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A theory is given for the concentration and wave vector dependence of the effective viscosity of
a suspension of spherical particles. The analysis is valid up to high concentrations and fully takes
into account the many-body hydrodynamic interactions between an arbitrary number of spheres.
The relation to the diffusion coefficient of the spheres is discussed.

1. Introduction

The concentration dependence of the effective viscosity " of a suspension
of spherical particles in a fluid (with viscosity 7,) is well understood in the
regime of low concentrations. To second order in the volumefraction ¢ of the
suspended particles one has the expansion

1= 1+3¢ +5.2¢%. a1

The coefficient of the linear term was first calculated by Einstein') (cf. also ref.
2); the quadratic term has been evaluated by several authors®”), the value given
in eq. (1.1) being due to Batchelor and Green*) (with an error-estimate of
6%)*. '

Up to the order given in eq. (1.1) it is sufficient to consider only the
hydrodynamic interactions between pairs of particles. Higher order terms,
“ however, contain contributions from specific hydrodynamic interactions of
three and more spheres. In fact it has been demonstrated (both theoretically®)
and experimentally’)) in the context of diffusion that these many-sphere
hydrodynamic interactions may not be neglected if the suspension is not dilute.

In order to simplify the problem of solving the hydrodynamic equations of
motion in the presence of more than two spheres, an approximation which

* Contributions to the effective viscosity from Brownian motion of the spheres are neglected in
these analyses, as well as in the present paper. We shall return to this point in section 8.
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neglects the finite size of the spheres is customary. Several authors''™), for
example, have treated the suspension as a mixture of two fluids, one fluid (with
volumefraction ¢) having an infinitely large viscosity, the other fluid having
viscosity 7, This approach yields a very simple formula for the effective
viscosity*

M me=1+36(1—-3¢)", (12)

which for small ¢ is in good agreement with eq. (1.1). Indeed, one might expect
that a point-particle approximation is reasonable if the suspension is
sufficiently dilute, since in that case the average distance between the spheres is
large compared to their radius. At higher concentrations, however, this ap-
proximation is unjustified and leads to incorrect results, as we shall see in this
paper.

In this paper we present a theory for the effective viscosity which fully
accounts for the hydrodynamic interactions between an arbitrary number of
spheres. Our analysis is based on: (i) a general scheme, developed by Mazur
and van Saarloos"), to solve the hydrodynamic many-sphere interaction prob-
lem; (ii) a technique of calculating the influence of many-sphere hydrodynamic
interactions on transport properties of suspensions, by means of an expansion
in correlation functions of fluctuations in the concentration of the spheres of
higher and higher order. Such an expansion was used by Mazur and the author
in the context of diffusion'®'").

In section 2 we give a formal theory for the wavevector dependent effective
viscosity m(k) (of which the quantity n°" considered above is the zero-
wavevector limit) of a suspension of spheres, by considering the average
response of the suspension to an externally applied force. This theory (which
makes essential use of the so-called method of induced forces'®')) differs from
the conventional approach where the perturbations of an externally imposed
flow are considered. To obtain the effective viscosity by this second method
(used e.g. by Peterson and Fixman®)), one must find both the average stress and
average flow velocity and eliminate the imposed flow between these quantities.
This double calculation is not necessary in the first method (used e.g. by Freed
and Muthukumar’)), where one finds the effective viscosity directly from the
dependence of the average flow velocity on the external force.

Using results for many-sphere hydrodynamic interactions obtained by Mazur
and van Saarloos") (cf. section 3), we find in this way in section 4 an explicit
expression for the effective viscosity m(k). As illustrated in section 5, a
calculation of coefficients in the expansion of this quantity in powers of the

* This same formula was first derived by Lundgren'), fiom a different starting point.



50 C.W.J. BEENAKKER

concentration is from this point on straightforward. (The zero-wave-vector
results given in this section were previously obtained by Freed and Muthuku-
mar’) by a similar method, cf. the preceding paragraph.)

If the suspension is not dilute, an expansion in the concentration is no longer
appropriate. For this reason we study in sections 6 and 7 the effective viscosity
of a concentrated suspension through an expansion in density-fluctuation
correlation functions of increasing order, along the lines of ref. 17. Each term
in this expansion accounts for the hydrodynamic interactions of an arbitrary
number of spheres, and contains the resummed contributions from a class of
self-correlations. Results for the wave vector and concentration dependence of
n(k) are given in fig. 1 and table I. In section 8 we discuss these results and
give a comparison with previous work and experimental data. It is found, in
particular, that the divergency of the effective viscosity which follows from the
point—particle approximation (cf. eq. (1.2)) does not occur if the finite size of
the spheres is accounted for properly.

We conclude in section 9 with a discussion of the relation between effective
viscosity of a suspension and diffusion coefficient'’) of the suspended spheres.
In particular, we show that—within a certain approximation —the product of
7" and self-diffusion coefficient is independent of the concentration.

2. Formal theory for the effective viscosity
We consider a suspension of N spherical particles with radius a in an

incompressible fluid with viscosity 1, We describe the motion of the fluid by
the quasi-static Stokes equation, which — within the context of the method of

induced forces'™') — reads
N
Vp(r)=moAv(r) = F*'(r)+ X F(r), 2.1)
=1
V-u(r)=0. (2.1a)

Here o(r) is the velocity field, p(r) the hydrostatic pressure and F™(r) an
external force density. The induced force densities F;“d(r) (G=12,...,N)arc
to be chosen in such a way that

F}"d(r) =0 for |r — R/, >a, (2.2)

U(r)= uj—}-w] A (r—Rj) for [r—R]}$a, (23)
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p(r)=0 for|r—-R|<a, (2.3a)

so that the velocity of the fluid satisfies stick boundary conditions on the
surfaces of the spheres. In these equations R, is the position-vector of the
center of sphere J, and 4, and w, are its velocity and angular velocity respec-
tively. We shall assume that the spheres move freely in a large volume V, so
that the forces and torques on the spheres are zero. From egs. (2.1) and (2.2)
one therefore finds for the force density induced on each sphere

fdrF;"d(r) =0, f dr(r—=R)AF™(r)=0 (2.4)

(where we have furthermore assumed that F®'(r) is non-zero outside V only).
In order to obtain a formal solution of eq. (2.1) it is convenient to introducc
the Fourier transform of v(r),

o(k) = j dr ™ o(r), 2.5)

and similarly of p(r) and F*(r). The Fourier transform of F}"(r) is defined
(for each j) in a reference frame in which sphere j is at the origin

F(k)= f dr e TR . (2.6)
The formal solution of eq. (2.1) is then found to be

oK)= (k™) (1 = BR) - | F () + 3 e (h) | @.7)

J=1

(The wave vector k has magnitude k and direction k=k/k; 1 denotes the
second rank unit tensor.)

Following the general scheme of Mazur and van Saarloos'), one can usc egs.
(2.2)~(2.4) to eliminate the induced forces in eq. (2.7) in favor of the external
force. The resulting solution for the velocity field is of the form

o(r) = [ dr' MG | ) ). 2.38)

An explicit expression for the tensor M(r | r') is derived in appendix A. The
macroscopic velocity field may now be obtained by averaging eq. (2.8) over the
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equilibrium distribution function of the positions of the N spheres in the
volume V. For an infinite system the average (M(r|r’)) will depend on the
separation r'—r only, as a consequence of translational invariance of the
distribution function. In view of incompressibility of the fluid (eq. (2.1a)), this
average must be of the form

M| = )™ [ de ek (1= k). 2.9)

giving for the macroscopic velocity the expression
(k) = (n(k)k?) (1 = kk) - F(k) (2.10)

The function 7 (k) defined through eq. (2.9) represents the wavevector depen-
dent effective viscosity of the suspension: indeed eq. (2.10) gives the velocity
field due to an external force F®™(k) in an incompressible fluid with viscosity

7 (k).

3. Results from the hydrodynamic analysis

As we show in appendix A, the tensor M(r | r') - which relates the velocity
at point r to the external force density at point r' (eq. (2.8)) — may straightfor-
wardly be derived from the results of Mazur and van Saarloos'®). One finds the
expression

o N
SrmgaM(r | 1) = T = )+ 33, TOR, = 1) © ¢4

y
nm=21j=1

@ T(m,l)(r/ _ Rj) , (31)

where {f]""") is given as an infinite series of reflections or scatterings from the
spheres,

(nm) _ pa(nn)1 (nn)! (n,m) (mm)~leq
£om = By 5 4+ BO @ AT © BO(1- )

nm%y

© @ © N N N
+2 2 2 2 2 2 2 gl ) Aflnfp‘)
I =1 =1
! 122# I Is ;/x-w

O Be!' o Ajm.m)@ c BT (D A](spjsdnl o Bmm ! (3.2)

1J2
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The objects &™), T™™(r), A" and B®"" in the above equations are tensors
of rank n+m. The dot O in eg. AV ™ © B™m " prescribes an m-fold
contraction, with the (nesting-)convention that the last index of the first tensor
is contracted with the first index of the second tensor, etc. The definitions of
the tensors T, A and B! will be given below.

We first notice that in the absence of suspended particles only the first of the
terms on the r.h.s. of eq. (3.1) remains, which is the well-known Oseen tensor
(see below). The perturbation of the fluid flow by the spheres is accounted for
by the generalized (dimensionless) friction tensors %™, which relate an nth
order multipole moment of the induced force on sphere i to an mth order
multipole moment of the unperturbed flow on the surface of sphere j (cf. eq.
(A.4) in appendix A). If there is just one sphere, ™™ is unequal to zero only
for n = m and different multipole moments are uncoupled. The hydrodynamic
interactions between two and more spheres are given by the series of products
of tensors A and B in eq. (3.2). This series constitutes an expansion in inverse
powers of the interparticle separation, in view of the following property") of
the “connectors” Af]""") (defined for i # j)

As]n‘m) = Gfln,m)R ;(n+m—l) + stn,m)R ;(n+m+1) , (33)

where the tensors G, and F, depend only on the direction of the vector
R, =R — R, (and not on its magnitude R, ). The tensor B!, on the other hand,
is independent of the positions of the spheres.

We shall now give the definitions of the tensors occurring in eqs. (3.1) and

(3.2). The general expression for the connectors
AL = [ dr [ dr 6(R = SR, ~ A" =) (i#],R,>2a)  (4)

is in terms of the connector field A”™)(r), given by

AC™(ry = 2y f dk e ¥ A" (k) (3.5)
with
A®™(K) = 67ai”™ "™ (2n — DI@m — DIk, _(ak)j,_ (ak)k" (1 — kk)k™ ™",
(3.6)

cf. refs. 15 and 16. We have used here the notation (2n—1)!!=
1-3-5-...(2n—-3)-(2n—1); j, denotes a spherical Bessel function*; k?

* This function is related to the Bessel function of order p +3 by jy(x) = G/x) 2 s 12(x).
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represents an wrreducible tensor of rank p,1e a tensor traceless and symmetric in
any pair of 1ts indices, constructed from a p-fold ordered product of the vector k
(For useful formulae concerning irreducible tensors, see ref 20 ) For p = 1,2 one
haseg

—

k=k, kk=4kk—31 37

The “propagator’” T"™(r) 1s defined 1n terms of 1ts Fourier transform (cf eq
(3 5)) by

Tem (k) = 6mar"™" 2n - 1)1@m — )k %, (ak),_(ak)E" ‘(1 — kK)E"
(38)

with the definition

px)=5,(x) forp=1, jx)=1 (39

Finally we give expressions for the constant tensor B""™ ‘(n=2), cf refs 15
and 16,

B<22>‘:—19—OA, (3 10)
2

(nn)‘:__ _1' _3”—1<A(n—1|dn 1)+ A(nn)

B == [(n - 1)/2n = 3)" —
Do ) ey, e

where the symbol O” denotes a p-fold contraction The class of tensors 4®™
of rank 2n used 1n these equations (with the abbreviation 4%? = A) project out
the 1rreducible part of a tensor of rank n

AT O B =" O AP = p" G 11)
Forn=1,2 one hase g %)

4C% =4

27

an _
AUV =

ny 2

MVKA = %S;J.Aavx + ;8;“(8v)\ - 1136;1.1/8:(/\ (3 12)

In eq (3 10a) we have also used the tensor A® "D of rank 2n with elements

A(n~1 Wdn-1) — 8KAA(I1“1 n—1) (3 13)

BRI Mg 1KAVL wp g Bl a1Vl ¥
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This tensor acts as a unit tensor when contracted with the first n indices of the
tensors A®™ or T e.g.

A {(n—-lad,n-1) @ n AE]n,m) — AE]n,m) ) (314)

To conclude this section we give two formulae (derived in ref. 16) for the
tensors defined above:

ACP (k) © BEP O APM(k) = ~6ma AT (ke 2p — 1) (ak) 2. (ak)
P=2), (3.15)

> APk © BPPT O AP (k)= —§ma’S(ak)A"™(k) (3.16)

p=2

with the definitions

£,=5/9, e,=1(p=3), (3.17)

Sx) =2 3¢,(2p — 1¥x 7?2 (x) = 5[x 7" Si(2x) + 3x 7% cos(2x)
p=2
+3x7?sin(2x) — x*sin® x — 4x"%(sin x — x cos x)’] . (3.18)
The sine-integral Si(x) is defined by
Si(x) = f £ sin 1 dr (3.19)
0

We remark that formulae (3.15) and (3.16) remain valid if one replaces each
tensor A in these equations by the tensor T.

4. Formulae for the effective viscosity
We shall in this section combine the results from the previous two sections to

give explicit formulae for the effective viscosity. We first note that, according to
eq. (3.1), the Fourier transform

Mk | k') = j dre™* f dr' e* " M(r | r) @.1)
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of the kernel M(r|r') 1s given by

6mmeaM(k | k)= 2m)'8(k' - k)T Y(k) + i % T4 (k)

nm-21;-1

O e 1k R,é«f]n m) elk R, O T(m l)(k/) (4 2)

From translational mvariance of £, and of the distribution function it follows
that (for an infinite system*)

N N
<2 e—lk R, gf]n m) elk R,>: no(z,n_)’sﬁ(k/ — k)<N ! 2 {f,'l m) Clk Ru> , (4 3)

ty—1 -1

where ny= N/V 1s the average number density of the particles
From eqs (29) and (4 2) we then find, with the help of eq (4 3), fo1 the
wavevector dependent effective viscosity 7 (k) the formula

%

N
6ma(ny/n (k)= (T = KBy = ngk? 3 T O (N1 3 gy e ™)

nm=2 -1
O TV (k) 44

Use has also been made here of the explicit expression for T (k) (eq (3 8))
One may verify (using the fact that k- T""(k)=0 for all n, cf eq (3 8)) that
the rhs of eq (44) s the product of a scalar function of k and the tensor
1- kk, as mmplied by the  h s of this equation

At nfinite dilution the r h's of eq (4 4) vanishes and n(k) cquals n, for all k,
as 1t should The influence of the suspended particles on the viscosity of the
suspension 1s taken nto account by the term on the rhs of eq (4 4), to all
orders 1n their concentration We observe that this term vanishes in the hmut
k= (cf eq (38)), so that in this imit the effective viscosity 1s equal to 1its
value at nfinite dilution

lim (k) = 7, (45)

k>0

This limiting behaviour reflects the fact that for large wave vectors the Fourler
transformed velocity field remains almost unperturbed by the presence of the
spheres

*That 1s to say in the imit N, V=, N/V = py = constant
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The zero-wave-vector limit of the effective viscosity 1s of particular interest in
the study of properties of suspensions We denote this quantity by

7" =lim n (k) “6)

k=0

From the fact that T¢(k) 1s of order k™" * for small k (cf eq (3 8)) 1t follows
that only the term with n = m =2 1n the series on therhs of eq (4 4) gives a
nonvanishing contribution n the limit k>0 For n°" we therefore have the
more simple formula

N
(no/n™ = (1 = ) = Im 3 (1 - KO (N '3 g8 e ™) £(1 - kk).
-0 17-1
@“7)

where the colon indicates a double contraction and ¢ denotes the volume
fraction of the spheres

b= gwa3n0 438)

Eqs (4 4) and (4 7) are a most convenient starting pomnt for the calculation of
the (wave vector dependent) effective viscosity of a suspension, by means of an
expansion 1n powers of the concentration of the suspended particles This will
be 1llustrated 1n the next section In order to study also the behaviour of the
effective viscosity at high concentrations (where such an expansion is no longer
appropriate) we shall now cast eq (44) in a different form —adopting an
operator notation which has proved its use in a similar context'®')

First we redefine the connector field in the following way

AC™(r)y= A"y f r#0, A" =0)=0 “9)
Next we mtroduce convolution operators A”™ and T®™ with keinels

A0 )= A= ), @10)

T | rYy= T (r — 1), (4 11)
and a matrix # of which these opcrators are the elements

T sfn=1lorm=1,

{%}n m = { o~ (4 12)
AP fp#land m#1
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We further define a matrix 8" with elements

(B Y = 8,,B"" (4.13)
and a projection matrix Q by

{Q}ym = B = 8,181 - (4.14)

Finally, the microscopic density field
N
n(r)=> 8(r—R) (4.15)
=1

corresponds to the diagonal operator n,
n(riry=n(r)s(r'—r). 4.16)

With these notations we may write e.g.

w N
2 X TR -r)O B™™ O T"(r'~R)

m=21=1

= 3, [dr, T = () © BO © TG - 1)
m=2

={HnQRB X} (r| 7). 4.17)

Similarly one has

o N

3 3 TR =r) O B™ O A O BT O T - R)
mk=2 1=
1#]

= {HnQB ' HnQB %}, ,(r | 1. (4.18)
In these equations the kernel is taken of the 1,1 element of the matrix of
operators between braces. For the kernel M(r | r’) we now have in this compact
notation

6mneaM(r | r'y={#(1 - nQB ' %) "}, (r|r). (4.19)

Indeed, by expanding the operator between braces in this equation in powers
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of n, we have eqs (4 17) and (4 18) as the first and second order terms From
the complete series we recover the expression for M(r | r') given n eqs (3 1)
and (32)

From eqs (29) and (4 19) we thus find for the effective viscosity n(k) the
operator formula

1 1
—— (%}, (k| k)= —(#QA - nQB '5) '} (k| k), (4 20)
n(k) Mo
where the Fourier transform of an operator kernel was defined m eq (4 1)
This alternative formula 1s a convenient starting poimnt for the calculation of the
effective viscosity of a concentrated suspension, by means of an expansion 1in

density-fluctuation correlation functions of higher and higher order, cf section
6

5. Expansion in powers of the concentration

At low concentrations of the suspended particles an expansion of the
effective viscosity in powers of the concentration 1s appropriate
To first order 1n the concentration we find from eqs (3 2) and (4 4)

6ma(ny/n(k)— 1)(1 - kk)=nek* > T¢™(k) O B™™ 'O T"Yk) (51)

m=2

The series in this equation may be summed analytically, cf formula (3 16) and
the subsequent remark The result 1s

(mo/n (k)= 1)(1 — kk) = —$S(ak)(1 - kk), G2
where the function S(x) has been defined m eq (3 18) Eq (52) implies

(k) = n[1+ ¢S(ak)+ 067, G3)
representing an extension of Einstemn’s'?) formula for the effective viscosity at
zero wavevector to arbitrary values of k For small k, the function S(ak)
behaves as

S k)—5 & (ak)*+ O(ak)° 54
(a - 2350 a (a ’ ( )
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as follows from expansion of the r.h.s. of eq. (3.18). It is noteworthy that the
term of order (ak)* does not occur in this expansion, and that hence the finite
wavevector corrections to Einstein’s formula are of fourth order. Bedeaux et
al.%), on the contrary, found a nonzero coefficient for the term of order ¢ (ak)*
in the effective viscosity. It has been pointed out by Schmitz**!), however, that
eq. (4.7) in the paper by Bedeaux et al. (which gives the function which relates
the symmetric gradient of the velocity field perturbed by the presence of one
sphere to the symmetric gradient of the unperturbed field) is incorrect as far as
terms of second power in the wave vector are concerned. Indeed an error in
this order would affect the value of the coefficient mentioned above.

To second order in the concentration, only those terms in expression (3.2) for
the generalized friction tensors contribute to the effective viscosity, which
depend on the positions of at most two spheres. For the dipole—dipole friction
tensor {2 we find, restricting ourselves to these terms (cf. also egs. (3.3) and

(3.10)),

¥

10 1052
@D = - '9_ 8114 + <_ E) (1 - au)AfleYZS)

10 3 - S, $,45, -
+(- 3> 8, S RyEGE®: G+ OR™), (5.5)

k#1

to eighth order in the expansion in inverse powers of the separation of the

spheres R*. The connector A% =4:A%?: A is traceless and symmetric in

both the first and second pair of indices; it consists of two terms of order R
2s,25)

and R~ respectively (cf. eq. (3.3)). The tensor G$** is given by ")
(2s,25) 9 3 A A A A A A
G, W=~ 7 a’A (SF P f,r, ~2F, 17, )4, (5.6)

where #, = R,/R, is the unit vector in the direction of R,. From this last
equation one readily finds

10\3 125
(-5 ) R&GE™: GE = — == (IR, A: Qhubafufy + 7415014 (57)

The above equations enable us to calculate the zero wave vector limit 7" of
the effective viscosity to second order in the concentration. Substituting eq.
(5.5) into formula (4.7) one finds for this quantity the equation

* The absence of a term of order R™7 in the expansion of {f]”) in powers of 1/R 1s noteworthy
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(/" = 1)(1 — kk) =3¢ (1 — kk)k : (T, + T,+ T.): k(1 - kk), (5.9)

with the definitions

T =——4, 5.9
1 ; (.9)
100 ¢
T2 = El— Mg lim | dr go(r) elek-rA(ZS'zs)(r) , (510)
E—)O
125 6 sans | Aqa
T,=- 5 noj drgy(r)(alry'A : QFFFF + FIF): A . (5.11)

Here gq(r) is the equilibrium pair distribution function to lowest order in the
density,

0 ifr=2a,

5.12
1 ifr>2a. (5.12)

80 =1

The evaluation of T, requires care because of the long range of the connector
field A. In terms of its Fourier transform we may write for this contribution

100 X )
T,= g Molim [A(ZS‘ZS)(sk) +(@2m)” f dk’ A= (k)vy(|ek - k'|)] : (5.13)
-0
with
(k)= [ dr &*7[ayr)~ 1] = ~ 16w’k 2ak) (5.14)

Using expression (3.6) for the Fourier transformed connector field one finds,
upon integration,

10 U
T,= 5 (A k(1 - kik:4 - 4), (5.15)

in the required limit £ »0. For the contribution T; a straightforward in-
tegration of eq. (5.11) gives

T,== ¢4 (5.16)
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Substituting the results (5.9), (5.15) and (5.16) into ¢q. (5.8), one finds for the
effective viscosity at zero wave vector the equation

(ny/m™ — 1)(1 - kk) = [—;ﬁ T (g ¢>2—135—25¢2](1 — k), (5.17)

which gives the expansion to second order
7" = n[1+3¢ +4.84¢7 + 0(¢°)], (5.18)

found previously by Freed and Muthukumar’) by a similar method (cf. section
1).

The importance of terms of order R™® and higher in the hydrodynamic
interactions between two spheres (not included in eq. (5.5)) has been in-
vestigated by Schmitz®). He obtained a value of 5.36 for the coefficient of the
term of order ¢? by including hydrodynamic interactions of order R™ with
n =15, Although the coefficient in eq. (5.18) differs from this result by only
10%, the convergence appears to be rather slow: Schmitz estimates that terms
of still higher order in 1/R can give further corrections of at most 5%. In the
works of Peterson and Fixman®) and Bedeaux et al.’) certain contributions from
short-ranged hydrodynamic interactions are also included. These authors
obtained values of 4.32 and 4.8, respectively.

The above results for the second order coefficient — which are all based on a
multipole expansion of hydrodynamic interactions —may be compared with the
value of 5.2+ 0.3 obtained by Batchelor and Green*), from an exact solution of
the motion of two spheres in a linear flow field.

6. Expansion in correlation functions

In order to study the effective viscosity of a suspension which is not dilute,
we shall adopt the method of expansion in correlation functions used in refs. 16
and 17 to calculate the diffusion coefficient of the suspended spheres. Formula
(4.20) for n(k) is the starting point of our analysis. Following ref. 17, we now
proceed to write this formula in terms of “renormalized” connectors, which
account for the fact that (in an averaged sense) spheres interact hydro-
dynamically via the suspension — rather than through the pure fluid.

Let ¥ (n=1,2,3,...) be an arbitrary constant tensor of rank 2n. We
denote by vy, the diagonal matrix with elements

{‘YO}n,m = 8nm‘ygl,n) . (61)
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The matrix &, is defined - for each y,~in terms of the matrix & (given in eq.
(4.12)) by

H,,=H (1~ y,QB'%#)". 6.2)
This matrix has elements

Y™ ifn=lorm=1,

{%yo}n,m = { . (63)
A(y':)‘”‘) frn#landm#1,

which are convolution operators with kernels T(y':]"")(r) and A(y':}"")(r) respec-
tively. The latter kernel is identical to the renormalized connector defined in
ref. 17.

We now choose y{"™ to be a function of the average number density of the
spheres ny,

Y=y O BT O AL (r = 0)= n 1" (n=2)*. (6.4)
The tensor 7™ used in this equation is a generalized unit tensor of rank 2n,
10D =4, 10 = AONAnD ) 3y 6.5)

where the A-tensors have been defined in eqs. (3.11)—(3.13). It has been shown
in ref. 17 that " is of the form

yé"'") — ,ygt)1(n.n) , (6.6)

where y is a scalar function of n, The renormalized “density” vy(r), with
average vy, is given by

y(r) = yong n(r); (6.7)
the corresponding diagonal operator y has kernel y(r)é(r' — r).
We shall write formula (4.20) for the effective viscosity in terms of the

renormalized connectors defined above, using the identity

{1~ nOB %)), = {9, (1—3yQB 5, ) )., (6.8)

* The quantity 'yg"l) does not play a role in the analysis and need not be further specified.
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cf. appendix B. The inverse operator on the r.h.s of the above equation
. ko) .
contains fluctuations 8y =y — v, and a matrix %’70 with elements

5 {ﬁ(y’(’;"’ ifn=m#1,
K, bom = 6.9)
" {#,nm elsewise .
Here the cut-out connector ﬁg"“-“ (n = 2) has kernel
o o 0 fr=r",
AU Py = AL~ )= - . (6.10)
AVP(r'—r) ifr#r.

Substitution of identity (6.8) into eq. (4.20) gives for 7n(k) the alternative
expression

Loy, Lk = L o, (1 - 5y0B ) Gk k) 6.11)
n(k) Mg

Upon expansion of the inverse operator on the r.h.s. of ¢q. (6.11) in powers
of 3y, one obtains an expansion for the reciprocal of the effective viscosity
A(k)=1/7n(k) in correlation functions of (renormalized) density fluctuations of
increasing order

A(k) = AOU) + ACK) + - - -, (6.12)

where AP(k) contains terms of order {((8y)”). Each term in this “fluctuation
expansion” contains contributions from many-body hydrodynamic interactions
of an arbitrary number of spheres. Furthermore, the renormalization of the
density through eqs. (6.4) and (6.7) corresponds to an algebraic resummation of
a class of self-correlations, cf. ref. 17 (section 3). As a result, the contributions
from these special correlations are included in the zeroth order term.

We shall now give the expressions for the first two terms in the fluctuation
expansion of A (k). To zeroth order one finds from eq. (6.11)

1
AOGNIY (K | k) = n_{%yo}l,l(k LK), (6.13)
0
or, by definition (4.12) and (6.3),

AU T () = RS TOD(k) . (6.13a)
n

Yo
0
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The lowest order correction to the zeroth order result (6.13) is of order
((3y)*) (since terms linear in 3y give a vanishing contribution after averaging)
and is given by

1 O (2]
AOK) Y (k| k)= ;—({%maya%-‘%mayo%* H ik |k (6.14)
0

To evaluate the two-point correlation in this equation, we note that 8y is given
in terms of the density fluctuations 8n = n — n, by 8y = yyn, 'dn, cf. eq. (6.7). In
view of the formula®)

@n(r)dn(r)) = ndr' —r)+nifg(r—r)—-1], (6.15)

we find therefore”

APOT k) = (nemg)™" 2 vy TR (k) O BT ™
mi=2
m#l

(ml) _ ! wn
O AL(r=0)0 B* O T(K)
i
2 T © BT O ( f dr " AL (r)
0O mi=2

x[g(r) - 1]) © B O T, (6.16)

where we have used that
,ygm,m) @ B(m.m)‘1 — ,yf)m)B(m,m)“1 , (617)

cf. eq. (6.6). The function g(r) used in these equations is the equilibrium pair
distribution function. Note that the above expression does not contain terms
with factors AP (r = 0) with [ = m, as a consequence of the cut (6.10). Indeed
the contributions from these particular correlations (so-called diagonal ring-
self-correlations, cf. ref. 17) are already accounted for in the zeroth order term
A9(k), through the renormalization of the density in eq. (6.4).

7. Evaluation of the expansion in correlation functions to second order

In order to evaluate the first two terms of the expansion of 1/n(k) in

" In the second term on the r h s of this equation we have replaced 1n the integrand (for the case
I = m) the cut-out connector A" (r) by AL (r), since these two fields differ by a finite amount in
a single pont only, cf. definition (6.10).
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correlation functions, we make use of the following representation of the
renormalized tensor fields (defined 1in eqs (6 2) and (6 3))

TO(r) = Q) ? f dk e TO()[1 + ¢S, (ak)] ', 1)

A(y’;’")(r) = A""(r)— 2m)7 f dke ™A "')(k)qssm(ak)[l + ¢S, (ak)]",

(72)
with the definition

Sy(ak) =3 e,y ("ng'@p — 1)’(ak) 7y, (ak) (73)

p=2

The symbol ¢, used in this last equation has been defined n eq (3 17) The
above expressions follow from an evaluation of the inverse operator in eq
(6 2), utihizing eqs (3 15) (see also the subsequent remark) and (6 17), cf refs
16 and 17 We shall use in particular the value of the renormalized connector
field AE/'(’)")(r) at r =0, given by

1 nn 2 nn 5 -
B"" 'O AUMY(r = O)=—7;(2n ~1)7m f dk 2 (k)¢S (k)1 + ¢S, ()],
0

(74)
where the tensor 7™ has been defined in eq (65) The above formula 1s
obtamned by performing the angular integration m eq (7 2), cf refs 16 and 17

The coeflicients vy in the series in eq (7 3) are given as a function of the
density n; by the equations

.

v = o 2p - 1);[ dk jo ()S, ()1 + S, (k) ' = ny (p=2,3, ),
0

(75)

according to eqs (64), (617) and (7 4) This infinite set of coupled equations
has been solved to a sufficient accuracy n ref 17, by approximating S, (k) by

L
S5 (k)= S(k)+ ’;236,,(75") —no)ng' @p = 1k 15 (k), (7 6)
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for a given number L =2,3,4,.... The function S(k) appearing in this
definition is given explicitly in eq. (3.18). From this equation and definition
(7.3) of S, (k) it follows that

lLl_r: S(yLo)(k) =S, (k). 7.7
With the above approximation the L — 1 equations for v (p =2,3,..., L) in

(7.5) decouple and may be solved numerically. In table 1 of ref. 17, the values
of y¥ (p=2,3,4,5) are given which have been obtained by this procedure
with L= 5.

To calculate the effective viscosity n(k) we shall use these values for y{;
also, in expressions (7.1) and (7.2) for the renormalized tensor fields we shall
approximate S, (ak) by S(yso)(ak), as defined in eq. (7.6). An estimate of the
error resulting from this approximation can be obtained by repeating the
calculation of vy, described above to a lower order, cf. ref. 17 (section 4). We
shall return to this point below.

We are now in the position to evaluate the fluctuation expansion (6.12) of
A(k)=1/n(k). To zeroth order one finds from egs. (6.13) and (7.1)

AOk) = i[1 + ¢S, (ak)] ™. (7.8)

0

In fig. 1 we have plotted, for five values of the volume fraction ¢, the wave
vector dependence of my/n(k) to this order. The reciprocal of the effective

Nol1 (K)

ak

Fig. 1. Wave vector dependence of 7¢/n(k) for five values of the volume fraction ¢, as results from
eq. (7.8).
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viscosity mncreases monotonically as a function of the wave vector, from 1ts
small-k limit

1
m AQKk) = — (1 +3¢yP/ne) ™ (79)
k=0 Mo

(cf eq (73)) to 1ts large-k limmt

im A9(k) = 1/7,, (7 10)

koo

which 1s equal to the value at infinite dilution (Note that the large-k limits of
A9k) and A (k) are 1dentical, cf eq (45))

As mentioned above, the values plotted in fig 1 are obtamed by ap-
proximating the function S, (ak) in eq (7 8) by S(yso)(ak), defined m eq (7 6) It
has been checked that repeating the calculations to one lower order (ap-
proximating S, by S(;‘o)) would not change the results by more than 6%, over
the whole range of wave vectors and densities For not too large wave vectors
(ak =<3) the change is even less, viz at most 2%

We now return to the fluctuation expansion (6 12) of A(k) to evaluate the
next (non-zero) term A@(k), given by eq (6 16) We shall only consider here
the limiting behaviour of this term for small and large wave vectors

Using the fact that T ™(k) 1s of order k""" for small k (which follows
from egs (3 8) and (7 1)) one finds that only one term on therh's of eq (6 16)
contributes to A®(k) i the limit k -0, giving

lkm; A(2)(k)(1 _ ’2’;) - lkm; (677_17061) l(y(()Z))ZkZT(yloz)(k) B(22) {

( f dr ¢* " ACY(r)g(r) 1]) Be? ' Te(k), (7 11)

or explicitly

Ak = 0) = 20a*n; (yEP(1+ 397 Ing)? [ dasiaa)i + 68, (aa)]  vlg)
0

(7 12)

In this last equation use has also been made of expression (7 2) for A% (r)*

* Note that 1f expression (7 2) 1s substituted mto eq (7 11) one may replace the connector field
ACD(r)1n this expression by A?3(r) since these two connector fields differ by a finite amount 1 a
single point only (cf eq (49))
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TABLE I
The expansion i correlationfunctions (eq (6 12)) of
A(k)=1/n(k) for k=0, as given by egs (79) and
(7 12) to second order

¢ noAD(k = 0)+ noA Pk = 0) = noA (k = 0)
005 0879 -0 005 087
010 0765 -0017 075
015 0 661 -0030 063
020 0 568 -0 042 053
025 0 486 -0 051 044
030 0416 -0057 036
035 0 355 -0 060 030
040 0 304 -0 060 024
045 0261 -0 058 020

We have furthermore defined
(k) = f dr e* Tg(r)— 1] (7 13)

To evaluate A®@(k = 0) we have approximated the pair correlation function by
the solution of the Percus—Yevick equation, found by Wertheim and Thiele™)
(an exphicit analytic expression for »(k) 1s given 1n ref 24). The integral on the
rh.s of eq (7.12) was then computed numerically* (with the approximation of
S,, by S(ysg, cf. eq (7 6)) Results are given n table 1

To conclude this section we note that for large wave vectors the term A®(k)

goes to zero,

Im A®Pk)=0, (7.14)

koo

as follows from egs. (3.8), (6.16) and (7.1) (and might be expected on account of
the fact, mentioned above, that A”(k) and A(k) tend to the same hmit as
k — ).

8. Discussion

We have calculated the wave vector dependent effective viscosity n(k) of a
suspension of spherical particles This quantity relates the Fourier transforms

* Use was made of numerical algorithms from the NAG-library (Oxford)
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of averaged velocity field and external field of force, c¢f eq (2 10) The valhdity
of the present analysis 1s imited to a certain time scale or, alternatively, to a
certain range of frequencies More precisely, if we consider an external force
which varnies harmonically i time with frequency w, the average response of
the fluid 1s described by n(k) 1n the regime

27l Te <€ w < a " nylp, CRY

Here 7, and p, aic respectively the viscosity and mass density of the fluid, a 1s
the radius of the suspended spheres and 7. 1s the “configurational” relaxation
time (see below)

The upper hmit in eq (8 1) 1s a consequence of our description of the motion
of the fluid by the quasi-static Stokes equation (2 1), neglecting nertial effects
(cf ref 2, §24)* For eg spheres of radius a =05 1n water at room
temperature the upper limiting frequency a *nylpy 1s 4% 10° Hz

The lower hmit to the frequency range 1n eq (8 1) 1s due to the neglect of
contributions from Brownian motion of the spheres whereas in equilibrium
this motion does not contribute —on the average-to the veloaty ficld, a
non-vanishing contribution remains 1if the distribution function of the
configurations of the spheres 1s perturbed by an external force”?®) The validity
of our analysis 1s therefore limited to a time scale much smaller than the time
7c 1n which a configuration changes appreciably duc to Brownian motion, since
on this short time scale the deviation of the distribution function from its
equibbrium form may be neglected (cf a related discussion of time scales in
theories of diffuston n ref 27) The corresponding lower limiting frequency
27/7c 18 a few hundred Hertz at a volume fraction ¢ of the spheres of 0 45, for
the system mentioned above At lower concentrations, this frequency decreases
and 1n fact to linear order in ¢ the viscosity s not affected by Brownian motion
at all frequencies® %)

Having clanfied the regime of validity of our analysis we now proceed to a
discussion of our results We have evaluated n(k) through an expansion of its
reciprocal 1 correlation functions of (renormalized) density fluctuations of
increasing order (a so-called fluctuation expansion) The zeroth order result
(7 8) 1n this expansion (shown 1n fig 1) fully takes into account the many-body
hydrodynamic interactions between an arbitrary number of spheres, as well as
the resummed contributions from a class of self-correlations For the case of
zero wave vector we have evaluated moreover the next non-vanishing term in
the fluctuation expansion (given by eq (7 12)), which 1s of second order and 1s
due to correlations between pairs of spheres Results for

* For an analysis where inertial contributions to the effective viscosity are included see ref 5
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" =lim 7 (k) (8.2)

k-0

to this order are given in table 1.

1t is interesting to compare these results for the concentration dependence of
the effective viscosity at zero wave vector with the results from two simple
formulae, which one can derive by making additional approximations.

The first formula

1y = 1+36(1 - ¢)" (8.3)

can be obtained by completely neglecting correlations between the spheres, cf.
appendix C. This formula gives values for 7" which are considerably smaller -
especially at large concentrations —than the results from the first two terms of
the fluctuation expansion, cf. fig. 2 (where the reciprocal of 7" is plotted). In
these latter results, we recall, contributions from a class of self-correlations as
well as from pair correlations are included. Formula (8.3) was first proposed by
Saitd6™) (cf. also the derivations in refs. 5, 6, 12 and 29).
The second formula

2 my=1+36(1-3)" (8.4)

takes into account the same class of self-correlations which contributes to our
zeroth order result (7.9) for n". However, to arrive at eq. (8.4) these con-

No/meff
I
7
|

0 ! L | N|
] O 02 03 04 (OFe)

Fig. 2. Volume fraction dependence of the reciprocal of the effective viscosity at zero wave vector.
The solid line is taken from table I, dotted and dashed lines from eqs. (8.3) and (8.4). respectively.
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tributions are evaluated by an approximation of the hydrodynamic interactions
between the spheres which 1in a way neglects thewr finite size, ¢f appendix C
Whereas this so-called point—particle approximation correctly describes the
interactions between the spheres if their separation 1s sufficiently large, 1t fails
at smaller separations Results obtained using this approximation will therefore
become less and less reliable as the average separation of the spheres becomes
smaller with increasing concentration Indeed, as one can see from fig 2, for
large ¢ the values from eq (84) deviate strongly from the results obtamed
using the full expressions for the hydrodynamic interactions Note, i parti-
cular, that the effective viscosity according to eq (8 4) has a pole at ¢ =04,
whereas 1f one takes account of the fimte size of the spheres the results remain
bounded up to large volume fractions®

Formula (8 4) was first derived by Lundgren') and more recently by several
authors” ") In the latter three derivations the suspension is treated as a
mixture of two fluids, one fluid (with volume fraction ¢) having an mfinitely
large viscosity, the other fluid having viscosity 7, Clearly, 1n such a treatment
no account 1s taken of the fimite size of the suspended particles The analysis of
Lundgren, on the other hand, -although leading to the same result (8 4)-
proceeds from a different starting point and 1t 1s not clear to which extent the
influence of the finite size of the spheres on their hydrodynamic intetactions
has been accounted for

Before resuming the discussion of our results we mention still another
formula for the concentration dependence of 1", derived by Mou and Adel-
man'’) In this analysis some of the effects of the finite particle sizes aie
mncluded, according to the authors Numerically, their results are close to eq
83)

A comparison with experiments 1s possible for the small wavevector limit n*
of the effective viscosity In fig 3 we show the data obtained by Saunders™) and
by Krieger and coworkers™) for suspended spherical polystyrene latex particles
The radu of these particles were of the order of 01y, with a narrow
size-distribution  Also shown are the data of Kops-Werkhoven and Fijnaut™)
for silica spheres of radius 0 07 n If one compares these experimental results
with the calculated values from table I (also plotted n fig 3) one finds good
agreement for volume fractions ¢ <02 At higher concentrations, however,

* We mention 1 this connection that a pole 1n the plot of effective viscosity versus concentration
has been found 1n two different contexts by Kapral and Bedeaux™) (for a regular array of freely
moving spheres) and by Muthukumar®') (for randomly distributed immobule spheres) However the
validity of these results 1s questionable (for the same reason as in the present case of randomly
distributed freely moving spheres), since m both these analyses higher order multipole con-
tributions to the hydrodynamic interactions (resulting from the fimte size of the spheres) were
neglected (cf also the discussion of the former analysis in ref 32)
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Tlo/ﬂeTT
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¢

Fig 3 Volume fraction dependence of 7¢/n°" The solid line 1s taken from table I The measured
data are from refs 33 (squares) 34 (triangles) and 35 (circles)

our calculations give values for 7" which are considerably smaller than the

experimental data Two remarks are 1 order, which could each explaimn part of
the discrepancy

First, we note that the expansion 1n correlation functions of the reciprocal of
1°" has only been evaluated to second order In particular, contributions due to
specific correlations between the positions of three of more spheres have not
been included The magmtude of these higher order terms can be estimated
from the term of second order (due to two-sphere correlations), which 1s ~20%
of the zeroth order result at the highest volume fractions considered (cf table
1)

Second, we recall that —strictly speaking —our analysis 1s valid only on the
short time scale T <€ 7, n which Brownian motion has not yet affected a given
configuration of the spheres The measurements, on the other hand, were
performed under static conditions Theoretical studies of dilute suspensions
have indeed shown that the effect of Brownian motion 1s to increase n°™* It
would be nteresting to perform dynamic measurements of the effective vis-
cosity, in order to study, through its frequency dependence, the influence of
Brownian motion

9. The relation between effective viscosity and diffusion coefficient

In this section we shall compare the results for the wave vector dependent

* The cocfficient of the term of order ¢? m the density expansion of 7°" increases due to
Brownian motion by 20% to 6 2% %)
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effective viscosity n(k) of a suspension obtained in this paper, with those of the
wave vector dependent diffusion coefficient D(k) of the suspended spheres,
obtained in ref. 17. The latter quantity is given by

N

D(k) =k, TING()]™ 2 ke, 9.1)

and describes diftusion of the spheres on the time scale 7 <€ 7. over which their
positions are essentially constant (see e.g. ref. 27). In this equation G(k) 1s the
static structure factor, g, the mobility tensor and ky and T denote Boltzmann’s
constant and the temperature, respectively. The large wave vector hmit of
D(k) is the self-diffusion coefficient D, given by

N
Ds1 = kBTN_12<I‘Lu>' (92)

=1

In ref. 17 D(k) has been evaluated through an expansion in correlation
functions of higher and higher order. The lowest order term in this expansion is
given by eq. (9.1) - with g, replaced by the effective pair mobility wi,

' =Qmy’ J dk e ® ATV (k) (67a) A Ok), 9.3)

where the tensor A®P(k) has been defined in eq. (3.6); A”(k) (defined in eq.
(7.8)) is the zeroth order term in the expansion in correlation functions of the
reciprocal of n(k). Through the above equations effective viscosity and
diffusion coefficient are related to each other.

This relation takes an especially simple form for the coefficient of self-
diffusion D,. To lowest order in the expansion in correlation functions, the
mobility tensor in definition (9.2) of D, may be replaced by expression (9.3) and
one finds

D =k,T - 772 f dk(sm ak) A0 . 9.4)

Since the largest contribution to the integral in eq. (9.4) arises from the interval
0 <k <1/a (and since A”(k) is approximately constant in this interval, cf. fig.
1), one may approximate A®(k) in the integrand by its small-k limit — which is
the reciprocal of the effective viscosity at zero wavevector n°" (to lowest order
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Fig. 4. Volume fraction dependence of the reciprocal of the effective viscosity at zero wave vector
n° (from table T) and of the self-diffusion coefficient (from table 1II of ref. 17).

in the expansion in correlation functions). Upon integration one then finds
D =k, T(6mq"a)" . 9.5)

In fig. 4 we show the volumefraction dependence of D/D, (where D,=
kyT(67m4a)™") and 7y/n°", resulting from an evaluation of the expansion in
correlation functions for each of these quantities to second order (cf. ref. 17).
One sees that both quantities have a similar concentration dependence, in
agreement with eq. (9.5). Deviations from this relation are due to: (i) certain
contributions from correlations; (ii) wave vector dependence of the effective
viscosity (a consequence of the finite size of the particles).

We have discussed here the relation between effective viscosity and diffusion
coefficient on the short time scale 7 < 7.. Experimentally, this relation has been
investigated only on the long time scale 7> 7.°>*): it has been observed that
the product of self-diffusion coefficient and effective viscosity is approximately

independent of the concentration, confirming — on this time scale — a relation of
the form (9.5).
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Appendix A
Elimination of the induced forces

According to eqs. (7.2) and (7.3) of the paper by Mazur and van Saarloos"),
one has for the irreducible multipole moments of the induced forces on the

spheres the following hierarchy of equations* (i = 1,2,... N),
S,

- =
F® = 6mnga2p - DB © il 'y,

© N
+ 3 S BP0 AP O F™M (p=2). (A1)
m=2 =1
!
(Here with F® only the symmetric and traceless part of this second moment is
implied.) The surface moment of the unperturbed velocity field v, on the r.h.s.
of this equation is defined as follows

S

Ao, =(@dma?) g f dr (r— RY v,(r)5(r — R| - a). (A.2)

In the present case, the unperturbed flow is given in terms of the external force
by

vg(k) = (nok®) (1 — k) - F(k). (A3)

The formal solution of the hierarchy (A.1) is of the form

© N S,
F? =6mnea >, >, Cm—DIEPM 0O A, (p=2), (A.4)

m=21=1

with the generalized friction tensor gff""') given by eq. (3.2).

* The tensor B€?™ used here corresponds to B® ™" in ref. 15. Note furthermore that (in view of
eq. (2.4)) both the first moments and the antisymmetric parts of the second moments of the induced
forces are zero and consequently do not appear 1n eq. (A.1)
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The transverse part of the induced force is given in terms of the moments
considered above by the expansion (cf. ref. 15, eq. (3.14))

(1 - k) - Frg) = S @p ~ D7), (ak)(1— kY F1 © F©. (A5)
p=2

For the surface moments of the unperturbed flow, furthermore, we have the
identity (ref. 15, eq. (4.1))*

S

o, =Qm)i f dk %R (ak) &7 vy(k). (A.6)
Eqgs. (A.3)-(A.6) yield for the velocity field given by eq. (2.7) the result

N
67Tn0av(k)= T(l,l)(k),Fext(k)+ z Z ek, T(l.n)(k)

=1 nm=2

@ gsjn,m) @ (277_)43 I dkr e|k’-R1 T(m,l)(k/) . Fext(k/) , (A7)

with the tensor field T defined in eq. (3.8). This equation implies for the kernel
M, defined in eq. (2.8), the expression (3.1).
Appendix B
Proof of eq. (6.8)
We start from the identity
H(—nOB~'H) "= H,[1-(n—y)QB'%,]™", (B.1)

where , has been defined in eq. (6.2). It is convenient to define an operator I
with kernel

N (1 ifr=1r,
I(rlr):{o ity r (B2)

* Note that, with respect to the formulae m ref 15, we have made the substitution®)

ar Uy
— k! =(—1)?
Py k7Vsink =(=1)"5, (k)k*
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and a matrix %, with elements

AM(r=0) ifn=m=#1,
{%yo}n,m = { " . (BS)
0 elsewise .
With these notations we can write
%70 = %70 + %Yol’ (84)

O
where , is defined in eq. (6.9). In the same compact notation we have for the
renormalized density

yO=n(1- QB7'%,Y"'0, (B.5)

cf. egs. (6.4) and (6.7).
We note that, as a consequence of the fact that &, I = 0, onc has the identity

%, = %,(1-7,08"'B,I)" . (B.6)

Upon substitution into the r.h.s. of eq. (B.1) and repeated use of definition
(B.4) onc then finds

(1~ nQB %Y " = 9%, (1 - nOB™'%, + v,0B "' %,)"
=%, (1- (1- QBB 1) (n - v)OB ', ) (1 - nQB~'B, 1) .

(B.7)
We now use the identity
(1— QBB 1Y "y, QB %, = v, OB~ %, , (B.8)
which follows from 1‘7270 =0, and another identity
(1-nQ% "B, 1) 'nQ=n(1- 0% 'B,)'0=y0 (B.9)

(cf. eq. (B.5)). Eq. (B.9) is a consequence of the fact that nln = n.
Substituting eqs. (B.8) and (B.9) into eq. (B.7), one then finds for the 1,1
element of this matrix
{961 - nQB %Y 1Y, = (%, (1 - 8y0B'%,)'(1— nQB 'R 1)1,
= (%, (1- 5yOB %), . (B.10)
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This is the required identity (6.8). A similar identity was used in ref. 17 (eq.

(.7).

Appendix C
Derivation of formulae (8.3) and (8.4) for n°"

1. Formula (8.3): no correlations
In order to arrive at formula (8.3) for the zero wave vector effective viscosity

n°", we first redefine the connector field A%?(r) in the following way,

AGI(r) = AP2(r)g (r), (C.1)

where the function gy(r) was defined in eq. (5.12). Note that, since Ay(r) and
A(r) are identical for r > 2a, we may replace the latter field by the former in
definition (3.4) of the connector A,.

Next consider expression (4.7) for n°". If we completely neglect correlations,
this expression (together with eqs. (3.2) and (3.10)) gives

(no/n" = 1)1 - kk) = —5¢(1 — kk)k

, [A Flim S (— gnOAgS‘z”(sIQ)Y] K(1-Kby.  (C2)

-0 p=1

Here we have used the fact that A®"™(gk) is of order £"*"™* (cf. eq. (3.6)), so
that eq. (C.2) does not contain contributions from connectors with upper
indices n + m > 4. From eqs. (5.10) and (5.15) we see that

— O, lim ABP (k) = $(A — 54 k(1 - kk)k: 4), (C.3)
£-0
and hence
Mo/ = 1)(1 — kk) = =5¢(1 — kk)k :[(1— )4 + 54 : k(1 — kk)k: AT
k(1 — kk)
=—36(1+3¢) (1~ kk). (C4)

Eq. (C.4) implies that

7y =1+36(1- )", (C.5)

which is Saitd’s formula (8.3).



80 CWJ BEENAKKER

We remark that, if one would replace the function gy(r) in eq (C 1) by some
other function of r which 1s unity for r > 2a, one would obtain an alternative
formula for the effective viscosity in the absence of correlations To decide
which expression for the connector field for r=<2a gives the most accurate
results in this approximation, one would have to compaie the magnitude of the
corrections from correlations We can, however, make the following obser-
vation the particular choice made above accounts to some extent for the
impenetrability of the spheres, since the connector field A$>(r) vanishes for
r<2a One might expect, therefore, the resulting formula (C 5) to be more
accurate than ~for mnstance —a formula which one would obtain by replacing
go(ry m eq (C 1) by umty for all r Indeed, 1n this latter case one finds upon
neglecting correlations the result

ne"/m: 1+§¢>, (Co)

which 1s inferior to eq (C5)

2 Formula (84) pownt-particle approximation
Constder the zeroth order result (7 9) for the effective viscosity at k = 0,

ne“/n(): 1+;¢7€)2)/n0’ (o)

where @ 1s given as a function of n, through eq (7 5),
6 _
V9= 709 = [ kS, (L + 85 = C3)
0

The function S, (k) behaves for small k as (cf eq (7 3))
S,(k) = 3yPing+ 0(K%) (€9)

If 1n the integral in eq (C 8) one would approximate this function by its zero-k

limit, one would find for y$

Y = n1-3¢)", (C10)

which gives (with eq (C 7)) formula (8 4) for the effective viscosity
Since the wave vector dependence of the function S, (k) which renormalizes
the connectors (according to eq (7 2)) 1s a consequence of the finite radius of
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the spheres, the above approximation -~ which neglects this k-dependence -
may be called 1n this sense a pomnt—particle approximation
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