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Abstract: Testing of independence in an r X c table is generally carried out by using a continuous 
limiting distribution of the test statistic, rather than the discrete distribution itself. This paper 
surveys algorithms for the computation of the latter. The central idea is the efficient enumeration of 
all tables with the same margins, or of a suitable subset thereof. The simplest case is Fisher's exact 
test for a 2 x 2 table and a one-side alternative hypothesis. Fisher's method is easily extended to 
r x c tables and to arbitrary statistics. 
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1. Introduction 

Testing of independence against various alternatives in contingency tables is 
generally carried out by using continuous limiting distributions of the test 
statistics employed rather than the discrete distributions themselves. The prime 
example is the use of the xZ-distribution to approximate the null distribution of 
Pearson's X 2 statistic. This practice is so wide spread that the statistic itself is 
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generally referred to as (Pearson's) X 2 by many authors including Pearson 
himself. 

The purpose of this paper is to discuss methods to test this independence 
hypothesis using finite sampling ditributions of the statistics. Primarily we will 
discuss variations of the approach of completely enumerating all possible tables 
with given margins, i.e. the isomarginal family. The statistics and hypergeometric 
probabilities are calculated along with such enumeration. 

The issue of finite sampling distributions of statistics arises in virtually all types 
of contingency tables: one-dimensional tables, 2 × 2 tables, r x c tables with 
more than one degree of freedom, multidimensional tables. A central concern in 
many papers is the quality of approximation of the Pearson X 2 statistic to its 
asymptotic xLdistribution, but other statistics have been investigated as well. The 
outcomes of such investigations depend heavily on the decision of whether to 
condition on the margins or not. Of course, this decision is also related to the 
sampling design of the studies in question, i.e. which quantities are known a priori 
and thus fixed in the design: neither margins nor overall total fixed (Poisson 
sampling), only the overall total fixed (multinominal sampling), one margin fixed 
(product-multinominal sampling), or for two-way tables: the two margins fixed 
(hypergeometric sampling). But even in Poisson sampling one may opt for a 
decision rule that conditions on all margins. This type of investigation requires 
very efficient algorithms to make the determination of the finite sampling 
distribution at all feasible. The present paper is devoted to a survey of such 
algorithms in r × c tables with two fixed margins, i.e. with hypergeometric 
sampling as H 0 distribution. In contrast to many studies we will treat statistics 
against general alternatives as well as statistics against various ordered alterna- 
tives. The computationally trivial case r = c = 2 is not discussed separately. 

The main variations are complete enumeration, short-cuts avoiding enumera- 
tion of certain tables not in the critical region, and generation of a Monte Carlo 
sample from the isomarginal family. Implementations based on the algorithms 
discussed here are planned to be included in the N A G  library Mark 12 or 13, and 
in the package CTPACK [48] which is being developed by the authors and others. 

2. Fisher's exact  test 

Sir Ronald Fisher [12; section 21.01] was the first to indicate that it was 
possible to construct an 'exact' test, i.e. a test which employs the distribution of 
the statistic itself, rather than an approximation. He only indicated the procedure 
for testing a one-sided hypothesis in a 2 x 2 table using the distribution in one 
tail. In this case all reasonable statistics are equivalent because they are mono- 
tonic functions of each other. Fisher was undoubtedly aware that the procedure 
could be used for any r x c table and any test statistic (cf. Yates [51], p. 217, 218). 
Fisher stipulated that it was obligatory to condition on the marginal frequencies, 
i.e. one need only compare the values of the statistic for the observed table with 
other values of the statistic arising from tables with the same marginal totals. 
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" I f  it be admitted that these marginal frequencies by themselves supply no information on 
the point at issue, namely, as to the proportionality of the frequencies in the body of the 
table, we may recognize the information they supply as wholly ancillary, and therefore 
recognize that we are concerned only with the relative probabilities of occurrence of the 
different ways in which the table can be filled in, subject to these marginal frequencies" [13; 
p. 48]. 

Because of its lack of clarity, this explanation is quoted frequently; see Yates [52] 
for further discussion of this issue. 

Fisher's procedure is very simple: 
- enumerate all possible tables given the fixed marginal totals; 
- compute the statistics of each table; 
- sum all probabilities of tables as least as extreme as the observed one. 
Nothing in this formulation restricts the procedure to 2 x 2 tables, and it is the 
fundament  to all published algorithms for exact testing in r x c contingency 
tables. The first general t reatment of this problem was given by Freeman and 
Halton [14] who, however, lacked the present-day computing power to make a 
routine or large-scale solution feasible. A possible alternative to enumerat ion is to 
compute the characteristic function, and then invert this function (using Fast  
Fourier Transforms) to obtain exceedance probabilities, analogous to the proce- 
dure developed by Pagano and Tritchler [42] for linear rank statistics and scores. 

In Fisher's time the enumeration was almost exclusively restricted to 2 x 2 
tables due to the computat ional  burden of performing enumeration for larger 
tables. The set of all possible tables given the fixed margins, the isomarginal 
family, can be found in 2 x 2 tables by letting one cell, the free cell, run through 
all its range; after all, there is just  a single degree of freedom. Fisher 's exact test 
can in fact be computed with a pocket calculator using some 6 memory  registers, 
say for a, u, r, n, p,, = r!s!u!v!(n!a!b!c!d!), and Y'.p,,, where summation extends 
from observed table to current a (for notation see Fig. 1). Note that  v = n - u, 
s = n - r, and 

pa+l=pa*b*c/( (a+ 1 ) * ( d +  1)) 

= p a * ( u -  a ) * ( r -  a)/((a + 1 ) * ( n  + a -  u -  r + 1)). (1) 

The existence of special (books of) tables for this problem [20,31] seems at 
present a bit overdone. Equally unnecessary is the fact that large and widely 
distributed computer programs and packages like SPSS [45] and N A G  [39] still 
use the x2-approximation in 2 × 2 tables for n larger than 20 and 40 respectively. 
The quality of the approximation depends on m = min (u, v, r, s) more than on n 

C I" 

d s 

I"1 

Fig. 1. Notation for a 2 × 2 table. 
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(note: n >~ 2m). However, even for m = u = v = r = s = 100. the quality is not very 
good: P( X 2 >/3 .84)= 0.066, while P(X 2 >1 3.84) = 0.05. 

3 .  A l g o r i t h m s  s t r u c t u r e s  

Given that  we would like to use finite sampling distributions rather than 
asymptotic ones to test for independence in a contingency table, what are the 
basic structures of the algorithms to either find the complete discrete distribution 
or the (exact) significance of the input table? Or more precisely: 

(a) Given a pair of margins and a statistic S, find the distribution of S under  
the hypergeometric distribution of the table. 

(b) Given a pair of margins, a statistic S, and an observed value of S, So, find 
Po = P (S  >~ S 0) under the null distribution. 

Basic algorithms for these two problems are: 

la .  Basic enumeration algorithm for (a): 
- enumerate the isomarginal family ( =  set of all possible tables with the 

given margins); 
- for each table 

* calculate its probabil i ty p and S, 
. write p and S to a file; 

- sort file on key S. 

lb .  Basic enumeration algorithm for (b): 

- p 0 = 0 ;  

- enumerate  the isomarginal family; 
- for each table 

• calculate S, 
• if S >~ S O calculate the probabil i ty p of this table and add p to P0; 

- print  P0- 

2b. Basic Monte Carlo algorithm for problem (b): 

- P 0 = 0 ;  

- generate M tables from the isomarginal family (independent,  weighted 
sampling); 
- for each table 

• compute S, 
• i f S > ~ S  O then Po=Po +l/M; 

- print  Po- 
Here Po denotes the Monte Carlo estimate for Po- 

3b. Basic characteristic function algorithm for problem (b): 
- compute  the characteristic function; 
- invert it via Fast Fourier Transforms to obtain p. 
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We have developed an algorithm and a FORTRAN 77 program, FISHER, which 
performs among other things the complete enumeration and the Monte Carlo 
algorithms based on the principles described; a User's Manual  is [49,50], an 
Installation and Programmer's Manual  is [30]. 

Common to all algorithms for problem b is the test " i f  (S >~ So) t h e n . . . " ;  the 
" i f  S = S O t h e n . . . "  part  of the test is problematic in any implementat ion in 
which S and S O are real numbers. In particular the results of this test may depend 
upon: 
- size of the mantissa of a machine real number; 
- order of computat ions at machine level; 
- the rounding process in the central processor. 
Thus a table included in one calculation may be excluded if the calculation is 
repeated at a different machine, or at the same machine using a different 
compiler, or at the same machine and compiler but with different levels of 
optimization or treatment of rounding. That  this problem is not an academic one 
became clear to us when comparing results between the FORTRAN IV and 
FORTRAN 77 versions of our program. For instance, the IMSL routine CTPR 
exhibits this behaviour without any warning from the manual  [23]. (In addition, it 
does not specify which statistic is used: the hypergeometric probabil i ty  itself.) The 
only practical solution seems to be to provide the user with an upperbound for 
p (S  = S 0), called the probabil i ty mass at So. This upperbound is calculated as the 
sum of the probabilities of all tables for which the calculated S differs less from 
the calculated So than some small threshold e, which must exceed the possible 
inaccuracy in the calculation of S. This upperbound to the probabil i ty  mass 
informs the user about two points: 
- it is a measure of the discreteness of the null distribution of S at So; 
- it is a pessimistic upperbound to the possible difference between any two 

calculations of the significance. 

4 .  R e p r e s e n t a t i o n s  

The construction of an algorithm for the enumeration of the isomarginal family 
is very much dependent  upon the way the contingency table and the enumerat ion 
process is conceived. 

Contingency table. The obvious representation of a contingency table is as a table 
with r rows and c columns with 8 = ( r  - 1) × (c - 1) degrees of freedom or with 8 
free cells in the first r - 1 rows and the first c - 1 columns. The r + c - 1 border 
cells, i.e. those adjacent to the margins, are fixed given the free cells and the 
marginal constraints, and the last free cell is located in the south-east corner. A 
less trivial representation of a contingency table is its so-called vectorizedform: all 
cells are arranged into a column vector t = (tf, tb) with tf the vector of free cells, 
a n d  t b the vector of border cells. The vectorization we use is: t11, t21 , . . ' . ,  t12 , 

t22, . . .  ; i.e. the order used in FORTRAN, rather than in PASCAL. The constraints on 
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t l l  

t21 

t12 1 

t22 3 

6 

5 2 10 

(a) 

0 1 0 

1 2 0 

2 2 2 

3 5 2 
~< 2 

(b) 

1 t ij >~ 0 (i=1,2; j=1,2) 

3 t l l  + t12 ~< 1 

t21 + t22 ~< 3 

6 t l l  + t21 ~< 3 

10 t12 + t22 ~< S 

t l l  + t21 + t12 + t22 

(c) 

0 1 

2 3  1 2 3  1 2  0 1 2  0 0 0 0 1 2 3  0 1  0 

level 

- - t l l  

--t21 

--tl 2 

--t 22 

(d) 

Fig. 2. Part (d) is the enumeration tree of the isomarginal family corresponding to part (a). Each 
table is represented by a leaf of the tree, or equivalently by a path from the root to a leaf. For table 
(b) this path is marked by heavy lines. F.inally (c) lists the restrictions on (t]], t21, t12, t22). 

the cells due to fixed margins are thought of (more abstractly) as linear con- 
straints on the values of the elements of the vector. We will use both representa- 
tions of a contingency table, often interchangeably. In both cases for a given 
element of cell we will refer to preoious cells as the elements above the given cell 
in the linearized vector, and to following cells as the elements below the given cell. 

Isomarginal family. Both the isomarginal family of all tables with the same 
margins and certain relations between these tables can be represented in various 
ways. We will discuss a tree, a network, and a convex subset of lattice points in 
R d or R 8 with d = r × c. 

In the first representation (see Fig. 2) the isomarginal family can be seen as the 
set of all leaves of a directed tree, where each level of the tree corresponds to a 
(free) cell. At each level we have only a 'partially filled table'; the cells of an 
initial segment of the table in vectorized form have values, the following cells are 
'blank'. At the root the whole table is blank; at the leaves we have completely 
filled tables. So each leaf corresponds to a generated table, i.e. to a member of the 
isomarginal family.  
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level 
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column 3 

column 3 

T 0 
0 
0 

Fig. 3. Representation of the isomarginal family from Figure 2 as an enumeration network. Each 
table is represented by a path from S to T, and each node represents a sum of columns, from a 
certain column to the last column. The table from Figure 2(b) is represented by heavy lines. 

In the second representation (see Fig. 3), taken from [36], the isomarginal 
family can be seen as the enumeration of all possible paths through the 'network'  
from the initial to the final node. The 'network' is a directed graph with universal 
source S (representing an empty table) and universal sink U (representing any 
filled table). This graph contains no (directed) cycles. All maximal (directed) 
paths start in S, end in T, and have the same length (=  number of columns). The 
isomarginal family is represented by these maximal paths; each of the nodes at 
distance k from the sink T corresponds one-to-one to the possible pairs of 
margins of the subtable formed by the last k columns. Each edge from such a 
node at distance k -  1 corresponds to a possible ( k -  1)-st column. (But this 
correspondence between nodes and possible columns is many-to-one.) 

In the third representation the isomarginal family is portrayed as a convex 
subset of the lattice Z0 a in R d with d =  r x c or in R 8 with ~ = ( r - 1 ) × ( c - 1 )  
(see also [5]), where {Z0= 0, 1, 2,.} is the set of nonnegative integers. Any 
member of the isomarginal family corresponds in a one-to-one fashion to a point 
in Z0 d. Given the margins m and the vector tf of free cells, the vector t b of border 
cells is a linear function of tf and m, 

I b = - A t f  + Bin, say. 
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Fig. 4. Part (c) is the convex subset representation of the isomarginal family corresponding to part 
(a). Part (b) lists the restrictions on (tl~, q2). 

(All elements of the matrices A and B are zero or one.) Thus the isomarginal 
family corresponds to 

( t l t f  E Z 8 and t b = - A t f  + B m  >~ 0}. 

Clearly this is a convex subset of the lattice Z0 d (see Fig. 4). Note that indepen- 
dence corresponds to a point in R d (not necessarily in Zo d) in the convex hull. 
Tables far from independence have large X 2 but small probabilities ( -  log(prob- 
ability) is asymptotically proportional to X2). In the probability measures there 
are 'few' extreme tables, by definition, but in the counting measure there are 
generally very many of such tables. 

5. C o m p l e t e  enumerat ion  , 

Most published algorithms proposed for calculating exact distributions are 
based on the enumeration of the isomarginal family. In the present section we will 
discuss the basic structure of such algorithms. 

The basic principle behind the enumeration algorithm is already present in the 
enumeration of all numbers between, say, 000 and 999 in decimal arithmetic. This 
is done with three counters: the last counter, representing the units, runs fastest. 
If it overflows (at 9, the 'hibound'),  then the second counter, representing the tens 
is increased by one, and the last counter is reset to 0 (its 'lobound'), etc., cf. 
Fig. 5a. 

In the enumeration of an isomarginal family, we represent the tables in 
vectorized form, as 8-vectors with 8 = (r - 1)(c - 1). Each cell is a counter. Again 
the last counter runs fastest. The loop incrementing the value in this cell is called 
the hot loop, because it is the loop with 'most  friction'. If the last cell hits its 
hibound, one has to find the nearest cell not yet at its hibound, increment this 
cell, and start anew from this cell on (see Fig. 5b). The only difference with 
ordinary counting is that lobounds and hibounds are not constant, neither from 
cell to cell, nor for one cell during.the enumeration process. The lobound and 
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hibound of any cell depend on the values of all previous cells. The flow chart of 
Fig. 5b allows for this. Crude bounds are 0 as lobound (giving problems in 
FORTRAN IV) and min (ti+, t+j) as hibound. Exact bounds are discussed in 
Section 6. A summary of the core of the FISHER [49] algorithm based on this way 
of counting is given in Fig. 6. In this description the initial values of several loop 
indices will sometimes be larger than their end values. When this occurs the loop 
should be skipped. Decreasing loops should be treated analogously. The labels in 
Fig. 6 correspond to the labels in Fig. 5b. 

t (2) = Iobound i / / ~  t (3) = Iobound 

int = lOOt (1) + lOt (2) + t  (3) 

[ I I I I t(1)=, (1)+, I t ( 2 ) = t ( 2 ) + l  t(3)+t(3)+l 

n o  

increments 

overflow 
tests 

t (1) = Iobound 

Fig. 5a. How to count from 000 to 999. An algorithm using a fixed number of nested loops. 
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~ 1&2 

< 
I °+''--+ +' I 

t L 

t(cell) = t(cell) + 1 

L label 5 

hibound 

hot loop: 

J For i=lobound TO.hibound DO I 

I FOR i = cell TO n-1 do t(i) = Iobound J I 

overflow 
test 

! 
cell = cell - 1 I 

I 

label 3 

int = lOn-1t(1)+lOn'2t(2)+... + lOt(n-l) J 

label 4 

Fig. 5b. Gentleman's generalization, simulating a dynamic number of nested loops. The labels 
correspond to the labels in Figure 6, which is very similar. 

Note that the algorithm of Fig. 5a is most easily implemented as 3 nested 
loops. A similar implementation for the algorithm if Fig. 5b is not possible, 
because the depth o f  the loops is dynamic: it is the number 8 of free cells of the 
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FISHER ALGORITHM 
(using nested GOTO's and updating of In p and x2) 

1 p = 0;ntable = O; lobound(l,l) = ; hibound(i,c) = ; 
2 hibound (r,j) = ;row = l;column = I. 
3 Label l: 
4 FOR j = column TO c-2 DO 
5 FOR i = row TO r-I DO 
6 table(i,j) = lobound (i,j) 
7 update hibound and lobound for next cells 
8 update partial sums of the log-prob, and of S 

current 
9 OD 
I0 update partial sums of log-prob, and Scurren t for the last cell 
II row = 1 
12 OD 
13 Label 2: /*do the same, but for column c-I and c simultaneously, uptil row r-2*/ 
14 
15 
16 
17 
18 for both cells 
19 
2O 
21 = hibound (r-l,c-1) /*notational convenience*/ 

22 Label 3: /* hot loop */ 
23 ntable = ntable + dlast -d0+1 
24 FOR d = dO TO dlast DO 
25 compute hypergeometric probability Pcurrent of this table 

26 compute the value Scurren t for this table 

27 IF > THEN p = p + (Scurrent Sobs) Pcurrent 
28 OD 
29 Label 4: /* overflow: search for previous cell to be increased by one */ 

FOR i = row TO r-2 DO 
table (i,c-l) = lobound (i,c-l) 
table (i,c) = columnmarg (i) -table (i,c-l) 
update hibound and lobound for cell (i+l,c-l) 

update partial sums of log-prob, and Scurren t 
OD 
dO = lobound (r-l,c-l) 
dlast 

30 last row = r-I 
31 FOR j = c-I DOWN TO 1 DO 
32 column = j 
33 FOR i = last row DOWN TO 1 DO 
34 row = i 
35 IF (table(i,j) > hibound(i,j)) THEN GOTO Label 5. 
36 OD 
37 last row = r-I 
38 OD 
39 print p 
40 STOP /*all tables have been generated*/ 

41 Label 5: /* prepare for: GOTO Label I */ 
42 tab le (row, co lumn) =tab le (row, co lumn) + 1 
43 IF (column=c-1)TBXN table (row, c) =table (row, c)+l 
44 update hibound and lobound for next cells 

(as many as possible) 

45 update partial sums of log-prob, and Scurren t 

46 row = row +I 
47 GOTO Label I. 

Fig. 6. The basic algorithm of the program FISHER. 

table. Our oldest reference for this simulation of a dynamic number of loops in 
statistical computations is Gentleman [17]. (See also O'Flaherty and MacKenzie 
[40], whose generalization is not as general as our Fig. 5b.) The algorithm is 
certainly of interest in its own right. 
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LI 1 tl 2 tl 3 t l ,  

t21 t22 t23 t2+ 

t3+ 

t4+ 

t+l t+2 t+3 n 

t l l  t12 tl 3 

t21 t22 t23 
U V W 

t+ 1 t+ 2 t+ 3 

tl+ 

t2+ 

t3+ +t4+ 

(a) (b) (c) 

t3+ 

t4÷ 

v w t 3++t4+ 

Fig. 7. Generating all 4 x 3 tables (a) corresponding to the collapsed 3 x 3 table (b) is equivalent to 
generating all 2 x 3 tables (c). 

As mentioned above, Boulton and Wallace [5] have designed a truly recursive 
algorithm, which they have implemented in ALGOL. The basic idea is the follow- 
ing: Given the marginals of an r x c table ( t l+ , . . .  , t~+; t+ ] , . . . ,  t+c), collapse the 
( r -  1)-st and the r-th row: 

t]+ . . . .  , t r _ 2 , + , ( t r _ l , +  + tr+); t + l , . . . ,  t+c. 

To any collapsed or reduced table with these marginas corresponds a non-empty 
family of unreduced tables with unreduced marginals (see Fig. 7). Generating this 
family is precisely the problem of generating all 2 x c tables with given marginals 
(see again Fig. 7). In an analogous way the generation of the 2 x c tables may be 
recursively reduced to the generation of 2 x 2 tables. Thus we have reduced the 
problem of generating all r x c tables to three smaller problems: 
- generating all (r  - 1) X c tables with the collapsed margins; 
- generating certain 2 x c tables with fixed margins; 
- generating certain 2 x 2 tables with fixed margins. 
Despite the mathematical elegance of this method its direct implementation has 
its drawbacks. First, recursion unfortunately conflicts with the use of FORTRAN, 
the language most often used for statistical computation. Secondly, this recursive 
enumeration process requires very many routine calls and exits, leading to a 
sizeable overhead in the computations. This probably explains why no other 
authors have literally followed up Boulton and Wallace's work. Instead the 
efficient complete enumeration algorithms described above all use a variant of the 
Gentleman [17] procedure. 

6.  B o u n d s  o n  ce l l  f r e q u e n c i e s  a n d  p r o b a b i l i t i e s  

General expressions for hibounds and lobounds for cell (i, j )  with i ~< r -  1 
and j ~< c - 1 can be derived algebraically, but also from the observation that at 
each cell (i, j )  the complete r x c table may be condensed to a 2 x 2 table with 
(i, j )  as the free cell (see Fig. 8). In Fig.  8 we use the following notational 
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vij = 

. . . . . . . . .  ° °  

• rij 

1~ { t i'j' outside the heavy lines} 

{ t i , j , :  i' < i o r  j' < j }  

Co° ij 

tij t i+ 

i - I  
£ t  

i,=l i~. 

t , .  'I 

' ~; '~ j ,  t+j N t+j-cij i~ = N-vij 
I'-- I 

t i+'r ij t ij t'i+ 

N = N~.. 
"J lJ 

(a) (b) (c) 

Fig.  8. Stripping and condensation of a table in order to determine the range of t u given the 
margins and the previous cells (i.e. the cells to j, with j '  < j or with j '  = j and  i' < i). 

conventions: 
i - 1  

Cij = E ti'j, 
i ' = 1  

i - I  

l)ij = E 'i' + + 
i ' = 1  

j - I  

rij = E tij', 

j - I  i - I  j - 1  

E '+j,- E E',j, 
j ' = l  i ' =1  j ' = l  

(2) 

[ + j  = t +j  - c i j ,  t'i+ = t i + -  r i j ,  .N  = N - v i i ,  

using the convention that a summation yields null, if its upper limit is less than its 
lower limit• 

The hibound and lobound for tij can easily be expressed in these quantities: 

lobound(i,  j )  = max(0, ti+ + / ' + j -  N ) ,  

hibound( i, j )  = min(/'i +, ?+j)- 

Note that /,+, ?+j, and ~r are all expressed in terms of previous cells. 
Algorithms using min(t~+, t+j) and 0 as crude hibounds and lobounds are 

overcomplete in the sense that they may generate 'impossible' tables, which 
contain cells with negative frequencies; see, for instance, proposals by Baker [3] 
and Cox (unpublished, cf. Cox and Plackett [10]). The reason is that 0 is not a 
true lower bound for each cell. For example, in the 2 × 3 table 

0 b c 5 
2 e f 5 

2 4 4 10 
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the lowest value for b is not 0 but 1. The overcompleteness of these algorithms 
makes them unnecessarily inefficient. Complete algorithms continuously update 
the bounds during enumeration and avoid thereby impossible tables. 

The hypergeometric probability of a table t = ( tij } is 

P(t)= ( I - I t + j ' l l f i t i + ' ) / ( g '  f i  ff-~ i=l i=l j=l (3) 

which may be computed directly for each generated table, or which may be built 
up via conditional probabilities given the previous cells of a cell (i, j ) .  This 
conditional probability ~r,j is 

qriJ = tij ( t i+-  r,j) - tij t i+-  rij 

l [ i + _ t i j ] / t [ i +  ) (4) 

where q j, rij, vii, ~,+, ~+j, and N are defined as in (2). 
Note that ~r~j is the hypergeometric probability of a 2 x 2 table collapsed from 

a subtable the original r x c table (see also Fig. 7). The ~r~j can be obtained via 
recursion from the previous cell (cf. [43]). From the computation of the hibounds 
and lobounds of cell (i, j ) ,  c,j, r u and v~j are already available. 

In the computation of probabilities most authors employ log-factorials rather 
than the factorials themselves in order to prevent integer or real overflow. For 
larger factorials (say n > 20) an extension of Stirling's approximation may be 
used, as its error of approximation can easily be made smaller than say 10 -2°, 
which is often smaller than the error caused by rounding during the computation 
of the probabilities themselves. Recursive calculation of log-factorials through log 
(n + 1)! = log n! + log(n + 1) has the disadvantage of accumulating a large 
rounding error. It is recommended only if the process is done in higher precision 
than the calculations using the log-factorials in the enumeration process. Working 
with logarithms has the additional advantages of adding over multiplication. 
Generally, it is efficient to compute the log-factorials before the enumeration 
process itself, and to store them in an array. 

7. Computation of statistics 

In this section we will discuss the computation of test statistics for which exact 
distributions are to be calculated (for some examples see Table 1). First we will 
introduce the necessary terminology. 

The variable giving rise to row classification or row variable will be denoted by 
X, and the column variable by Y. If X and /o r  Y are ordinal, then many tests 
depend upon rank statistics. In a contingency table ranks have many ties. A 
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standard way to deal with ties is the use of midranks, i.e. the average of the ranks 
of the observations in a row (column). Note that the use of midranks is not 
necessarily the only or the best way to deal with ties (see e.g. Lehmann [32], 
section 1.4, p. 18). Alternatives to the use of midranks are: the use of 1, 2, 3,..; the 
use of values assigned by the researcher, or the estimation of 'optimal '  values of 
optimizing some measure of association. If X a n d / o r  Y are numerical measure- 
ments each row (column) has a natural  'value' ,  which, however, may be trans- 
formed if appropriate.  Midranks may be interpretated as just  one scale of values 
(or transformation of values). When X and Y have numerical values, Pearson's r 
and the correlation ratio ,/2 may be used as measures of association; if the values 
are midranks, they reduce to Spearman's  r S and Kruskal-Wal l is '  K, respectively. 

Some authors associate exact testing with the use of the hypergeometric 
probability P as test statistic, e.g. Freeman and Halton [14], Tate and Hyer [46] 
and IMSL [23], routine CTPR). A low value of P leads to rejection. Under  
independence P and X 2 are asymptotically equivalent, because - 2  In P and X 2 
are asymptotically equal. The use of - 2 In P as a test statistic will be referred to 
as 'exact probability test' (EPT). Typically this choice of P as a test statistic is not 
explicitly mentioned, let alone motivated. Of course, this choice leads to fast 
algorithms, since P has to be computed anyway. Also incomplete enumeration 
(see Section 9) is simplified. On the other hand, the approximation of the 
distribution of P by X 2 for small and moderately sized samples is far inferior to 
the x2-approximation to the distribution of X 2. Cochran's  [8,9] well-known rule 
of thumb (df > 1, 80% of expected values >~ 5, all expected values > 1) applies to 
the 95% point of the distribution of X 2, but not to P (as e.g. Tate and Hyer seem 
to believe). Therefore, it seems inconsistent to test with X 2 when Cochran's  rule 
is satisfied, and to perform an exact test with P when the rule is not satisfied. 

Given enumeration procedures to generate all possible tables with fixed margins 
the exact distributions of any test statistic can be computed. For a well-structured 
algorithm the inclusion of the computat ion of the statistics is relatively straight- 
forward as can be seen from Fig. 6 (lines 8, 10, 18, 26, 45) (see for an example 
Molenaar  [37]). 

Most calculations for statistics and probabilities can be reduced to the accumu- 
lation of sums, indexed either over columns or over cells. Two succesively 
generated tables of an isomarginal family have a frequently nonempty initial 
segment of cell frequencies, or set of previous cells, in common. Therefore the 
partial  sums over the initial segment of the earlier table can be used as a starting 
point for the summations of the next table. As an example consider Pearson's X 2. 
This s'tatistic is the sum of contributions Xi 2 = (obsij - expij)2/exp~j for each cell 
(i, j ) .  For a given table, let sij be the partial sum 

s,j = E X~.j, 
(i', j')<(i, j) 

for each i and j .  Let the Successor table be equal to its predecessor table up to 
(iv, iv)- The X~ and s~j needs to be redefined only for (i, j )  > (i 0, J0)- 

Computations will be simplified for a statistic using (mid)ranks or arbitrary 
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values by suitable standardization. For example, standardization of X and Y to z x 
and Zy will simplify the calculations for r to r = F_,ZxZy. Similarly care should be 
taken that the most efficient form of a statistic is used for computation. For 
example, 

= - expij) /exPij X 2 ~ (obsij 2 
0 

= • (obsajexp, j )  - N. 
q 

Obviously, the second expression is more efficient. 
For some statistics using ranks, e.g. Kendall's "r and r S the formulas can be 

written in such a form that integer arithmetic is possible, thereby avoiding 
problems of rounding errors, and difficulties in comparing whether two values of 
a statistic are the same or not (see also Section 3). As a nontrivial example we will 
look at q. In a contingency table with fixed margins rs takes the form 

Et,j(x,- y) 
covariance( X, Y) i , j  

rs= st .dev(X)st .dev(Y) = V f ~ / t i + ( x i _  ~)2(~ t+j(Yj- ~)2 

where_ X i denotes the row midrank, Yj the column midrank, X the average of Xi 
and Y the average of Y~. The denominator only depends on the fixed margins and 
the fixed midranks, thus it is a constant which may be computed outside the 
enumeration proper. When we rewrite r~ as 

rs={.~.tijXiYj-½NZ(N+ 1)}/constant  
t , j  

we see that also the second term in the numerator is a constant. Moreover, t~j, 
2 X~, and 2Y~ are integers for each i and j.  If, therefore, the first term multiplied 
by 4 is computed and updated during enumeration, the variable part of r~ may be 
computed in integer arithmetic. Details on the computation of other statistics 
mentioned in Table 1 may be found in [30]. 

An important general principle in the computation of statistics and probabili- 
ties is that computations should be done as much as possible in the outer loops, 
or, if possible, outside the enumeration proper. For example, the storage of 
log-factorials may be handled in this way, as pointed out at the end of Section 6. 
The usefulness of such procedures depends both on the time necessary for 
recomputing as compared to the time required for retrieving an array element, 
and on the time gain compared to the storage requirements. 

A facility for a user-defined statistic can easily be accommodated, if not very 
efficiently. Each time a new table is generated, its frequencies are passed on to a 
user supplied function, which returns the value of the user defined statistic. This 
routing call within the hot loop slows down the enumeration considerably for two 
reasons. First a routine call inside a loop makes loop optimization difficult, if not 
impossible for most FORTRAN compilers. Second, one has to compute each value 
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of the statistic from scratch, and one cannot store intermediate results, as 
discussed in the last paragraph. Nevertheless, this facility is very powerful in its 
wide applicability, if only as a prototype. For example, De Leeuw and Van der 
Burg [11] used this facility to compute the exact significance of canonical 
correlations in 3 x 3 and 4 x 3 tables. 

If the user supplied function also returns a user defined probability, then the 
user can replace the hypergeometric distribution by another one. This, too, is very 
easy to implement. 

8. Fine tuning 

In this section we will discuss a variety of details which could be termed 
'algorithmic tricks', in that they are not essential for understanding the algorithm, 
but their influence on its performance can be substantial. 

The value of a statistic and the probability of a newly generated table is often 
only computed after the table has been generated in its entirety. A more efficient 
procedure is to update the statistics and probability during enumeration, i.e. to 
use partial sums containing the contributions to a statistic and the probability of 
all previous cells. This involves reserving separate arrays for the partial sums of 
each statistic and probability (see also lines 8, 10, 18 and 45 of Fig. 6). Generally 
the gain in computing time far outweighs the increase of storage requirements and 
retrieval time. 

Against non-ordered alternative hypotheses sorting marginal totals to increas- 
ing sizes towards the south-east corner of a table will ensure that the range of the 
last loop element (i.e. the hot loop) will be as large as possible, and we assume 
that this will increase the efficiency of the enumeration. Similarly, given our 
vectorization (t11, 121, - - - )  the contingency table should be given the form r >/c, as 
in that way loop overhead by going from one column to the next is minimized. 
For consider the choice between two alternatives to nesting of loops: 

(A) FOR i = 1 TO k DO 

F O R j = I T O I D O  
workl 

OD 

work2 

and 
(B) 

OD 

FOR j - - - -1  TO / DO 

FOR i = 1 TO k DO 
work1 

OD 

work3 
OD 

The success of both optimizations depends on the following: 
- The efficiency of retrieval of array elements in workl with respect to their 
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prescribed order. The efficiency depends on the language (PASCAL behaves 
differently from FORTRAN), and machine and operating system architecture. 

- Loop overhead: if k < l then (A) incurs less overhead. 
- The amount of work in k * work2 compared to l * work3. If work2 and work3 

are nearly equal in workload, and k < l then, again (A) is preferable. 
Above we mentioned that as a general principal computations should be done 

as much as possible in outer loops or even outside the enumeration proper. This 
argument is valid a fortiori with respect to the hot loop, as the program spends 
more time in this part of the algorithm than anywhere else. Therefore, simplifica- 
tion in this particular loop will have a strong effect on the efficiency of the 
algorithm. In discussing such simplifications it will be useful to view the last free 
element or cell as the single free cell of a 2 × 2 table. The range of this cell is thus 
the range of the hot loop. We will utilize the notation as given in Fig. 1, i.e. 

a = I r_ l , c_ l ,  b = tr_l ,c ,  C = / r , c - 1 ,  and d = tr, c. 
For optimizing computations for the probabilities in the hot loop use may be 

made of simple recurrence relations. If a, b, c, d are the values of the 2 × 2 table 
before entry into the hot loop and p* is the partial sum of the log-probabilities of 
the previous cells upto cell ( r -  1, c -  1), then for any value of the loop index i, 

pi = exp(p* - ln(a  + i ) ! -  ln(d + i ) ! -  l n ( b -  i ) ! -  I n ( c -  i)!). 

Rather than performing exponentiations inside the hot loop, we should evaluate 
p, for the first value of i before loop entry, and inside the loop one may use 

P i + l = P i ( b - i ) ( c - i ) / ( a + i +  1 ) ( d +  i + 1). 

But one should beware of possible underflow problems. Note that first p~ 
increases and after reaching a maximum ' in the middle' decreases monotonically. 
The first Pi may be very small, while ' in the middle', the values of pi may be 
substantial. Values of p; smaller than, say, 10 -20 may safely be neglected. One 
will never enumerate as many as 101° tables, so these neglected tables will never 
contribute more than 10 -1° to the significance, which is practically nothing. 
Similarly, one may stop at the other tail if p~ decreases below 10-20. 

Analogously to the efficient updating of the probabilities in the innermost loop 
as described above, most statistics may be updated through simple recursion as 
well, for the k-th order polynomial functions of the loop index may be done by 
differencing up to order k, which can be updated by k additions. X 2, K, and ,! 2 
are quadratic in the index, while "r, rs, and r are linear. This implies that the first 
group can be updated linearly in the first cell, and the latter group by a constant, 
which may be computed beforehand. 

As an example, X 2 is quadratic in a (for notation see Fig. 1), and can be 
computed recursively as follows: 

X 2 ( a +  l,  b -  l ,  c -  l ,  d +  l)  

= X2(a,  b, c, d )  + ( 2 a  + 1) /exp a + ( - 2 b  + 1) /exp b 

+ ( - 2 c +  1) /exp  c + ( 2 d +  1) /exp d 

= X 2 ( a ,  b , c ,  d ) + B + C ,  
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where exp a is the constant expected value for the free cell a, and the other 
expected values are defined analogously, C = 1 /exp a +\--  • + 1/exp d, and B = 
2(a /exp a -  b /exp  b -  c /exp c + d/exp d). Note that C depends only on the 
(fixed) expected values and may be computed before enumeration, and B needs 
to be computed only once before the hot loop starts. So after computing initial 
values for XZ(a,b,c,d), B, and C, the updating becomes 

X2(a+ i, b - i ,  c - i ,  d+ i) 

= X 2 ( a + ( i  - 1), b - ( i -  1), c - ( i -  1), d + ( i -  1))+ B + iC. 

The updating of r s is even simpler: 

% ( a + l ,  b - l , c - l , d + l )  

= r s ( a  , b, ¢, d)+aSnr_lYn¢_ 1 - b S n r _ l Y n c - c S n r Y n c _  1 + dSnrYnc 

=rs(a, b, c, d ) + C ,  

where C may be computed outside the hot loop. 

9. Incomplete enumeration 

In the basic enumeration algorithm for the calculation of the entire distribution 
of a given statistic S (basic algorithm la;  Section 3), one cannot avoid complete 
enumeration of the isomarginal family. But for the calculation of significances 
(basic algorithm lb;  Section 3) one only has to enumerate the critical region (or 
its complement). And even in the enumeration of points in the critical region 
shortcuts are possible by methods which allow computing the sum of the 
probabilities of certain subsets of the critical region more efficiently than by 
complete enumeration. 

A convenient representation of the isomarginal family for studying the 'critical 
region' CR is the third representation mentioned in Section 4: the isomarginal 
family is portrayed as a convex subset C of the lattice Z0 a. The critical region CR 
is the subset of C consisting of tables with values of S at least as large as the 
observed value S 0. Thus the size of C depends very much on the value S 0. For 
X2-statistics C \ C R  is approximately ellipsoidal, and for moderate values of S 
will contain far fewer tables than CR (cf. last remark of Section 3). But for a 
linear statistic like ~- or r, CR is an intersection of C with a half space. 

The basic tool to shortcut complete enumeration is the following [41,36]: 
Consider the first representation (Fig. 2) in Section 3. At any node of the tree we 
know the values in all cells of an initial segment of the table in vectorized form. 
From these it is often easy to determine the largest and /o r  smallest possible 
values of S for all tables with this initial segment (for all leaves sprouting from 
the node). Consider, for example, X 2= E ( O -  E)2/E.  At any node the sum 
~ ( 0  - E ) 2 / E  over all cells in the initial segment up to the node clearly is a lower 
bound to the value of X 2 of any corresponding complete table. So if this partial 
sum already exceeds the observed value, then all tables with this initial segment 
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924 924 924 924 924 924 924 924 924 924 924 924 924 924 924 924 probability 

(b) 

Fig. 9. Sum of the probabilities of all tables with a fixed initial segment. Here r = 2, c = 3, and 
initial segment is tl] = 0, t21 = 3. Part (a) gives the margins, and shows the reductions to a table in 
which all cells are known; part (b) gives the enumeration tree, where the initial segment is shown by 
heavy lines. 

are in CR. The sum of the probabilities of all tables with a given initial segment is 
easily computed from (4). Especially if the initial segment precisely consists of, 
say, the first c' columns, this sum of probabilities is the hypergeometric probabil- 
ity of the r × (c '  + 1) table obtained by collapsing columns c' + 1 up to c to one 
column. See Fig. 9. 

In the implementat ion of this shortcut one has to decide on the following two 
points. First, how often does one want  to test whether a shortcut is feasible; e.g. 
at each free cell or at each completed column. In FISHER we opted for the last 
solution on rather  intuitive grounds. Secondly, one has to decide whether to test 
for the minimum of S, for the maximum of S or for both. For instance, for 
S = X 2 it hardly seems worthwhile to test whether a branch is completely in the 
complement of CR, i.e. to test for the maximum X 2, firstly because this 
maximum is rather costly to compute,  secondly because relative few branches 
have this proper ty  in a large isomarginal family. 
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In Section 8 we mentioned another way to skip certain tables, viz. sets of tables 
with a total probability less than, say, 10 -2°. In Section 8 this has been applied to 
the hot-loop only, but the argument can also be applied to all tables correspond- 
ing to a given initial segment of the vectorized table. The total probability of such 
a set is very easy to compute. 

Saunders [44] indicates a way to skip enumerating a number of tables in the 
special case that two or more rows (columns) are equal. This situation is likely to 
occur in designed experiments, but in any case its testing can be done at virtually 
no cost. Generalization to arbitrary patterns of equal row and column marginal is, 
however, not easy. 

Yet another idea comes from Goodall [19]. He introduces the following 
equivalence relation on an isomarginal family. Two tables t and s with the same 
margins are equivalent if and only if the vector (tij) is a permutation of the vector 
(sij). Obviously equivalent tables have the same hypergeometric probability. For 
the EPT it, therefore, suffices to enumerate the equivalence classes and determine 
their sizes. However, these two subproblems still seem to be open. Moreover, 
other test statistics such as X 2 and the likelihood ratio statistic (LR) are not 
constant on these equivalence classes. 

10. Monte Carlo methods 

Table generation by simulating draws from a hypergeometric distribution, is 
described by Patefield [43]; an earlier, less efficient algorithm is due to Boyett [6]. 
Essentially the cells from the table are filled one by one, where each cell frequency 
is drawn according to the distribution described by (3) or (4). After all, this is the 
distribution of a cell conditional on the distribution of its predecessors. Two 
successively generated tables will in general have an empty or very short equal 
initial segment, unlike two successive tables generated by a basic enumeration 
algorithm. Hence it is not possible to store partial sums of statistics, as was 
outlined in Section 7, which would have yielded important savings in subsequent 
computations. In Monte Carlo simulation we know of no substantial improve- 
ments to the calculation from scratch of the statistic for each newly generated 
table. The generation process and the calculation of the statistic per table are 
much more time consuming than the generation of the next table in the complete 
enumeration process. It turns out that the former process typically generates 
20-100 times less tables per second than the latter. But it has the advantage that 
the number of tables generated is fixed in advance, and the computing time does 
not depend greatly on N, as opposed to the N S-behaviour of the complete 
enumeration process. 

11. Power and null distributions differing from the hypergeometric 

For power calculations one has to replace the hypergeometric null distribution 
of the tables in the isomarginal family by the distribution under the specified 
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alternative. Also one has to reconsider whether or not one wants to compute the 
power conditional on the observed margins or not. If power calculations are 
performed before the observations are collected, then this is obviously impossible. 
But this paper only discusses distributions conditional on the margins because of 
the algorithmic similarity of their algorithms. 

Consider the unconditional alternative distribution 

multinominal(N, %1, %1,..-, ~'rc) 

where for each of the N independent observations %j is a probability that the 
observation will fall in cell (i, j) .  Thenlthe conditional probability of observing 
t = (t11, q2,---, trc) is i 

r C 

P(t)=cI-I 1-I 
i=1  j = l  

where 

c--1/( z fi fi 
{r,i } i=1  j = l  

where the summation is over all tables r = { rij } in the isomarginal family of t. 
For power calculations we know of no way to avoid or shortcut the enumeration 
of all tables in order to compute c. During the enumeration one works with 
P( . ) /c  or log P ( - ) -  log c, rather than with the probability P(-)  itself, and only 
upon completion of the enumeration one can multiply all probabilities with c. In 
particular we are not aware of any efficient Monte Carlo algorithm for power 
calculations. 

For null distributions differing from the hypergeometric the situation is very 
similar. If the probabilities have anexplicit  representation allowing easy computa- 
tion, then this can be implemented in the same way as the calculation of the 
hypergeometric probabilities and of the statistics. If only unconditional probabili- 
ties are readily available one has to enumerate all tables in the isomarginal 
family, to obtain the factor c, just as above. 

12. History 

Since Klotz [28] and Goodall [19], many authors have published algorithms for 
treating the enumeration of the isomarginal family, and for calculating its size. 
The latter problem has essentially the same structure, be it that only the number 
of tables is counted, and that no probabilities or statistics have to be computed. 

A striking aspect of this literature is that so many individuals have attempted 
to solve the problem, often with different ultimate aims, and secondly, that nearly 
each of them introduced some minor or major improvement by proposing 
reordering of the input table, using flexible lobounds, performing certain calcula- 
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Table 2 
Overview of algorithms for calculating distributions in contingency tables with fixed margins 
mentioned in the literature (df > 2) 

A. Enumeration Algorithms 
Structure 

- straightforward tilling of ta- 
ble 

- simulating a dynamic num- 
ber ( r ×  c) of nested 'for- 
loops' 

- true recursion 

Completeness 

- overcomplete (also impossi- 
ble tables) 

- complete (only possible ta- 
bles) 

- i n c o m p l e t e  (sufficient sub- 
set) 

Statistics 

- None, only number of tables 

- Exact Probability Test 
(EPT) 

- User supplied function 

- Various statistics 

Freeman & Halton [14], March [34], Hancock [21], Cantor [7], 
Howell & Gordon [22], Kannemann [24,25] 

Agresti & Wackerly [2], Mehta & Patel [35,36], Pagano & 
Taylor-Halvorson [41], Verbeek, Kroonenberg & Kroonenberg 
[49,50], Klotz [28], Klotz & Teng [29], Baker [3], Cox & 
Plackett [10] 

Boulton [4] 

March [34], Baker [3], Cox & Plackett [10], 

Hancock [21], Cantor [7], Howell & Gordon [22], Klotz [28], 
Klotz & Teng [29], Agresti & Wackier [7], Verbeek, Kroonen- 
berg & Kroonenberg [49], Kannemann [24,25] 

Mehta & Patel [35,36], Pagano & Taylor-Halvorson [41], 
Saunders [44], Verbeek, Kroonenberg & Kroonenberg [50] 

Abrahamson & Moser [1], Good [18], Gail & Mantel [16], 
Klotz & Teng [29], Boulton & Wallace [5], 

Mehta & Patel [35,36], Pagano & Taylor-Halvorson [41], 
IMSL-CTPR [23], Boulton [4], Howell & Gordon [22], March 
[34], Cantor [7] 

Baker [3], Cox & Plackett [10], Kannemann [24,25] 

Agresti & Wacker [2] (Kendall's T, Kruskal & Goodman's ~, 
EPT, X 2) Klotz [28] (Wilcoxon); Klotz & Teng [29] (K); 
Verbeek, Kroonenberg & Kroonenberg [49,50] (EPT, X 2, G 2, 
FT, K, rs, r, ~', 712; user supplied function) 

B. Monte Carlo Algorithms Boyett [6; AS 144], Patefield [43; AS 159] 

tions (like computing factorials, or rather log-factorials) outside the main enumer- 
ation process, updating of statistics and probabilities during enumeration, rather 
than computing them at one place in the algorithm, etc. 

One of the objectives of the present paper, and of constructing our program 
FISI-IER [49,50] was to bring all these different improvements, which were scattered 
through the literature and algorithms, into one framework, or to quote Tom 
Lehrer [33; p. 29]: "'Every chapter I stole from somewhere else": Many authors 
published some tricks, we publish all. In Table 2 we given an overview of the 
published algorithms we are aware of, with their major characteristics. 
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13. Conclusions 

With today's computing power the calculation of exact significances in r x c 
tables has become feasible. In fact, it'is only a small job for a wide class of tables 
from samples too small to rely with blind faith upon asymptotic approximations, 
but yet large enough to allow statistical inference. Nevertheless, one should not 
use methods like these routinely, if asymptotic methods are also appropriate. We 
stated that the job is small in many cases, but of course it is unwieldy for larger 
samples. 

The two basic algorithms discussed here are complete or incomplete enumera- 
tion and Monte Carlo sampling. Each is efficient for a different set of tables. 
Generally speaking, Monte Carlo sampling is called for, if enumeration becomes 
infeasible because of the large sample size. The computational work of Monte 
Carlo sampling depends only little on sample size, but the number of tables 
generated per second is much smaller than for enumeration, typically by a factor 
d = r x c .  

The enumeration algorithm is interesting in its own right, especially the 
simulation of a dynamic number of nested FOR loops with dynamic bounds, which 
essentially goes back to Gentleman [17]. But it is not very complex. Yet its 
implementation requires careful analysis of several interesting numerical prob- 
lems: overflow due to factorials like N!; underflow of probabilities used in a 
recurrence relation; testing "IF (S >/So) THEN" for reals S and So; numerical 
accuracy of statistics and of probabilities. These problems have not been dis- 
cussed in other publications on contingency tables. The implementation is also 
interesting because of the gains in efficiency that are possible by several nontrivial 
enhancements. The nontriviality is illustrated by the large number of authors 
contributing to the state of the art surveyed here, as can be seen from Table 2. 
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