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A theory is given for the concentration and wave vector dependcnce of thc cffcctive viscosity of
a Suspension of spherical particles. The analysis is valid up to high concentrations and f u l l y takes
into account thc many-body hydrodynamic intcractions betwcen an arbitrary number of sphcrcs.
Thc relation to thc dif fusion coefficicnt of the sphcres is discusscd.

1. Introduction

The concentration dependence of the effective viscosity η0'1 of a Suspension
of spherical particles in a fluid (with viscosity η0) is well understood in the
regime of low concentrations. To second Order in the volumefraction φ of the
suspended particles one has the expansion

ηΐβΙη0=1 + Ιφ + 5.2φ2. (1.1)

The coefficient of the linear term was first calculated by Einstein1) (cf. also ref.
2); the quadratic term has been evaluated by several authors3"7), the value given
in eq. (1.1) being due to Batchelor and Green4) (with an error-estimate of

6%)*.
Up to the order given in eq. (1.1) it is sufficient to consider only the

hydrodynamic interactions between pairs of particles. Higher order terms,
however, contain contributions from specific hydrodynamic interactions of
three and more spheres. In fact it has been demonstrated (both theoretically8)
and experimentally9)) in the context of diffusion that these many-sphere
hydrodynamic interactions may not be neglected if the Suspension is not dilute.

In order to simplify the problem of solving the hydrodynamic equations of
motion in the presence of more than two spheres, an approximation which

* Contributions to the effective viscosity from Brownian motion of the spheres are neglected in
these analyses, äs well äs in the present paper. We shall return to this point in section 8.
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neglects the finite size of the spheres is customary. Several authors11"13), for
example, have treated the Suspension äs a mixture of two fluids, one fluid (with
volumefraction φ) having an infinitely large viscosity, the other fluid having
viscosity τ/0. This approach yields a very simple formula for the effective
viscosity*

ηεα/τ,0=1 + Ιφ(1-ΙφΓ, (1.2)

which for small φ is in good agreement with eq. (1.1). Indeed, one might expect
that a point-particle approximation is reasonable if the Suspension is
sufficiently dilute, since in that case the average distance between the spheres is
large compared to their radius. At higher concentrations, however, this ap-
proximation is unjustified and leads to incorrect results, äs we shall see in this
paper.

In this paper we present a theory for the effective viscosity which fully
accounts for the hydrodynamic interactions between an arbitrary number of
spheres. Our analysis is based on: (i) a general scheme, developed by Mazur
and van Saarloos15), to solve the hydrodynamic many-sphere interaction prob-
lem; (ii) a technique of calculating the influence of many-sphere hydrodynamic
interactions on transport properties of suspensions, by means of an expansion
in correlation functions of fluctuations in the concentration of the spheres of
higher and higher order. Such an expansion was used by Mazur and the author
in the context of diffusion16·17).

In section 2 we give a formal theory for the wavevector dependent effective
viscosity TJ(/C) (of which the quantity η0" considered above is the zero-
wavevector l imit) of a Suspension of spheres, by considering the average
response of the Suspension to an externally applied force. This theory (which

makes essential use of the so-called method of induced forces18'19)) differs from
the conventional approach where the perturbations of an externally imposed
flow are considered. To obtain the effective viscosity by this second method
(used e.g. by Peterson and Fixman3)), one must find both the average stress and
average flow velocity and eliminate the imposed flow between these quantities.
This double calculation is not necessary in the first method (used e.g. by Freed
and Muthukumar7)), where one finds the effective viscosity directly from the
dependence of the average flow velocity on the external force.

Using results for many-sphere hydrodynamic interactions obtained by Mazur
and van Saarloos15) (cf. section 3), we find in this way in section 4 an explicit
expression for the effective viscosity rj(k). As illustrated in section 5, a

calculation of coefficients in the expansion of this quantity in powers of the

* This same formula was first dcnved by Lundgren14), f iom a di f ferent startmg poinl.
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concentration is from this point on straightforward. (The zero-wave-vector

results given in this section were previously obtained by Freed and Muthuku-

mar7) by a similar method, cf. the preceding paragraph.)

If the Suspension is not dilute, an expansion in the concentration is no longer

appropriate. For this reason we study in sections 6 and 7 the effective viscosity

of a concentrated Suspension through an expansion in density-fluctuation

correlation functions of increasing order, along the lines of ref. 17. Each term

in this expansion accounts for the hydrodynamic interactions of an arbitrary

number of spheres, and contains the resummed contributions from a class of

self-correlations. Results for the wave vector and concentration dependence of

rj(fc) are given in fig. l and table I. In section 8 we discuss these results and
give a comparison with previous work and experimental data. It is found, in

particular, that the divergency of the effective viscosity which follows from the

point-particle approximation (cf. eq. (1.2)) does not occur if the finite size of

the spheres is accounted for properly.

We conclude in section 9 with a discussion of the relation between effective
viscosity of a Suspension and diffusion coefficient17) of the suspended spheres.

In particular, we show that-within a certain approximation-the product of

7?eft and self-diffusion coefficient is independent of the concentration.

2. Formal theory for the effective viscosity

We consider a Suspension of N spherical particles with radius α in an

incompressible fluid with viscosity ηα. We describe the motion of the fluid by

the quasi-static Stokes equation, which -within the context of the method of

induced forces18'19) - reads

Vp(r) - η0 Δ«(Γ) = Fe» + Σ *7V) , (2.1)

V -t)(r) = 0. (2.1a)

Here v(r) is the velocity field, p (r) the hydrostatic pressure and Fcxt(r) an

external force density. The induced force densities F'"d(r) (j = 1,2, . . . , N) arc
to be chosen in such a way that

F)nd(r) = 0 f o r f r - Ä ^ a , (2.2)

v (r) = u: + Mj Λ (r - Rt) for r - R; ^a, (2.3)
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p( r )=0 for 11--Ä, <a, (2.3a)

so that the velocity of the fluid satisfies stick boundary conditions on the
surfaces of the spheres. In these equations /?; is the position-vector of the
center of sphere j, and us and ω] are its velocity and angular velocity respec-
tively. We shall assume that the spheres movc freely in a large volume V, so
that the forces and torques on the spheres are zero. From eqs. (2.1) and (2.2)
one therefore finds for the force density induced on each sphere

[ dr F;nd(r) = 0 , f dr (r - Ä,) Λ F)nd(r) = 0 (2.4)

(where we have furthermore assumed that Fcxt(r) is non-zero outside V only).
In order to obtain a formal solution of eq. (2.1) it is convenient to introducc

the Fourier transform of v(r),

»(*)= i dr e-*-'v(r), (2.5)

and similarly of p (r) and Fext(r)· The Fourier transform of F)nd(r) is defined
(for each y) in a reference frame in which sphere j is at the origin

F;nd(fc) = J dr e-
1*-('-Jf'>F;nd(r). (2.6)

The formal solution of eq. (2.1) is then found to be

""(*) + Σ e-"-Ä'F;"d(fc)l · (2.7)
;=i J

(The wave vector k h äs magnitude k and direction k = k/k; 1 denotes the
second rank unit tensor.)

Following the general scheme of Mazur and van Saarloos15), one can use eqs.
(2.2)-(2.4) to eliminate the induced forces in eq. (2.7) in favor of the external
force. The resulting solution for the velocity field is of the form

«(r)= Jdr 'M(r | r ' ) -F e x t ( r ' ) · (2.8)

An explicit expression for the tensor M(r \ r') is derived in appendix A. The
macroscopic velocity field may now b'e obtained by averaging eq. (2.8) over the
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equilibrium distribution function of the positions of the N spheres in the
volume V. For an infinite System the average (M(r r')) will depend on the
Separation r' - r only, äs a consequence of translational invariance of the
distribution function. In view of incompressibility of the fluid (eq. (2.1a)), this
average must be of the form

(M (r \ r')> = (2ττ)-3 J dk ^"·(Γ'-Γ\·η(^2γ\1 - M) , (2.9)

giving for the macroscopic velocity the expression

<»(*)>= (τ,(*)*2Γ(ί -**>***'(*)· (2.10)

The function 77 (fc) defined through eq. (2.9) represents the wavevector depen-
dent effective viscosity of the Suspension: indeed eq. (2.10) gives the velocity
field due to an external force Fext(Jfc) in an incompressible fluid with viscosity

3. Results from the hydrodynamic analysis

As we show in appendix A, the tensor M (r \ r')-which relates the velocity
at point r to the external force density at point r' (eq. (2.8)) -may straightfor-
wardly be derived from the results of Mazur and van Saarloos15). One finds the
expression

6irr,0aM(r \ r') = 7<u >(r' - r) + Σ Σ ^(R, - r) O
n,m =2 i,j= l

where £|"'m) is given äs an infinite series of reflections or scatterings from the
spheres,

£<„,m) = β(".")-'δηηιδν + β<".Ό-' ο Χ;·"° ο B(m-mY\i - s,;)

+ Σ Σ Σ - - - Σ Σ Σ · · · Σ ß( ..... r' o <P1)

Q ß(PI.Pl)-' Q A(PI.P2>Q . . . ß(rs.Ps)'' Q fy(Ps,in) Q
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The objects ζ%·'"\ T("'m\r), A^":) and B("'m)"' in the above equations are tensors
of rank n + m. The dot Θ in e.g. A(^m) Θ B('"'m) ' prescribes an m-fold
contraction, with the (nesting-)convention that the last index of the first tensor
is contracted with the first index of the second tensor, etc. The definitions of
the tensors T, A and ß~' will be given below.

We first notice that in the absence of suspended particles only the first of the
terms on the r. h. s. of eq. (3.1) remains, which is the well-known Oseen tensor
(see below). The perturbation of the fluid flow by the spheres is accounted for
by the generalized (dimensionless) friction tensors ξ^'"'\ which relate an nth
order multipole moment of the induced force on sphere / to an mth order
multipole moment of the unperturbed flow on the surface of sphere j (cf. eq.
(A. 4) in appendix A). If there is just one sphere, f'"'m) is unequal to zero only
for n = m and different multipole moments are uncoupled. The hydrodynamic
interactions between two and more spheres are given by the series of products
of tensors A and B'1 in eq. (3.2). This series constitutes an expansion in inverse
powers of the interparticle Separation, in view of the following property15) of
the "connectors" A^'m) (defined for i ^ /)

where the tensors Gt] and Ftj depend only on the direction of the vector
Rv = R] - R, (and not on its magnitude .R);). The tensor ß~\ on the other hand,
is independent of the positions of the spheres.

We shall now give the definitions of the tensors occurring in eqs. (3.1) and
(3.2). The general expression for the connectors

A(;-m)=^ar^ar'd(Rl~r)8(Rl-r')A(n-m\r'-r) (zVy, Λ,, >2α) (3.4)

is in terms of the connector field A(n'm\r), given by

A("'m\r} = (2πΓ3 f ak eT*" 'A(n-m\k) , (3.5)

with

A(n-m\k) = 67rain-m(2n - l)!!(2m - lyAk^j^ak^^ak)!^^ - kk)k"^ ,
(3.6)

cf. refs. 15 and 16. We have used here the notation (2n— 1)!! =

l -3 · 5 · . . . (2n - 3)· (2n - 1); jp denotes a spherical Bessel function*; kp

* This function is related to the Bessel function of order p + \ by jp(x) = (^
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represents an irreducible tensor of rank p, \ e a tensor traceless and Symmetrie m
any pair of its mdices, constructed from a p-told ordered product of the vector k
(For useful formulae concermng irreducible tensors, see ref 20 ) For p = l, 2 one
has e g

'—ι r~~~i

L· — L· iftf ~— IrL· — 1 f^ "7^Λ Λ- , ΛΛ- Λ-Λ- τ I l ̂ J l \

The "propagator" 7("m)(r) is defined in terms of its Founer transform (cf eq
(3 5)) by

T(nm)(k) = 6παιη~'"(2η - l)"(2m - I V ' f c 2/' (ak)i' _ (ak)k" l(1 -

(38)

with the defimtion

;;(*) = ;,(*) f o r p ^ l , y^)-l (39)

Finally we give expressions for the constant tensor B(nn) (n 3=2), cf refs 15
and 16,

ß< 2 2 > ' = - 4 , (310)

n + 1

(n^3) ; (310a)n -2/ \2n -l

where the symbol Op denotes a p-fold contraction The class of tensors 4(""'
of rank 2n used in these equations (with the abbreviation A(22) = A) project out
the irreducible pari of a tensor of rank n

A(nn) O b" = b"O Α(ηη)=ν (311)

For n = l, 2 one has e g 20)

In eq (3 lOa) we have also used the tensor A(n l l d"~1 )

 Of rank 2n with elements

, i (n- l idn- l ) _ o A(n-ln-l) Π 1 31
α " ^ v-1 *->>
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This tensor acts äs a unit tensor when contracted with the first n indices of the
tensors A(n'm) or 7("'"°, e.g.

^(n-l.id,n-l) QB y|(n,m) _ ß(n,m) /^ -^\

To conclude this section we give two formulae (derived in ref. 16) for the
tensors defined above:

AM(k) O B(p'pr> 0 A(p'm\k) =

(P ^2), (3.15)

Σ A("'"\k) O B(p'"ri Q A(p-m\k) = -\7T^S(ak)A("-m\k) , (3.16)
p=2

with the def in i t ions

ε 2 =5/9, £ p = l ( p ^ 3 ) , (3.17)

S(x) - Σ \ερ&Ρ ~ l)V27p-iW = K*
p = 2

+ \x~3 sm(2x) - x~4 sin2 χ - 4x~6(sin x-xcos xf] . (3.18)

The sine-integral Si(jt) is defined by

*

Si(x) = j Y ' s i n f d f . (3.19)

We remark that formulae (3.15) and (3.16) remain valid if one replaces each
tensor A in these equations by the tensor T.

4. Formulae for the effective viscosity

We shall in this section combine the results from the previous two sections to
give explicit formulae for the effective viscosity. We first note that, according to
eq. (3.1), the Fourier transform

M (k \k')=l dr e-'*'r i dr' eik'"'M (r | r') (4.1)
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of the kernel M(r r') is given by

Σ Σ
n m -2 ι j - l

O e '* *-f <; m) e1* "' O T(l" [\k') (4 2)

Fiom translat ional invanance of ζν and of thc dis tnbut ion funct ion it follows
that (for an i n f i n i t e System 1)

N

Σ e-* "' £»m) e" K>) = n0(27r?S(k' - k)(N ' Σ $ "° ̂  "'') - (4 3)
i ; - l * i ;- l

wherc nß= N/V is the average numbei density of thc particles
From eqs (2 9) and (4 2) we then find, with the help of eq (4 3), foi the

wavevcctor dependent effective viscosity η (k) the formula

OTrafooM*)-!)('-&> «ο*2 Σ Τ« ">(*) O IN ' Σ f<""°c'*
n m-2 ι j - l

O 7 ( m I )(Jt) (44)

Use has also been made here of the exphcit expression for 7(1 l\k) (eq (3 8))
One may verify (usmg the fact that k · 7° "\k) = 0 foi all n, cf eq (3 8)) that
the r h s of eq (4 4) is the product of a scalar function of k and the tensor
1 — kk, äs imphed by the l h s of this equation

At infinite dilution the r h s of eq (4 4) vanishes and η(/0 cquals ηϋ for all k,
äs it should The mfluence of the suspended particles on the viscosity of the
Suspension is taken into account by the term on the r h s of eq (4 4), to all
Orders in their concentration We observe that this term vanishes in the limit
/ C H > C O (cf eq (38)), so that in this hmit the effective viscosity is equal to its
value at infinite dilution

h m r ? ( / c ) = i 7 0 (45)
k-*x

This limiting behaviour reflects the fact that for large wave vectors the Founer
transformed velocity field remains almost unperturbed by thc presence of the
spheres

* That is to say m the limit N, VH»CO, N/V = «o = constant
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The zero-wave-vector hmit of the effective viscosity is of particular mterest in
the study of properties of suspensions We denote this quantity by

k-o
(46)

From the fact that T(rs\k) is of order kr+s 4 for small k (cf eq (3 8)) it follows
that only the term with n = m = 2 in the senes on the r h s of eq (4 4) gives a
nonvamshing contnbution in the hmit k^»0 For η0" we therefore have the
more simple formula

Ν ' Σ £?ν·*βΛ k(1-kk),
,,_, /

(47)

where the colon mdicates a double contraction and φ denotes the volume
fraction of the spheres

ψ=4

3ττα3η0 (48)

Eqs (4 4) and (4 7) are a most convement starting point for the calculation of

the (wave vector dependent) effective viscosity of a Suspension, by means of an
expansion in powers of the concentration of the suspended particles This will
be il lustrated in the next section In oider to study also the behaviour of the
effective viscosity at high concentrations (where such an expansion is no longer
appropnate) we shall now cast eq (4 4) m a di f ferent form - adopting an
operator notation which has proved its use in a similar context1617)

First we redefine the connector field in the following way

Ä(" m\r) = A(n "°(r) if r 5* 0 , Ä(n '"\r = 0) = 0 (49)

Next we introduce convolution operators Ä*·""^ and T"'"'"' with kemels

Ä(nm\r\r')=Ä(flm)(r'-r), (410)

T(nm\r r')= T("'"\r - r ) , (411)

and a matnx $? of which these opcratois are the elements

Γ T(" "° if n = l or m = l ,
rgvn _ J (4 121

"'" U("m) i f n ^ l a n d m ^ l
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We further define a matrix 98"1 with elements

(®~\m = SnmB^-1 (4.13)

and a projection matrix Q by

{QU = s„m-sn Ism l. (4-14)

Finally, the microscopic density field

N

«W = Σ «(»·-«,) (4·15)
1 = 1

corresponds to the diagonal operator n,

n(r |r ' )=n(r)5(r '-r) . (4.16)

With these notations we may write e.g.

» Ν

Σ Σ T(l-m\R, - r) Θ β""·-")-1 ο 7(m'V-#,)
m=2 i = l

= Σ ί dr, 7(1'm)(n - r)n(r,) Θ ß(m-m)" Θ Γ0"·"^' - r,)
m = 2 J

= {̂ ηΟ^-1 }̂̂  r'). (4.17)

Similarly one has

oo ΛΓ

Σ Σ T(l-m\R, - r) Θ β'"1·"1'"1 Θ Af*> 0 B(k'krl Q T(k'l\r'- Ä;)
m,k = 2 i,j = l

'*!

= {^nQär'SftiQSr'afK^r | r'). (4.18)

In these equations the kernel is taken of the 1,1 element of the matrix of
operators between braces. For the kernel M(r \ r') we now have in this compact
notation

6ττη0αΜ(Γ \ r') = {%(! - nQ^'l^)-\,(r \ r ' ) . (4.19)

Indeed, by expanding the operator between braces in this equation in powers
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of n, we have eqs (4 17) and (4 18) äs the first and second order terms From
the complete senes we recover the expression for M(r r') given in eqs (3 1)
and (3 2)

From eqs (29) and (4 19) we thus find for the effective viscosity TJ(/C) the
operator formula

') = — ({%(\ - nQ® l%} \ ,(k \ k')) , (4 20), ,
η (k) i?o

where the Fourier transform of an operator kernel was defined m eq (4 1)
This alternative formula is a convement starting point for the calculation of the
effective viscosity of a concentrated Suspension, by means of an expansion in
density-fluctuation correlation functions of higher and higher order, cf section
6

5. Expansion in powers of the concentration

At low concentrations of the suspended particles an expansion of the
effective viscosity in powers of the concentration is appropnate

To first order in the concentration we find from eqs (3 2) and (4 4)

- 1)(ί - tt) = n0k
2 Σ T11 m\k) O B(m m) ' O T(m \k) (5 1)

The senes in this equation may be summed analy t ica l ly , cf formula (3 16) and
the subsequent remark The result is

(ijo/i? (k )- 1)( 1 - kk) = -φ8(α^(1 - kk) , (5 2)

where the function S(x) has been defined in eq (3 18) Eq (5 2) implies

] , (53)

representing an extension of Emstem's12) formula for the effective viscosity at
zero wavevector to arbitrary values of k For small k, the function S(ak)
behaves äs

(54)



60 C.W.J. BEENAKKER

as follows from expansion of the r. h. s. of eq. (3.18). It is noteworthy that the
term of Order (afc)2 does not occur in this expansion, and that hence the finite
wavevector corrections to Einstein's formula are of fourth order. Bedeaux et
al.5), on the contrary, found a nonzero coefficient for the term of order <£(afc)2

in the effective viscosity. It has been pointed out by Schmilz6'21), however, that
eq. (4.7) in the paper by Bedeaux et al. (which gives the function which relates
the Symmetrie gradient of the velocity field perturbed by the presence of one
sphere to the Symmetrie gradient of the unperturbed field) is incorrect as far as
terms of second power in the wave vector are concerned. Indeed an error in
this order would affect the value of the coefficient mentioned above.

To second order in the concentration, only those terms in expression (3.2) for
the generalized friction tensors contribute to the effective viscosity, which
depend on the positions of at most two spheres. For the dipole-dipole friction
tensor £|2'2) we find, restricting ourselves to these terms (cf. also eqs. (3.3) and
(3.10)),

Σ R-k
6G^:G^+ü(R-*}, (5.5)

to eighth order in the expansion in inverse powers of the Separation of the
spheres R*. The connectoi >4(2s'2s) = A : A(2'2) : A is traceless and Symmetrie in
both the first and second pair of indices; it consists of two terms of order R~3

and R~5 respectively (cf. eq. (3.3)). The tensor G^s'2s) is given by 15)

G(2s,2s) = _ 9 ̂  . (5fikWik _ 2f:k 1rlk) : Λ , (5.6)

where f,k = RJRlk is the u n i t vector in the direction of Rlk. From this last
equation one readily finds

__ \ D-6/5(2s,2s). /;(2s,2s) _
n l Kik uifc · Ufci ~ g

rikr,krikr,k

The above equations enable us to calculate the zero wave vector l imit 17°" of
the effective viscosity to second order in the concentration. Substituting eq.
(5.5) into formula (4.7) one finds for this quantity the equation

* The absence of a term of order R"7 in the expansion of f|22) in powers of l/R is noteworthy
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-tt) = !<£(f-tt)t:(T,+ T2+ T3):k(1-kk), (5.8)

with the definitions

T,~%*. (5.9)

T2 = ̂  «o Hm f dr g„(r) e"**A<**\r), (5.10)
ol ε-»ο J

125
T 3=-^n 0J drg0(0(a/r)6J:(2rrrr+rfr):/l. (5.11)

Here g0(r) is the equi l ibr ium pair distribution function to lowest order in the
density,

The evaluation of T2 requires care because of the long ränge of the connector
field A. In terms of its Fourier transform we may write for this contribution

n, lim ^ f dt' A(2s'2s)(fcK(|efc - t'|)l , (5.13)
J J

_100

with

P0(k) - J dr eil-r[g0(r)- 1] = -1677a2fc-1/1(2afc). (5.14)

Using expression (3.6) for the Fourier transformed connector field one finds,
upon Integration,

10
T2 = —<£(54:t( i- t t) t :4-4), (5.15)

in the required limit ε -»0. For the contribution 73 a straightforward in-
tegration of eq. (5.11) gives

(5-16)
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Substituting the results (5.9), (5.15) and (5.16) into cq. (5.8), one finds for the

effective viscosity at zero wave vector the equation

which gives the expansion to second order

}, (5.18)

found previously by Freed and Muthukumar7) by a similar method (cf. section

1).
The importance of terms of order R 8 and higher in the hydrodynamic

interactions between two spheres (not included in eq. (5.5)) has been in-

vestigated by Schmilz6). He obtained a value of 5.36 for the coefficient of the

term of order φ2, by including hydrodynamic interactions of order R~" with
n =£ 15. Although the coefficient in eq. (5.18) differs from this result by only

10%, the convergence appears to be rather slow: Schmitz estimates that terms

of still higher order in l/R can give further corrections of at most 5%. In the
works of Peterson and Fixman3) and Bedeaux et al.5) certain contributions from

short-ranged hydrodynamic interactions are also included. These authors

obtained values of 4.32 and 4.8, respectively.
The above results for the second order coefficient - which are all based on a

multipole expansion of hydrodynamic interactions -may be compared with the

value of 5. 2 ±0.3 obtained by Batchelor and Green4), from an exact solution of

the motion of two spheres in a linear flow field.

6. Expansion in correlation functions

In order to study the effective viscosity of a Suspension which is not dilute,
we shall adopt the method of expansion in correlation functions used in refs. 16

and 17 to calculate the diffusion coefficient of the suspended spheres. Formula

(4.20) for η (k} is the starting point of our analysis. Following ref. 17, we now

proceed to write this formula in terms of "renormalized" connectors, which

account for the fact that (in an averaged sense) spheres interact hydro-

dynamically via the Suspension - rather than through the pure fluid.

Let γ^·π) (n = l, 2, 3,...) be an arbitrary constant tensor of rank 2n. We

denote by γ0 the diagonal matrix with elements

{yoU-^rr. (6.1)



VISCOSITY OF A SUSPENSION OF SPHERES 63

The matrix $?y0 is defined - for each γ0 - in terms of the matrix 9£ (given in eq.
(4.12)) by

%) . (6-2)

This matrix has elements

7("'m) if n = l or m = l ,

which are convolution operators with kernels 7"(

7"'m)(r) and A^"'\r) respec-
tively. The latter kernel is identical to the renormalized connector defined in

ref. 17.
We now choose y^'n) to be a function of the average number density of the

spheres nQ,

γ(η,η) _ γ(η,η) Q fl(B,„)-l Q „̂,,,)̂  = Q) = ^(n.n) („ & 2) * . (6.4)

The tensor 1("·η) used in this equation is a generalized unit tensor of rank 2n,

A, y ("-«> = 4 (»-w-D («3=3), (6.5)

where the 4-tensors have been defined in eqs. (3.11)-(3.13). It has been shown
in ref. 17 that γ[,"·π) is of the form

γΜ=ΎρΐΜ, (6.6)

where γ^ is a scalar function of n0. The renormalized "density" y(r), with
average γ0, is given by

r(r)=y0«ö1»(r); (6.7)

the corresponding diagonal operator γ has kernel y(r)S(r' - r).
We shall write formula (4.20) for the effective viscosity in terms of the

renormalized connectors defined above, using the identity

{%(! - «Οϋ-'^Λ,ι = { γ̂ο(1 - δτΟί^ΧΓΚ,ι, (6.8)

" The quantity •y'1·1' does not play a role in the analysis and need not be further specified.
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cf. appendix B. The inverse operator on the r. h. s of the above equation
O

contains fluctuations δγ = γ - γ0 and a matrix $?TO with elements

[ A(;-n) if n = m * l ,
{**U= " . . (6.9)

l i'^nin.m elsewise .

° t t
Here the cut-out connector Λγ", (n ̂  2) has kernel

i° i f r = r ' ,
A^\r\r')=A^(r'-r) = \ (6.10)

[Λ^»)(Γ'-Γ) i f r ^ r ' .

Substitution of identity (6.8) into eq. (4.20) gives for η (k) the alternative

expression

" t6·11)

Upon expansion of the inverse operator on the r. h. s. of cq. (6.11) in powers

of δγ, one obtains an expansion for the reciprocal of the effective viscosity

A ( / c ) = I/T?(/C) in correlation functions of (renormalized) density fluctuations of

increasing order

X(k)=X(0\k)+\(2\k)+··· , (6.12)

where \(p\k) contains terms of order {(δγ)77}. Each term in this "fluctuation

expansion" contains contributions from many-body hydrodynamic interactions

of an arbitrary number of spheres. Furthermore, the renormalization of the
density through eqs. (6.4) and (6.7) corresponds to an algebraic resummation of

a class of self-correlations, cf. ref. 17 (section 3). As a result, the contributions

from these special correlations are included in the zeroth order term.

We shall now give the expressions for the first two terms in the fluctuation

expansion of A(/c). To zeroth order one finds from eq. (6.11)

\m(k){%}u(k \ k') = -{^ro}u(fc | k') , (6.13)

^o

or, by def init ion (4.12) and (6.3),

l\k) = -T^\k). (6.13a)



VISCOSITY OF A SUSPENSION OF SPHERES 65

The lowest order correction to the zeroth order result (6.13) is of order
{(δγ)2) (since terms linear in δγ give a vanishing contribution after averaging)
and is given by

*')>· (6.14)

To evaluate the two-point correlation in this equation, we note that δγ is givcn

in terms of the density fluctuations δη = n - n0 by δγ = γ0ηο'δη, cf. eq. (6.7). In
view of the formula2 2)

(δ«(Γ)δ/ί(Γ'))= n05(r'- r)+ n2[g(|r'- r|)- 1] , (6.15)

we find therefore'

m.l = 2
m * l

o /»(;">(r = o) o s(W'o r(u)(jfc)

+ - Σ γ^ν^η'ο'"^) © ß(m'm)"'
^O m,; = 2

x[g(0-l])oS ( U )" '0 T%\k), (6.16)

where we have used that

ri,'"'m) Θ ß(; ..... °~' = γίΓ'Β*" ..... >"' , (6.17)

cf. eq. (6.6). The funct ion g(r) used in these equations is the equil ibrium pair

distribution function. Note that the above expression does not contain terms
with factors A("^(r = 0) with / = m, äs a consequence of the cut (6.10). Indeed
the contributions from these particular correlations (so-called diagonal ring-
self-correlations, cf. ref. 17) are already accounted for in the zeroth order term
A(0i(fc), through the renormalization of the density in eq. (6.4).

7. Evaluation of the expansion in correlation functions to second order

In order to evaluate the first two terms of the expansion of l/7y(/c) in

1 In the second leim on the r h s of th i s equation we have replaced m the mtcgiand (for the case
/ = m) the cut-out connector Xl'y™''(r) by A'r"''(r), since these two fields difter by a finite amount in
a single pomt only, cf. definition (6.10).
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correlation functions, we make use of the followmg representation of the
renormahzed tensor fields (defined m eqs (6 2) and (6 3))

= (2π) 3 dfc e-* rT<" m\k)[l + 4>Syo(a/c)] ' , (71)

J
dfc e'1* rA("

(72)

with the definition

*>*) = Σ 9

2εργ^η-0

ι(2ρ - ^(ak^j^ak) (7 3)
p=2

The symbol ερ used in this last equation has been defined in eq (3 17) The
above expressions follow from an evaluation of the inverse operator in eq
(6 2), utilizmg eqs (3 15) (see also the subsequent remark) and (6 17), cf refs
16 and 17 We shall use in particular the value of the renormahzed connector
field A(™\r) at r = 0, given by

β(ΒΒ) ' O A^"\r = 0) = ̂  (2n - l)i("n) J dk ]2

n_

o

(74)

where the tensor 1(nn} has been defined in eq (65) The above formula is
obtamed by performing the angular Integration m eq (7 2), cf refs 16 and 17

The coefficients y^ in the senes in eq (7 3) are given äs a function of the
density n0 by the equations

/cy^(fc)Sro(/c)[l + φ5^)Τι = n0 (p = 2, 3, ),

(75)

according to eqs (6 4), (6 17) and (7 4) This infinite set of coupled equations
has been solved to a sufficient accuracy in ref 17, by approximating Syo(k) by

S(£(/c) - S(k) + Σ 9

2ερ(γ^- ηΰ)η'ϋ\2ρ - ifr2;^), (7 6)
p=2
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for a given number L = 2, 3, 4 , . . . . The function S(k) appearing in this
definition is given explicitly in eq. (3.18). From this equation and definition

(7.3) of Syo(fc) it follows that

(7.7)

With the above approximation the L- l equations for γ(

0

ρ) (p = 2, 3,.. ., L) in
(7.5) decouple and may be solved numerically. In table I of ref. 17, the values
°f ΎοΡ) (P ~ 2, 3,4, 5) are given which have been obtained by this procedure
with L = 5.

To calculate the effective viscosity η (k) we shall use these values for γ^;
also, in expressions (7.1) and (7.2) for the renormalized tensor fields we shall
approximate SYO(ak) by S(^(ak), äs defined in eq. (7.6). An estimate of the
error resulting from this approximation can be obtained by repeating the
calculation of γ0 described above to a lower order, cf. ref. 17 (section 4). We
shall return to this point below.

We are now in the position to evaluate the fluctuation expansion (6.12) of
A(/c) = l/7j(fc). To zeroth order one finds from eqs. (6.13) and (7.1)

(7.8)

In fig. l we have plotted, for five values of the volume fraction φ, the wave
vector dependence of η0/η(^ to this order. The reciprocal of the effective

Fig. 1. Wave vector dependence of WT)(/C) for five values of the volume fraction φ, äs results from
eq. (7.8).
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viscosity increases monotomcally äs a function of the wave vector, from its
small-/c limit

l imAm(fc) = -(l + ̂ y®/n0)-
1 (79)

k^o r?0

(cf eq (7 3)) to its large-fc limit

l imA ( 0 ) ( f c )= l / 77 0 , (710)
fc-*°o

which is equal to the value at infinite dilution (Note that the large-fc hmits of
A(0)(fc) and X(k) are identical, cf eq (4 5))

As mentioned above, the values plotted m fig l are obtamed by ap-
proximatmg the function Syo(ak) in eq (7 8) by S(^(ak), defined m eq (7 6) It
has been checked that repeating the calculations to one lower order (ap-
proximatmg Syo by S(fy would not change the results by more than 6%, over
the whole ränge of wave vectors and densities For not too large wave vectors
(ak =£ 3) the change is even less, viz at most 2%

We now return to the fluctuation expansion (6 12) of A(fc) to evaluate the
next (non-zero) term A(2)(/c), given by eq (6 16) We shall only consider here
the limiting behaviour of this term for small and large wave vectors

Usmg the fact that T(
y(i

m\k) is of order kn+m~4 for small k (which follows
from eqs (3 8) and (7 1)) one finds that only one term on the r h s of eq (6 16)
contnbutes to A (2)(fc) in the limit fc-»0, giving

hm A(2)(fc)(i - M) = hm (6ττη0α) \yffik2T™(k) ß(22) '
k->0 k->0

dr e« rA^(r)[g(r) - 1]) B^ ' T* «(*), (7 11)

or explicitly

A(2)(/c = 0) = 20a4r?ö
1(rW)2(l + ΙΦΎ^η,Υ2 J aq,\(aq)[l + φ8^)Γν(ΐ)

o

(712)

In this last equation use has also been made of expression (7 2) for A(

y^\r)*

* Note that if expression (7 2) is substituted into eq (7 11) one may replace the connector field
4(22)(r) m this expression by A®2\r) since these two connector fields differ by a finite amount m a
single point only (cf eq (4 9))
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TABLE I
The expansion m correlationfunctions (eq (6 12)) of
A ( k ) = l / T j ( f c ) for k = Q, äs given by eqs (79) and

(7 12) to second Order

φ 7)0A
 m(k = 0) + TJOA <2>(fc = 0) = τ,ολ (k = 0)

005

0 10
0 15
020
025

030
035

040
045

0879
0765
0661
0568
0486
0416
0355
0304
0261

-0005
-0017
-0030
-0042
-0051
-0057
-0060
-0060
-0058

087
075
063
053
044

036
030

024

020

We have furthermore defined

re" r[g(r)-l] (713)

To evaluate A(2)(fc = 0) we have approximated the pair correlation function by
the solution of the Percus-Yevick equation, found by Wertheim and Thiele23)
(an exphcit analytic expression for v (k) is given m ref 24). The integral on the
r h.s of eq (7.12) was then computed numencally* (with the approximation of
S by S(5), cf. eq (7 6)) Results are given in table I

To conclude this section we note that for large wave vectors the term A(2)(/c)

goes to zero,

hmA ( 2 )(fc) = 0, (7.14)

äs follows from eqs. (3.8), (6.16) and (7.1) (and might be expected on account of
the fact, mentioned above, that A(0)(fc) and A(fc) tend to the same limit äs

8. Discussion

We have calculated the wave vector dependent effective viscosity η (k) of a
Suspension of sphencal particles This quantity relates the Founer transforms

* Use was made of numencal algonthms from the NAG-hbrary (Oxford)
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of averaged velocity field and external field of force, cf eq (2 10) The validity
of the present analysis is hmited to a certam time scale or, alternatively, to a
certain ränge of frequencies More precisely, if we consider an external force
which vanes harmonically in time with frequency ω, the average response of
the fluid is descnbed by η (k) in the regime

2ττ/τ€ <§ ω < α~2η0/ρα (8 1)

Here η0 and p() die respectively the viscosity and mass density of the fluid, α is
the radius of the suspended spheres and rc is the "configuiational" relaxation
time (see below)

The upper hmit in eq (8 1) is a consequence of our descnption of the motion
of the fluid by the quasi-static Stokes equation (2 1), neglecting mertial effects
(cf ref 2, §24)* For e g spheres of radius a = 0 5 μ m water at room
temperature the upper limitmg frequency α~2η0/ρα is 4x 106Hz

The lower hmit to the frequency ränge m eq (8 1) is due to the neglect of
contnbutions from Brownian motion of the spheres whereas in equihbnum
this motion does not contnbute-on the average-to the velocity field, a
non-vamshmg contnbution remams if the distnbution function of the
configurations of the spheres is perturbed by an external force2526) The validity
of our analysis is therefore hmited to a time scale much smaller than the time
TC in which a configuration changes appreciably due to Brownian motion, since
on this short time scale the deviation of the distnbution function from its
equihbnum form may be neglected (cf a related discussion of time scales in
theones of diffusion in ref 27) The corresponding lower hmiting frequency
2τΓ/τ€ is a few hundred Hertz at a volume fraction φ of the spheres of 0 45, for
the System mentioned above At lower concentrations, this frequency decreases
and in fact to linear ordei in φ the viscosity is not affected by Brownian motion
at all frequencies2526)

Having clanfied the regime of validity of our analysis we now proceed to a
discussion of our results We have evaluated τη (k) through an expansion of its
reciprocal in correlation functions of (renormahzed) density fluctuations of
increasing ordei (a so-called fluctuation expansion) The zeroth order result
(7 8) m this expansion (shown in fig 1) ful ly takes into account the many-body
hydrodynamic interactions between an arbitrary number of spheres, äs well äs
the resummed contnbutions from a class of self-correlations For the case of
zero wave vector we have evaluated moreover the next non-vamshing term in
the fluctuation expansion (given by eq (7 12)), which is of second order and is
due to correlations between pairs of spheres Results for

* For an analysis where mertial contnbutions to the eflfective viscosity are included see ref 5
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(8.2)

to this order are given in table I.
It is interesting to compare these results for the concentration dependence of

the effective viscosity at zero wave vector with the results from two simple
formulae, which one can derive by making additional approximations.

The first formula

(8.3)

can be obtained by completely neglecting correlations between the spheres, cf.
appendix C. This formula gives values for T?eff which are considerably smaller-
especially at large concentrations-than the results from the first two terms of
the fluctuation expansion, cf. fig. 2 (where the reciprocal of η6" is plotted). In
these latter results, we recall, contributions from a class of self-correlations äs
well äs from pair correlations are included. Formula (8.3) was first proposed by
Saito28) (cf. also the derivations in refs. 5, 6, 12 and 29).

The second formula

(8.4)

takes into account the same class of self-correlations which contributes to our
zeroth order result (7.9) for 17°". However, to arrive at eq. (8.4) these con-

O.5

Fig. 2. Volume fraction dependence of the reciprocal of the effective viscosity at zero wave vector.
The solid line is taken from table I, dotted and dashed lines from eqs. (8.3) and (8.4). respectively.
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tnbutions are evaluated by an approximation of the hydrodynamic interactions
between the spheres which in a way neglects their hmte size, cf appendix C
Whereas this so-called pomt-particle approximation correctly descnbes the
interactions between the spheres if their Separation is sufficiently large, it falls
at smaller separations Results obtamed usmg this approximation will therefore
become less and less rehable äs the average Separation of the spheres becomes
smaller with increasing concentration Indeed, äs one can see from fig 2, foi
large φ the values from eq (8 4) deviate strongly from the results obtamed
usmg the füll expressions for the hydrodynamic interactions Note, in parti-
cular, that the effective viscosity accordmg to eq (8 4) has a pole at φ = 0 4,
whereas if one takes account of the finite size of the spheres the results remam
bounded up to large volume fractions*

Formula (8 4) was first denved by Lundgren14) and more recently by several
authors1 1 1 2 1 3) In the latter three denvations the Suspension is treated äs a
mixture of two fluids, one fluid (with volume fraction φ) havmg an mfimtely
large viscosity, the other fluid havmg viscosity η0 Clearly, in such a treatment
no account is taken of the finite size of the suspended particles The analysis of
Lundgren, on the other hand, -although leadmg to the same result (84)-
proceeds from a different startmg point and it is not clear to which extent the
influence of the finite size of the spheres on their hydrodynamic mteiactions
has been accounted for

Before resuming the discussion of our results we mention still another
formula for the concentration dependence of ηε", denved by Mou and Adel-
man10) In this analysis some of the effects of the finite particle sizes aie
mcluded, accordmg to the authors Numencally, their results are close to eq
(83)

A companson with expenments is possible for the small wavevector limit η^
of the effective viscosity In fig 3 we show the data obtamed by Saunders33) and
by Krieger and coworkers34) for suspended sphencal polystyrene latex particles
The radn of these particles were of the order of 0 l μ, with a narrow
size-distnbution Also shown are the data of Kops-Werkhoven and Fijnaut35)
for sihca spheres of radius 0 07 μ If one compares these expenmental results
with the calculated values from table I (also plotted m fig 3) one finds good
agreement for volume fractions φ ^02 At higher concentrations, howevei,

* We mention m this connection that a pole in the plot of effective viscosity versus concentration
has been found m two different contexts by Kapral and Bedeaux30) (for a regulär array of freely
moving spheres) and by Muthukumar31) (for randomly distnbuted immobile spheres) However the
validity of these results is questionable (for the same reason äs m the present case of randomly
distnbuted freely moving spheres), since m both these analyses higher order multipole con-
tnbutions to the hydrodynamic interactions (resulting from the finite size of the spheres) were
neglected (cf also the discussion of the former analysis in ref 32)
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Fig 3 Volume fraction dependence of ηο/η"1' The solid line is taken from table I The measured
data are from refs 33 (squares) 34 (tnangles) and 35 (circles)

our calculations give values for η6'1 which are considerably smaller than the

expenmental data Two remarks are in order, which could each explain part of

the discrepancy
First, we note that the expansion m correlation functions of the reciprocal of

T7eff has only been evaluated to second order In particular, contnbutions due to

specific correlations between the positions of three of more spheres have not

been included The magnitude of these higher order terms can be estimated

from the term of second order (due to two-sphere correlations), which is —20%

of the zeroth order result at the highest volume fractions considered (cf table

I)
Second, we recall that-stnctly speaking-our analysis is vahd only on the

short time scale τ < rc, m which Brownian motion has not yet affected a given
configuration of the spheres The measurements, on the other hand, were

performed under static conditions Theoretical studies of dilute suspensions

have indeed shown that the effect of Brownian motion is to increase 17°"* It

would be interestmg to perform dynamic measurements of the effective vis-

cosity, in order to study, through its frequency dependence, the influence of

Brownian motion

9. The relation between effective viscosity and diffusion coefficient

In this section we shall compare the results for the wave vector dependent

*Thc coefficient of the term of order φ2 in the density expansion of η°" mcreases due to
Brownian motion by 20% to 6 22526)
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effective viscosity η (k) of a Suspension obtained in this paper, with those of the
wave vector dependent diffusion coefficient D(k) of the suspended spheres,
obtained in ref. 17. The latter quantity is given by

D(/c) = kßT[NG(k)]'1 Σ <* ' μ,, · k e"'Ä"> , (9.1)
',;=i

and describes diffusion of the spheres on the time scale τ <S rc over which their
positions are essentially constant (see e.g. ref. 27). In this equation G(k) is the
static structure factor, μν the mobility tensor and kB and T denote Boltzmann's
constant and the temperature, respectively. The large wave vector hmit of
D(k) is the self-diffusion coefficient Ds, given by

(9.2)

In ref. 17 D(k) has been evaluated through an expansion in correlation
functions of higher and higher order. The lowest order term in this expansion is
given by eq. (9.1) -with μν replaced by the effective pair mobility μ*",

J
ak ε'*·"" A(l'\k)(6Tra}-l\(0\k) , (9.3)

where the tensor A(u)(fc) has been defined in eq. (3.6); A(0)(fc) (defined in eq.
(7.8)) is the zeroth order term in the expansion in correlation functions of the
reciprocal of η (k). Through the above equations effective viscosity and
diffusion coefficient are related to each other.

This relation takes an especially simple form for the coefficient of self-
diffusion Ds. To lowest order in the expansion in correlation functions, the

mobility tensor in definition (9.2) of Ds may be replaced by expression (9.3) and
one finds

(9.4)
ak

Since the largest contribution to the integral in cq. (9.4) anses from the interval
0 < k ̂  l/a (and since A(0'(/c) is approximately constant in this interval, cf. fig.
1), one may approximate λ(0)(&) in the integrand by its small-fc l imit-which is
the reciprocal of the effective viscosity at zero wavevector 17°" (to lowest order
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O 2 03 04 05

Fig. 4. Volume fraction dependence of the reciprocal of the effective viscosity at zero wave vector
77°" (from table I) and of the self-diffusion coefficient (from table III of ref. 17).

in the expansion in correlation functions). Upon Integration one then finds

(9.5)

In fig. 4 we show the volumefraction dependence of DS/D0 (where D0 =
^Τ(6πη0αγ1) and η0/η£ίί, resulting from an evaluation of the expansion in
correlation functions for each of these quantities to second order (cf. ref. 17).
One sees that both quantities have a similar concentration dependence, in
agreement with eq. (9.5). Deviations from this relation are due to: (i) certain
contributions from correlations; (ii) wave vector dependence of the effective
viscosity (a consequence of the finite size of the particles).

We have discussed here the relation between effective viscosity and diffusion
coefficient on the short time scale τ <ξ TC. Experimentally, this relation has been
investigated only on the long time scale τ => Tc

35'36): it has been observed that
the product of self-diffusion coefficient and effective viscosity is approximately
independent of the concentration, confirming - on this time scale-a relation of
the form (9.5).
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Appendix A

Elimination of the induced forces

According to eqs. (7.2) and (7.3) of the paper by Mazur and van Saarloos15),
one has for the irreducible multipole moments of the induced forces on the
spheres the following hierarchy of equations* (i = 1 ,2, . . . N),

| — s,
F^ = 6·π·η0α(2ρ - 1)\\Β(ρ'ρΥ' Θ Äf1 v0

+ Σ Σ B(p'pY' Θ A(p'm) Θ F,(m) (p&2). (A.l)
m = 2 /=!

l*t

(Here with F(2) only the Symmetrie and traceless part of this second moment is
implied.) The surface moment of the unperturbed velocity field v0 on the r.h.s.
of this equation is defined äs follows

(A.2)

In the present case, the unperturbed flow is given in terms of the external force
by

»oflO - (n0k
2)~l(1 - kk] · Fea(k) . (A3)

The formal solution of the hierarchy (A.l) is of the form

F\p) = 6τ7η0α Σ Σ (2m - 1)!\̂  Θ A?~l v0 (p & 2), (Α.4)
m = 2 y = l

with the generalized friction tensor ^p'm) given by eq. (3.2).

* The tensor ß(22)~' used here corresponds to ß<2s2s>~' ln ref. 15. Note furthermore that (in view of
eq. (2.4)) both the first moments and the antisymmetric parts of the second moments of the induced
forces are zero and consequently do not appear m eq. (A.l)
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The transverse pari of the induced force is given in terms of the moments
considered above by the expansion (cf. ref. 15, eq. (3.14))

(1 - kk) · F',nd(fc) = Σ (2p - IJÜi'-'ViiflfcXi - kk) k^1 O F\p). (A.5)
p=2

For the surface moments of the unperturbed flow, furthermore, we have the
identity (ref. 15, eq. (4.1))*

dfc e'*-\(afc) fr e0(Jfc). (A.6)

Eqs. (A.3)-(A.6) yield for the velocity field given by eq. (2.7) the result

:»(*)= 7(u)(fc) · Fext(fc) + Σ Σ e"*'J!T(1-'>)(t)
ι,} — 1 n,m =2

Θ ζ^ Θ (2-n-y3 i dfc' ε1*''*' r*'"'1 '̂) · Fext(fc'), (Α.7)

with the tensor field T defined in eq. (3.8). This equation implies for the kernel
M, defined in eq. (2.8), the expression (3.1).

Appendix B

Proof of eq. (6.8)

We Start from the identity

*?)-1 = πγα[1 -(η-

where ^fyo has been defined in eq. (6.2). It is convenient to define an operator /
with kernel

l if r = r'
,' (B.2)

ü if r ^ r , v '

* Note that , with respcct to the formulae in ref 15, we have madc the Substitution17)
' dp ' TI
- fe-'smfe =(-\YiP(k)kl>
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and a matrix S5yo with elements

{93ro}„m = | T0 ' (B.3)
l 0 elsewise .

With these notations we can write

%ya= $ΎΟ+ΰβγοΙ, (ΒΑ)

Ο

where %?Ύο is defined in eq. (6.9). In the same compact notation we have for the
renormalized density

γΟ = n(\ - QST'äS )~'Q, (B.5)

cf. eqs. (6.4) and (6.7).
We note that, äs a consequence of the fact that Sfygl = 0, one has the identity

Upon Substitution into the r.h.s. of eq. (B.l) and repeated use of definition
(B.4) one then finds

= 3 (̂1 - (l -

We now use the identity

(l - nQSr^JTVoQST1^ = roOS8-'^w , (B. 8)

O

which follows from /^ro = 0, and another identity

O = yO (B. 9)

(cf. eq. (B. 5)). Eq. (B.9) is a consequence of the fact that nln = n.
Substituting eqs. (B. 8) and (B.9) into eq. (B. 7), one then finds for the 1,1

element of this matrix
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This is the required identi ty (6.8). A similar identity was used in ref. 17 (eq.
(3.7)).

Appendix C

Derivation of formulae (8.3) and (8.4) for η"α

1. Formula (8.3): no correlations
In order to arrive at formula (8.3) for the zero wave vector effective viscosity

T?elt, we first redefine the connector field A(2'2)(r) in the following way,

A™(r) = A(2-2\r)g0(r), (C.l)

where the function g0(r) was defined in eq. (5.12). Note that, since A0(r) and
A(r) are identical for r > 2α, we may replace the latter field by the former in
definit ion (3.4) of the connector Af

Next consider expression (4.7) for η6". If we completely neglect correlations,
this expression (together with eqs. (3.2) and (3.10)) gives

(WT?eiI - l)(f - kk) = -5φ(1 - kk)k

: \A + lim Σ (- ̂ Af^ek)}"] :k(1 - M) . (C.2)
L <^o p=1 \ / J

Here we have used the fact that A("'m)(sk) is of Order εη+ιη~4 (cf. eq. (3.6)), so
that eq. (C.2) does not contain contributions from connectors with upper
indices n + m >4. From eqs. (5.10) and (5.15) we see that

ek) =<}>(A-5A:k(1- kk)k : 4) , (C.3)
s^O

and hence

- kk) = -5φ(1 - kk)k : [(l - φ)Λ + 5φΔ :

:k(1 -kk)

= -\φ(1 + \φγ\1-Μ). (C.4)

Eq. (C.4) implies that

ηε%0= 1 + |ψ(1- φ)~1, (C.5)

which is Saitö's formula (8.3).
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We remark that, if one would replace the funct ion g0(r) in eq (C 1) by some
other function of r which is unity for r>2a, one would obtain an alternative
formula for the effective viscosity in the absence of correlations To decide
which expression for the connector field for r =£ 2a gives the most accurate
results in this approximation, one would have to compaie the magnitude of the
corrections from correlations We can, however, makc the fol lowing obser-
vation the paiticular choice made above accounts to some extent foi the
impenetrabihty of the spheres, since the connector field Af2\r) vanishcs for
r=s2a One might expect, therefore, the resultmg formula (C 5) to be more
accurate than-for instance-a formula which one would obtain by replacing
g0(r) in eq (C 1) by unity for all r Indeed, in this latter case one finds upon
neglecting correlations the result

η^/ηα=1 + 5

2φ, (C6)

which is inferior to eq (C 5)

2 Formula (84) pomt-particle approximation
Consider the zeroth order result (7 9) for the effective viscosity at k = 0,

^/ηο=1 + 5

2φγ®Ιη0, (C7)

where γ(

0

2) is given äs a function of n0 through eq (7 5),

yf~ Ύ(?Φ ~ f d/c;'(/c)STO(/c)[l + <t>S7o(k)}-1 = n0 (C 8)
77 J

0

The function Syo(fc) behaves for small k äs (cf eq (7 3))

Sn(k) = lyV/n0+Ü(k2) (C 9)

If in the integral in eq (C 8) one would approximate this function by its zero-/c
limit, one would find for y^

Ύ

(?=η0(1-5

2φΓ, (CIO)

which gives (with eq (C 7)) formula (8 4) for the effective viscosity
Since the wave vector dependence of the function Syo(k) which renormalizes

the connectors (accordmg to eq (7 2)) is a consequence of the finite radius of
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the spheres, the above approximation - which neglects this fc-dependence-

may be called in this sense a pomt-particle approximation
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