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We examine the derivation and use of a short-ranged (d —1)-dimensional interface Hamiltonian

to describe properties of a d-dimensional liquid-vapor or Ising system near the critical point. We ar-

gue that such a simplified description, which ignores bulk excitations ("bubbles" of the opposite
phase) and multiple-valued interface configurations {"overhangs") is valid only on length scales
larger than the bulk correlation length gz. Such excitations with wavelengths up to order gz are
essential for a correct description of the critical fluctuations, and preclude the use of an interface
Hamiltonian to study bulk critical properties. This is explicitly demonstrated in d =2 by showing

that bubbles and overhangs are relevant operators and we argue that this is true in any dimension.

(However, these contributions do not necessarily affect the formal perturbation expansion about the

degenerate case d =1, as carried out by Wallace and Zia. ) This viewpoint is implicit in the physical
picture Widom used to derive scaling laws relating interface and bulk critical properties. The long-

wavelength fluctuations accurately described by an interface Hamiltonian produce a "wandering" of
the interface, but this plays no important role in the critical behavior and can be reconciled with
Widom's picture. We examine several modifications of the usual Ising model for which in certain
limits a single-valued description becomes exact. Such models either exhibit no bulk critical
behavior at all, even if the surface tension o. vanishes, or have critical properties in a different
universality class from the usual Ising-model (liquid-vapor) critical point.

I. INTRODUCTION

Interface Hamiltonians have proven very useful in
understanding a wide variety of phenomena observed in
coexisting phases, including roughening, ' layering, ' and
wetting ' phase transitions. In an interface approach one
considers only the degrees of freedom of a (d —1)-
dimensional interface that is flat on macroscopic scales
and whose vertical displacement from the flat reference
plane specified by z =0 is given by a single-valued func-
tion h(r) (in a continuum description). The energy for
small amplitude and long-wavelength distortions of the
interface can often be estimated from symmetry con-
siderations and macroscopic thermodynamics; the ap-
propriate interface Hamiltonian describing such distor-
tions then takes on a particularly simple form. In the ap-
plications mentioned above, long-wavelength interface
fluctuations play a crucial role in the phase transitions,
which occur away from the bulk critical point, and ap-
proaches using interface Hamiltonians have yielded much
insight. (See Binder, Jasnow, and Zia for recent re-
views. )

In this paper we examine carefully the derivation and
use of interface Hamiltonians and discuss their range of
validity near the critical temperature T„concentrating
for simplicity on the liquid-vapor interface and the Ising
model. By "interface Hamiltonian" we mean a Hamil-
tonian that is a functional only of the single-valued func-
tion h(r), where r is a (d —1)-dimensional vector. The in-
teractions between different parts of the interface must be
short ranged, decaying at least exponentially with dis-
tance. To achieve a simplified interfacial description, we
must formally remove degrees of freedom present in the

Hcw ——f d" 'r —
~

Vh(r)
~

+ ,'mgbph (r)—
2

where o. is the surface tension, Ap=pI —p„ is the density
difference between the liquid and the vapor, I the molec-
ular mass, and g the gravitational acceleration. In terms
of the Fourier series

h(r)= gh(q)e'q',
q

Eq. (1.1) takes on the simple form

Hcw= , oL" 'gh(q)—h( q)(q +L, ), —
q

(1.2)

(1.3)

full d-dimensional Hamiltonian describing the two-phase
system. As argued in more detail below, a simple interfa-
cial description naturally arises on length scales large
compared to the bulk correlation length gz, since then the
probability of finding bulk excitations ("bubbles" of the
opposite phase) and multiple-valued interface configura-
tions ("overhangs") [see Fig. 1(a)] is exponentially small.
An equivalent interface description in which the integra-
tion over bulk degrees of freedom is explicitly carried out
arises from the column model of Weeks. Here the
volume of the system is divided into an array of columns
with width l »gs and an integration over all degrees of
freedom is carried out except for the average position of
the interface h(r) as determined from a fixed number of
particles in each column.

The remaining long-wavelength interfacial degrees of
freedom are accurately described by the simple quadratic
"capillary-wave" Hamiltonian of Buff, Lovett, and Stil-
linger'
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for a system with volume L (which will tend to infinity),
where the capillary length I, is defined as

L, = [cr/mg(p( —p„)]'~ (1.4)

Because of the restriction to long wavelengths implied by
the coarse graining over length scales up to l &~gz, the
sum over q in (1.3) should be cut off at

~ q ~
=q,„=7r/l &&~/g~, consistent with the use of the

macroscopic surface tension cr in (1.1)—(1.4). The surface
tension is not an analytic function of (T, —T): the cn rical'
properties of o. are determined by integrating over fluctua-
tions of wavelengths less than and of order gz and obvi-
ously cannot be obtained from an analysis of (1.1).

Can one find an interfacial description valid also for
fluctuations with wavelengths less than or of the order of
gz'? lf so, then one might be able to develop a theory for
critical properties using a simple interface Hamiltonian.
Wallace and Zia" have suggested that this is possible us-

ing the nonlinear "drumhead" Hamiltonian

Hdh ——f d" 'rIoo[1+
l
Vh(r)

l

]' + —,mg mph (r)] .
(1.5)

The square-root term gives the area of the distorted sur-
face; macroscopic thermodynamic arguments suggest that
(1.5) should be valid for large amplitude fluctuations in
h(r), in contrast to Eq. (1.1), which is truncated to lowest
order in

~

Vh
~

. However, if Hdh is to be useful for
short-~auerength distortions and to calculate critical prop-
erties, one must use some bare (unrenormalized) surface
tension o.o rather than the macroscopic o which appears
in (1.1). In IIdh the short-wavelength (large q) distortions
are strongly coupled, and Wallace and Zia" (see also Refs.
12—14) suggested that these short-wavelength modes
could be controlled in a renormalization-group analysis
without using a short-distance cutoff. From the analysis,
formulated in terms of an expansion around d = 1, they
obtained a nontrivial fixed point with a critical exponent
that they identified with the Ising bulk correlation length
exponent v. In this picture, the interface is thought to be-
come "fuzzy" over a length scale of O(g~) because of the
incorporation of the fluctuations of a sharp interface over
all momenta q )gz '.

We argue here that this picture is incorrect because
bubble and overhang fluctuations (see Fig. 1) not describ-
able in terms of a single-valued function h(r) are an
essential part of the physics on length scales less than and
of order gz. If one insists on describing the system in
terms of fluctuating sharp interfaces even on these length
scales then the function h(r) necessarily becomes multiple
valued due to bubbles and overhangs of size up to O(gz)
which are present throughout the entire d-dimensional
system. The interface Hamiltonian (1.5), based on a
single-valued h(r), suppresses all of these fluctuations.
Because of this, we argue, any critical point obtained from
such an interface Hamiltonian is in a different universali-
ty class from the usual Ising-model critical point. We
demonstrate this explicitly for a particular two-
dimensional model (Sec. VII), but argue that it is true
quite generally.

Bruce and Wallace and Schmittmann, ' in an e=d —1

expansion based not on a single-valued interface but on a

more realistic droplet model, have argued that the differ-
ences between the Ising exponents and those obtained by
Wallace and Zia's earlier expansion are due to droplet-
droplet interactions and vanish as an essential singularity
for d —+1, so that the e expansion may in fact be formally
correct. The purpose of this paper is not to investigate
the e expansion but rather to discuss general aspects of
and differences between systems with and without excita-
tions like bubbles and overhangs. We argue that, notwith-
standing the possible asymptotic equivalence of the criti-
cal exponents in the limit d ~ 1, the "interface
phenomenology"" underlying Wallace and Zia's expan-
sion that ignores bubbles and overhangs is not an accurate
picture of the Ising critical behavior for any d & 1.

In Sec. II we review the scaling theory of Widom, ' '
which relies on the similarity between bulk density fluc-
tuations and fluctuations in the interfacial region to derive
scaling laws relating the critical behavior of o to that of
bulk thermodynamic properties. Although Widom's scal-
ing theory for'the interface is well known, its implications
for questions concerning the range of validity of interface
Hamiltonians have received less attention. Widom's
theory suggests that no simplifications should arise when
studying interfacial critical properties; the same fluctua-
tions [bubbles on all length scales up to O(gz)] which
control bulk correlations are also relevant for interfacial
critical properties.

However, Widom's picture ignores the long-wavelength
interface distortions described by Eq. (1.1). Since for
g=O the energy of long-wavelength modes tends to zero
as q, these modes are easily excited and cause a "wander-
ing" of the interface. We examine in Sec. III the deriva-
tions of the interface Hamiltonians (1.1) and (1.5) and find
that they are indeed valid, but only on sufficiently large
length scales. The implications of interface wandering for
the validity of Widom's picture and its role in critical
phenomena are discussed in Sec. IV, following the ideas of
Weeks. We conclude that the interface wandering occur-
ring at length scales larger than O(gz) is unimportant in
determining the critical behavior of the interface.

After these more general considerations regarding the
connection between capillary waves and critical behavior,
we turn to a more detailed discussion of IIdh and its
underlying physics in Secs. V—VII. In Sec. V we focus on
the drumhead Hamiltonian. We show that the restriction
to a single-valued interface implies an asymmetry in the
type of configurations that are taken into account, and
that as a result the model does not exhibit the rotational
symmetry found in fluids or an Ising model near T, .
(Similar conclusions have recently been reached indepen-
dently by Teitel and Mukamel' ). Although the lattice
Ising-model Hamiltonian is not rotationally invariant, iso-
tropy is obtained in the scaling limit T~T, in that the
interfacial free energy or surface tension, o(9), as a func-
tion of the interfacial orientation, 0, vanishes as T~T,
for all orientations 0. In contrast, the interfacial free en-
ergy of a drumhead model vanishes first at a particular
orientation, while remaining nonzero at all other orienta-
tions. Thus the interfacial "stiffness, " cr(0)+d o(8)/d8,
vanishes at T, for the Ising model but not for the drum-
head model. As a result, the scaling behavior of the inter-
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face width obtained from the drumhead model is not in
agreement with Widom's theory. In Sec. V we also briefly
comment on the implications of these ideas for the validi-
ty of the e=d —1 expansion of the renormalization-group
equations for the drumhead Hamiltonian, although our
focus in this paper is not the technical validity of the e ex-
pansion, but the general utility away from one dimension
of the physical picture implied by the use of such an inter-
face Hamiltonian.

One may also illuminate (Secs. VI and VII) the difficul-
ties associated with using interface Hamiltonians for es-
timating bulk critical behavior by studying simple lattice
models that interpolate between the Ising model and inter-
face models in which the interfacial position h(r) is single
valued as in (1.1) and (1.5). The configurations with bub-
bles and overhangs may be suppressed in at least two pos-
sible ways. First, we can associate an extra energy with
each interface segment that is oriented in a direction op-
posite to the macroseopie interfacial orientation. Such a
modified Ising model has an appropriately defined surface
tension whose vanishing is not connected with a bulk
phase transition. This analysis (Sec. VI) also points out
the shortcomings of the method of Muller-Hartmann and
Zittartz' for calculating the surface tension of lattice
models in a no-bubble, no-overhang approximation. The
other way to suppress the bubbles and overhangs is to as-
sociate an extra energy, E„, with the points (or lines in a
three-dimensional system) where the interface reverses its
orientation. Such a modification can be made explicitly
in a two-dimensional Ising model, converting it into a still
exactly solvable 8-vertex model, as is shown in Sec. VII
of this paper. As long as E„remains finite, the phase
transition remains in the Ising universality class, albeit
with a reduced critical region. However, in the limit
E„—+ oo, which is the limit in which one obtains a single-
valued interface on all length scales, the nature of the
phase transition changes. This is due to the complete el-
imination of overhangs and bubbles, which are the dom-
inant critical fluctuations for the Ising universality class
of phase transition.

II. WIDOM'S PICTURE OF THE CRITICAL
INTERFACE

Widom' ' has generalized the classical theory of van
der Waals to apply to the interface near the critical point.
In this picture the distinction between bulk density fluc-
tuations and interface inhomogeneities gradually disap-
pears as the critical point is approached at coexistence.
The underlying idea is that the bulk correlation length g~
is the only important length scale determining the critical
behavior. That is, gz is the basic length scale over which
any density inhomogeneity extends, whether it arises from
spontaneous density fluctuations in the bulk, or it
represents the stable density gradient found at the liquid-
vapor interface. As T~T„ the interface width is thus
O(g~ ) and its divergence is the same as that of gz
[g~-(T, —T) ']. These ideas lead at once to scaling
laws' ' for p, the critical exponent which describes how
the surface tension cr vanishes as T, is approached
[cr (T —T)"]-. Since o is the excess free energy per unit
area of the interface, the divergence of the interface width

as g~ shows that agz ' is proportional to the excess free
energy per unit of volume in the interfacial region. The
assumption that the inhomogeneities at the surface be-
come more and more like bulk critical fluctuations then
dictates that o.g~

' vanishes as the singular part of the
bulk free-energy density. Hence o gz -(T, —T), or

p+v=2 —a

The Widom scaling law

p=(d —1)v

(2.1)

(2.2)

follows in a similar way from the assumption that fluc-
tuations in volumes of size g~ represent essentially in-
dependent elementary excitations, so that o.g~ '-k~T.

Equation (2.2) has received experimental conformation
(see, e.g., Refs. 7 and 17), and all known results for p
from exact solutions of lattice models for d (4 are in
agreement with the above scaling laws. They have also
been verified to first order in a @=4—d expansion ' [be-
cause of the breakdown of hyperscaling in d ~4, (2.2)
ceases to hold above four dimensions]. The validity of the
scaling laws and by implication the fundamental correct-
ness of Widom's physical picture below four dimensions
thus appears to be amply confirmed. Clearly this picture
relies on the similarity of interface and bulk critical fluc-
tuations and holds little hope for establishing a simplified
interfacial theory of critical phenomena.

III. EFFECTIVE INTERFACE HAMILTONIAN:
LONG-WAVELENGTH PICTURE

V(P)= —,~P + —,uP" . (3.2)

Below T„we have r ~0 so that V(P) has two minima at
P=P+ ——+(

~

w
~

/u)' associated with the up (+) and
down ( —) states of the Ising spins. Nonuniform boun-
dary conditions that favor the (+ ) phase at the bottom of
the system and the ( —) phase at the top are used to force
an interface into the system (see Fig. 1). The interface
free energy is proportional to the logarithm of the ratio of
Z++, the partition function of the system with uniform
+ + boundary conditions, and Z+, the partition func-

However, the above arguments have not taken account
of interface fluctuations at wavelengths much larger than
gz as described by Eq. (1.1). The consequences of these
fluctuations are discussed in this section. We first consid-
er several derivations 'leading to well-defined interface
Hamiltonians and then examine their implications for the
behavior of the interface and for the validity of the Wi-
dom' ' picture. We consider an Ising system in zero
field, which has a critical point in the same universality
class as the liquid-vapor system.

The first step towards the derivation of an effective in-
terface Hamiltonian near the critical point is the standard
coarse graining of the Ising spins over some length scale
greater than microscopic scales, but much less than gz,
leading to the Landau-Ginzburg-Wilson ' Hamiltonian
for the spin field P,

IILow = J d "R[
2 l

~4
l

+ V(4)], (3.1)

with
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FIG. 1. Typical configuration of an Ising model with an in-

terface viewed on different length scales. Note the use of (+ —)

boundary conditions to enforce the existence of an interface. (a)
The Ising model seen on the scale of the square lattice has
several bubbles (dashed lines) and a "long contour" with
overhangs (solid line), which extends from one side of the sys-
tem to the other, separating + and —spins. Note the ambigui-
ty in the choice of the solid line in case a bubble intersects the
long contour. (b) The interface and bubbles in the field configu-
ration of IELz~, obtained by coarse graining of (a) on a length
scale less than gz. The largest bubbles and overhangs in (a) have
survived the coarse graining. (c) The long wavelength picture of
the interface obtained by integrating over the critical length
scales less than and of order g~ in (b). Essentially all bubbles
have disappeared and a single-valued interface remains.

tion of the system with nonuniform + —boundary condi-
tions

Of course, most of the bubbles of overturned spins and
the overhangs at the interface are still manifest in HLGw,
since at this stage the coarse graining involves only length
scales small compared to gz. This is illustrated in Fig.
1(b), where we have qualitatively sketched the remaining
bubbles and overhangs in the coarse-grained field P asso-
ciated with the configuration of Fig. 1(a). As a result,
WLGw is still a full d-dimensional object, even for a sys-
tem with an interface. Next, let us integrate out more
short-wavelength fluctuations until we have reached a
length scale l &&g~. At this stage the probability of find-
ing bubbles and overhangs is exponentially small and the

remaining fluctuations in the system are fairly accurately
described in terms of a single Ua-lued nearly flat (d —l)-
dimensional interface, as illustrated in Fig. 1(c). The
remaining small distortions away from the average inter-
face position with h(r)=0 can be described by the
(d —1)-dimensional capillary-wave interface Hamiltonian

~cw= I d" 'r —,
' o

~
Vh(r)

~

', (3.3)

in which the interfacial free-energy parameter (surface
tension) o. results from the integration over the shorter
length scales, which include the relevant ones up to order

Strictly speaking, the surface tension rr that enters in
(3.3) should be o (l ), the surface tension renormalized only
out to length scale l. However, for l ~~gz, the difference
between o.(l ) and the macroscopic surface tension a is of
relative order (g~ /l )" 'ln(l /gz ) and thus is small.

Of course, —,
' f d" 'r

~

Vh
~

is only to lowest order
equal to the change in area of the Gibbs dividing surface,
and macroscopic thermodynamics or rotational invariance
suggest that the "drumhead" interface Hamiltonian of the
form

(3.4)

would be accurate for larger amplitude distortions in h (r).
However, as shown in the Appendix, where the mean-
field-type derivations of Hdh from HL&w are discussed,
the validity of both Hcw and Hdh is limited to length
scales large enough that (

~

Vh
~

) is small compared to
unity. Under these circumstances the higher-order terms
in

~

Vh
~

are even smaller and make little difference in
evaluating the partition function (recall that the interface
is parallel to the reference frame z=O on a macroscopic
scale). Both Hamiltonians describe single-valued inter-
faces and hence have no room for information about im-
portant pieces of the short-scale physics, namely
overhangs and bubbles. Extrapolating backwards by tak-
ing Hdh literally on all length scales and using some bare
O.o cannot properly "undo" the previous coarse graining.

Perhaps this point can be clarified if we consider the
column model of Weeks, where the integration over bulk
degrees of freedom is explicitly carried out. This pro-
cedure can be used to derive fovmally a single-valued but
generally very complicated interface Hamiltonian valid on
arbitrarily small length scales for, say, a liquid-vapor in-
terface. We begin by dividing the volume of the system
up into columns of width w and infinite height (for a fin-
ite system the height is taken equal to the system size L).
In each column a variable h; is defined as the location of
the local Gibbs dividing surface defined in terms of the
number of particles in that column. Then an integration
over all degrees of freedom with fixed set of heights Ih; I

yields an interface Hamiltonian M„( I h; I ) which might be
used, in principle, to calculate the bulk critical behavior of
the system.

However, if m is a fixed length (which does not scale
with g~), H ([h; I ) will have intercolumn interactions
over a longer and longer range of O(g~) as T~T, .
These short-wavelength interactions over distances less
than or of order g~ will be very complicated, and will
contain information about bulk critical behavior —they
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cannot be expected to be of a form that reduces to
cro(1+ Vh

~

)' in the continuum limit. (In fact, it is
conceivable that the parameters themselves have singular
functional dependences on the bare parameters and the
temperature as a result of the integration over the infinite
column heights. ) On the other hand, for large column
widths w )&ps, we do arrive at the simple interface Ham-
iltonian (1.1), but one where the effects of bulk critical
fluctuations have already been integrated out. This leads
to singular behavior of o.(T) as T~ T, .

IV. INTERFACE WANDERING
IN CAPILLARY-%'AVE THEORY

Having established the validity of Hc~ at sufficiently
large length scales, we discuss briefly its implications for
the Widom picture, where long-wavelength interface fluc-
tuations (capillary waves) are ignored. It is well known'
that H&w predicts a "wandering" of the interface for
d &3, which leads to a divergence of the interface width
in an infinite system as g —+0+. Interface wandering also
plays a major role in Wallace and Zia's" approach. At
first glance, capillary waves seem to invalidate
Widom's' ' picture of an intrinsic interface whose width
is O(gs).

However, as argued by Weeks, ' there are really two
different measures of the interface width, only one of
which corresponds to Widom s intrinsic width. Moreover,
it is found that Hc~ is consistent with the proper scaling
relations if a short-wavelength cutoff at length I =&gii is
used with N a fixed number &&1. Since for extracting
powers the precise value of X is immaterial, we will
henceforth, for convenience, take X equal to unity. To
obtain the scaling behavior, consider the height difference
correlation function calculated using Hcw ln Eq. (1.1):

G(r)—= z, J ds([h(r+s) —h(s)] )
1

(4.1)

1 1 —e'q'
Po(2~)" '

~q~ q( q +L,
(4.2)

where we have taken the infinite volume limit in Eq. (4.2).
Long-wavelength fluctuations between regions of the in-
terface separated by distances much greater than gii cause
the tota/ interface width W—:G(ao) calculated from
(4.2) to diverge as L,~ Oo (g —&0) for d & 3. To see this,
note that the effect of a large but finite L, can be approxi-
mated by a small wave-vector cutoff q;„=m/L, in (4.2)
(such a cutoff at q =sr/L would also give the effect of
finite system size L ) and we find

Pcr(2~) ~n., &q &~xg~

2
/3cr(4')" '~ I ((d —1)/2)(d —3)

(4.3)

X [(~/g, )" ' (~/L, )" '] .
——-(4.4)

Thus 8 is proportional to L, for P &3, to l~, for
d =3, and is finite and independent of L, as L,~ oo, for8) 3.

Thus interface fluctuations affect an arbitrarily small
fraction of the bulk for all d with 1 & d & 3 in the thermo-
dynamic limit. Further, the wandering occurs for all
temperatures less than T, .

It is sometimes argued"' that capillary waves are the
driving force that causes T, to tend to zero as d~1, in
analogy with the suppression of T, to zero by spin waves
in the Heisenberg model as 8~2. This analogy, dis-
cussed further in Sec. V, was exploited by Wallace and
Zia, " who expanded their renormalization-group equa-
tions in powers of d —1. Indeed, interface fluctuations in-
crease as d is decreased, but near d = 1, Eq. (4.5) can be
written as

(d I )L (1—d)/2
L (4.6)

where we have used the fact that 1/I (x) =x+0(x ). If
one considers a finite system in d dimensions with the in-
terface fixed on only one side (this eliminates the trivial
k =0 translation mode of the interface as a whole, which
is even present in a system without capillary waves ' ),
the interface fluctuations on the other side due to capil-
lary waves are of the order of 8' justifying its interpreta-
tion as the interface width. According to Eq. (4.6), W/L
actually decreases with decreasing d when d —1 becomes
less than some value of orcler (lnL) '. This can be inter-
preted as a gradual stiffening of the interface in the limit
d~l, which arises from the reduction in phase space

However, Widom's picture concentrates on the impor-
tant fluctuations determining bulk critical properties with
wavelengths less than or of order gii and ignores the ef-
fects of the longer-wavelength fluctuations which give rise
to the divergences in (4.4). An estimate of the interface
width when these long-wavelength fluctuations are
suppressed can be made by considering fluctuations be-
tween regions of the interface separated by distances of
O(gii) (in general, of order Xgs), the minimum distance
for which Hc~ can be trusted, and the range over which
the elementary density fluctuations should occur. '

Thus defining the local width '
W~ =G(gii), we find

from Eq. (4.2), after using the Widom scaling relation
Perp~ '-const, that Wg -gg as T~T, for all d &4 in-

dependent of J, . Thus the local width behaves in just the
way envisioned by Widom. ' ' Further, as mentioned in
Sec. III, the longer-wavelength fluctuations in Hc~ carry
very little free energy ' and can be ignored in consider-
ing the singular behavior of o. near T, . This confirms the
essential validity of the Widom picture for the relation-
ship between bulk and surface critical properties.

Another way of arguing for the irrelevance of interface
wandering for critical behavior is to compute the fractionf of the volume of the system which is influenced by in-
terface fluctuations. If we consider a finite system of size
L" with g =0, we can use Eq. (4.4) to estimate the size of
the region affected by interface fluctuations provided we
replace L, by L. We therefore find from (4.4)

L~ 'W
0: 1&8&3 .L' 1((d—1)/2)L'"-"" '

(4.S)
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available for the interface fluctuations as the interface di-
mension tends to zero. However, it is above all a warning
that the behavior near d = 1 is quite singular and that re-
sults depend sensitively on the order of the limits d~1
and I.—+oo.

The suppression of T, to zero in the limit d ~1 is
much more naturally attributed to bulk fluctuations.
Overturning Ising spins in an area of size l in d dimen-
sions results in an energy increase proportional to l"
for d =1 this energy is independent of l and so at any
nonzero temperature arbitrarily large bulk excitations can
be created. The fact that T, ~O for d~1 follows im-
mediately from such considerations, and should not be at-
tributed to an increased activity of capillary waves near
d =1.

An indirect experimental test for the interface picture
described in the preceding three sections is possible by
comparison of the results of light scattering experiments
on fluid interfaces near the critical point with the theoret-
ical predictions of Jasnow and Rudnick, ' who include
both the contributions from the long-wavelength capillary
waves and those from the "intrinsic profile. " The experi-
mental data of Wu and Webb are in good agreement
with this theory, and indeed show a changeover in
behavior at wavelengths of the order of gs.

V. CRITIQUE OF THE DRUMHEAD MODEL

In this section we wish to elaborate further on why the
drumhead Hamiltonian (3.4) cannot give a correct
description of the behavior of an interface near the bulk
critical temperature. Of course, the drumhead Hamiltoni-
an by itself has the full rotational invariance of d-
dimensional space, because the energy is simply propor-
tional to the area of the interface. However, the restric-
tion that h(r) is a single-valued function clearly breaks
this rotational symmetry by making the z axis special in
the sense that only configurations without overhangs and
bubbles with respect to this particular axis are taken into
account in evaluating the partition function. Therefore,
the surface tension o.(0) of the drumhead model will de-
pend on the tipping angle 0 at any nonzero temperature,
although it is independent of I9 at T=0, where there are
no fluctuations (cf. Ref. 18). Of course, the Ising model is
well known to exhibit isotropic scaling properties near T,
even in the presence of nonuniform boundary conditions,
and despite the lack of complete rotational invariance of
the microscopic lattice Hamiltonian; these differences be-
come irrelevant near T, . For an interface approach to
preserve a similar rotational invariance in the scaling lim-
it, one must average over an isotropic set of configura-
tions and allow h(r) to be multiple valued. If this is
indeed allowed then the interface will form bubbles and
overhangs on length scales less than or of order of the
bulk correlation length g~. These bubble and overhang
fluctuations are an essential part of the critical Ising-
model universality class. The restriction to single valued-
ness in the drumhead model completely suppresses these
important fluctuations in .a fashion that breaks rotational
symmetry. Teitel and Mukamel' have explicitly shown
that the free energy associated with Hdh is not isotropic to
O(T) in any dimension d&1. This means that the simple

square-root form of the drumhead Hamiltonian will not
be preserved under a renormalization-group rescaling
when the short-distance cutoff is less than or of order gz.
Rotational invariance is not restored in the scaling limit,
as is shown explicitly below for d =2.

Up to now, we -have not addressed the question of
whether the interface approach to bulk critical phenome-
na could be asymptotically correct near d =1, since our
main interest is in the general validity of the interface pic-
ture, in particular for d ) 1. Although our analysis, par-
ticularly in Sec. VII, shows that this approach fails in
d=2 due to the relevance of bubbles and overhangs, it
does not assess the behavior in the limit d~1. The latter
limit, though rather singular, is of interest because the ex-
plicit calculations of Wallace and Zia" were based on a
e=d —1 expansion of the renormalization-group equa-
tions for Hdh. A justification for such an expansion
comes from the recent work of Bruce and Wallace, ': who
have carried out an e =d —1 expansion of a droplet
model. Such droplet models were first proposed for gen-
eral dimension by Fisher. While not taking account of
overhangs in the surface of each droplet or of direct in-
teractions between droplets, Bruce and Wallace' do con-
sider some multiple droplet effects; they argue that the
correlation-length exponent v and the order-parameter ex-
ponent P at the Ising critical point are separately deter-
mined by two different mechanisms for small e=d —1,
since then the droplet boundaries are dilute even at T, .
Within their approach, v is determined by droplet or in-
terface fluctuations and its e expansion is the same as the
one of Wallace and Zia, " while quantities like P that re-
flect the droplet density vanish to all orders in a power-
series expansion in e. Instead, /3 has an essential singulari-
ty for @~0 of the form P cc exp( —2/e). ' Presumably
the other critical exponents also have essential singulari-
ties if multiple droplet and overhang effects are taken into
account.

The work of Bruce and Wallace' shows that the e ex-
pansion of Wallace and Zia may give the correct expan-
sion for the true Ising exponents since bubbles and
overhanges contribute only in order exp( —c /e ) near
d = 1, with c of order unity, which means that they do not
contribute at all to the formal perturbation expansion. A
likely scenario that reconciles the conclusions of Bruce
and Wallace' with our picture is the following: although
bubbles and overhangs remain relevant for all d ) 1 at the
fixed point studied by Wallace and Zia, the proper Ising
fixed point (which includes overhangs and bubbles) moves
close to it in the limit d~1. In this limit, the exponents
at the two fixed points become asymptotically identical.
If this is indeed the case, we expect the two fixed points to
move rapidly apart for increasing d, since the physics
they describe is very different. By the time we arrive at
d=2 the exponents at the two fixed points presumably
differ by order unity. -

We do find some arguments that have been presented
for the validity of the e=d —1 expansion less than com-
pelling. For example, it has been suggested that the
e=d —1 expansion derived from the drumhead Hamil-
tonian is similar in spirit to the e=d —2 expansion for
n )2 Heisenberg spin models. We believe that the anal-
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ogy between the capillary waves in the former and the
spin waves in the latter is rather weak. The divergent
fluctuations of the spin waves are known to play an essen-
tial role in the disordering of the two-dimensional n )2
spin models. In the one-dimensional Ising model, howev-
er, capillary waves do not even exist. The bulk fluctua-
tions, namely bubbles, which cause the disordering of the
d =1 Ising model are not included in the e=d —1 expan-
sion of Wallace and Zia.

Let us now consider the drumhead model in two bulk
dimensions. We must have a short-distance cutoff for
the model to be well defined; for convenience, we will set
it on a lattice, since we do not expect this to affect the
scaling behavior, just as is the case for the Ising model
near T, . The Hamiltonian is then

~isa= pc«0[1+(h; —h;+&) ]' (5.1)

where the heights [h;[ are integers. The interfacial free
energy, o., as obtained from this model is simply

exp( —Po. ) = g exp[ —Poo( 1+n )'~ ] . (5.2)

= —e ' g n exp[ Pcro(1—+n )'~~] .
2 n= —oo

(5.4)

The nearest-neighbor mean-square height difference is
2G(l) and is a smooth monotonically increasing function
of T that is finite for all finite temperatures. Using (5.4),
we may now illustrate some differences between the Ising
critical behavior and the behavior of the lattice drumhead
Hamiltonian at its "critical temperature" To, defined by
the vanishing of o..

One implication of the isotropic scaling behavior at the
critical point of the Ising model is that the interfacial ten-
sion vanishes for all possible interface orientations. For
the drumhead model this is not the case. The interfacial
tension a (8), as a function of the angle 8 between the nor-
mal to the interface and the z axis, has a minimum at
0=0. For any nonzero temperature the interfacial tension
increases with 8, due to the restriction of h(r) to single
valuedness. In two bulk dimensions, the height difference
correlation function at long distances r becomes, accord-

In the limit T~O (P~ oo ), we have cr =oo. As the tem-
perature is increased, o. decreases, eventually vanishing at
some temperature To as

o -(To —T)", p= 1 . (5.3)

The Ising model also has surface tension exponent p=1,
so (5.3) could be taken as a success of the drumhead
model, but the result is obtained only because o. is a
smooth, monotonically decreasing function of T which
obviously vanishes with a finite, negative derivative
do/dT. This argument is generalized in the next section.

Since the difference variables h; —h;+ &
are independent,

the height difference correlation function (4.1) for the
present lattice drumhead model (5.1) is the analog of the
time correlation function in a one-dimensional (ld) ran-
dom walk. It is given by

G(r)= —,((h; —h;~„) ) =rG(l)

G( r) =«kgb T/2(o +o"), (5.6)

where o"=ci cr(8)/d8
~ s o. Comparing (5.4) and (5.6)

we find that the so-called surface stiffness o.+o" does
not vanish in the lattice drumhead model at any finite
temperature. This should be contrasted with the two-
dimensional Ising model, where o+o." does vanish as T,
is approached from below. This shows that the restriction
to a single-valued interface height has produced a serious
violation of the rotational symmetry expected near T, .

From the "random-walk interpretation" of (5.4) (which
carries over to the continuum case), it is also clear that the
lattice drumhead model does not obey the scaling law
(2.2). If we define the local interfacial width as
Wg =[G(gs)]', as discussed in the preceding section,
then we find

Wg
1/2 (5.7)

at the "critical" point To of the lattice drumhead model
where o. vanishes but o." remains finite. By the Widom
scaling law (2.2) we would expect, however,
8'~ =)~ cc (To —T) '. Thus the interfacial width,

B
which is a length normal to the interface, has- a different
critical exponent than the correlation length. Such aniso-
tropic scaling is very different from the isotropic scaling
behavior found at the d =2 Ising-model critical point. As
discussed in Sec. IV, capillary-wave theory using the
proper macroscopic surface tension is in general con-
sistent with Widom's scaling theory; the reason the dif-
ferent result (S.7) arises in the lattice drumhead model can
be traced back to the nonvanishing of the interfacial stiff-
ness o.+o" in that model. We believe that this nonvan-
ishing of the interfacial stiffness and the resulting aniso-
tropic scaling will occur in the drumhead model with a
short-distance cutoff in any bulk dimension d ~ 1.

VI. DERIVATIONS OF AN EFFECTIVE INTERFACE
HAMILTONIAN: MODIFIED ISING MODELS

In this section we describe two limits in which the in-
terface position h(r) of an Ising model becomes single
valued on all length scales, in order to clarify the differ-
ence between the behavior of systems exactly described by
interface Hamiltonians such as Hc~ and H&~ and that of
the ordinary Ising model near criticality. The necessity to
introduce, to this end, severe modifications into the Ising
model, can be understood from the low-temperature pic-
ture of the interface. At sufficiently low T, it is clear that
the Ising interface is indeed represented by a single-valued
function without overhangs. After properly incorporating
the anisotropy in the surface tension, the drumhead or
capillary-wave Hamiltonians accurately describe long-

ing to thermodynamic fluctuation theory,

G( «) —= —,
' ( [h (O) —h (r) ]')

f dh h exp[ P—Lcr(8)]
(5.S)f dh exp[ /3L—cr(8)]

where L =(h +r )'~ and tan8=h/r. In the limit of
large r, a steepest-descent calculation yields
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wavelength distortions. ' ' From a renormalization-
group point of view, this statement is equivalent to our
previous contentions that at long wavelengths we arrive at
the capillary-wave Hamiltonian, since on rescaling lengths
the renormalization flow for T ~ T, is towards the T=O
fixed point. In order to extend the validity of this type of
Hamiltonian to shorter length scales and higher tempera-
tures, the bulk density fluctuations (bubbles) and
overhangs must be suppressed. This can be achieved by
taking one of the interaction parameters to be infinitely
large.

A. Anisotropic Ising model in SOS limit

Consider an Ising model with an interface on a hyper-
cubic lattice with ferromagnetic bonds Jz perpendicular
to the interface and bonds J in the other directions. Since
every overhang and bubble creates extra broken Jz bonds,
they can be suppressed by increasing Jz. Accordingly in
the limit J~ ~ co only a single-valued solid-on-solid (SOS)
interface survives. Each state of the system can then be
characterized by the set of heights I h; I which give the in-
terface location in each column, just as in Weeks's column
method, though here the columns are of microscopic
width. The resulting (d —1)-dimensional interface Ham-
iltonian has short-range interactions of the form
2J

~
h; —hj ~

(tj nearest neighbors) which resemble the
discrete version of the drumhead Hamiltonian

1/2

2JQ 1+ g(b; h;)

I

(here b.; is the discrete gradient operator, discussed for
d =2 in the preceding section).

sion for o. and o. are identical, since the overhangs and
bubbles have a higher excitation energy than the lowest-
energy surface excitations. This approximation does yield
a o. that vanishes at some temperature T, . However,
since f is a smooth function, o. in (6.3) cannot have a
singularity for T~T, . For the exponent p

SQS SQS )psos (6.4)

one therefore always obtains the value unity in this ap-
proximation. The neglect of bulk excitations and
overhangs eliminates the possibility of a singularity in

sos

This approximate procedure happens to give the exact
answer p, = 1 when applied to the 2d Ising model' ' (cf.
Sec. V). For the square lattice nearest-neighbor model
with an interface parallel to one of the lattice directions, it
even gives the exact result for o. due to a fortuitous can-
cellation of the contributions from bubbles and overhangs.
Such a cancellation does not occur for interfaces tilted at
some nonzero angle, ' however, and cannot be expected
in general.

Muller-Hartmann and Zittartz' have applied approxi-
mation (5.3) to the antiferromagnetic Ising model in a
field, and several other workers have used the
method in a variety of models. Because the first few
terms in a low-temperature expansion are correct in this
approach, it can sometimes yield a rather accurate esti-
mate for T, [as obtained from solving o (J,J, T)=0],
especially if p is a priori known to be close to 1. In most
cases studied, this interface method is only exact in the
limit where some energy Jz ~~, leading to a suppression
of all bulk excitations and causing T,~ oo. Obviously,

, one therefore gains no insight into bulk critical phenome-
na by the artifice of studying such an interface model.

For large Jz, the interfacial free energy of the anisotro-
pic Ising model, o(Jq, J,T) may be separated into the en-

ergy, 2J&, of the flat T =0 interface and the remainder,
which is due to the interfacial wandering at T&0. This
latter term will be independent of Jz in the limit Jz~oo..

lim [o.(J&,J, T, ) —2J~]=f(J,T) .
J~~oo

(6.1)

The function f ( J,T) arises from the intercolumn energies
2J

~
h; —hz

~

and the entropy of interfacial configurations
with overhangs and bubbles forbidden. Thus the interfa-
cial free energy in the corresponding SOS model is pre-
cisely

o (J,J, T)=2J +f(J, T). (6.2)

Since'the identification of 0. and o. is correct only in
the limit J~ —woo, where, from (6.2), cr ~oo, the SOS
model cannot be used to study the critical point o.~O.
This is consistent with the fact that T,~ co in this limit
also, due to the suppression of the bulk excitations.

Now consider the approximation for the isotropic Ising
model, obtained by replacing Jz by J in o.

B. Mod~fied Ising model

A different modification of the Ising model on a hyper-
cubic lattice can lead to an exact interfacial Hamiltonian
(SOS model) but still allow the interfacial free energy to
remain finite and vanish at some temperature. Thus let
us add to the Hamiltonian of the usual nearest-neighbor
ferromagnetic Ising model with coupling J the additional
interaction

J) +[1—s(R)][1+s(R+az)),
4 R

(6.5)

where az is the nearest-neighbor vector parallel to the z
axis and pointing "upwards. " This term gives an addi-
tional energy of J& for each nearest-neighbor pair of spins
in which s(R)= —1 and s(R+az)=+1. We now have
the possibility of two -different kinds of interfaces running
normal to the z axis: If the s= —1 phase is above the
s = + 1 phase, the ground-state energy of the interface per
column of spins (per unit area) is

o(J,J, T)=o (J,J, T) . (6.3)

This approximation gives the correct T =0 energy.
Moreover, the first few terms in a low-temperature expan-

o'+(T =0)=2J,
I

while when the s = + 1 phase is above the energy is

o+(T =0)=2J+Ji .

(6.6)

(6.7)
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Let us now study the former type of interface by taking
the usual mixed boundary conditions of s = —1 at the top
of our system and s =+1 at the bottom (see Fig. 1). If
we then take the limit J&~ oo, only configurations which
satisfy s(R))s(R+az) are allowed and the SOS con-
straint becomes exact. The interfacial free energy per unit
area for this modified SOS (MSOS) model is then

o+(J) ~ oo ) = cr —=2J+f(J,T), (6.8)

where f ( J, T) is defined in Eq. (6.1). This free energy ob-
viously vanishes again with "critical exponent" p=1, at a
finite temperature T„but no critical behavior occurs at
that point and the surface stiffness o.+o." remains finite.
The bulk fluctuations that characterize normal critical
behavior cannot occur in this model because they require
portions of the forbidden type of interface. This simple
model provides further illustration of why an interface
Hamiltonian with a no overhang or SOS restriction can-
not be used to model the behavior near the bulk critical
point for any bulk dimension d & 1.

It is also instructive to consider this modified Ising
model for finite, positive J&. In this case bulk excitations
(bubbles) and overhangs in the interface are possible but
cost an extra energy proportional to J&. If the interfacial
free energies are defined using the above-mentioned mixed
boundary conditions, then a comparison of the actual mi-
croscopic configurations show that

o.+( T)=o+( T) +J) . (6.9)

Regrouping the terms in Eq. (6.5), we see that our modi-
fied Ising model is precisely equivalent to a normal aniso-
tropic Ising model with coupling Jz ——J+J&/4 and sur-
face fields of magnitude J&/4 favoring s = —1 in the top
layer and s =+ 1 in the bottom layer (where these boun-
dary layers are arbitrarily far apart). The bulk critical
point, and consequent proliferation of overhangs and bub-
bles and vanishing of o." does not occur until the average
interfacial free energy (o +o + ) vanishes, which means
from (6.7) o+~ —J~/2. Thus even when the bubbles and
overhangs are only slightly suppressed by a finite J& the
vanishing of o.+ does not signal the bulk critical point.

VII. GENERALIZED INTERFACIAL MODEL

In the preceding section the Ising model with an inter-
face was reduced to an SOS model by suppressing config-
urations with excess segments of a particular horizontal
interface. This is done by taking some nearest-neighbor
coupling to infinity, which, however, has the unfortunate
side effect of causing the bulk critical temperature to
diverge. One may, on the other hand, suppress the config-
urations with overhangs and bubbles in a somewhat less
intrusive way by attaching an additional energy, say E„,
to "reversals" in the interface, where the z component of a
unit vector normal to the interface changes sign. Such an
Ising model with an interface again reduces to an SOS
model in the limit F.„~oo, but now there exists a finite
bulk critical temperature at which ferromagnetic long-
range order disappears.

An explicit, exactly solvable Ising model that interpo-
lates continuously between the usual nearest-neighbor

FIG. 2. Mapping of the Ising model onto an interfacial
model on the dual lattice. Interfaces between + and —Ising
spins correspond to solid lines in the vertex model.

e
&

———2J, e2 ——2J+E, ,

e3 ——e4 ——0,
e5 =e6 =Eh

e7 ——e8 ——E„.

(7.1)

The usual Ising model with nearest-neighbor interaction J
is the case E, =Eh ——E, =O. For general vertex energies
we have an Ising model with additional next-nearest-
neighbor and four-spin couplings. An SOS model, with
no overhangs or bubbles allowed is obtained in the limit
E„—+ oo.

This eight-vertex or Ising model (7.1) can be solved for
vertex energies satisfying the free-fermion condition

pE —2pEb —2pEc+1—e b+ (7.2)

FIG. 3. Eight allowed interface configurations on each node
of the dual lattice and their association with the eight-vertex
configurations. The numbers refer to the standard vertex num-
bers of Lieb and Wu (Ref. 20).

model and a SOS-type model exists in d =2 dimensions.
Consider an Ising model on a square lattice with, for con-
venience, the nearest-neighbor directions oriented at 45 to
the horizontal. Each spin configuration of this Ising
model may be represented as a configuration of an interfa-
cial model, where the segments of the interface are on the
bonds of the dual lattice and each such segment separates
antiparallel nearest-neighbor spins, as is illustrated in Fig.
2. This interfacial model is equivalent to an eight-vertex
model; the eight allowed configurations of each node of
the dual lattice and its four adjacent bonds are shown in
Fig. 3. Let us consider the model with the following ver-
tex energies
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0 &Ep&

(a) T =0

Er =a)

(d) 0&T&TC

For concreteness, let us then restrict our attention to the
case of vanishing crossing energy, E, =0, and require that
the bending energy Eb is determined by the free-fermion
condition (7.2). We will concentrate on the case where
E„&0, so that Eb, according to (7.2), is negative.

In the physically most relevant case where J &
~

Eb ~,
we see from Figs. 2 and 3 that the ground state of the spin
system with + —boundary conditions consists of one
area of + spins and one area of —spins (corresponding
to vertex I), separated by a single interface composed of
vertices 5 and 6 [Fig. 4(a)]. The qualitative behavior of
the model as a function of E, is further illustrated in Fig.
4. For all finite E„, there are bubbles and overhangs in
the system at temperatures T&0. The shape of these
bubbles depends on Eb, E„and the temperature. For ex-

ample, when E, =
~

Eb
~

&k&T bubbles are more-or-less
symmetric since the number of "reversals" (vertices 7 and
8) is then roughly equal to the number of "bends" (ver-
tices 5 and 6), see Fig. 4(b). For E„»ksT, however, the
contours separating + and — spins are significantly
elongated in the horizontal direction due to suppression of
reversals [Fig. 4(c)]. When reversals are completely for-
bidden by taking E„=oo, the qualitative behavior is quite
different [Figs. 4(e)—4(f)]. For sufficiently low tempera-
tures (in fact for all T & T, ), there is only one contour,
since creation of a new one is associated with an energy
proportional to the system size because any interface must
run across the entire system [Fig. 4(d)]. Only above a fin-
ite T, do multiple "interfaces" appear [Figs. 4(e)—4(f)].
However, even above T, the regions of + and —spins
are always "striped, " a feature not present when E, & ~.
These multiple interfaces destroy long-range order, but
the nature of the infinite E„phase transition is quite dif-
ferent from that of the Ising model, as we now proceed to
show.

The critical temperature of our vertex model with the
above restrictions is simply

exp(2JIk~T, )= 1+v'2 (7.3)

(b) T &0, Er —-(Eb)«BT (e) T & Tc

for all reversal energies E„. The phase diagram of this
model as a function of k~T/2J and exp( E„lks T)—is
shown in Fig. 5. For any finite non-negative E„, bubbles
and overhangs are allowed and the order-disorder transi-
tion is a normal Ising transition with, for example, a loga-
rithmically divergent specific heat and surface tension ex-
ponent p= l. In the limit E„—+oo, however, the bubbles
and overhangs are suppressed completely. The model then
reduces to a potassium dihydrogen phosphate (KDP-) like
six-vertex model which has the same surface tension ex-
ponent p=1, but despite this the E, = oo critical point is
no longer in the Ising universality class because all inter-

(c) T& 0, F„» kgT (f) T» T~

e-P Er

PURE ISING LINE

ORDERED DISORDERED

FIG. 4. Typical configurations of the lattice model with +-
boundary conditions and

~

Eb
~

&J for various values of E„
The ambiguity in drawing the lines at vertex 2 is also encoun-
tered in Fig. 1(a) where a bubbles intersects the long contour.
Here we have drawn vertex 2 as two "bends" (like a combina-
tion of vertices 5 and 6). (a) The ground state for 0&E„&oo.
(b) When E, =

~
Eq

~

&k&T the bubbles are roughly symmetric
and the behavior of the model is close to that of the nearest-
neighbor Ising model. (c) The bubbles and overhangs are
elongated for E„»k&T. (d) For E, = ~, T & T, there is only
one line separating + and —spins. (e) Just above T„ there are
multiple "interfaces, " but they are still relatively dilute. Since
E„=ao the regions of + and —spins remain striped. (f) For
T» T, there is a high density of interfaces.

y-CRITICAL

3/ln (1+~2) k
0

0 T
2J

FIG. 5. Phase diagram of the of the eight-vertex model de-
fined by (7.1) and (7.2) with E, =0, as a function of k&T/2J
and exp( —E„/k~T). Solid lines indicate critical lines. The
phase transition at the vertical line where
exp(2Jlk~T)=1+V 2 is in the Ising universality class. For
E„=ao, all interface reversals are suppressed and the transition
is in the universality class of the KDP model.
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d(o/T) 1 (~ )dT T
(7.4)

is just the internal energy, and is finite. Hence o. must
vanish linearly as T~T* and consequently p = 1. As dis-
cussed in Sec. V, this can be explicitly verified for the
drumhead model in two bulk dimensions.

If p=1 in the drumhead Hamiltonian for all d ~ 1,
then why is it that Wallace and Zia" did not find p = 1 to
all orders in e =d —1? We believe that the reason they did
not obtain the result p = 1 may be traced to the fact that
they have not imposed a short-distance cutoff on the
model. In fact, the nontrivial fixed point they find does
not even exist in a model with a cutoff, unlike the case for
the bulk Ising model where the universality class of the
critical behavior is independent of the nature of the cut-
off. If one renormalizes with a cutoff by a momentum
shell integration, the square-root form of the Hamiltonian
is not preserved and it appears that the only finite-
temperature fixed-point Hami1tonian of such a renormali-
zation group is the simple capillary-wave Hamiltonian

faces are forced to run from left to right throughout the
whole system: e.g. , the specific heat diverges with ex-
ponent o.= —,

' for T~T, from above, characteristic of
KDP-type models (as was argued by Haldane and Vil-
lain, this is the typical behavior of systems with such
stringlike excitations). For all T ~ T„ the E„=oo system
has algebraically decaying spatial correlations. For
T & T, and E„=co there are no fluctuations about the
ground state, but one can evaluate horizontal and vertical
correlation lengths that have well-defined limits as
E„~oo. The horizontal correlation length diverges as
T~T, with critical exponent v~~

——1, just as at an Ising
critical point, while the vertical correlation length
diverges with exponent vz ———, in this E„~~ limit. This
again demonstrates the anisotropic scaling of interface
Hamiltonians.

This simple example illustrates how the bubbles and
overhangs in the interfaces are an essential part of the
physics of the Ising universality class of criticality. When
they are suppressed completely by taking E„~oo, a dif-
ferent phase transition with different critical behavior re-
sults. Thus critical exponents obtained from a calculation
that does not include bubbles and overhangs presumably
represent a different universality class than the usual Ising
critical point. This exactly solved model is restricted to
d =2, but we expect similar models in any d ~ 1 to show
qualitatively the same behavior, namely a transition to a
striped phase in the limit E„~~,' this transition will ex-
hibit anisotropic scaling and have p = 1, and will therefore
not be in the Ising universality class.

The result @= 1 found in this model and in the SOS ap-
proximation (6.8), is in fact a general consequence in any
dimension of the use of an interface-type Hamiltonian for
which no bubbles and overhangs are permitted. This can
be seen as follows (cf. also Secs. V and VIA). The sur-
face tension o. when computed from any simple interface
Hamiltonian H; with short-range interactions and a cut-
off is a decreasing function of temperature and goes
through zero at some finite temperature T*. Further-
more, the derivative

(3.3), which satisfies anisotropic scaling and has @=1. In
the analysis of Ref. 11, the interface height h(r) was
scaled as a length, but from Eq. (4.6) it is clear that the
lengths must scale anisotropically in treating the drum-
head Hamiltonian with a cutoff, i.e., if lengths parallel to
the interface rescale with a factor l then the length h(r)
perpendicular to it should scale as l' "' . This is anoth-
er indication that such interface Hamiltonians should not
be used to describe bulk critical properties, for which iso-
tropic scaling holds (cf. Sec. V).

The relevance of overhangs and bubbles in two dimen-
sions can be argued more generally by considering models
with the reversal fugacity, y =—exp( E„/kz —T) as a param-
eter. An expansion of the partition function or the sur-
face tension perturbatively in y then reveals that-the y =0
transition is actually multicritical, as in Fig. 5, with y
representing a relevant variable. We have verified this by
a calculation along the lines of the one of Huse and Fish-
er ' for 2X 1 commensurate overlayers (in their case the
interfacial reversals represent dislocations in the over-
layer). For a calculation of the surface tension one may
actually assign different fugacities to reversals in
overhangs and reversals in bubbles; both are relevant, with
the same scaling exponent. This allows the contributions
to the surface tension from overhangs and bubbles to can-
cel precisely for certain orientations of the interface in the
nearest-neighbor Ising model. However, the fact that they
cancel does not make them irrelevant, in a renor-
malization-group picture. Rather, their cancellation
should be viewed as a coincidence, which is permitted by
the fact that p = 1 for the d =2 Ising model.

Many two-dimensional models can be represented in
terms of stringlike excitations with appropriate
Boltzmann weight assigned to reversals and intersections
of these strings. Thus if we alter the above Ising model to
allow reversals and overhangs of the interface, but no
separate bubbles (loops), the system becomes a self-
avoiding walk and is again in another universality class. '

Similarly, one can construct Potts models, etc. by allowing
different types of interfacial segments and intersections.
These systems have quite a variety of critical behavior,
but all reduce to simple SOS-type models in the limit
where reversal and intersection fugacities are taken to
zel o.

VIII. FINAL REMARKS

Our examination of the derivation. and use of interface
Hamiltonians has pointed out their limitations for analyz-
ing bulk critical properties for which a full d-dimensional
description incorporating bubbles and overhangs is re-
quired. On the other hand, an interface Hamiltonian
gives an accurate description of long-wavelength interface
fluctuations, and provides a simple means to calculate the
effects of such fluctuations. Nontrivial consequences of
these Auctuations for the liquid-vapor system are found in
the behavior of the interface width and in the existence of
long-ranged density correlations parallel to the inter-
face. ' In other surface phenomena not associated with
a bulk phase transition, such as roughening, ' layering, '

and critical wetting ' transitions, the long-wavelength
fluctuations play a significant role and here again the
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analysis of an interface Hamiltonian is an important step
in developing a tractable theory.

ACKNOWLEDGMENTS

We are grateful to P. C. Hohenberg, D. S. Fisher, M. E.
Fisher, and R. K. P. Zia for helpful comments and spirit-
ed discussions. One of us (D.A.H. ) thanks the Aspen
Center for Physics, where part of this work was done.

APPENDIX. ANALYSIS OF THE DERIVATION
OF Hdg FROM HI ~~

In this appendix we briefly discuss the derivations of
the drumhead Hamiltonian Hdq from the Landau-
Ginzburg-Wilson Hamiltonian (3.1) in the light of the in-
terface picture described in Secs. II—IV, and show that
the validity of Hd], is confined to length scales large com-
pared to gz. The derivations in the literature6~ 64 are
essentially based on a low-temperature (mean-field) pic-
ture of the interface. We first discuss this picture, em-
phasizing the assumption of single valuedness of the inter-
face, and then comment on the derivation close to T, .

At low temperatures (T ~~ T, ), a mean-field analysis of
Hz &w becomes adequate and Hd~ can be obtained from
what is essentially a mean-field-type analysis of a slightly
curved interface. Let M(z) be the mean-field local order
parameter profile corresponding to IIt ow [Eq. (3.1)]
below T, (r & 0) when the interface is flat and perpendicu-
lar to the z direction,

M(z)=(
~

r
~

/u)'~ tanh[( r
~

/2)'~ z],
which is the solution of

d2
+

i
~

i

—uM (z) M(z) =0 .
dz2

At low temperatures,
Equation (Al) gives the interface profile in the mean-

field configuration P(R)=M(z) whose energy minimizes
HI&w under the appropriate boundary conditions. To ex-
amine the effects of long-wavelength fluctuations, we fol-
low Diehl et al. and Kawasaki and Ohta and implicit-
ly define an interface position h(r) for each spin configu-
ration P(R) by the requirement that

f dz (b(R)M'(z —h (r) ) =0 . (A3)

Here M'—:dM/dz and we have used a coordinate system
R= (r,z ). An interface Hamiltonian H;( {h (r) ] ) incor-
porating some fluctuations about the flat mean-field pro-
file is thus obtained by integrating over those bulk config-
urations which are consistent with a given h(r).

We emphasize that any definition of the form (A3) al-
ready implies a coarse graining in the following sense.
For a given field configuration P(R), the solution h(r) of
(A3) can, in principle, be multiple valued; this corresponds
to the presence of interfaces with overhangs or the ex-
istence of bubbles [closed interface loops, like the dashed
lines in Fig. 1(b)]. However, since M'(z) has at low tem-
peratures a width of the order of

~

r
~

' '=g&, only
overhangs and bubbles of size larger than g~ will accord-
ing to (A3) give rise to multiple-valued solutions of h(r),

while the overhangs and bubbles of size smaller than gz
merely shift the interface position slightly.

Note also that the definition (A3) also breaks the rota-
tional symmetry of the system: A cigar-shaped bubble of
width smaller than gz but length much larger than g~
does give rise to a multiple-valued interface if it points in
the z direction, but not if it is directed along the interface.
As discussed in Sec. V, this lack of rotational symmetry is
also present in the set of interface configurations used to
calculate the free energy from Hdz.

In practice even those configurations which do give rise
to multiple-valued h(r) from (A3) are ignored and a
single-valued h(r) is assumed to give an adequate descrip-
tion. This amounts to a mean-field analysis of a gently
curved interface and is consistent only at low tempera-
tures. This is explicitly assumed in the formal derivation
of Hd~ by Diehl et al. , and shown below, can also be
seen from the simpler (but essentially equivalent) deriva-
tion of Kawasaki and Ohta. Kawasaki and Ohta
determine the solution P(R)=X(z —h(r), r) which mini-
mizes Htow under the constraint (A3). The variational
problem for 7 leads to the equation

(AS)

so that (A4) reduces to

{[1+(B,h)']8,'+
~ ~

—uX'IX= M'( ) . (A6)

Kawasaki and Ohta argue that v should be zero since g
will be an odd function of z. The solution of (A6) then
reads [cf. Eqs. (A2) and (A3)]

(A7)

Upon substitution of this solution for P into ~t,ow and
carrying out the z integration, one then arrives at Hd[,
with o.M& given by the usual mean-field (MF) expression

~M„= f dz[M'(z)] (A8)

Obviously, the validity of the above mean-field analysis
is limited to length scales such that the terms (AS) are
small compared to those retained in Eq. (A6). Thus we
need to have, for instance,

~qX ((~z1 (A9)

Since X varies over scales of the order of g~ (=r '
) in

the z direction, the length scales l along the interface over
which (A9) is obeyed are

l ))g~, (A 10)

in agreement with the arguments given in Secs. II—IV.
While the above analysis again confirms that Hd], is a

long-wavelength Hamiltonian away from criticality, the
mean-field derivation obviously breaks down close to cri-
ticality. However, as argued in Secs. II—IV, the drum-
head Hamiltonian remains valid even close to criticality

[1+(B,h ) ]B,X+8,X+
~

r
~
X —uX

—2B,h B,B,+—B,h B,X=vM'(z),

where v is the Lagrange multiplier associated with (A3).
From here, one arrives at Hdb by neglecting the terms
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on sufficiently long length scales obeying (A10). This can
be understood within the self-consistent renormalization-
group picture discussed in Sec. III. By integrating out the
fluctuations of wavelength up to order gz in HLGw and
rescaling, one is driven away from criticality. In doing so,
the singular part of the free energy is determined and
overhangs and bubbles gradually disappear. When one ar-

rives at length scales I' obeying (A10), r(l') in HLow is
large (low temperatures) and a mean-field analysis like the
one sketched above is appropriate, provided we set'~ (I') equal to the true correlation length g' at the
length scale, rather than the mean-field correlation length.
Similarly, the macroscopic o. rather than the mean-field
o.MF as in (A8) then appears in Hdt, .
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