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Two fundamental problems from elementary number theory are the following:
(@)  (primality) given an integer n>1, how can one tell whether n is prime
or composite?
(b)  (factorization) if n is composite, how does one find a, b>1 such that
n=ab?

Many mathematicians have been fascinated by these problems throughout his-
tory. Among these are Eratosthenes (~ —284—~—204), Fibonacci
(~1180—~1250), Fermat (1601-1665), Euler (1707-1783), Legendre (1752-
1833) and Gauss (1777-1855). Some of the fascination of the subject derives
from the fact that, roughly speaking, problem (a) is ‘easy’ and (b) is ‘difficult’.
Suppose, for example, that two 80-digit numbers p and ¢ have been proved
prime; this is easily within reach of the modern techniques for dealing with
(a). Suppose further, that the cleaning lady gives p and ¢ by mistake to the
garbage collector, but that the product pq is saved. How to recover p and g7 It
must be felt as a defeat for mathematics that, in these circumstances, the most -
promising approaches are searching the garbage dump and applying mnemo-
hypnotic techniques. The ‘numerologists’ occupying themselves with primality
and factorization do not accept this defeat. They imagine all composite
numbers to be created by multiplication on the zeroth day of Creation, and
they make it their task to unravel the mysteries involved in this process. In this
connection, it is remarkable that no clairvoyants have ever been employed to
identify Mersenne primes or to factor large numbers. Such an attempt might
lead to new insights, if not in numerology then in parapsychology.

). This paper is a revised version of one of the contributions to {19].
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‘Numerology’ — this condescending term was, until recently, the fashionable
one for the branch of science under discussion, 1n spite of the famous names
hsted above. Nowadays, a change in tlus atutude 15 noticeable. Partly, this
change 1s due to an increased interest m general problems of feasibility of
computations. The revival of the specific problems (a) and (b) has, mn addition,
been stumulated by their stnking application n cryptography. For the details
of this application we refer to [11]. Suffice 1t to say that, in this application, 1t
15 essential that (@) 1s ‘easy’ and that (b) 1s ‘hard’. It is an wromc fact that the
only existing evidence for the ‘hardness’ of (b) 1s the failure of generations of
‘numerologsts’ to come up with an efficient factonization algorithm.

Thas lecture 1s devoted to a discussion of problem (a). For (b) we refer to
[26] and {37], and the references given there.

In complexaty theory, 1t 1s customary to call an algorithm good if 1ts runming
tume 15 bounded by a polynomial in the length of the mput For problems (a)
and (b) the mput 1s the number n, which can be specified by [log#n/log2]+1
binary digats. Thus the length of the mput has the same order of magmitude as
loga.

A well known algonthm for solving (a) and (b) consists of trial divisions of
n by the numbers less than or equal to Vn. In the worst case, this takes Vin
steps, which 1s exponential 1n the length of the mput. We conclude that this
algonthm 1s not ‘good’.

Before one searches for a short proof that n 15 prime, or for a short proof
that n 1s composite, 1t 15 a good question to ask whether such a proof ewusts.
In this direction, we first have the following theorem; an arithmetic operation 1s
the addition, subtracton or multiphication of two integers

THEOREM 1. If n 1s composite, this can be proved using only O(l) arithmeuc
operations. Stmilarly if n 1s prime.

Proor. For composite n, the theorem is tnivaal; to prove that n 1s composite, 1t
suffices 10 wnite down mtegers a, b>1 and to do the single muluphcation
necessary to verify that ab=n. Thus, in the composite case, the O-symbol 1s
even superfluous. For prime n, the theorem 1s less obvious. It 1s an outgrowih
of the negative solution of Hilbert’s tenth problem [7], that chere exists a poly-
nomial in twenty-six vanables

f€Zi4, B, G, ..., X, X, Z]

with the property that the set of prime numbers comncides with the set of posi-
tive values assumed by f if non-negative integers are subsututed for
4, B, .., Z. Such a polynomal, of degree 25, 1s exphatly given m [12] A
sumlar polynomual in 10 vanables of degree 11281 1s consiructed mm [20,
English translation]. To prove that a positive integer r 1s prime 1t now suffices
to wrnte down twenty-six non-negative mtegers A, B, , Z and to do the
bounded amount of anthmetic necessary to verify that n=f(4, B, ., Z) In
fact, according to [12, Theorem 5] no more than 87 anthmeuc operations are

needed in this verification. This proves Theorem 1.
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From a practical pont of view Theorem 1 has two serious defects. The first 1s,
that 1t tells us that certain proofs exist, but 1t does not tell us how to find
them. Thus, F.N. Cole’s proof that 27 —1 1s composite consists of the single
observation that

267 —1 = 193707721 -761838257287.

But 1t had taken hum ‘three years of Sundays’ to find his proof, and the
methods that he employed are far more interesting than the final proof itself
6], [28].

With pnimes, the situation 1s shghtly different. The proof that, for prime n,
there exist non-negatve integers 4, B, .., Z such that

n=fAB, .. Z)

1s completely constructive, see {12} But for the polynomal from [12] it 1s not
dafficult to prove that the largest of 4,8, ..., Z necessanly exceeds

n

n

n
n

(For a much better polynommal 1n this respect, see [1, Theorem 3.5].) The
second defect of Theorem 1 1s, that it 1s clearly unrealistic to count an addition
or multiplication of numbers of this size as a single operation It 1s more realis-
tic to count bit operations, which may be defined as anthmetic operations on
numbers of one digit. Thus, we have:

THEOREM 2 If n is composute, this can be proved using only O((logn)*) but
operations.

Proor It suffices to remark that the usual algorithm to muluply two numbers
less than n requires no more than O((logn)?) bit operations. This proves
Theorem 2.

Usmg the fast multiphcation routine of SCHONHAGE and STRASSEN [30], [35]
we can replace (]ogn)2 m Theorem 2 by (logn)'“, for any >0, or more pre-
cisely by O((logn)- (loglogn) - (logloglog n)) (for n>e*).

THEOREM 3 (PRATT [28]). If n is prime, this can be proved using only O((logn)*)
bit operations

Agam, using [30], we can replace (logn)* by (logn)**, for any €>0.

ProOF. The proof rehes on the structure of the group of units
(Z/nZ)" = {(amodn) : acZ, 0<a<n, ged(a, n)=1)

of the ring Z/nZ of integers modulo n Thus 1s a finite abehan group of order
¢(n), where ¢ 1s the Euler funcuon. If n1s a prime number, then @/n2) 15
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cyclic of order n —1. Conversely, if (Z/nZ)" has order =n —1, then n is a
prime number. Thus we see that n is prime if and only if there exists
(@amodn)e(Z/nZ) of order n —1. If we assume n to be odd and write

n—1= 1"10 0 (1

qo = 2

g, prime (1<i<k) (¢4
then (a2 mod n) has order n —1 in (Z/nZ)" if and only if

a2 = —1modn, 3

a® V% % 1modn, for 1=i<k @

Therefore, to prove that n is prime, we can write down integers a, qo=2,
41, - gk, verify that (1), (3) and (4) hold, and prove (2) recursively. This
proof requires k multiplications in (1), and k +1 exponentiations (modn) in
(3) and (4), plus what is needed for (2). So if f (n) denotes the total number of
multiplications and exponentiations in the proof, then

fm<k+k+1+ Ek:f(q,)
i=1

where we define f(2)=1. By induction we prove that f(n)<
3-(logn/log2)—2. This is true for n =2, and if it holds for the g, then

fn) < 2k+1+ é(3(logq,/log2)—2)
i=1

k
= (3 3(logg,/log2))—2

=0
= 3(log(n —1)/log2)—2 < 3(logn/log2)—2

as required.

We conclude that no more that O (logn) multiplications and exponentiations
are needed. Each exponentiation in (3), (4) can be done by O(logn) squarings
and multiplications modn. Finally, each of these multiplications, squarings
and multiplications mod n (or mod a number smaller than n) can be done with
O((logn)*) bit operations. The total number of bit operations is therefore
O((logn)-(logn) - (logny*)=O((logn)*). This proves Theorem 3.

Theorem 2 and 3 still have the first defect of Theorem 1: one is not told how
to find the short proof whose existence is asserted. Nevertheless, the proof we
have given of Theorem 3 is not exclusively of theoretical interest, and the same
ideas are actually used in computer-assisted primality proofs. To illustrate
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this, we begin with a particularly simple case, in which n —1 has no odd prime
factors at all.

THEOREM 4 (PEPIN, 1877). Let n=2"+1, with m>1. Then n is prime <
3012 = — [modn.

Proor. The implication < follows from the proof of Theorem 3, with a =3.
Conversely, suppose that n is prime. Then # is not divisible by 3, since n>>3,
so m is even. Then n=2mod 3 and n=1mod 4, so quadratic reciprocity gives

3-[-[ -

By Euler’s theorem, [% =3"~12modn. This proves Theorem 4.

It is known that n=2"+1 can only be prime if n is a power of 2; then n is
one of the Fermat numbers 2* +1. For k=0, 1,2, 3, 4 these numbers are actu-
ally prime, for 5<k=<19 and some other values (such as k=2089) they are
known to be composite. It is reasonable to conjecture that they are, in fact, ail
composite for k=5. The number F), has been proved composite by Pépin’s
test, but no factor is known. To the uninitiated reader it may seem surprising
that it is possible to prove that a number is composite, without the proof yield-
ing a factorization. This is surprising indeed; the phenomenon will be further
discussed at the end of this lecture. See [39, Sec. 5] and [3] for more informa-
tion on the Fermat numbers.

For general n, the main difficulty of the above test is to find the complete
factorization (1) of n —1. In the following variant only a partial factorization
of n —1 is needed.

THEOREM 5. Let n and s be integers satisfying

n>1, s>n*
Suppose that for every prime q dividing s there exists an integer a (depending on
qj satisfying

a®" = 1modn, ged@?"" —1,n)=1 )

where m(q) denotes the number of factors q in s. Then n is a prime number.

PROOF. Let r be any prime dividing n and ¢ any prime dividing s. From (5)
we see that the order of (amodr) in the group (Z/rZ)" equals ¢"@, so by
Lagrange’s theorem ¢™@ divides r — 1. Since q is arbitrary, this implies that s
divides r ~1, so r>s. The inequality s>n" shows that n has at most one
such prime factor. Hence n is prime, as required. This proves Theorem 3.
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From the proof of Theorem 5 we see that the hypotheses imply that s divides
n —1. To obtain a primality test from Theorem 5, one chooses s to be the larg-
est divisor of n—1 that one is able to factor completely. For each ¢, the
number a is constructed as follows. Search for an integer b such that

5" = tmodn, 5" V9 5 lmodn,
and put
a = b" V4" modn.

If it is difficult to find such a number b, it is unlikely that n is prime, and one
should attempt to show that n is composite, using Miller’s method described
below. The ged in (5) is now equal to ged(b® ~19—1, n), and it can be calcu-
lated efficiently using Euclid’s algorithm. In fact, only one gcd-computation is
necessary if one considers the product of the numbers 5® ~1/¢4 —1mod n, with
q ranging over the primes dividing s.

The critical condition of Theorem 5 is the inequality s>n* that must be
satisfied by the completely factored part of n —1. There are several ways to
replace this condition by a weaker one. Suppose, for example, that s only
satisfies

s>nl3,

From the proof of Theorem 5 we see that every prime divisor of n is 1 mods,
and the same is then true for every divisor. Hence, if n is composite, there exist
integers x and y satisfying

n = (xs+1)ys+1), x>0, y>0

From n<s® it follows that xp<s, so (x—1Xy —1)=0 implies that
0<x +y=s. Since x +y=(n —1)/s mods this means that we know the value
of x +y. We also know that n=(xs +1)ys -+1), so x and y can now be solved
from a quadratic equation. Hence, if we add the hypothesis that the sclution
of this equation does not give rise to a non-trivial factorization of n, we still
can conclude that n is a prime number.

A second method to relieve the condition s>n* makes use of lower bounds
for the unknown prime factors of n — 1. For a discussion of this technique, and
references to the literature, see [39, Sections 10, 11].

Later in this lecture we shall consider a third type of generalization of
Theorem 5, in which the role of n — 1 is played by n‘ —1, where ¢ is some posi-
tive integer; see Theorem 11.

G.L. MiLLER [21] introduced a different way to exploit the multiplicative
structure of the integers moda in primality tests. It leads to the following
theorem, in which ‘GRH’ denotes the generalized Riemann hypothesis, formu-
lated in the course of the proof.

THEOREM 6 (MILLER). Assume the validity of GRH. Then there exists an algo-
rithm, described below, that in O((logn)®) steps decides whether or not n is prime.
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This theorem has none of the defects of Theorem 1, 2 and 3, but it has a new
one: the assumption of an unproved hypothesis.

Assume that n is odd, and write n —1=u4-2%, where u is odd and k>1.
Employing Rabin’s terminology [29], we call an integer a a wiiness to the com-
positeness of n, or simply a witness for n, if the following three conditions
hold:

n does not divide q, (6)
a" # lmodn, )
a“? s —1modn fori=0, .., k—1. (8)

(Others say in this situation, that n is ‘not a strong base a pseudoprime’ ... .)

Whether or not a is a witness for n depends only on a modn; so we may
restrict to 0<<a<<n. For a given such g, it takes only 0((logn)3) steps to check
whether or not @ is a witness for n, by the last paragraph of the proof of
Theorem 3.

We note that witnesses are reliable: if a is a witness to the compositeness of
n, then n is composite. To see this, suppose that (6), (7), (8) hold and that n is
prime. By (6) and Fermat’s theorem, a*'? =¢" " '=1modn. Hence the last
term in the sequence

a*,a"?, .., a*'%
is 1modn, but by (7) the first term is not 1modn. Let b=a""7 be the last
term in the sequence that is not 1 modn. Then 0<ti=<k —1, and %=1 modn
while b # Imodn. Hence n divides 52 —1=(b—1)(b +1) but it does not
divide b — 1. Therefore n divides b + 1, which contfadicts (8).

The algorithm referred to in Theorem 6 now runs as follows. We may
assume that n is odd, and n>1. Check whether there is a witness a for n satis-
fying 0<<a <70(logn)?. If there is one, n is composite. If there is none, declare
n to be prime. This algorithm clearly runs in time O((logn)*).

To prove the correctness of the algorithm, we have to show that any compo-
site odd n has a positive witness a<<70(log 7)?, if GRH is assumed. We sketch
this proof only, referring to the literature for details.

First we describe the GRH as we need it. Let n be an arbitrary positive
integer, and let x:(Z/nZ)" —C" (the group of non-zero complex numbers) be a
group homomorphism. We view x as a function on Z by x(a)=x(a modn) if
ged(a, n)=1, and x(a)=0 otherwise. Such a function on Z is called a character
modulo n. The L-series associated to x is defined by

L = 3 XD,
a=} @
If x is non-trivial, i.e. x(a)&{0,1} for some g, this series converges for all seC
with Re(s)>0. We say that L(s, x) satisfies the generalized Riemann
hypothesis if L(s, x)7#0 for all seC with Re(s)>%. For trivial x, this is only
meaningful if L(s, x) has been analytically continued; to avoid this, let us sim-
ply say that L(s, x), for trivial x, satisfies the generalized Riemann hypothesis

'
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if and only if the classical Riemann hypothesis is true, which is equivalent to
. ] —_— a
S EW k0 forall sec with 3 <Re(s)<l.

a

a=1
The GRH in Theorem 6 is the conjunction of all peneralized Riemann
hypotheses described above.

LEMMA (ANKENY-MONTGOMERY). There is an absolute constant ¢ with the fol-
lowing property. Let x be a non-trivial character modulo n, and suppose that
L(s, x) satisfies the generalized Riemann hypothesis. Then there exists acl,
0<a <c- (logn)?, such that x(a)#0 and x(a)+1.

Proor. See {23, Theorem 13.1), or [13, Corollary 1.3] for a version in which
also the classical Riemann hypothesis is needed.

COROLLARY. Assume GRH, and let G#£(Z/nZ) be a subgroup of (Z/nZ)".
Then there exists ac such that

O<a<c-(logn)?, gcd(a, n)=1, (amodn)gG,
g B

with ¢ as in the lemma.

ProoF. It suffices to apply the lemma to a non-trivial x:(Z/nZ)"—C" that is
trivial on G.

Let now n>1 be composite and odd. To finish the proof of Theorem 6,
with an unspecified constant ¢ instead of 70, it suffices, by the corollary, to
exhibit a proper subgroup G C(Z/nZ)" containing all non-witnesses a that are
not divisible by n. For this we take (cf. [36])

G = {(amodn)e(@Z/nZ) :a" V2= [%] modn})

where |2 | is the Jacobi symbol. It is a charming theorem of LEHMER [14, cf.
n

33] that G54(Z/nZ)" for composite odd n. It is an equally charming result of
SELFRIDGE {39, Theorem 17.2} that G contains all non-witnesses (modn) not
divisible by n. This finishes the proof of Theorem 6.

Using additional arguments it can be proved that the generalized Riemann
hypothesis is only needed for the L-series associated to characters x of the

form x(a)= % , where d runs over the positive integers that are 1 mod 4 and

either prime or the product of two distinct primes, see [16].

The value 70 for the constant is taken from [24, Théoréme 4]; here again the
classical Riemann hypothesis is needed. in addition to the generalized
Riemann hypotheses just described. It is reported that WEINBERGER (unpub-
lished) obtained sharper results.
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The idea used in the proof of Theorem 6 has two other applications. The
first is a fast primality test for small numbers:

THEOREM 7 (SELFRIDGE, WAGSTAFF). Every odd composite n

satisfying: has a witness among:
n<2047 2
n<<1373653 2,3

n<2-10°, n 3£ 25326001, 161304001, 2,3,5
960946321, 1157839381
n<25-10°, n 5= 3215031751 2,3,5,7

Proor. By computer, see [27]. This proves Theorem 7.

The numbers in the left hand column are composite:

2047 = 23-89, 960946321
1373653 = 829-1657, 1157839381
25326001 = 2251-11251, 3215031751
161304001 = 7333-21997,

11717 82013,
24061 - 48121,
151-751-28351.

The test provided by Theorem 7 is easily implemented on a programmable
pocket calculator. Thus, an HP-41C can decide the primality of an arbitrary
n<2-10° within two minutes, using only 2, 3, 5 as possible witnesses.

The second application is based on the following theorem.

THEOREM 8 (RABIN). Every odd composite n has at least %(n —1) witnesses
among {1, 2, ..., n—1}.

The proof is an attractive exercise in elementary number theory, in which the
Carmichael numbers play a role. See [29], [22]. This proves Theorem 8.

Rabin proposes the following primality test. Let m be a large integer, like 100,
and choose randomly m integers a,&{1, 2, .., n —1}, I<<i<m. If one of these
a, is a witness for n, then n is composite. If none of the g; is a witness for n,
then either n is prime or we have extremely bad luck. By Theorem 8, this bad
luck occurs in at most one out of every 4™ cases. While this method is basi-
cally incapable of yielding rigorous primality proofs, it is in practical cir-
cumstances difficult to doubt that it yields correct answers. In any case,
Rabin’s method can be used to produce primes on a commercial basis: if
found defective, they can easily be replaced.

If we try to remove the unproved assumption from Theorem 6 we are left
with an algorithm that is no longer ‘good’:
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THEOREM 9 (ADLEMAN, POMERANCE, RUMELY). There is an algorithm that
within (logn)°"°Ho88" steps decides whether or not n i1s prime, for n>e¢. Here
¢’ denotes an effectively computable constant

A complete proof of this theorem can be found n [2] and {17]. A probabilistic
version of the algonithm, which 1s somewhat easier to explain, will be described
below. This version of the algonthm has been implemented by H. CoHEN and
AK LensTRA on the CDC-Cyber 170-750 computer system of the SARA
Computer Centre in Amsterdam, cf. [4], [5] It 1s the only pnmalty test
existence that can routinely handle pumbers of up to 100 decimal digits, and 1t
does so within approximately 45 seconds. Numbers of up to 200 decimal digits
are dealt with within approximately 10 minutes.

The algonithm that we shall describe can be viewed as a special case of the
following primality cnterion.

THEOREM 10. Let n>>1 be an integer Then n is prime if and only if every divi-
sor of n is a power of n.

The proof 1s left to the reader.

To prove that n 15 prime using Theorem 10 we must check that any divisor
of n1s a power of n, and 1t clearly suffices to consider only prime divisors of n.
Below we shall see how to do this without explicitly knowing the prime divi-
sors of n. Actually, something weaker will be done. rather than showing that a
pnime r dividing n 1s a power of n, one attempts to show that this 1s true for
the images of r and n n certan auxihary groups, such as the group (Z/sZ)"
for an integer s that 1s coprime to n.

An example of thus approach is provided by Theorem 5 and its proof. m
that theorem we have n=1mods, and the proof proceeds by showing that any
prume divisor r of n sausfies r==1mods, 1¢. 1s congruent to a power of n
modulo 5. The following theorem provides a less tnvial example.

THEOREM 11. Let n and s be positive ntegers, and let A be a commutatve ring
with 1 contaiming Z/nZ as a subring (with the same 1). Suppose that there exists
a €A sausfying the following conditions:

9 o =1,

(10) o’1—1€eAd”’ (the group of units of A) for every pnime q dviding s,

(11)  the polynomual T1; 24 (X —a"') has coefficients in Z/n for some positive
integer t.

Then every divisor r of n is congruent to a power of n modulo s
PROOF. We may assume that r 1s prime. Since r 15 a zero dvisor (or zero) mn

A, there exists a maximal ideal M of 4 with reM Let A be the field 4/ M,
and a = (amod M)€A. By (9) and (10), the order of @ in A" equals s. The

polynomal II!Z§(X —a"), which has @ as a zero, has coefficients 1n the
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subficld F, of 4 of cardmality r. Therefore a” 15 also a zero of this polynonual,

so there exists 1€{0, 1, ., ¢t —1} with a'=a", re. r=n'mods. This proves
Theorem 11.

If we take A =Z/nZ and ¢ =1, then condiion (11) 1s tnvially sanisfied. It 1s
easy to deduce Theorem 5 from Theorem 11, by choosing a equal to the pro-
duct of the a’s appeaning in Theorem 5, taken modulo n.

The proof of Theorem 11 shows that the residue classes 1, n, n? ., n
modulo s are permuted upon multiphcation by (r mods), for any prime r
dividing n. Wniting n as the product of its pnime factors, we see that multiphi-
cation by (7 mods) also permutes these residue classes, which just means that
n'=l1mods. Hence s must be chosen to be a divisor of n* —1.

Let ¢ =2 In this case known pnime factors of n +1=(n?—1)/(n —1) can be
used n addion to those of n—1 to build up the number 5. Starung from
Theorem 1} one can, for practically every pnmalhty test based on factors of
n —1, devise a corresponding test based on factors of n +1. These tests are
usually formulated n terms of Lucas functions [39, Sections 12, 13, 14]. In the
sumplest case, corresponding to Pépin’s Theorem 4, the number n+1 15 a
power of 2:

THEOREM 12 (LUCAS-LEHMER) Let n=2"—1, with m>2 Define (e}~ by
e;=4, e, 4, =€t —2 Thenn 1s prime if and only if e,, . 1=0mod n.

PROOF. Fust let m be even Then n 1s divisible by 3, and not pnnme Also
ey —-1=—1mod3 by inducuon, so ¢,-; ¥ O0modn. This proves the theorem
for even m. Assume now that m 1s odd, and define

= @/nI)TY(T* - V2T-1),

where \/— denotes any element of Z/nZ with (V2)*=2; eg, V2=
(2" * %2 modn). Denoting the image of 7'1n 4 by a we have

A = (a+ba:a bel/nl}, o*=V2a+l.

Let B=V2—a=—a"! be ‘the’ other zero of X*~V2X—~1 m 4. From
a+B=V?2 and af=—1 it follows easily by induction on & that

o +32 = (¢eymodn)eZ/nZ

for all k=1 Now let first n be pnme. The discrimunant of X?—V2X~1
equals 6, and from n=1mod 3, n=—1mod8 and quadratic reciprocity 1t fol-

6
lows that -'-'- =-1. Hence 4 15 a quadrauc field extension of F,, and a and

B are conjugate over F,. By the theory of fimte fields thus imphes that o = 8.
Muluplying this by a we get o =—1,s0

(éy -1 modn) = o + g7 "z=o 2T =0
Thus proves the ‘only if” part. Suppose, conversely, that (e, .; mod n)=0. Then
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& =—1, o =1,
so (9) and (10) of Theorem 11 are satsfied with s=2"*!. Also,
o"=o? "'=—a" =8, so the polynomral

(X—a)X—a") = (X —a}X —B)=X*— V2 -X—1

has coefficients m Z/nZ, which 1s condition (11) of Theorem 11 with r =2
From Theorem 11 and n’=1mods 1t now follows that any divisor of n 1s
congruent to 1 or n modulo s. But s>n, so this means that n 1s pnme This
proves Theorem 12

It 1s known that n =2"—1 can only be prime if m i1s prume: then n s one of
the Mersenne numbers M, =2 —1, p pnme These are known to be pnme for
30 values of p:

2,3,5,7,13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,
2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,
21701, 23209, 44497, 86243, 132049, 216091,

see [34]. It 1s reasonable to conjecture that # {m<x 2"—1 1s pnme}/logx
tends to a fimite non-zero mt for x—oc0 GILLIES [9] gives a probabilistic
argument leading to the value 2/log2 for the hmut, but lus reasomng s clearly
in error since the same argument leads to a contradiction with the prime
number theorem, cf. {10, § 22.20]. The number e?/log2, where y 1s Euler’s
constant, has been proposed as a more likely value for the Limut {25], see also
{38], [31].

If the complete factonization of # —1 1s known then 1n practice 1t 1s easy to
test n for pnmality, e.g. using Theorem 5. The same statement 1s true with
n —1 replaced by n +1, using Theorem 11 with ¢ =2. A combmation of both
tests 15 employed in the discovery of large rwin primes, in the following way
Let m be a large number whose complete prime factorization is known, such a
number can be found by multiplying together small numbers. Then (m +1)—1
and (m —1)+1 are completely factored, so we can apply an (n —1)-prumality
test to m -+1 and an (n + 1)-pnmahty test to m —1. If both numbers turn out
to be pnme we have found a pair of twin primes. The largest known pair 1s

2562009452326 + 1 = 2%26.3.5.7.11-13-113-151 = 1,

which have 1040 decimal digits. This parr was discovered by ATkIN and Rick-
ERT [8].

We next discuss how Theorem 11 can for general r be used for primality
testing For A one takes a ring that :f n were prime would be the field F ¢ of n*
elements. If n behaves as 1f 1t were a pnme number then such a ring 15 in prac-
tice not difficuit to construct. as i the proof of Theorem 12 one can take
A=@/mZ)TV(f), where fe(Z/nZ)[T]1s a polynomual of degree ¢ that passes
a suitable wrreducibility test (see (15, Sec. 5]). For s one takes the largest divisor
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of n' —1 that one is able to factor completely, and for a« one takes an element
of A" of order s. If n is actually prime then a is usually easy to construct, by
manipulating with elements of the form g ~'*, BeA. In this case conditions
(9) and (10) are clearly satisfied, and the polynomial in (11) is a power of the
irreducible polynomial of a over F, so it has certainly coefficients in F,. Sup-
pose, conversely, that (9), (10) and (11) are found to be true. Then we cannot
immediately conclude that n is prime, but we know, by Theorem 11, that any r
dividing n is congruent to a power of n modulo s. If 5 is sufficiently large then
this information can be used to finish the primality proof, in the following
manner. Suppose that

s>n*

(as in Theorem 5), and let r, be determined by
n' = rmods, 0=<r,<s

for 0<i<t If n is composite then it has a non-trivial divisor r with r<n"* <,
and since r is congruent to a power of n modulo s it must be equal to one of
the r,. Hence, if we verify that none of the r, is a non-trivial divisor of n, we
have proved that n is prime. A similar but somewhat more involved procedure
can be followed if s satisfies the weaker inequality s>n'/3, see [18).

We refer to {17, Theorem 8.4] for a more flexible version of Theorem 11, in
which it is possible to vary a with g, as in Theorem 5.

For very small values of ¢, such as +=2, 3, 4, 6, it is again possible to
employ lower bounds for the unknown prime divisors of n’—1, cf. [39, Sec-
tions 13-16) and the references given there. It is doubtful whether such lower
bounds are equally useful for the larger values of ¢ considered below.

To analyze the above algorithm we must know how to choose ¢ such that
s>n"%. We need the following theorem.

THEOREM 13 (ODLYZKO-POMERANCE). There exists an effectively computable
constant c” with the following property. For every integer n>e® there exists a
positive integer t satisfying

t< (log n )c" loglogiogn
t is squarefree

such that the number

§= Hq prume, g — 1 dwades ¢
satisfies
s>n*,
PRrROOF. See [2, Sec. 6). This proves Theorem 13.

Let ¢ be as in Theorem 13; the condition that ¢ be squarefree is irrelevant for
our present purpose. If g is a prime number for which ¢ —1 divides ¢, then
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=1modgq by Fermat’s theorem, unless ¢ divides n. Hence, if s is as in the
theorem then s divides n‘ —1 prowded that ged(n, s)=1. Also, the complete
factorization of s is known, and s>n"*., We conclude that these values for ¢
and s can be used in the primality test described above. The resulting algo-
rithm has, for prime n, an expected running time that is less than
(logn)*"°8°88" for some constant ¢’. This does not yet prove Theorem 9, since
we have no such bound for the worst case running time. It appears that the
size of 1 makes the test unsuitable for practical primality testing.

The test underlying Theorem 9 is closely related to the test just described. It
depends on properties of Gauss sums, which we shall now consider. By {,, we
denote a primitive m-th root of unity.

Let p and ¢ be prime numbers not dividing n for which p divides ¢ —1. We
choose a character x=x, , modulo ¢ that has order p; ie., x:F —-><§’P> is a
surjective group homomorphism, where <{,> denotes the subgroup of C° ge-
nerated by {,. Such a x can be obtained by choosing a primitive root g mo-
dulo g and putting x(g'mod g)={, for icZ. We define the Gauss sum 1(x) by

q—-1
00 = 2 x(x)g-
x=1
This is an element of the cyclotomic ring R=Z[{,, {,]. We have

(X)) = x(n) " -1(x"YmodnR if n is prime.
To prove this, notice that modulo nR we have

o) = 2 x(x)"-§g"  (since n is prime)

qi x(m)™"x(¥)'-§  (with y =nx modq)
y=1
= X(")-"'T(X"),

as required. We investigate what can, conversely, be said about n if the follow-
ing weaker condition is satisfied:

700" = 1900™" 1(x"YmodnR for some n(x)e <$p>. (12)

Let o be the automorphism of R with o(§p)="%p and o(§)= $g- Then (12) can
be written as

700" 7% = n9(x) " "modnR.
- . Pz
Raising both sides to the power 2 b ~%710' we obtain:
1=
00" Tt = () modnR.

Now let r be any prime divisor of n. Then we know that (12), with n replaced
by r and 9(x) by x(r), is valid, so for the same reason we have
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x) "' = x(r)modrR.

Combination of the last two congruences suggests that

x(r) = m” VD (13)
for any prime r dividing n. To make this meaningful we have to explain how
to interpret the fractional exponent. For this we need the following hypothesis
on p:

vp(r? ' =1) = v,(n? "' —1) for every prime r dividing n, (14)

where v,(m) denotes the number of factors p im m. If (14) is satisfied we can
write (r? ~'—1)/(n? ~' —1)=a/b, with a, beZ, b=1modp, and the residue
class of (r? ! —1)/(n? "' ~1)mddp is then defined to be (a modp); this does
not depend on the choice of a and b. Since 9(x =1 it is now meaningful to
define the right hand side of (13) as y(x)°.

With this interpretation it is straightforward to verify that (12) implies (13),
provided that (14) is assumed. By induction on the number of prime factors
one can now prove that (13) holds for any divisor r of n, prime or not. In par-
ticular, with r =n we obtain x(n)=(x), so (13) now yields

x(r) = xm)’ "V =n (15)

for any r dividing n. Again we see that every divisor of n is a power of n, if
images under x are taken.
It is a vital question how to verify hypothesis (14). Trivially, we have

if n# 7! 3 1modp?, then (14) holds. (16)
In [17, Sec. 2] it is proved that
if (12) holds with 5(x) 5% 1, then (14) is true. an

The primality test based on the preceding theory runs as follows. Let  be a
positive integer having all properties listed in Theorem 13, and let s have the
same meaning as in that theorem. Choose, for every pair of prime numbers p,
¢ with ¢ dividing s and p dividing ¢ —1 (so p dividing ) a character x=x,, ; as
above, and check that y= Xp, ¢ Satisfies (12); we know that this is necessary for
n to be prime. Next, attempt to prove that every prime p dividing ¢ satisfies
hypothesis (14). Usually, for each p there is a g dividing s with n(x,, )71, and
then (17) applies. If there is no such g, and (16) does not apply either, one
should test (12) for characters x,, , with ¢ a prime not dividing s for which p
divides ¢ — 1, until an example of n(x,, ;)71 is found.

At this stage of the algorithm one knows that every x, ;, with p dividing
g —1 and q dividing s, satisfies (15) for each r dividing n. We claim that this
implies that each r is congruent to a power of n modulo s, so that the test can
be completed in the same way as the test described before Theorem 13.

To prove the claim, let r divide n, and let (i mod ¢) be determined by

i =@ ' -1)/(n* "'~ )modp
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(in the sense explained before) for each prime p dividing t; notice that here we
use that ¢ is squarefree. Then (15) implies that

Xp. () = Xp,4(n")
for each pair p, ¢ as above. For fixed g, the product of the primes p dividing
q—1 equals g —1, so the characters x,, , generate the group of all characters
modulo g; therefore r=n'modg. Since this holds for all ¢ dividing s, we con-
clude that 7= n‘mod s, as required.

The only non-deterministic part of the test is the verification of hypothesis
(14). If n is composite it is conceivable that (14) is not satisfied, so that the
algorithm will get stuck at this point. We refer to [2, Sec. 5] and [17, Sec. 5] for
a variant that avoids hypothesis (14). It constructs an auxiliary number » such
that from a set of conditions similar to (12) it can be deduced that any divisor
r of n is congruent to a power of », rather than a power of n, modulo s. This
test is completely deterministic, and it has running time less than
(log n) "°B°BE" for n>¢¢, where ¢’ denotes an effectively computable constant.
This concludes our sketch of the proof of Theorem 9.

There are several ways to improve the practical performance of the test {5],
{17). In the first place, the Gauss sums can be replaced by Jacobi sums, which
belong to Z[{,] rather than Z[$,, $, Secondly, characters of prime power
order rather than of prime order can be employed, so that the condition that ¢
be squarefree can be dropped. Finally, it is possible to combine the test with
the tests described earlier depending on variants of Theorem 11. However,
none of these improvements reduces the running time in a theoretically
significant way.

As we noted in connection with the Fermat numbers, it is surprising that we
can prove that a number is composite without actually finding a factor. To
analyze this situation, let us assume that we proved n composite by exhibiting
an integer a for which

a" ! # Imodn, ged(a, n)=1, 18)

and applying Fermat’s theorem that (18) is impossible for prime n. To see
why this gives no factorization of n we must investigate how Fermat’s theorem
is proved. One proof is based on the remark that the map sending i to a-i
(mod n) is a permutation of (1, 2, ..., n —1}, so

a" L(n—1) = 'ﬁ(a'i) = "l:Iliz(n —1)!modn.
i=1 i=1

Hence (18) implies that (n —1)! has a non-trivial gcd with n, which tells us
nothing more than that » is composite. Other proofs of Fermat’s theorem have
similar shortcomings. The situation would be different if factorials or binomial
coefficients were easy to compute modulo n. This is clear from the proof of the
following charming but useless theorem, in which we also consider ‘division
with remainder” as an arithmetic operation.
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THEOREM 14 (SHAMIR). There is an algorithm that for every composite n yields a
non-trivial divisor of n, using no more than O(logn) arithmetic operations.

PrOOF. We notice that n is composite if and only if 1<gcd(ae!, n)<<n for
some positive integer a¢. Since ged(a!, n) is a non-decreasing function of g,
and is equal to 1, n for a =1, n respectively, we can determine such an ao by
O(logn) bisections, provided that we know how to calculate ged(a!, n).

Once we know a!, we can determine the ged by Euclid’s algorithm in
O (logn) arithmetic steps. To calculate a!, we apply the formulae

@2b+1D) = (2b+1)-(2b),

2b
@by = Y |,
2b
O(loga) times. To calculate the binomial coefficient b needed here, we

2b
remark that bLis the middle block of n binary digits in the binary expan-

sion of (2"+1)®, for 2b<\n; and the exponentiation can be done by
O(log(2b)) multiplications.

This algorithm, as we described it, takes O((logn)) arithmetic operations,
For the modifications to bring it down to O(logn) we refer to Shamir’s paper
[32}. This concludes the proof of Theorem 14.

We notice that the best known deterministic factorization algorithm, which is
due to Pollard, also depends on the calculation of factorials modulo n. This
algorithm and several more practical ones are described in the papers of
POMERANCE [26] and VOORHOEVE [37].
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