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Two fundamental problems from elementary number theory are the following:
(a) (primality) given an integer « > 1 , how can one teil whether n is prime

or composite?
(b) (factorization) if n is composite, how does one find a, b>\ such that

n=abl
Many mathemaiicians have been fascinated by these problems throughout his-
tory. Among these are Eratosthenes ( 284 204), Fibonacci
(~1180-~V250), Fermat (I60I-I665), Euler (1707-1783), Legendre (1752-
1833) and Gauss (1777-1855). Some of the fascination of the subject derives
from the fact that, roughly speaking, problem (a) is 'easy' and (b) is 'difficult'.
Suppose, ibr example, that two 80-digit numbers p and q have been proved
prime; this is easily within reach of the modern techniques for dealing with
(a). Suppose further, that the cleaning lady gives p and q by mistake to the
garbage collector, but that the product pq is saved. How to recover p and ql It
must be feit äs a defeat for mathematics that, in these circumstances, the most
promising approaches are searching the garbage dump and applying mnemo-
h.ypnotic techniques. The 'numerologists* occupying themselves with primality
and factorization do not accept this defeat. They imagine all composite
numbers to be created by multiplication on the zeroth day of Creation, and
they make it their task to unravel the mysteries involved in this process. In this
connection, it is remarkable that no clairvoyants have ever been employed to
identify Mersenne primes or to factor large numbers. Such an attempt might
lead to new insights, if not in numerology then in parapsychology.

I. This paper is a revised Version of one of the contributions to [19].
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'Numerology' — this condescendmg term was, until recently, the fashionable
one for the branch of science under discussion, m spite of the famous names
listed above. Nowadays, a change in this attitude is noüceable. Partly, this
change is due to an increased interest in general problems of feasibility of
computations. The revival of the specific problems (a) and (b) has, in addition,
been stimulated by their stnking apphcation in cryptography. For the details
of this apphcation we refer to [11]. Suffice it to say that, in this apphcation, it
is essenüal that (a) is 'easy* and that (b) is 'hard'. It is an iromc fact that the
only existuig evidence for the 'hardness' of (b) is the failure of generations of
'numerologists* to come up with an efficient factonzation algonthm.

This lecture is devoted to a discussion of problem (a). For (b) we refer to
[26] and [37], and the references given there.

In complexity theory, it is customary to call an algonthm good if its runmng
tune is bounded by a polynomial in the length of the mput For problems (a)
and (b) the input is the number n, which can be specified by [log n /log 2]+ l
binary digits. Thus the length of the input has the same order of magmtude äs
log«.

A well known algonthm for solving (a) and (b) consists of tnal divisions of
n by the numbers less than or equal to Vn. In the worst case, this takes Vn
Steps, which is exponential in the length of the input. We conclude that this
algonthm is not 'good'.

Before one searches for a short proof that n is pnme, or for a short proof
that n is composite, it is a good question to ask whether such a proof exists.
In this direction, we first have the following theorem; an arithmetic Operation is
the addition, subtraction or multiplication of two integers

THEOREM 1. If n is composite, this can be proved using only O (l) arithmetic
operations. Similarty ifn is pnme.

PROOK For composite n, the theorem is tnvial; to prove that n is composite, it
suffices to wnte down integers a, b > l and to do the srngle multiplication
necessary to venfy that ab=n. Thus, in the composite case, the O-symbol is
even superfluous. For pnme n, the theorem is less obvious. It is an outgrowih
of the negative solution of Hilbert's tenth problem [7], that ihere exists a poly-
nomial in twenty-six variables

/ezy, B, c,.... x, Y, z]
with the property that the set of pnme numbers coincides with the set of posi-
tive values assumed by / if non-negative integers are substituted for
A, £, .., Z. Such a polynomial, of degree 25, is exphcitly given in [12] A
simüar polynomial in 10 vanables of degree 11281 is constructed m [20,
English translation]. To prove that a posiüve integer n is pnme U now suffices
to wnte down twenty-six non-negative integers A, B, , Z and to do the
bounded amount of anthmetic necessary to venfy that n =f(A, B, ., Z) In
fact, according to [12, Theorem 5] no more than 87 anthmetic operations are
needed in this venfication. This proves Theorem 1.
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From a pracücal point of view Theorem l has two senous defects. The first is,
that H teils us that certain proofs exist, but U does not teil us how to find
them. Thus, F.N. Cole's proof that 267 — l is composite consists of the single
observation that

2 ' 7 - i = 193707721-761838257287.

But it had taken hun 'three years of Sundays' to find his proof, and the
methods that he employed are far more uiteresüng than the final proof itself
[6], [28].

With pnmes, the Situation is shghtly different. The proof that, for prune n,
there exist non-negative integers A, B, . . . Z such that

n = f(A,B, .., Z)

is completely construcüve, see [12] But for the polynormal from [12] it is not
difficult to prove that the largest of A,B, ..., Z necessarüy exceeds

n
n

(For a much better polynormal in this respect, see [l, Theorem 3.5].) The
second defect of Theorem l is, that it is clearly unreaustic to count an addition
or multiphcation of numbers of this size äs a single Operation It is more realis-
tic to count bit operations, which may be defined äs anthmetic operations on
numbers of one digit. Thus, we have:

THEOREM 2 If n is composite, this can be proved using only O ((log n)2) bit
operations.

PROOF It suffices to remark that the usual algonthm to multiply two numbers
less than n requires no more than O((log;i)2) bit operations. This proves
Theorem 2.

Usmg the fast multiphcation rouüne of SCHONHAGE and STRASSEN [30], [35]
we can replace (log/i)2 in Theorem 2 by (log/i)l+<, for any e>0, or more pre-
cisely by O ((log n)-(log log«)-(log log log«)) (for n>ee).

THEOREM 3 (PRATT [28]). Ifn ispnme, this can be proved using only O((log«)4)
bit operations

Again, using [30], we can replace (logn)4 by (log«)3+<, for any c>0.

PROOF. The proof rehes on the structure of the group of umts

(Z/nZ)' = {(amodn) : aeZ, 0*£a<n, gcd(a, n )= l )

of the nng Z/nZ of integers modulo n This is a fimte abelian group of order
φ(/ι), where ψ is the Euler function. If n is a pnme number, then (Z/wZ)* is
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cyclic of order n ~ I. Conversely, if (Z /n Z)* has Order >« — l, then n is a
prime number. Thus we see that n is prirne if and only if there exists
(a mod/i)e(Z/nZ)* of order n — 1. If we assume n to be odd and write

W - 1 = E U , (D
i=0

?o - 2

q, prime (Ki^k) (2)

then (a modw) has order n — l in (Z /n Z)* if and only if

fl(n-l)/2 Ξ - l mod n, (3)

fl<" "Ο/?, φ imod«, for K i < & . (4)

Therefore, to prove that n is prime, we can write down integers a, qo = 2,
fi , ..., 9t, verify that (1), (3) and (4) hold, and prove (2) recursively. This
proof requires k multiplications in (1), and k + l exponentiations (mod n) in
(3) and (4), plus what is needed for (2). So if /(n) denotes the total number of
multiplications and exponentiations in the proof, then

where we define /(2)=1. By induction we prove that /(«)<
3 · (log n /log 2)— 2. This is true for n =2, and if it holds for the q, then

/(/ι) ^ 2fc + l + 2(3(log9,/log2)-2)
( = 1

= (23(log9,/log2))-2
i=0

= 3(log(n-l)/log2)-2 < 3(logn/log2)-2

äs required.
We conclude that no more that O (log n) multiplications and exponentiations

are needed. Each exponentiation in (3), (4) can be done by O (log n) squarings
and multiplications modn. Finally, each of these multiplications, squarings
and multiplications mod n (or mod a number smaller than n) can be done with
O ((log n Y) bit operations. The total number of bit operations is therefore
C>((log/»)-(log/i)-(log/j)2)=O((logn)4). This proves Theorem 3.

Theorem 2 and 3 still have the first defect of Theorem l : one is not told how
to find the short proof whose existence is asserted. Nevertheless, the proof we
have given of Theorem 3 is not exclusively of theoretical interest, and the sanie
ideas are actually used in computer-assisted primality proofs. To illustrate
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this, we begin with a particularly simple case, in which n - 1 has no odd prime
factors at all.

THEOREM 4 (PEPIN, 1877). Let n = 2m+l, with m>l. Then n is prime <=»
3(„-o/2 = -Imodn.

PROOF. The implication <= follows from the proof of Theorem 3, with α = 3.
Conversely, suppose that n is prime. Then n is not divisible by 3, since w>3,
so m is even. Then «=2mod3 and n=.\ mod4, so quadratic reciprocity gives

By Euler's theorem, — = 3(" ~ l ) / z mod n. This proves Theorem 4.
H

It is known that n=2m + l can only be prime if n is a power of 2; then n is
one of the Fermat numbers 22' + 1. For k =0, l, 2, 3, 4 these numbers are actu-
ally prime, for 5*S£«;19 and some other values (such äs fc = 2089) they are
known to be composite. It is reasonable to conjecture that they are, in fact, all
composite for £5*5. The number FH has been proved composite by PepüYs
lest, but no factor is known. To the uninitiated reader it may seem surprising
that it is possible to prove that a number is composite, without the proof yield-
ing a factorization. This is surprising indeed; the phenomenon will be further
discussed at the end of this lecture. See [39, See. 5] and [3] for more Informa-
tion on the Fermat numbers.

For general n, the main difficulty of the above lest is to find the complete
factorization (1) of n — 1. In the following variant only a partial factorization
of n — l is needed.

THEOREM 5. Let n and s be integers satisfying

n>\, s>nVl.

Suppose that for every prime q dividing s there exists an integer a (depending on
q) satisfying

αϊ"" Ξ l mod w, gcd(a»"""" - 1, n)= l (5)

where m(q) denotes the number of factors q in s. Then n is a prime number.

PROOF. Let r be any prime dividing n and q any prime dividing i. From (5)
we see that the order of (amodr) in the group (Z/rZ)" equals qm(q\ so by
Lagrange's theorem qmW divides r — l. Since q is arbitrary, this implies that s
divides r - l , so r>s. The inequality s > « H shows that n has at most one
such prime factor. Hence n is prime, äs required. This proves Theorem 5.
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From the proof of Theorem 5 we see that the hypotheses imply that s divides
n — 1. To obtain a primality lest from Theorem 5, one chooses s to be the larg-
est divisor of n — l that one is able to factor completely. For each q, the
number α is constructed äs follows. Search for an integer b such that

/>"-' = Imod«, b(n-W* Φ Imodn,

and put

If it is difncult to find such a number b, it is unlikely that n is prime, and one
should attempt to show that n is composite, using Miller's method described
below. The gcd in (5) is now equal to gcd(i>(" ~ 1 ' / ϊ — l, n), and it can be calcu-
laled efliciently using Euclid's algonthm. In fact, only one gcd-computation is
necessary if one considers the product of the numbers Z>(M ^* — l mod n, with
q ranging over the primes dividing s.

The critical condition of Theorem 5 is the inequality i > n w that must be
satisned by the completely factored pari of n — l. There are several ways to
replace this condition by a weaker one. Suppose, for example, that s only
saus fies

From the proof of Theorem 5 we see that every prime divisor of n is l mod i,
and the same is then true for every divisor. Hence, if n is composite, there exist
integers χ and y satisfying

n - (xs + ΐχ>/ί + 1), x>0,

From « < i 3 it follows that xy<s, so (x — l)(y — l)>0 implies that
0<x +_x<s. Since χ +y=.(n — \)ls mod s this means that we know the value
of χ +y. We also know that n =(xs + l)(ys + 1), so χ and y can now be solved
from a quadratic equation. Hence, if we add the hypothesis that the solution
of this equation does not give rise to a non-trivial factorization of n, we still
can conclude that n is a prime number.

A second method to relieve the condition s>nVt makes use of lower bounds
for the unknown prime factors of n — 1. For a discussion of this technique, and
references to the üterature, see [39, Sections 10, 11].

Later in this lecture we shali consider a third type of generalization of
Theorem 5, in which the role of n — l is played by n' — l, where l is some posi-
tive integer; see Theorem 11.

G.L. MILLER [21] introduced a diflerent way to exploit the multiplicative
structure of the integers mod n in primality tests. It leads to the following
theorem, in which 'GRH' denotes the generalized Riemann hypothesis, formu-
lated in the course of the proof.

THEOREM 6 (MILLER). Assume the validity of GRH. Then there exists an algo-
rithm, described below, that in 0((logn)5) steps decides whether or not n is prime.
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This theorem has none of the defects of Theorem l, 2 and 3, but it has a new
one: the assumption of an unproved hypothesis.

Assume that n is odd, and write n — \=u-2k, where u is odd and k>l.
Employing Rabin's terminology [29], we call an integer α a wttness to the com-
positeness of n, or simply a witness for n, if the following three conditions
hold:

n does not divide a, (6)

α" Φ Imod n, (7)

a" '* Φ - I m o d n for/=0, .... k -l. (8)

(Others say in this Situation, that « is 'not a strong base a pseudoprime' ... .)
Whether or not α is a witness for n depends only on amodn; so we may

restrict to 0<a<n. For a given such a, it takes only 0((logn)3) Steps to check
whether or not α is a witness for n, by the last paragraph of the proof of
Theorem 3.

We note that witnesses are reliable: if α is a witness to the compositeness of
n, then n is composite. To see this, suppose that (6), (7), (8) hold and that n is
prime. By (6) and Fermat's theorem, a " ' 2 ' = a " ~ l = l n i o d n . Hence the last
term in the sequence

is Imodn, but by (7) the first term is not Imodn. Lei b=a"'* be the last
term in the sequence that is not l modw. Then 0«£ι«£Α: — l, and b2= l mod/i
while b Φ Imodn. Hence n divides b2 — l=(b — l)(b + 1) but it does not
divide b — l. Therefore n divides b + 1, which contradicts (8).

The algorithm referred to in Theorem 6 now runs äs follows. We may
assume that n is odd, and n > 1. Check whether there is a witness a for n satis-
fying 0<a<70(log/i)2. If there is one, n is composite. If there is none, declare
n to be prime. This algorithm clearly runs in time O ((log n)5).

To prove the correctness of the algorithm, we have to show that any compo-
site odd n has a positive witness a<70(log7»)2, if GRH is assumed. We sketch
this proof only, referring to the literature ior details.

First we describe the GRH äs we need it. Let n be an arbitrary positive
integer, and let χ:(Ζ//ιΖ)*— >C* (the group of non-zero complex numbers) be a
group homomorphism. We view χ äs a function on Z by χ(α) — x(amodn) if
gcd(a, n)= l, and χ(α)-0 otherwise. Such a function on Z is called a character
modulo n. The L-series associated to χ is defmed by

If χ is non-trivial, i.e. χ(α)ϊ{0, 1} for some a, this series converges for all j e C
with Κ φ ) > 0 . We say that L(s, χ ) satisfies the generalized Riemann
hypothesis if L (s, xJ^O for all s eC with Re(s)>'/i. For trivial χ, this is only
meaningful if L(s, χ) has been analytically continued; to avoid this, let us sim-
ply say that L (s, χ), for trivial χ, satisfies the generalized Riemann hypothesis



276 H.W. Lenstra, Jr.

il and only if the classical Riemann hypothesis is true, which is equivalent to

Σ ^ ~ 1 ) " =£Q forall i e C with y < R e ( i ) < l .
„ = ! as

The GRH in Theorem 6 is the conjunction of all generaüzed Riemann
hypotheses described above.

LEMMA (ANKENY-MONTGOMERY). There is an absolute constant c with the fol-
lowing property. Lei χ be a non-trivial character modulo n, and suppose that
L(s,x) satisfies the generalized Riemann hypothesis. Then there exists aeZ,
0<a <c· (log«)2, such that χ(α)^=0 an

PROOF. See [23, Theorem 13.1], or [13, Corollary 1.3] for a version in which
also the classical Riemann hypothesis is needed.

COROLLARY. Assume GRH, and let G=£(Z/nZ)' be a subgroup of (Z/nZ)'.
Then there exists a eZ such that

Q<a<c·(logn)2, gcd(a, »)=1, (amodw)iG,

with c as in the lemma.

PROOF. It suffices to apply the lemma to a non-trivial x:(Z/nZ)'-»C* that is
trivial on G.

Let now n > l be composite and odd. To finish the proof of Theorem 6,
with an unspecified constant c instead of 70, it suffices, by the corollary, to
exhibit a proper subgroup GC(Z/nZ)* containing all non-witnesses a that are
not divisible by n. For this we take (cf. [36])

G = {(amodn)e(Z/wZ)':a ( l l~ I ) / 2= — mod«}
TJ

where — is the Jacobi symbol. It is a charming theorem of LEHMER [14, cf.

33] that G^KZ/wZ)* for composite odd n. It is an equally charming result of
SELFRIDGE [39, Theorem 17.2] that G contains all non-witnesses (modn) not
divisible by n. This finishes the proof of Theorem 6.

Using additional arguments it can be proved that the generalized Riemann
hypothesis is only needed for the L-series associated to characters χ of the

form χ(α)= - , where d runs over the positive integers that are l mod 4 and

either prime or the product of two distinct primes, see [16].
The value 70 for the constant is taken from [24, Theoreme 4]; here again the

classical Riemann hypothesis is needed, in addition to the generalized
Riemann hypotheses just described. It is reported that WEINBERGER (unpub-
lished) obtained sharper results.



Primality testing 277

The idea used in the proof of Theorem 6 has two other applications. The
first is a fast primality test for small numbers:

THEOREM 7 (SELFRIDGE, WAGSTAFF). Every odd composite n

satisfying: has a witness among:

w<2047 2
n < 1373653 2,3
w<2-109, n ^ 25326001, 161304001, 2,3,5

960946321, 1157839381
w<25- ΙΟ9, η φ 3215031751 2,3,5,7

PROOF. By Computer, see [27]. This proves Theorem 7.

The numbers in the left hand column are composite:

2047 = 23-89, 960946321 = 11717-82013,
1373653 = 829-1657, 1157839381 = 24061-48121,
25326001 = 2251-11251, 3215031751 = 151-751-28351.
161304001 = 7333-21997,

The test provided by Theorem 7 is easily implemented on a programmable
pocket calculator. Thus, an HP-41C can decide the primality of an arbitrary
n<2· l O9 within two minutes, using only 2, 3, 5 äs possible witnesses.

The second application is based on the following theorem.

THEOREM 8 (RABIN). Every odd composite n has at least ~^(n — 1) witnesses

among ( l , 2, ..., n — 1}.

The proof is an attractive exercise in elementary number theory, in which the
Carmichael numbers play a role. See [29], [22]. This proves Theorem 8.

Rabin proposes the following primality test. Let m be a large integer, like 100,
and choose randomly m integers a,e{l , 2,..., n — l), Ki^m. If oneof these
a, is a witness for n, then n is composite. If none of the at is a witness for n,
then either n is prime or we have exttemely bad luck. By Theorem 8, this bad
luck occurs in at most one out of every 4m cases. While this method is basi-
cally incapable of yielding rigorous primality proofs, it is in practical cir-
cumstances difficult to doubt that it yields correct answers. In any case,
Rabin's method can be used to produce primes on a commercial basis: if
found defective, they can easily be replaced.

If we try to remove the unproved assumption from Theorem 6 we are left
with an algorithm that is no longer 'good':
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THEOREM 9 (ADLEMAN, POMERANCE, RUMELY). There is an algorithm that
wilhm (logn)c'1°8logl08'1 steps decides whether or not n isprime, for n>e'. Here
c' denotes an effectively computable constant

A complete proof of this theorem can be found in [2] and [17]. A probabdistic
version of the algonthm, which is somewhat easier to explain, will be descnbed
below. This version of the algonthm has been unplemented by H. COHEN and
A.K LENSTRA on the CDC-Cyber 170-750 Computer System of the SARA
Computer Centre in Amsterdam, cf. [4], [5] It is the only pnmahty lest in
existence that can rouünely handle numbers of up to 100 decimal digits, and U
does so within approximately 45 seconds. Numbers of up to 200 decimal digits
are dealt with wiihin approximately 10 minutes.

The algonthm that we shall descnbe can be viewed äs a special case of the
foUowing pnmahty cntenon.

THEOREM 10. Lei n>l be an integer Then n ispnme if and only ifevery divi-
sor ofn is apower ofn.

The proof is lef t to the reader.
To prove that n is pnme using Theorem 10 we must check that any divisor

of n is a power of n, and it clearly suffices to consider only pnme divisors of n.
Below we shall see how to do this without exphcitly knowing the prime dw-
sors of n. Actually, someüung weaker will be done. rather than showing that a
pnme r dividing n is a power of n, one attempts to show that this is true for
the images of r and n in certain auxihary groups, such äs the group (Z/s Z)'
for an integer s that is copnme to n.

An example of this approach is provided by Theorem 5 and its proof. m
that theorem we have n~l mods, and the proof proceeds by showmg that any
pnme divisor r of n saüsfies r = l modj, i.e. is congruent to a power of n
modulo s. The foUowing theorem provides a less tnvial example.

THEOREM 11. Lei n and s be positive mlegers, and let A be a commutative ring
with l containmg Z/nZ äs a subnng (with the same l), Suppose that there exists
o.e.A satisfymg thefollowmg condittons:

(9) of = l,
(10) or1'* —leX* (the group of units of A) for every prime q dividing s,
(11) thepofynonual Π,'~Q (X—a") has coefficients in Z/nZ for somepositive

integer t.

Then every divisor r ofn is congruent to apower ofn modulo s

PROOF. We may assume that r is pnme. Since r is a zero_divisor (or zero) m
A, there exists a maximal ideal M of A with reAi Let A be the field A/M,
and α = (amodM)eA. By (9) and (10), the Order of α in A' equals s. The

polynonual Π,' =ο(Χ-ΰη), which has α äs a zero, has coefficients in the
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sublield fr of A of carduidhty r. Therefore <ΧΓ is also a zero of this polynonual,

so there exists / e{0, I, . , t — 1} with är=ä" , i.e. r = « ' mod s. This proves
Theorem 11.

If we take A = Z/«Z and t = l, then condition (11) is tnvially satisfied. It is
easy to deduce Theorem 5 from Theorem 11, by choosmg α equal to the pro-
duct of the a's appeanng in Theorem 5, taken modulo n.

The proof of Theorem 11 shows that the residue classes l, n, n2, . ,/i '~'
modulo ä are permuted upon multiphcation by (r mod i), for any pnme r
dividing n. Wntuig n äs the product of its pnme factors, we see that multiph-
cation by (n mod s) also permutes these residue classes, which just means that
n ' = l mods, Hence s must be chosen to be a divisor of n' — l.

Let t —2 In this case known pnme factors of n + 1 =(«2 — !)/(« — 1) can be
used in addition to those of n — l to build up the number s. Starüng from
Theorem l! one can, for practically every primahty lest based on factors of
n — l , devise a corresponding test based on factors of n -H . These tests are
usually formulated in terms of Lucas funcüons [39, Sections 12, 13, 14]. In the
sunplest case, corresponding to Pepin's Theorem 4, the number n + 1 is a
power of 2:

THEOREM 12 (LUCAS-LEHMER). Let n—2m — l, with m>2 Define (ek)f=\ by
e\ =4, ek + i — e^—2, Then n isprime ifandonly ifem-\~ Omodw.

PROOF. Fu-st let m be even Then n is diwsible bj 3, and not pnme Also
em _ i = — l mod 3 by mduction, so e„-\ ΦΟ mod n. This proves the theorem
for even m. Assume now that m is odd, and define

A = (Ζ/«Ζ)[Γ]/(Γ2- \ / 2 > - l ) ,

where V2 denotes any element of Z/nZ with (V2)2 =2; e.g., A/2 =
(2<m + 1)/2 mod n). Denoting the unage of Γιη A by α we have

A = (a+ba : a, AeZ//iZ}, c.2=V^"o+l.

Let ß=V2~a=-a~l be 'the' other zero of X1-Vf2X~l m A. From
ct + β — v2 and aß— — l it follows easjy by mduction on k that

af+ß2' = (e tmodn)eZ/nZ

for all k^\ Now let first n be pnme. The discnrmnant of Χ2 —
equals 6, and from /i=lmod3, n = - l m o d 8 and quadratic reciprocity it fol-

lows that — = - 1. Hence A is a quadratic field extension of Fn, and α and

β are conjugate over F„. By the theory of fimte fields this imphes that of=ß.
Mulüplying this by α we get a2" = — l, so

(<?„,_, modn) = a2"" +J82* ' = a2" ' + a " r ' = 0.

This proves the Only if pari. Suppose, conversely, that (e„-\ modw)=0. Then
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so (9)_ and (10) of Theorem Π are satisfied with s=2m + l. Also,
« n =o 2 "~ 1 = — αΓ1 =ß, so the polynonual

(Χ-αΚΧ-α") = (Χ-α)(Χ-β)=Χ2-\/2·Χ-1

has coefficients in Z/wZ, which is condition (11) of Theorem 11 with i =2
From Theorem 11 and n 2 = l m o d f it now follows that any divisor of n is
congruent to l or n modulo s. But s>n, so trus means that n is pnme This
proves Theorem 12

It is known that n—1m — \ can only be prune if m is pnme: then n is one of
the Mersenne numbers Mp =2f — l, p pnme These are known to be pnme for
30 values of p:

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,

2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,

21701, 23209, 44497, 86243, 132049, 216091,

see [34], It is reasonable to conjecture that #{m<x 2m — l is pnme} /log χ
tends to a fimte non-zero Limit for JC-»QO GILLIES [9] gives a probabilistic
argument leading to the value 2/log2 for the limit, but his reasorung is clearly
in error since the same argument leads to a contradiction with the pnme
number theorem, cf. [10, § 22.20]. The number eT/log2, where γ is Euler's
constant, has been proposed äs a more hkely value for the limit [25], see also
[38], [31].

If the complete factonzation of n — l is known then m practice it is easy So
lest n for prtmality, e.g. using Theorem 5. The same Statement is true with
« — l replaced by n + 1, using Theorem 1 1 with t —2. A combinaüon of both
tests is employed in the discovery of large twm pnmes, in the following way
Let w be a large number whose complete pnme factonzation is known, such a
number can be found by multiplying together small numbers. Then (m + 1)— l
and (m — 1)4- 1 are completely factored, so we can apply an (n — l)-pnmality
lest to m + 1 and an (n + l)-pnmality test to m - 1. If both numbers turn out
to be pnme we have found a pair of twin pnmes. The langest known pair is

256200945 · 2 Μ 2 6 ± l = 2 3 4 2 6 ·3·5·7· 11 · 13- 113- 151 ± l,

which have 1040 decimal digits. This pair was discovered by ATKIN and RICK-
ERT [8].

We next discuss how Theorem 11 can for generaJ ι be used for pnmality
testing For A one takes a nng that u n were pnme would be the field F„· of n'
elements. If n behaves äs if it were a pnme number then such a nng is m prac-
tice not difficult to construct. äs in the proof of Theorem 12 one can take
A =(Ζ/«ζχΓ]/(/"), where /ε(Ζ/ηΖχΓ] is a polynomial of degree t that passes
a suitable ureducibüity test (see [15, See. 5]). For * one takes the largest divisor
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of n' — l that one is able to factor completely, and for α one takes an element
of A * of order s. If n is actually prime then α is usually easy to construct, by
manipulating with elements of the form ff·" ~W*t ßeA. In this case conditions
(9) and (10) are clearly satisfied, and the polynomial in (11) is a power of the
irreducible polynomial of « over F„ so it has certainly coefficients in F„. Sup-
pose, conversely, that (9), (10) and (11) are found to be true. Then we cannot
immediately conclude that n is prime, but we know, by Theorem 1 1, that any r
dividing n is congruent to a power of n modulo s. If 5 is sufficiently large then
this information can be used to finish the primality proof, in the following
manner. Suppose that

(äs in Theorem 5), and let r, be determined by

n' ~ r,mods,

for 0<i<f If n is composite then it has a non-trivial divisor r with
and since r is congruent to a power of n modulo s it must be equal to one of
the r,. Hence, if we verify that none of the r, is a non-trivial divisor of n, we
have proved that n is prime. A similar but somewhat more involved procedure
can be followed if s satisfies the weaker inequality i>w ! / 3 , see [18].

We refer to [17, Theorem 8.4] for a more flexible Version of Theorem 11, in
which it is possible to vary α with q, äs in Theorem 5.

For very small values of t, such äs r =2, 3, 4, 6, it is again possible to
employ lower bounds for the unknown prime divisors of n' — l, cf. [39, Sec-
tions 13-16] and the references given there. It is doubtful whether such lower
bounds are equally useful for the larger values of / considered below.

To analyze the above algorithm we must know how to choose / such that
s>nv>. We need the following theorem.

THEOREM 13 (ODLYZKO-POMERANCE). There txists an effectively cotnpulable
constant c" with the followmg property. For every integer n >e' there exists a
positive integer t satisjying

/<(log«)c"lo«loe10*''

t is squarefree

such that the number

•l· *-q prime, q — l divides t "

satisfies

*>«».

PROOF. See [2, See. 6]. This proves Theorem 13.

Let / be äs in Theorem 13; the condition that t be squarefree is irrelevant for
our present purpose. If q is a prime number for which q — l divides t, then
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n'=l modq by Fermat's theorem, unless q divides n. Hence, if s is äs in the
theorem, then s divides n' — l provided that gcd(/i, i ) = l . Also, the complete
factorization of s is known, and s>nv>. We conclude that these values for /
and s can be used in the primality lest described above. The resulting algo-
rithm has, for prüne n, an expected running time that is less than
(logn)''108'08'08'1 for some constant c'. This does not yet prove Theorem 9, since
we have no such bound for the worst case running time. 1t appears that the
size of t makes the lest unsuitable for practical primality testing.

The lest underlying Theorem 9 is closely related to the lest just described. It
depends on properües of Gauss sums, which we shall now consider. By fm we
denote a primitive m-th root of unity.

Let p and q be prime numbers not dividing n for which p divides q — \ . We
choose a character x=x^,v modulo q that has order/»; i.e., χ : Ρ ^ - » < ^ > is a
surjective group homomorphism, where <ξρ> denotes the subgroup of C* ge-
nerated by fp. Such a χ can be obtained by choosing a primitive root g mo-
dulo q and putting x ^ ' m o d ^ ) ^ ^ for /eZ. We define the Gauss sum τ(χ) by

?

This is an element of the cyclotomic ring R = Ζ·[ξρ, ?,]. We have

iixf = χ(η)~" · τίχ") mod nR if n is prime.

To prove this, notice that modulo nR we have
g-l

τ(χ)" = 2 Χ(*)"·?" (since n is prime)

* ~nx mod9)

äs required. We investigate what can, conversely, be said about n if the follow-
ing weaker condition is satisfied:

•Κχ)" =i}(x)-'I-T(x1I)modwÄ for some n(x)G<if>. (12)

Let β be the automorphism of R wilh σ(ίρ)-ίρ and a(^)-fr Then (12) can
be written äs

p~2
Raising both sides to the power Σ nf~'l~'d we obtain:

1=0

Now let r be any prime divisor of n. Then we know that (12), with n replaced
by r and tj(x) by x(r), is valid, so for the same reason we have
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- ' =X(r)modrR.

Combination of the last two congruences suggests that

x(r) = n ( x ^ " - 1 ) / ^ " - 1 ) (13)

for any prime r dividing n. Ίο make this meaningful we have to explain how
to Interpret the fractional exponent. For this we need the following hypothesis
on/>:

vp(rr ~ ' — 1) Ξ* vp(np ~ ' — 1) for every prime r dividing n, (14)

where vp(m) denotes the number of factors p in m. K (14) is satisfied we can
write (rp~l — l)/(np~* — \)—a/b, with a, bei, b~lmodp, and the residue
class of (rp~l — \)/(np~l ~l)mod/> is then defined to be (amodp); this does
not depend on the choice of a and b. Since ΐ)(χ/ — l it is now meaningful to
define the right hand side of (13) äs η(χ)°.

With this Interpretation it is straightforward to verify that (12) imph'es (13),
provided that (14) is assumed. By induction on the number of prime factors
one can now prove that (13) holds for any divisor r of n, prime or not. In par-
ticular, with r —n we obtain χ(η)— τ/(χ), so (13) now yields

X(r) = χ<ιθΤΙ-'>/<'«'·1-|> (15)

for any r dividing n. Again we see that every divisor of n is a power of n, if
images under χ are taken.

It is a vital question how to verify hypothesis (14). Trivially, we have

if n? ~ ' Φ l mod/>2, then (14) holds. (16)

In [17, See. 2] it is proved that

if (12) holds with ij(x)^= l, then (14) is true. (17)

The primality test based on the preceding theory runs äs follows. Let i be a
positive integer having all properties listed in Theorem 13, and let i have the
same rneaning äs in that thcorem. Choose, ior every pair of prime numbers p,
q with q dividing i and p dividing q — l (so p dividing /) a character X=Xf,q äs
above, and check that χ—χ/,, ? satisfies (12); we know that this is necessary for
n to be prime. Next, attempt to prove that every prime p dividing t satisfies
hypothesis (14). Usually, for each p there is a q dividing j with ijCg, q)=£\, and
then (17) applies. If there is no such q, and (16) does not apply either, one
should test (12) for characters Xp q with q a prime not dividing s for which p
divides q — l, until an example of ηΟ<̂  9>^=1 is found.

At this stage of the algorithm one knows that every χ̂ , ? , with p dividing
q — l and q dividing s, satisfies (15) for each r dividing n. We claim that this
imphes that each r is congruent to a power of n modulo s, so that the test can
be completed in the same way äs the test described before Theorem 13.

To prove the claim, let r divide n, and let (i mod t) be determined by

ι i = (r' ~ l - l)/(n' ~ ' - 1) modp
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(in the sense explained before) for each prime /> dividing /; notice that here we
use that t is squarefree. Then (15) implies that

for each pair p, q äs above. For fixed q, the product of the primes p dividing
q — l equals q — \, so the characters ^ ^ generate the group of all characters
modulo q; therefore r=w'mod^. Since this holds for all q dividing s, we con-
clude that r=.n'mods, äs required.

The only non-deterministic part of the test is the verification of hypothesis
(14). If n is composite it is conceivable that (14) is not satisfied, so that the
algorithm will get stuck at this point. We refer to [2, See. 5] and [17, See. 5] for
a variant that avoids hypothesis (14). It constnicts an auxiliary number v such
that from a set of conditions similar to (12) it can be deduced that any divisor
r of n is congruent to a power of i>, rather than a power of n, modulo i. This
test is completely deterministic, and it has running time less than
(logw)c'logloglog'' for n>ee, where c' denotes an effectively computable constant.
This concludes our sketch of the proof of Theorem 9.

There are several ways to ünprove the practical performance of the test [5],
[17]. In the first place, the Gauss sums can be replaced by Jacobi sums, which
belong to 1[ζρ] rather than l[if, f?]. Secondly, characters of prime power
order rather than of prime order can be employed, so that the condition that t
be squarefree can be dropped. Finally, it is possible to combine the test with
the tests described earlier depending on variants of Theorem 11. However,
none of these improvements reduces the running time in a theoreticalty
significant way.

As we noted in connection with the Fermat numbers, it is surprising that we
can prove that a number is composite without actually finding a factor. To
analyze this Situation, let us assume that we proved n composite by exhibiting
an integer α for which

β " ' 1 Φ Imodw, gcd(a, n)=l, (18)

and applying Fermat's theorem that (18) is impossible for prime «. To see
why this gives no factorization of n we must investigate how Fermat's theorem
is proved. One proof is based on the remark that the map sending i to α · i
(mod M) is a permutation of { l, 2, ..., n — l }, so

B-l Π-1

«"-'•(«-l)! = n( f l - ' )= ^[i-(n-\)\modn.
i=\ i=\

Hence (18) implies that (n —1)! has a non-trivial gcd with n, which teils us
nothing more than that n is composite. Other proofs of Fermat's theorem have
similar shortcomings. The Situation would be different if factorials or binomial
coefflcients were easy to compute modulo n. This is clear from the proof of the
following charming but useless theorem, in which we also consider 'division
with remainder' äs an arithmetic Operation.
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THEOREM 14 (SHAMIR). There is an algorithm that for every composite n yields a
non-trivial divisor ofn, using no more than O(logw) arithmetic operations.

PROOF. We notice that n is composite if and only if Kgcd(ao!, «)<« for
some positive integer a0. Since gcd(a!, n) is a non-decreasing function of a,
and is equal to l, n for a = l, n respectively, we can determine such an «0 by
O(log/i) bisections, provided that we know how to calculate gcd(a!, n).

Once we know a!, we can determine the gcd by Euclid's algorithm in
O(logn) arithmetic Steps. To calculate a!, we apply the formulae

(2fr+ 1)! = (2fr+ 1)· (2fr)!,

f2fr
(2fr)! = (fr!)2· L

f2fr)
O (log a) times. To calculate the binomial coefficient , needed here, we

f2frl "- ^
remark that , is the middle block of n binary digits in the binary expan-

sion of (2" -l- ly*, for 2fr<n; and the exponentiation can be done by
O(log(2fr)) multiplications.

This algorithm, äs we described it, takes O((logn)3) arithmetic operations.
For the modifications to bring it down to O(l°g") w e refer to Shamir's paper
[32]. This concludes the proof of Theorem 14.

We notice that the best known deterministic factorization algorithm, which is
due to Pollard, also depends on the calculation of factorials modulo n. This
algorithm and several more practical ones are described in the papers of
POMERANCE [26] and VOORHOEVE [37].

REFERENCES

1. L. ADLEMAN, K. MANDERS (1976). Diophantine complexity. 17th An-
nual IEEE Symp. on Foundations of Computer Science, 81-88.

2. L.M. ADLEMAN, C. POMERANCB, R.S. RUMELY (1983). On distin-
guishing prime numbers from composite numbers. Ann. of Math. 117,
173-206.

3. R.P. BRENT, J.M. POLLARD (1981). Factorization of the eighth Fermat
number. Math. Comp. 36, 627-630.

4. H. COHEN, A.K. LENSTRA (1985). Implementation of a New Primality
Test, Report CS-R8505, CWI, Amsterdam; Math. Comp., to appear.

5. H. COHEN, H.W. LENSTRA, JR. (1984). Primality testing and Jacobi
sums. Math. Comp. 42, 297-330.

6. F.N. COLE (1903/4). On the factoring of large numbers. Bull. Amer.
Math. Soc. 10, 134-137.

7. M. DAVIS (1973). Hilbert's tenth problem is unsolvable. Amer. Math.
Monthly 80, 233-269.



286

8. M. GARDNER (1981). Mathematical games. Scientißc American 244 (2),
14-19.

9. D.B. GILLIES (1964). Three new Merser.ne pnmes and a statistical
theory. Math. Comp. 18, 93-97.

10. G.H. HARDY, E.M. WRIGHT (1979). An Introduction to the Theory of
Numbers, 5th ed., Oxford Umversity Press.

11. P.J. HOOGENDOORN. On a secure pubhc-key cryptosystem, pp. 159-168
in [19].

12. J.P. JONES, D. SATO, H. WADA, D. WIENS (1976). Diophantme
representaüon of the set of prime numbers. Amer. Math. Monthly 83,
449-464.

13. J.C. LAGARIAS, H.L. MONTGOMERY, A.M. ODLYZKO (1979). A bound
for the least prune ideal in the Chebotarev density theorem. Invent.
Math. 54, 271-296.

14. D.H. LEHMER (1976). Strong Carmichael numbers. J. Austral. Math.
Soc. Ser. A 2l, 508-510.

15. A.K. LENSTRA. Factonzation of polynormals, pp. 169-198 in f 19].
16. H.W. LENSTRA, JR. (1979). Miller's primality lest. Inform Process

Lett. 8, 86-88.
17. H.W. LENSTRA, JR. (1981). Prunality testmg algonthms (after ADLE-

MAN, RUMELY and WILLIAMS), Senunaire Bourbaki 33, (1980/1981).
no 576, pp. 243-257 in: Lecture Notes in Mathematics 901, Spnnger,
Berlin.

18. H.W. LENSTRA, JR. (1984). Divisors in residue classes. Math Comp.
42, 331-340.

19. H.W. LENSTRA, JR., R. TIJDEMAN (eds.) (1982). Computatwnal
Methods in Number Theory, Mathematical Centre Tracts 154/155,
Mathematisch Centrum, Amsterdam.

20. Yu.V. MATIJASEVIC (1981). Primes are nonnegative values of a polyno-
mial in 10 variables. Zap. Naucn. Sem. Leningrad. Otdel. Mal Inst.
Steklov (LOM1) 68 (1977), 62-82 (Russian; Enghsh translaüon: / . Soviel
Math. 15, 33-44).

21. G.L. MILLER (1976). Riemann's hypothesis and tesls for pnmabty. J.
Comput. System Sei. 13, 300-317.

22. L. MONIER (1980). Evaluation and companson of two efficient proba-
bihstic pnmahty testing algonthms. Theoret Comput Sei 12, 97-108.

23. H.L. MONTGOMERY (1971). Topics in multiphcative number Iheory.
Lecture Notes in Mathematics 227, Spnnger, Berlin.

24. J. OESTERLt (1979). Versions effectives du thooreme de Chebotarev
sous l'hypothese de Riemann generahsee. Joumees Anthmetiques de
Luminy, Astensque 61, 165-167.

25. C. POMERANCE. (1981). Recent developments in pnmahty testing.
Math. Intell. 3, 97-105.

26. C. POMERANCE. Analysis and companson of sorne integer factonng
algonthms, pp. 89-139 in [19].



Primality testing 287

27. C. POMERANCE, J.L. SELFRIDGE, S.S. WAGSTAFF, JR. (1980). The pSCU-
doprimes to 25-109. Math. Comp. 35, 1003-1026.

28. V.R. PRATT (1975). Every prime has a succinct certificate. SIAM J.
Comput. 4, 214-220.

29. M.O. RABIN (1980). Probabilistic algorithm for testing primality. J.
Number Theory 12, 128-138.

30. A. SCHÖNHAGE, V. STRASSEN (1971). Schnelle Multiplikation grosser
Zahlen. Computing 7, 281-292.

31. M.R SCHROEDER (1983). Where is the next Mersenne prime hiding?
Math. Intel!. 5, 31-33.

32. A. SHAMIR (1979). Factoring numbers in O (log n) arithmetic Steps.
Inform. Process. Lett. 8, 28-31.

33. R. SOLOVAY, V. STRASSEN (1978). A fast Monte-Carlo test for primal-
ity. S1AMJ. Computing 6 (1977), 84-85; erratum: 7, 118.

34. H.J.J. TE RIELE. Perfect numbers and aliquot sequences, pp. 141-157 in
[19].

35. J.W.M. TURK. Fast arithmetic operations on numbers and polynomials,
pp. 43-54 in [l9].

36. J. VF.LU (1978). Tests for primality under the Riemann hypothesis.
SIGACT News 10, 58-59.

37. M. VOORHOEVE. Factorization algorithms of exponential order, pp.
79-87 in [l9].

38. S.S. WAGSTAFF, JR. (1983). Divisors of Mersenne numbers. Math.
Comp. 40, 385-397.

39. H.C. WILLIAMS (1978). Primality testing 011 a Computer. Ars Combin.
5, 127-185.


