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Let A be a Dedekind domain, and denote by Z the set of its non-zero prime ideals. It is
well known that A is a principal ideal domain if Z is finite. An infinite analogue of this
result was obtained by Claborn \f; fe chapter III, section 13]. He proved that A is a prin-
cipal ideal domain if £ "f

(1) #A>(#Zf,

where α is the least infinite cardinal and #S denotes the cardinality of S.

If Z is finite then A is not only a principal ideal domain but even a Euclidean

domain [£, Proposition 5]. The latter Statement means that there exists a map <j> from

A — {0} to a well-ordered set W such that for all a, beA with b̂ O, a&Ab, there exists

r&a+Ab with φ(/·)<φ(ό). For finite Z one can take for W the set of non-negative
mtegers.

It is a natural question whether Claborn's result can be extended in a similar way,

i.e. whether A is Euclidean if (1) holds. In the present paper we show that this is indeed

the case. For W we take a well-ordered set of order type ω2, where ω is the least infinite

ordinal. The elements of W can be written in a unique way äs ωά +b, where a, b are non-
negative integers; and wa+b<ua'+b' if and only if either a<a' or a = a', b<b'.

We shall see thal the other results that Claborn obtained m [/] can be extended in

an analogous way. ~

We let K denote the field of fractions of A, and Vj,, for £eZ, the normalized

exponential valuation of K corresponding to {x The group of units of A is denoted by A *.

Claborn's first result [̂, Proposition; %, Proposition 13.7] states that A is a principal

ideal domain if A contains a field k satisfying #A = #k>#Z. A sharper result is äs fol-
lows.

(2) Proposition. Let A be a Dedekind domain, and suppose that A contains a subset k with
the properties

(3) #k>#Z,

(4) λ-μεΛ* (J{0}for all λ,

Then A is Euclidean.

Proof. For xeA —{0}, let Φ(χ) = 2 eZv»(x)· We prove that A is Euclidean with respect

Let a, b&A, bĵ Q, a&Ab. First suppose that for some XeA: we have

-(a + \b)=Aa+Ab. Then



for all t>eZ, with strict inequality for at least one p. Hence the element r = a+\b of

a+Ab satisfies φ(/·)<φ(ί>), äs required.
Next suppose that no such λ exists. Then for every Ae/t there exists ip\<=Z such

that a + \b̂ $y(Aa+Ab). The map k-*Z sending λ ίο !p\ is not injective, by (3), so there

are λ, με/c, λ̂ μ, with fx=V Tnen (̂ —̂ )b = (a+\b)-(a-\-̂ )ê -(Aa+Ab), so

6ερλ·(Λα+Λ£), by (4). We conclude that Aa+Ab=A-(a+\b)+Ab is contained in

$\-(Aa+Ab), which is a contradiction. This proves (2).

If A is the ring of integers in an algebraic number field then condition (3) can be substan-

tially weakened, see [3, Theorem (1.4)]. (/ ^

For a subset Yd Z, we define the subring AY dK by

AY = {x<=K\ vp(jc)3*0for alli>e7}.

Notice that AZ=A. Ciaborn \Jt, Theorem; % Theorem 13.8] proved that every ideal of AY ^2. /. <

is generated by an element oi~A if the inequaiity #A>(#Y)° is satisfied. To formulate

our stronger result we need a definition. Let the pair (A, T) be called Eudidean if there

exist a well-ordered set W and a map $:A - {Q}-*W such that for all 0, beA, b̂ O,

a<£AYb, there exists rea+Ab with <j>(r)<<j>(b). We have AZ=A, and (A, Z) is Euclidean if

and only if A is.

Let (A,T) be EucHdean and B a non-zero ̂ y-ideal. Then b is generated by brU,

and if b e b Γι A has minimal φ-value then it follows easily that AYb = b. Hence, if (A, Y) is

a Euclidean pair, then every ideal of AY is generated by an element of A. This shows that

the following theorem is indeed sharper than Claborn's result.

(5) Theorem. Let A be a Dedekind domain, and Υ a set of non-zero prime Ideals of A such

that #A>(#Y)a, where o denotes the least infinite cardinal Then (A,Y) is a Euclidean

pair.

The proof uses the following lemma. Let W be the well-ordered set of Order type ω2

defined above.

(6) Lemma. Lei A be Dedekind, FcZ α subset, and suppose that there exists a finite subset

XC.Y with the property that for every χ&Αχ—Αγ there exists q&A such that (x+q)~x <=AY.

Then (A, Y) is a Euclidean pair with respect to the map φ:Α — {0}-» W defined by

φ(*)=ω·Σν»(*) + Σ VP(*)·

Proof of (6). Let a, b^A, b̂ O, a$AY-b. We have to find r&a+Ab such that φ

First suppose that v̂ (a)̂ vf{b) for all $<=X. Then x=a/b belongs to Ax, but not

to AY, so by the hypothesis of the lemma there exists q^A such that (x + q)~~l =b/(a + qb)

belongs to AY. Then b<=AY-(a+gb), and therefore AY-(a + qb)=AYa+AYb. Hence

satisfies

for all peF, with strict inequality for at least one p because a$AYb. It follows that

Secondly, suppose that vi,(a)<vt)(6) for at least one ipGX. Smce X is finite, the

approximation theorem/for Dedekind domains imphes that there exists r^A with the fol-

lowing properti es: "

v p (r - a)̂ v v(b) for all peZ with Vp(a)<Vp(ö),
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ν <>(>·) = ν „(6) for all £(ΞΧ with

ν<,(/·) = ν(,(*) for all t) eZ- Jf with

Then we have vp(r — a)>Vj,(Z>) for all £>eZ, so re<z+,4Z>. Also, v̂ ,(r)̂ v̂ (b) for all

with strict inequality if νρ(ο)<νρ(6), which occurs for at least one ipeX. Hence

Σ vt> (Ό < Σ vf (*)' and ü follows that <j»(r)<<t>(b), äs required. This proves (6).

Notice that the lemma implies that (A, T) is a Euclidean pair if Γ is finite.

Proof ofthe theorem. U suffices to show that some for finite subset XC. Υ the condition of

the lemma is satisfied. By the remark just made we may assume that Υ is infinite. Let

£eZ, and let A^ be the £-adic completion of A. Then from

(# Y)a< #A < #A» = (#A/p)a

we see that # Y< #A/lp. So Λ /p is infinite for every t>eZ.

Suppose that there does not exist a finite subset XC7 satisfying the condition of

(6), i.e.:

(7) for every finite ̂C 7 there exists χ ̂.Αχ-Αγ such that

(x+q)~l&AY for all #εΛ.

We derive a contradiction.

Using (7) we construct a sequence (xm)%=o of elements of K-AY with the follow-

ing two properties:

(8) (x„ +q)~l &A γ for all n >0 and all q eA,

(9) if X„ - {ί,ε 7: vp(jc„)<0) then

X, nXj = 0 for all i, j3=0, /̂ /.

The construction is by induction on m. Let m^O, and let x„, for 0<n<m, be such that

(8), (9) hold when restricted to /', /, n<m. Applying (7) to X—(J„<mXn we find

xm(=Ax-AY such that (xm+q)~l&AY for all ̂ e>4. For n<m we then have

x;„ &AX CAXn ,soX„r\Xm=0. Hence (8) and (9) hold for i, j, n *Zm. This concludes the

induction step and the construction of the sequence (xm)m =o·

W (flm)m=o is any sequence of elements of A, then plainly also

(ym)m=o=0™+öm)m=o satisfies (8) and (9), with x. replaced byy,. We clairn that for a
suitable choice of (a„,)~=0 the sequence (ym)m =o has the following additional property:

(10) there is no t>e 7 such that there exist /, j, k with

The proof is again by induction. Let m 5=0, and let a„<=A, for «<m, be such that (10)
holds when restricted to k<m. The only £e7 which can possibly violate (10), with k = m,
are those for which vv(y, - ̂y)>0 for certain /, 7 with i<j<m. There are only finitely
many such p, since 7, ==yy would imply that A", =A}, so X, = 0 by (9), contradicting that
χ,&Αγ. Notice that vs(y, ~j/)>0, with i<.j<m, implies that i)«JT, and peXj. If ̂eJTm,

then regardless of the choice of am we have v̂ (yj-ym)<0. If \>^Xm, then we have

Vp(yy— jm)=0 provided that

(in the local ring at £). Hence, for (10) to be valid with k = m,it suffices that am avoids a

finite set of residue classes modulo each of a finite number of prime ideals of A. Since

A/lp is infinite for all 1p £ Z, the approximation theorem/guarantees the existence of an ele- J

ment am <=A satisfying these conditions. This completes'W inductive proof of (10).
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From (8), (9) (withγ for χ ) and (10) we derive a contradiction. Fix q^A. Then

ior each «>0 there exists t»ne7 with v̂ (y„+̂ )>0, by (8). If i>, = t>,=fe for i<j<k,

then with £ = £, we obtain a contradiction to (10). Hence each p<=Y occurs at most twice

äs £„, and the map fq: (0,l,2,...}̂ Fdefined by fq(n)=$H has infinite image.

The number of maps {0,1,2,...}-»F is (# F)a, so from #A >(# Y)a it follows that
there exist q=£r in A with / =/r. For £=/„(«) we then have v^ + ?)>0, v,̂  +r)>0,
and therefore

VpOjf — r)>0 for all |3 in the image of j(̂.

But^ has infinite image, so it follows that q—r = 0, a contradiction.
This proves the theorem.

(11) Corollary. Lei A be α Dedekmd domain, and suppose that the set Z of non-zero prime
ideals of A satisfies #A >(#Z)a. Then A is Euclidean.

This follows from (5), with Y=Z.

i n rj^x/^-v f.tfMM <·.." +-*.»*, Cb~f/ c>v>"*~"
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