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Let 4 be a Dedekind domain, and denote by Z the set of its non-zero prime ideals. It %s
well known that 4 is a principal ideal domain if Z is finite. An infinite analogqe of t%us
result was obtained by Claborn [/1’; 2 chapter III, section 13]. He proved that A4 is a prin-
cipal ideal domain if Z 3

(1 HA>(HZ), o

where a is the least infimte cardinal and # S denotes the cardmallt‘y of §. .

If Z is finite then 4 is not only a principal ideal domain bu't even a Euclidean
domain [4, Proposition 5]. The latter statement means that_ there exists a map ¢ frpm
A {0} to a well-ordered set W such that for all a, bed with 540, a ¢ Ab, there exists
rea+A4b with ¢(r)y<¢{b). For finite Z one can take for W the set of non-negative
Integers. . .

* It is a natural question whether Claborn’s result can be extended in a S}m}lgr way,
e. whether 4 is Euclidean if (1) holds. In the present papezr we show .that this is .mde.ed
the case. For W we take a well-ordered set of order type w?, where w is the least infinite
ordinal. The elements of W can be written in a unique way as wa +b,__W1}erbe f,b f) are non-
negative integers; and wa +b<<wa’+»’ if and only if either a<a'ora=a’,b<d’. '
° We shgall see that the other results that Claborn obtained in [L;Yi] can be extended in
an analogous way. ;

\X}ge let Ky denote the field of fractions of A4, and vy, for b&Z, the norglal_:;zfd
exponential valuation of K corresponding to p. The group of units of A is denoted Y 4 i

Claborn’s first result [ 11_, Proposition; g, Proposition 13.7] states that 4 is a pmnmfpl
ideal domain if 4 contains a field k satisfying #A4 = #k>#Z. A sharper result is as fol-
lows.

(2) Proposition. Let A be a Dedekind domain, and suppose that A contains a subset k with
the properties

3 #hk>#2Z,
C)) A—peAd* U{0} for all A, pek.
Then A 1s Euclidean.

Proof. For xeA —{0}, let ¢(x)=>> 2V p(x). We prove that 4 is Fuclidean with respect
. s ne

to ¢.
° Let a, bed, b0, aeAdb. First suppose that for some Ack we have

A-(@a+Aby=Aa+Ab. Then
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vp(a+Ab)=min{vy(a),v,(b)}<vy(b)
for all peZ, with strict inequality for at least one b. Hence the element r=a+Ab of
a+Ab satisfies ¢(r)<<¢(b), as required.

Next suppose that no such A exists. Then for every Aek there exists py€Z such
that a +Abepy(da+A4b). The map k—Z sending A to by is not injective, by (3), so there
are A, pek, Asp, with py=p,. Then A—wb=(a +Ab)—(a t+upb)ep)-(da+A4b), so
bepy-(Ada+Ab), by (4). We conclude that Aa+Ab=A-(a+Ab)+A4b is contained in
r(Aa +Ab), which is a contradiction. This proves (2).

If 4 is the ring of integers in an algebraic number field then condition (3) can be substan-

tially weakened, see [3, Theorem (1.4)].
For a subset Y CZ, we define the subring Ay CK by
Ay={xe€K: vy(x)=0 for all peY}.

Notice that 4;=A4. Claborn [}, Theorem; 2, Theorem 13.8] proved that every ideal of Ay
is generated by an element of A if the inequality #A4>(#Y)" is satisfied. To formulate
our stronger result we need a definition. Let the pair (4,Y) be called Euclidean if there
exist a well-ordered set W and a map ¢:4—{0}—W such that for all a, bed, b0,
a¢Ayb, there exists r ea+Ab with ¢(r)<¢(b). We have Az =4, and (4,Z) is Buclidean if
and only if 4 is.

Let (4,Y) be Euclidean and b a non-zero Ay-ideal. Then b is generated by bN4,
and if bebMN A has minimal ¢-value then it follows easily that Ayb=Db. Hence, if (4,Y) is
a Euclidean pair, then every ideal of Ay is generated by an element of 4. This shows that
the following theorem is indeed sharper than Claborn’s result.

(5) Theorem. Let A be a Dedekind domain, and Y a set of non-zero prime ideals of A such
that #A>(#Y)", where a denotes the least infinite cardinal. Then (4,Y) is a Euclidean
pair.

The proof uses the following lemma. Let W be the well-ordered set of order type w?
defined above.

(6) Lemma. Let A be Dedekind, Y CZ a subset, and suppose that there exists a finite subset
X CY with the property that for every x €Ay~ Ay there exists €A such that (x +q)" ' eAy.
Then (A,Y) is a Euclidean pair with respect to the map ¢:A—{0}—>W defined by

Hx)=w Jvy(x) + D vy(x).

peX peY—X

Proof of (6). Let a, beA, b0, a¢Ay-b. We have to find r ea+A4b such that ¢(r)<<¢(b).
First suppose that v,(a)=v,(b) for all peX. Then x=a/b belongs to Ay, but not

to Ay, so by the hypothesis of the lemma there exists g €4 such that (x —irq)“1 =b/(a+qgb)

belongs to Ay. Then beAy<(a-+gb), and therefore Ay(a+gb)=Aya~+Ayb. Hence

r=a-+qgbeca+Ab satisfies
v,(a +gb):min{vp(a),vp(b)} s:*vb(b)
for all peY, with strict irequality for at least one p because a&Ayb. It follows that

b

Hr)<s(b). , o
Secondly, suppose that vp(a)<<v,(b) for at least one peX. Since X is finite, the

approximation theorem /for Dedekind domains implies that there exists r€4 with the fol-
lowing properties: -
vo(r—a)=vy,(b) for all peZ with v, (a)<v,(b),

X -
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vy (r)=v,(b) for all pe X with v,(a)=v,(b),
vp(r)=v,(b) for all peZ — X with v,(a)=v,(b)>0.
Then we have v,(r —a)=v,(b) for all peZ, so rea+A4b. Also, v,(r)<v,(b) for all peX,
with strict inequality if v,(a)<<v,(b), which occurs for at least one peX. Hence

D) < Sv,(b), and it follows that ¢(r)<<¢(b), as required. This proves (6).
beX peX

Notice that the lemma implies that (4, Y) is a Euclidean pair if Y is finite.

Proof of the theorem. 1t suffices to show that some for finite subset X CY the condition of
the lemma is satisfied. By the remark just made we may assume that Y is infinite. Let
peZ, and let 4, be the p-adic completion of 4. Then from

(Y)Y <#HA<#HA,=(#4/p)"
we see that # Y <#4 /p. So 4 /p is infinite for every peZ. o

Suppose that there does not exist a finite subset X C Y satisfying the condition of
(6), i.e.:

7 for every finite X CY there exists x €4y — Ay such that
(x+¢) ledy for all geA.
We derive a contradiction. )

Using (7) we construct a sequence (x,,);=o Of elements of K—Ay with the follow-
ing two properties:
®) (xp+q) 'edy for all n=0 and all g€A4,
® if X,={peY: v,(x,)<0} then

X,NX, =& for all i, j=0, i)
The construction is by induction on m. Let m=0, and let x,, for 0<<n<<m, be such that
(8), (9) hold when restricted to i, j, n<<m. Applying (7) to X={J _ X, we find
XmEAx—Ay such that (x,+q) 'edy for all ged. For n<m we then have
X, €Ay CAyx , s0 X,NX,=2. Hence (8) and (9) hold for i, j, n<<m. This concludes the
induction step and the construction of the sequence (X, )m =o- .

If (am)m=o0 is any sequence of elements of A, then plainly also
Um)B =0 =X +a,) L~ satisfies (8) and (9), with x_ replaced l?y Y. We claim that for a
suitable choice of (a,,)%—¢ the sequence (y,,)%=o has the following additional property:
(10) there is no pe Y such that there exist i, j, k with

Ve —¥,)>0, v, (v, —yi) >0, i<j<k.

The proof is again by induction. Let m=0, and let a, €4, for n<<m, be such that (10)
holds when restricted to k<<m. The only peY which can po.ssﬂ)ly violate (10), with k& =m,
are those for which vy (y,~y,)>0 for certain i, j with i<j<m. There are 01}1}" finitely
many such p, since y,=y, would imply that X,=X), so X,=%& by (9), contradicting that
x,&Ady. Notice that vy(y, —y,)>0, with i <j<<m, implies that p& X, and peX, If peX,,
then regardless of the choice of a, we have v,(y,—y»)<0. If peX,, then we have
Vp(¥, —¥m)=0 provided that

AmFEY, — X,y moOd p
(in the local ring at p). Hence, for (10) to be valid with k=m, it spfﬁces that a,, avoids a
finite set of residue classes modulo each of a finite number of prime ideals of 4. Since
A /p is infinite for all pcZ, the approximation theoren}{’guarantees the existence of an ele-
ment a,, €4 satisfying these conditions. This completes our inductive proof of (10).
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From (8), (9) (with y_for x ) and (10) we derive a contradiction. Fix g€A. Then
for each n=0 there exists bn€Y with v, (v, +¢)>0, by (8). If b,=p,=p; for i<j<k,
then with p=p, we obtain a contradiction to (10). Hence each peY occurs at most twice
as p,, and the map Jq: {0,1,2,...}> Y defined by J4(n)=Dp, has infinite unagae._

The number of maps {0,1,2,..}>Y is (# Y)", so from #4 >(#Y)° it follows that
there exist g=£r in 4 with 3=/, For p=f,(n) we then have v,(y, +¢)>0, v,(y, +r)>0,
and therefore

vp(g —r)>0 for all p in the image of f;.

But f, has infinite image, so it follows that ¢ — =0, a contradiction.
This proves the theorem.

(11) Corollary. Let A be a Dedekind domain, and suppose that the set Z of non-zero prime
ideals of A satisfies #A>(#Z)". Then A is Euclidean.

This follows from (5), with ¥ =Z.
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