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1. INTRODUCTION
In these lectures we shall deal with the theoretical description of the

dynamics of a lange class of first order phase transitions1. The basic physics
of this subject is long known, going back at least to the days of
van der Waals. Nevertheless, the theory is still very far from being complete,
äs we shall see. One of the most exciting areas of research in this field is
the study of spontaneous pattern formation in phase-separating Systems. Can we
understand why, under some circumstances, water freezes in the form of a snow
flake? Or, more generally, how are definite patterns selected in a structure-
less environment?

To be specific, we shall in the main part of these lectures talk about the
precipitation of one of the components of a binary liquid mixture or alloy.
Much of the theoretical formalism can, however, be applied straightforwardly
to liquid-vapour and liquid-solid transitions in a pure substance. (We shall
do so for the latter transition when we come to pattern formation.) Also, we
shall restrict our attention to processes which are thermally activated; by
this we mean that the transition is assumed to take place via the nucleation
and growth of some characteristic disturbance of the homogeneous System, which
is itself in a metastable state. Condensation of supercooled vapour, for
example, is initiated by the formation of a sufficiently lange droplet of
liquid. Similarly, the phase Separation in an alloy is nucleated by a criti-
cally lange "grain" of precipitate. In particular, we shall not talk about the
Situation that a homogeneous System is driven into an unstable state (in which
case the phase Separation takes place via a process called spinodal
decomposi-ti-on) ·

The scheme of these lectures is äs follows. In section 2 we discuss the
basic physics of the theory of phase Separation. Nucleation of droplets (or
grains) will be considered only briefly. The subsequent droplet growth is
examined in some detail in section 3. Section 4 is concerned with the onset of
the shape instability of a growing spherical droplet and the emergence of
structure in a particular destabil ized System, viz. an isolated dendrit-Lo
- that is, treelike - crystal growing from its undercooled melt. In this
connection we shall also discuss a very promising recent model of pattern
formation in sol idification.

2. CONTINUUM THEORY OF PHASE SEPARATION
The phenomenological description of a first-order phase transition,

initiated by van der Waals2 3 and reformulated and extended by Cahn and
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Hilliard 4 and Fisk and Widom5, postulates a free energy F of the form

which is a funetional of the field c(f). In the present context, c(r) can be
taken äs the concentration at point r of one of the components of a binary
fluid mixture or alloy. The integrand in the above expression consists of the
free-energy density f(c) of a uniform state plus a first correction for
deviations from uniformity, given by the square gradient of the concentration
- with a coefficient K which, for simplicity, we shall assume independent of
the concentration.

It is essential to note that the functional F{c} has meaning only in the
context of a coarse-graining or cellular description6. That is to say, the
function c(f) is assumed to be the average concentration in some small "cell"
around the position r and is^allowed to vary only slowly from cell to cell. A
suitable size of the coarse-graining cells would be the correlation length of
density fluctuations7, so that on one hand each cell contains a large number
of molecules, while on the other hand phase Separation does not occur within
single cells. In this description the function f(c) represents the free-energy
density of a System which is constrained to have (with respect to the coarse-
graining scale) a un i form concentration c. Below the critical temperature,
f(c) will be a çóç-ïóçõâ÷ function, äs sketched in fig. l, different from the
eonvex equilibrium free energy (which one could obtain by taking the size of
the coarse-graining cells to be comparable to the size of the System). Because
of this coarse-graining, f(c) is not a directly measurable quantity - what one
might consider to be an unsatisfactory aspect of the van der Waals theory, äs
remarked by van Leeuwen in this school.

We turn now to the equations of motion. We Start with the continuity
equation for the conserved field c(r)

supplemented by a relation between the flux J(r) and the thermodynamic "force"
7μ(Γ), which is the gradient of the local chemical potential μ(τ). This

quantity is obtained by taking the functional derivative of the free energy
functional (2.1),

 μ
(η) = 6F{c}/öc(r). We assume a linear relation between flux

and force,

J(f) = -

with a mobility M which may itself be a function
(2.1)-(2.3) yield the nonlinear equation of motion

(2.3)

of the concentration. Eqs.

(2.4)

studied extensively
equation around the
of
to

by Cahn, Hilliard and coworkers8 9.._„ _ . . . If we linearize this
uniform solution c(r) Ξ c

0
 and look at spatial variations

c which are so slow that the square gradient term may be neglected (that is
say, c nearly constant over distances of order ζ = /(K/f"(c

0
)) ), we

obtain a diffusion equation

S · °'
2
'· (2.5)

with a diffusion coefficient D(c
0
) = M(c

0
)f''(c

0
).

It is important to keep in mind that this thermodynamic description of
phase Separation can not be used to describe the kinetics of thermally
activated processes, äs nucleation, for which a free-energy barrier must be
overcome. (To see this, just note that eqs. (2.2) and (2.3) imply that the
free energy F decreases monotonically in time,
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= - Jdr-

One way to deal with such a process is to add a stochastic "Langevin" force to
the r.h.s. of eq. (2.4), which accounts for the effect of thermal fluctuations
in the concentration. Alternatively

10
, one can Start from a Fokker-Planck type

equation for the probability distribution functional defined on the space of
functions c(f). Here we shall not, however, discuss the nucleation theory that
may be derived from such a model

1 1 12 13
.

We now proceed to examine stationaiy states , characterized by a uniform
chemical potential. The case c(r) Ξ c

0
 = constant is a trivial example of such

a state. More interestingly, consider the case of two coexistent phases with a
planar interface. We wish to calculate the density profile c(x), where the
distance χ is measured perpendicular to the interface. The bulk densities c

a

and Co of the coexistent phases α and β are obtained via the common-tangent
construction in the plot of f(c) shown in fig. l, from which one also finds
the equilibrium chemical potential at coexistence μ

α
 (which is the slope of

the tangent). Substituting expression (2.1) into the condition for a uniform
chemical potential 6F/öc Î μ , one finds for the density profile the equation

df d
2
c

(2.6)

The solution of this equation has a form äs in fig. 2; the density changes by
de Î Co - ca over a distance of order ξ, which in general is a microscopic

length of a few angstroms.
If the interface between the coexistent phases is curved, the chemical

potential of the stationary state necessarily differs from μ
ε
, say

μ = + δμ. Consider a spherical droplet of phase β with radius R*, much

X

FIGURE l
Typical coarse-grained free-energy
density f(c). Also shown is the
common-tangent construction
mentioned in the text.

FIGURE 2
Sketch of the density profile c(x) at
a planar interface between phases α
and ß. The length ξ measures the width
of the interfacial layer.
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langer than the interfacial scale ζ. Instead of eq. (2.6) we now have for the
radial density distribution c(r) the equation (taking r = 0 at the center of
the droplet)

de
1

 dc
l -

~
(2.7)

which may be written in the equivalent form

d r l .
r
dcx

~ W L 2 HdFJ
de, 2
dr-

1
 '

(2.8)

Integrating both sides over a small interval of order ξ around R , we find to
linear order in the supersaturation δμ (i.e. neglecting the dependence of 6c
on δμ)

δμ 6c = 2a/R , with σ Ξ K/dr (2.9)

This relation between supersaturation and interfacial curvature is a special
form of the Gibbs-Thomson relation. It expresses the fact that small droplets
are in equilibrium with a higher solute concentration than large droplets. The
quantity σ defined above can be identified äs the surface energy per unit
area, or surface tension .

The Gibbs-Thomson relation (2.9) may also be obtained from the expression
for the free energy of formation AF(R) of a droplet of radius R,

AF(R) = - πR
3
δμ (2.10)

which consists of a bulk part which favors the formation (for positive δμ) and
a part representing the surface energy which has the opposite effect. Fig. 3
shows the typical free-energy barrier which must be overcome for nucleation to
occur. The stationary state can be found by equating to zero the first deriva-

FIGURE 3
Free energy of formation AF of a
droplet of radius R. The maximum of
the curve locates the (unstable)
stationary state.

FIGURE 4
Sketch of the radial density distri-
bution c(r) for a spherical droplet,
showing various quantities defined in
the text.
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t ive of AF(R) and turns out to be given precisely by eq. (2.9) , äs it should.
Note that this state corresponds to a maximum of the free energy, and is
therefore an unstable stationary state. The activation energy ΔΡ* Ξ AF(R*) is
found to be

ΔΡ* = -i| πσ

3(δμ 6c)"2. (2.11)

As a consequence of the inverse square dependence of the activation energy
on deviations of the chemical potential from its equilibrium value, measure-
ments of nucleation rates are extremely sensitive for small variations in the
degree of supersaturation. Indeed, this rate depends on ΔΡ* exponentially äs14

exp(-AF*/koT) (where kg and T are, respectively, Boltzmann's constant and the
temperature) and therefore a small Variation of, say, 10% in the supersatu-
ration can change the nucleation rate by a factor 106! Conversely, experiments
are not very sensitive for the precise value of the coefficient of the expo-
nential (which for fluids is of the order of 1030 droplets/cm3s). For very
recent direct measurements of nucleation rates in well-defined Systems we
refer to refs. 15 and 16.

3. KINETICS OF DROPLET GROWTH
Once droplets of the new phase β have formed, their growth is generally

controlled by a diffusive process which takes place on a macroscopic length
scale, much langer than the interfacial scale ζ. In this case we may assume
that the chemical potential is approximately constant over the interface,
equal to say μ

ε
 + δμς, and is related to the droplet radius R by the Gibbs-

Thomson relation (2.9). We consider first the growth of a single droplet.
The concentration of phase α just outside the droplet equal s c

a
 + 6c

s
,

where 6c
s
 is the deviation of this concentration from the value c

a
 correspon-

ding to a planar interface (cf. fig. 4). To linear order in δμ
5
 we may write

6c
s
 = χο,δμ

5
, with a susceptibility χ

α
 Ξ 9θ

α
/δμ. (For an ideal - i.e. suffi-

ciently dilute - solution, χ
α
 = c

a
/kgf.) Together with eq. (2.9) we then find

öcs = 2σχ
 (R oc)'

1
. (3.1)

The radial concentration distribution c(r,t) outside the droplet (with
radius R(t) and center at r = 0) may be obtained by solving the diffusion
equation (2.5) in the quasi-stat-ic approximation,

? i A2

0 = D/c(r,t) (= ΰ±2-? rc(r,t)), (3.2)
ör"

where D is the di f fusion coefficient of the α-phase. (For a justification of
the neglect of the time-derivative of c in eq. (2.5), see below.) W i t h the
boundary conditions

lim c(r,t) = c + öc , lim c(r,t) = c + öc Î c , (3.3)α S
 « « -

eq. (3.2) has the solution

c(r,t) = c
m
 - ̂i- (δε

β
 - öcs). (3.4)

If the concentration cro far from the droplet differs from the concentration at
the interface there is° a non-zero diffusion current Ddc/ar, which causes the
droplet to grow (or shrink) with radial velocity V(t) Ξ dR(t)/dt given by

V(t) = (6C)-
 D
 (3.5)

ör r=R
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(where we have again neglected the dependence of &c on δμ). Substituting eq.
(3.4) into eq. (3.5) we thus find

V = D(Röc)'1(6ce - 6cs) = -p (Δ - 2d0
/R), (3.6)

where we have introduced the dimensionless supersaturation Δ Ξ öc^/sc and the
capillary length d0 Ξ σχα

/(δο)
2
 (which is a microscopic quantity, °°of the same

or_der of magnitude äs ξ). In terms of these two quantities the critical radius
R at which the droplet is in a stationary state (i.e., V = 0) is given by
R = 2d

0
M.

The above results are based on the quasi-static approximation (3.2) of the
diffusion equation (2.5). This approximation is justified if the time in which
a molecule diffuses over a distance R (which time is of the Order of R

2
/D) is

much smaller than R/V, which is the time in which a droplet grows by an appre-
ciable fraction of its radius. That is, we require R « D/V, or Δ « 1.

Το conclude this analysis of the growth of an isolated droplet, we observe
that eq. (3.6) implies that the radius R(t) grows äs /(2Dt) for lange times
(i.e. for R » R*). This growth law will change when the diffusion fields of
many droplets overlap, and in fact it turns out that the average radius R of
the droplets increases asymptotiaally with the cubic, rather than the square,
root of time. More precisely, the Lifshitz-Slyosov17 and Wagner18 theory of
diffusion controlled competitive growth predicts that, independent of initial
conditions,

R -»· R* -> (| d0Dt)
1/3, äs t -> oo. (3.7)

We shall now investigate this asymptotic time dependence, and in particular
the way of approach to the asymptote, by a very simple theory19, which allows
us to obtain a great deal of Information with a minimum amount of mathematical
analysis.

We first define a droplet-size distribution function v(R,t), such that
v(R,t)dR gives the average number density at time t of droplets with radii
between R and R + dR. From now on we shall neglect nucleation of droplets,
which one can justify on grounds of the exponential decline of the nucleation
rate with decreasing supersaturation (see the previous section). (For theories
which include both growth and nucleation, we refer to refs. 19 and 20.) The
function v(R,t) then satisfies the continuity equation

) = - 1(R»t)' (3'8)

with a current i (R, t). We now take the "effective medium" approximation by
putting i (R, t) equal to V(R,t)v(R,t) , where V(R,t) is the growth velocity
(3.6) of a single droplet with radius R in a medium with supersaturation Δ(Ϊ).
This effestive supersaturation is time dependent and must be determined äs
pa/t of the problem, selfconsistently. In terms of the critical radius
R (t) = 2d0/A(t) we therefore write for i (R, t)

i(R,t) = 2d0DR~
1(R*(t)·1 - R'^vCR.t). (3.9)

Next we define the total number density of droplets in the condensate N(t)

N(t) = / v(R,t)dR (3.10)

R*(t)
and the average radius R~(t)

R(t) = N(t)"1 J v(R,t)RdR. (3.11)

R*(t)



Phase Separation and Pattern Formation 319

In these equations we have taken the convention of counting only supercritical
droplets äs part of the condensate, hence the lower limit of Integration
at R*(t). (This device - if supplemented by a certain ad hoc closure
assumption given below - will allow us to deal with only the above first two
moments of v(R,t). The complete asymptotic distribution function has been
derived by Lifshitz and Slyosov17.) Using eqs. (3.8) and (3.9) we find the two
equations of motion (omitting the time arguments of all quantities)

dN ,*, dR__= . V(R ) _ ,, „,= . V _ , (3.12)

- 2d0D(R)-
1((R*)-1 - (R)'1) + viRV^R" - R*) {- · (3.13)

In the first term on the r. h. s. of eq. (3.13) we have approximated the average
over the droplet-size distribution function of V ( R ) by V ( R ) , assuming a
distribution which is not too broad.

Our final equation relates the current supersaturation Δ(Ϊ) to the volume
fraction of the condensate,

Δ0 - Δ = |· π (R3) N - | Ti(R)3N, (3.14)

where ΔΟ is the initial supersaturation, in the absence of Condensed droplets.
Eq. (3.14) expresses (to linear order in Δ) the conservation of the number of
molecules. We note that, äs a result of our definition of N and R", sw&critical
droplets are considered to contribute to the supersaturation. We feel that
this is not too serious an inconsistency.

To dose the set of equations (3.12)-(3.14) we still need an estimate for
v(R) at R = R*. A reasonable choice seems

v(R*) = bN(R - R*)'1, (3.15)

with an äs yet unspecified numerical constant b. The above eqs. (3.12)-(3.15)
give both R äs a function of R* and R* äs a function of t.

First, combining eqs. (3.12), (3.14) and (3.15) we find a differential
equation for R(R*), for given initial cn'tical radius R0* Ξ 2d0

/A
0
,

dR/dR* = -i (R/R*)(R*/RO - l)"
1
 + |- R(R - R*)"

1
. (3.16)

* *
For R » R

0
 the first term on the r. h. s. of this equation may be neglected

and one finds the solution

R - (l + b/3)R* = constant χ (R)"
3/b
. (3.17)

As we see, R(R ) has an asymptote R = (l + b/3)R , for lange R. That this
asymptotic behaviour differs somewhat frorn the Lifshitz-Slyosov and Wagner
result (3.7) is due (in part) to our convention of averaging only over super-
critical droplets in eqs. (3.10) and (3.11). Typical trajectories of eq.
(3.16) (for the value of b given below) are shown in fig. 5. #

Next, eqs. (3.13) and (3.15) together with the approximation R«>(l+b/3)R ,
give the equation for the asymptotic time-evolution of R*(t)

^ (R*) 3 * 2b( l + b/3)" 2 ( l - 2b/3)" 1 d 0 D. (3.18)

We see that R increases äs t , in agreement with eq. (3.7). The correct
coefficient is recovered if we put b « 0.42 .

We can distinguish two quäl itati vely different ways of approach to the
asymptotes. The trajectory labeled S in fig. 5 can be interpreted äs corres-
ponding to the case of a "shallow quench", where - because the droplets remain
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FIGURE 5
Some trajectories of eq. (3.16) (for
b=0.42). The unphysical parts of the
Solutions are dotted. Both the cases
of a shallow quench (curve S) and a
deep quench (curve D) are shown.

FIGURE 6
Sketch of the time dependence of the
average radius R and the critical ra-
dius R* for a shallow quench. The two
dashed asymptotes correspond.

o
to the

growth laws Rcct·*·'
2
 and

isolated for a long time - the average radius R" can grow much langer than R*,
before approaching its asymptote. For a "deep quench", on the other hand,
there is an initial high density of small droplets and competition effects are
important at early stages of the droplet growth. In this case the approach to
the asymptote is rapid (cf. trajectory D in fig. 5). The dependence of R
and R* on t for a shallow quench is sketched in fig. 6, to illustrate the
above remark.

The effective medium theory for competitive growth described here can be
improved considerably by taking into account the effect of correlations
between the positions and sizes of the droplets

21 22 23
, and the influence of

nucleation
19 20
. Nevertheless, our qualitative results for the approach to the

Lifshitz-Slyosov and Wagner asymptotes have their use in the Interpretation of
experimental data, in particular in determining the regime in which the
tl/3-growth law is expected to hold.

4. GROWTH INSTABILITIES AND PATTERN FORMATION

4.1. Morphological instability of a growing spherical droplet
As an initially spherical droplet grows, its shape will eventually become

unstable against perturbations of a sufficiently long wavelength. The critical
wavelength at which this morphological instability occurs is determined by a
balance between, on one hand, the destabil izing effect of the focusing of
diffusion flux away from a depression of the interface onto a protuberance (in
a way, a protuberance acts äs a lightning rod) and, on the other hand, the
stabilizing effect of surface tension, which favors a smooth spherical inter-
face. An analogous instability occurs, by the way, during the solidification
of a pure substance from its undercooled melt, where the increase in the rate
at which latent heat is released at a protuberance of the solidification front
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is the destabilizing factor. The onset of these growth instabilities has been
studied by Mull i n s and Sekerka

21
*
 25
. We shall now give an outline of their

linear stability analysis.
Consider a slightly deformed spherical droplet growing under the conditions

of section 3. The distance R of the interface to the origin is given, in terms
of the polar angles e and φ, by

Μθ,φ,ΐ) = R
0
(t) + Σ R.(t)Y (θ,φ). (4.1)

A>l;m
 A m

Here R
0
 is the unperturbed radius, Rg (λ>1) is a small deformation amplitude

and YÄm is the spherical harmonic of order i,m . To determine the concentra-
tion field we shall again use the quasi-static approximation (3.2) of the
diffusion equation. (The consistency of this approximation in connection with
the present stability analysis is investigated below.) The dimensionless
solution u(f,t) = (c - c(r,t))/6c of this equation (outside the droplet) has
the expansion

u(r,t) = Σ a (t)r-·*̂  (θ,φ), r > R(e,0). (4.2)

The coefficients aÄ (λ>0) are determined by the boundary condition for the
concentration field at the interface, which is the Gibbs-Thomson relation for
a non-spherical surface,

lim u(f,t) = Δ - d
0
ic(Q,<t>,t). (4.3)

Here κ is the mean curvature of the interface, which to linear order in the
deviation from sphericity equals2 4

κ = 2/R0 + R0'2 Σ U-1)U+2)R Υ . (4.4)

Substituting eq. (4.2) into eq. (4.3) gives, with eq. (4.4), the required
result

a0 = RoA - 2 do» a = R o Ä " l R ( R o A - d0A(A+l) ) U>1). (4.5)

To investigate the stability of the spherical shape we must determine
whether the deformation amplitudes RA(t) (A>1) grow or decay in time. To this
end we substitute the concentration field given by eqs. (4.2) and (4.5) into
the equation of motion of the interface (3.5),

fcMM̂ ŷ V'.»)·- "fr "<'.'> l ,̂,· («·«>

The result is

dR0/dt = DRo"
1^ - 2d0/R0) Ξ V0

, (4.7)

where V
0
 is the growth velocity (3.6) of a perfect sphere, and

R^"
1
 dR^/dt Ξ

 UA
 = U-lJVoRo'^l - (A+l)jl+2)R

0
"
2
d
0
D/V

0
]. (4.8)

The sign of the growth rate ωλ determines the stability of the spherical shape
against a harmonic perturbation YÄm.

Eq. (4.8) takes a particularly simple form in the limit of perturbations of
a finite lengthscale l/k on a large sphere, that is in the limit
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R
0
 -> °°, λ -> °°, λ/Ro Ξ k = constant. In this socalled planar limit the growth

rate ω(Μ = ω
 R

 L. is given by-

= V
0
k(l - k2d

0
D/V

0
) (4.9)

all perturbations of length-
stability length is of order

As we see, the planar Interface is unstable for
scale langer than /(d

0
D/V

0
). This characteristic

microns and is the geometric mean of the microscopic capillary length d
0
 and

the maorosoopie diffus i on length D/V
0
.

At this point we can check the consistency of the quasi-static approxima-
tion. The criterion for the validity of this approximation in the present

that the diffusive relaxation rate Dk
2
 is much langer than the

of the growth rate (cf. section 3). From eq. (4.9) we find
context is
magnitude j(k)|

The maximum
the quasi-

of the dominant
which this is not

that this criterion is satisfied in the ränge VQ/D « k « l/d0
of ü)(k), which falls at k = /(V0/3d0D), lies in this ränge, so that
static approximation holds in particular for the growth
instability. (There exist physically interesting models for
true, however.)

Returning to eq. (4.8), let us now compute
sphere becomes unstable for a harmonic perturbation of order A. Equating
zero in eq. (4.8) gives, in terms of the
R* = 2d0/A,

the radius at

critical radius for

which the
to

nucleation

The first instability occurs for 1=2, thus a sphere of radius R0 = 7R is
unstable"*". Spheres of this size are really quite small, typically in the
submicron ränge. Note, however, that - if capillarity is neglected - a sphere
perturbed by only the second harmonic does not change shape äs it grows. This
can most easily be seen by looking at eqs. (4.7) and (4.8) which give, in the
limit R » R*,

= U-1)RA/R0. (4.11)

Thus for 1 = 2 , the fractional rate of increase of the deformation amplitude
is equal to that of the radius of the sphere.

4.2. Dendritic growth
What happens to a growing droplet after its spherical shape has become

unstable? It is observed that an initially spherical Interface breaks up into
dendritic, i.e. treelike, bnanches which gnow out from the central "seed",
each branch emitting sidebranches äs it grows. The dendritic so! idif ication of
a pure substance from its undercooled melt has been investigated under care-
fully controlled experimental conditions by Glicksman and coworkers26 27 (who
used succinonitrile äs a working substance) and by Fujioka28 29 (using ice).
It is found that the growth velocities and shapes of the frontmost tips of the
primary branches, äs well äs the spacings of emerging sidebranches, are
accurately reproducible functions of the undercooling (which is the parameter

'''Note that ω, for a = l is identically zero, for all RQ. Indeed the first
harmonic merely translates the sphere over a small distance.
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which plays in this context the nole of the supensatunationt). Thene is to
date no complete theony which pnedicts the undencooling dependence of these
quantities. Howeven, some pnogness has been made in necent yeans, nesulting in
an hypothesis which - if valid - penmits one to use the nesults of a linean
stability analysis to pnedict dendnitic gnowth nates30. We summanize below the
anguments leading to this hypothesis.

Considen, äs a simple model of a dendnite, a so!idification fnont which is
a panaboloid of cinculan cnoss-section. We look fön Solutions of the pnoblem
which ane time-independent with nespect to a fname of nefenence which moves
with a centain constant gnowth velocity V. If one assumes that the nadius of
cunvatune R of the tip is sufficiently lange companed to d0 that sunface-
tension effects may be neglected, then such shape-pnesenving Solutions may be
detenmined exactly, äs shown by Ivantsov31. The nesult of intenest hene is

n °° i v Γ - Ρ
λη
Ρ
 if

 P « !>
Δ = pe

p
 /y"V

y
dy - 4 (4.12)

p ( l - l/p if p » l,

whene p Ξ RV/2D is the socalled thenmal Peclet numben. (Fön laten nefenence
we necond hene also the connesponding two-dimensional nesult,

D - V2 Γ/Up) if P « l,
Δ (iMo-dimens-Lons] = 2eVp Je J dy » J (4.13)

/p [ l - ~ p" if p » 1.)

Fön a given value of Δ thene is a whole family of Solutions, äs only the
pnoduct of tip nadius and gnowth velocity is fixed by eq. (4.12). The R-V plot
fön Δ = 0.05 i s shown in fig. 7.

As we have leanned fnom oun study of a gnowing sphene (cf. eq. (3.6)), the
effect of sunface tension - not included in eq. (4.12) - is to neduce the
gnowth velocity fön lange values of the cunvatune, i.e. fön small tip nadii.
To detenmine quantitatively, howeven, the effect of sunface tension on the
steady state gnowth of the dendnite tunns out to be extnemely difficult (and
in fact, äs we shall angue in sub-section 4.3, thene is neason to suspect that
the pictune which has emenged fnom vanious appnoximate analyses will have to
be modified). The nesults of two of these appnoximations32 33 ane shown in
fig. 7. Due to sunface-tension effects V goes thnough a maximum with
decneasing R. (The location of this maximum has been estimated by an altenna-
tive, numenical, technique in nef. 34.) Which of these Solutions ane stable
against small shape defonmations? One would expect fön sufficiently lange tip
nadii a monphological instability of the Mullins-Sekenka type to occun, äs in
the sphenical case discussed pneviously. Indeed it is found30, fnom a linean
stability analysis in the negime p « l, that a sufficiently flat tip becomes
unstable against defonmations in which the tip bneaks up into shanpen, mone
napidly gnowing pnotubenances. The cnitem'on fön stability is d0D/VR

2 > a*,

"h"he füll tnanslation fnom chemical to thenmal diffusion is made by neplacing
the definitions of u, Δ and d

Q
 given pneviously fön the chemical case by

u Ξ (T - Tjc
p
/L, Δ = (T

m
 - Tjc

p
/L and d

Q
 =

 0
T
m
c
p
/L

2
.

Hene, T is the local tempenatune, T
m
 the melting tempenatune at a planan

intenface, !„ the tempenatune in the liquid infinitely fan fnom the negion
whene so!idification is taking place, c

ft
 is the isobanic specific heat and L

the latent heat, both pen unit volume. 7\lso, D should now be neganded äs the
thenmal diffusion coefficient of the liquid. Note, howeven, that one must in
genenal account also fön thenmal diffusion within the solid, in contnast to
the chemical case.



324 J.S. Langer

-4
10

Q
CM

—· -5
o 10
Ό

-6
10

Δ = 0.05

10 ίο
2
 ίο

3

R/d
0

10

FIGURE 7
Dendritic growth velocity versus tip radius for the undercooling
Δ = 0.05 . The dashed curve is the exact result

31
 without surface tension

(eq. 4.12). Curves a (from ref. 32) and b (from ref. 33) result from two
different approximations of the effect of surface tension. The point of
marginal stability of the Solutions with surface tension for the case of
succinonitrile

30
 is labeled MS.

where σ is a constant whose value is estimated at 0.02 for succinonitrile.
The point of marginal stability, for which the equality in the above criterion
holds, is plotted in fig. 7 for this value of σ*.

So far we are still left with a continuous family of Solutions, all of
which are acceptably stable candidates for the description of dendritic growth
at a given undercool ing. In fact we surmise that the mechanism by which
definite R and V are selected is of an intrinsically non-linear mechanical
nature, and can therefore not be obtained from the linear analysis dicussed
above. A selection principle for dendritic growth, which has been used with
considerable succes in various appl ications, is the pr-ineiple of macg-mal
stability suggested by Langer and Miiller-Krumbhaar in ref. 30. In that paper
it is conjectured that an initially smooth, unstable shape might naturally
sharpen until it reaches its slowest stable growth mode. In other words, the
natural operating mode of the dendrite is presumed to be at or near the growth
rate where its tip is just marginally stable. This principle, together with
the results from the linear stability analysis

30
, has proved to be consistent

with experimental data
26 27 28 29

 over five decades in the growth velocity and
two in the undercooling. (As an aside, we note that this principle has also
correctly predicted the - at first surprising - initial rise in growth
velocity that occurs when small concentrations of impurities are added to the
melt, the point being that the impurity layer has a destabilizing effect on
the solidification front, thus leading to sharper and faster
dendritic structures

35 36 37
.)
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4.3. The boundary-layer model
Because of the complexity of the füll dendritic so! idif ication problem

described above, progress in understanding the observed growth-selection
mechani sms has been very slow. In particular we do not know from a theoretical
point of view what is the validity of the marginal-stabil ity hypothesis. One
of the aspects of the füll problem which apparantly make it so intractable is
the non-local ity of the equations in both space and time. That is to say, the
actual motion of a point on a sol idification front is determined by the
thermal field near that point which, in turn, is determined by the latent heat
which has been generated at earlier times at neighbouring points. The
boundary-layer model38 which we shall now describe is a tractable, fully non-
linear mathematical model of sol idification at lange undercool ings, in which
the non-locality is accounted for only approximately via the properties of a
supposedly thin thermal boundary layer at the interface.

The principal dynamical variables in the boundary-layer model are the
curvature of the solidif ication front κ and a new variable h, which is
supposed to measure the heat content per unit area of a thermal layer in the
liquid which contains the latent heat that has been rejected by the advancing
solid. Both quantities ê and h are functions of the time t and the position
along the interface. For simplicity, we shall restrict ourselves here to a
two-dimensional Situation (cf. fig. 8) and measure the linear position along
the interface by the are length s. Knowing κ äs a function of s, it is
possible to reconstruct the entire shape of the growing solid.

If we define the two-dimensional curvature by

ê = - öe/as, (4.14)

it satisfies the geometric identity39

5s

Here e is the angle between the normal to the interface and some arbitrarily
fixed direction in space, Vn is the normal growth rate of the front and
(d/dt)« denotes the rate of change along the normal growth direction. A
suitable equation of motion for the second field h is

where us is the value of the dimensionless temperature field u at the inter-
face (cf. the previous footnote) and a Ξ h/u

s
 is the effective thickness of

the thermal boundary layer. The first term on the r. h. s. of eq. (4.16) is the
rate at which latent heat is being added to the boundary layer, the second
term accounts for lateral diffusion of this heat along the surface (it is by
this diffusion term that some of the non-local features of the realistic dyna-
mics are incorporated into this local model); the third term is a geometrical
correction, which can be identified äs the origin of the Mull ins-Sekerka
instability: a surface element of positive curvature (outward bulge) increases
in length äs it grows, thus thinning the boundary layer, sharpening the
thermal gradient, and increasing the growth rate.

The two above equations of motion are supplemented by expressions for us
and Vn,

u = Δ - d
oK
 - ßVn, (4.17)

V = Du Ja ( = Du 2/h). (4.18)
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Liquid

FIGURE 8
Schematic Illustration of a solidif i-
cation front, showing various quanti-
ties defined in the text.

FIGURE 9
Evolution of a dendritelike struc-
ture, from the boundary-layer model

Eq. (4.17) is just the Gibbs-Thomson relation, with the addition of the term
- ßVn which follows from a simple model of interfacial attachment kinetics.
The capillary length d0 and the kinetic coefficient β may be functions of 0,
reflecting a possible crystalline anisotropy. In eq. (4.18), heat flow in the
solid is neglected and the normal temperature gradient in the fluid is
approximated by U

S
/A.

Physical validity of the boundary-layer model described above requires that
the boundary layer be thin compared to the radius of curvature of the
so!idification front. In general, this condition is satisfied only at lange
Peclet numbers. Although this regime is physically accessible in principle,
most experiments (in particular those on dendritic growth mentioned
previously) are performed in the regime of small undercoolings and Peclet
numbers. In any case, even under circumstances where the model is not fully
realistic, it turns out to be an interesting mathematical model of pattern
selection.

As an example
38
, let us apply the boundary-layer model to the dendrite

Problem and compare the results from this model with those from the analyses
discussed in sub-section 4.2. To this end we look for a solution of eqs.
(4.15)-(4.18) such that

V = V
0
cose, (4.19)

_ η
δθ δΘ

(4.20)

The vanishing of the derivative at constant θ in eq. (4.20) expresses the
requirement that the h-field remain invariant in the frame of reference which
moves with the constant growth velocity V

0
 in, for example, the z-direction in

fig.8 . The relative simplicity of the boundary-layer method is apparent in
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the fact that we can use eqs. (4.17)-(4.19) to eliminate h from the problem,
thus obtaining a single non-linear differential equation for κ äs a function
of Θ (which is the convenient independent variable for this problem, rather
than s).

For the case d
0
 = β = 0 one finds the simple result

κ(Θ) = (V
0
/D)(1 - Δ)Δ"

2
οθ5

3
θ, (4.21)

which is a parabola with its tip pointing in the +z - direction. The tip-
radius is 1/κ(0). Thus, in terms of the Pe'clet number p = V

0
/2D<(0), we have

the formula
ι ? ι Γ /(2p) if P « l,

p =jif(l - Δ)"1 ] , , (4.22)
( l - j p'1 if p » 1.

The large-p limit of eq. (4.22) is identical to the exact Ivantsov-result
31

(eq. 4.13) for this two-dimensional case. Surprisingly, the (unrealistic)
small-p limit of eq. (4.22) also compares very well with that of eq. (4.13).
(A similar analysis has been performed in three dimensions äs well38, to yield
p = Δ2

/(1 - Δ). There is now a more serious discrepancy with the exact result
(4.12) in the small-p limit, although the large-p behaviour is again correct.)

What happens if we include surface-tension effects in our equations of
motion? We shall not go into the analysis

38
 here, but only mention the

surprising result: in the boundary-layer model, surface-tension corrections
give a singular perturbation of the d

Q
 = 0 solution, destroying the continuous

family of shape-preserving Solutions found in the absence of surface tension.
This result casts serious doubts on the validity of the various approximate
Solutions to the füll dendritic solidification problem at finite d0, discussed
in the previous sub-section.

Finally, we show in fig. 9 four (not quite evenly spaced) stages in the
growth of a dendritic structure, computed from the boundary-layer model with a
six-fold anisotropy in the kinetic coefficient ß. The structure started äs a
circle (one sixth of which i s indicated by the dashed l ine), grew slowly
almost into a hexagon, and then became dendritic at its corners äs shown. The
growth rate and the curvature of the front of this dendrite have relaxed
quickly to their dynamically selected steady-state values.
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