) and those who seem
especially "secure" in their relationship with their mother and are
thus content with mere interaction from a distance without seeking
to be held (63-dist). It is possibly due to the greater capabili-
ties of communicating at a distance with the mother by two-year-
olds that there are more children in the S3-dist than in the
63-prox group in Goossens' sample. For one-year-olds, the
reverse seems to be true. (See Goossens, forthcoming, for
further details.)

In Table 3-12, the characterizations of the children (derived
from Figure 3—6) occupying the extremes of the axes in Figure
3-4 (child space) are presented. A comparison of this table with
Table 3—2 shows global agreement and disagreement in detail.
The most conspicuous differences are related to resistance and
distance interaction. The comparison for resistance is probably
biased by the absence of extremely resistant C-children; "high
resistance" in Goossens1 sample might be average when compared
to the resistant behavior of C-children. The differences between
distal behaviors are, of course, related to the age differences.

A number of problems remain. One is the low number of
A -children compared to the number found in samples of one-year-
old children. One possible explanation for this might be the less
avoidant behavior of two-year-old children (see Goossens, forth-
coming) .

Another potential problem is the ill-fitting Rl- and 82-
children. Two reasons may explain this situation. First of all,
these children have approximately average scores on all scales,



100 / RESEARCH METHODS FOR MULTIMODE DATA ANALYSIS

TABLE 3-12. Comparison of Alnsworth and TUCKALS Classif icat ions (behavior toward
the mother)

Ainsworth* TUCKALS**

r
PROX CM RES AVOI DI PROX CM RES AVOI DI

Al
B3-dist

B3-prox

M

•M- O

O

4-4. 4-4. U~T TT n

++ ++ ( + ) - HH

o
o
H
HH

H
L
0

o

H
L
o
0

L
H
L

LL

*For the Ainsworth classification: - = low; (+) = low to moderate; + = moder-

ate; +(+) = moderate to high; and ++ = high.

**For the TUCKALS classification: LL = low; L = low to average; o = average;

H = average to high; and HH = high.

so we are trying to fit their individual error rather than any
meaningful variation. Another reason may be that their way of
reacting to the Strange situation cannot be fitted very well to-
gether with the other children. The small number of these
children may preclude finding a separate dimension especially for
them. Clearly these conjectures are topics for further investi-
gation.

In discussing three-mode principal component analysis, we
have attempted to present as full and detailed an account as
possible within the limited context of one chapter. In Kroonen-
berg (1983a), a more detailed account has been given of many of
the points raised here. Although we have concentrated on the
programs TUCKALS2 and TUCKALS3. which were developed by
Kroonenberg and de Leeuw (1980) to illustrate the technique,
many of the issues raised have wider relevance. Crucial to the
whole approach, however, is the least-squares formulation of the
method to solve the estimation of the parameters in the model. It
is this formulation that allows the explanation of the core matrix
in terms of amount of explained variation and makes the separa-
tion of the fitted and residual sums of squares possible.
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