CHAPTER 12

Algorithms in Number Theory

A K. LENSTRA*

Department of Computer Science, The Unwersity of Chicago, Chicago, 1L 60637, USA

H W. LENSTRA, Jr

Department of Mathematics, Unwersity of California, Berkeley, CA 94720, USA

Contents

1
2
3
4
5

* Present affilation Bell Communications Research 435 South Street Morristown, NJ 07960 USA

Introduction

Prehminanes

Algorithms for finite abehan groups
Factoring integers

Primaiity testing

Acknowledgment

References

HANDBOOK OF THEORFTICAL COMPUTER SCIENCF
Edited by J van Leeuwen
« Elsevier Science Publishers BV, 1990

675
677
685
697

712
712

ALGORITHMS IN NUMBER THEORY 675

1. Introduction

In this chapter we are concerned with algonthms that solve two basic problems in
computational number theory factoring integers mnto prime factors, and hinding
discrete logarithms

In the factoring problem one 1s given an nteger n> 1, and one s asked to find the
decomposition of ninto prime factors It 1s common to spht this problem into two parts
The first 1s called primality testing given n, determine whether n is prnime or composite
The second 1s called factorization f n i1s composite, find a nontrivial divisor of n

In the discrete logarithm problem one 1s given a pnme number p, and two elements h,
y of the multiplicative group F} of the field of integers modulo p The question 1s to
determuine whether yis a power of h, and, if so, to find an integer m with y=h™ The same
problem can be posed for other exphicitly given groups instead of F}

We shall present a detailed survey of the best currently available algorithms to solve
these problems, paying special atiention to what 1s known, or believed to be true, about
therr ume complexity The algonthms and their analyses depend on many different
parts of number theory, and we cannot hope to present a complete exposition from first
principles The necessary background 1s reviewed in the first few sections of the present
chapter The remaining sections are then devoted to the problems mentioned above It
will be seen that only the pnmahty testing problem may be considered to be reasonably
well solved No satisfactory solution 1s known for the factonzation problem and the
discrete logarithm problem It appears that these two problems are of roughly the same
level of difhculty

Number theory 1s traditionally believed to be the purest of all sciences, and within
number theory the hunt for large primes and {or factors of large numbers has always
seemed particularly remote from applications, even to other questions of a number-
theoretic nature Most number theorists considered the small group of colleagues that
occupied themselves with these problems as being inflicted with an incurable but
harmless obsession Imtially, the mtroduction of electronic computers hardly changed
this situation The factoring community was provided with a new weapon in its eternal
battle, and the fact that their exacting calculations could be used 10 test computing
equipment hardly elevated their scientific status

In the 1970s two developments took place that entirely altered this state of affairs
The first 1s the introduction of complexity theory, and the second 1s the discovery that
computational number theory has applications in cryprology

The formalism of complexity theory enabled workers 1n the field to phrase the fruits
of their intellectual labors in terms of theorems that apply to more than a finite number
of cases For example rather than saying that they proved certain specific numbers
prime by means of a certain method, they could now say that the same method can be
used to test any number n for primahty within time f{n), for some function f Although
this 1s doubitlessly a more respectable statement from a mathematical point of view, 1t
turned out that such asymptotic assertions appealed mainly to theoretical computer
scientists, and that many mathematicians had a tendency to regard these results as
being of an exclusively theoretical nature, and of no interest for practical computations
It has since been interesting to observe that the practical vahdity of asymptotic time

676 AK LensTRa HW LENSTRA, JR

bounds increased with the speed of computers, and nowadays an algorthm s
considered incomplete without a complexity analysis

The area of number-theoretic complexity lost its exclusive tunction as a playground
for theoretical computer scientists with the discovery, by Rivest, Shamur and Adleman
[67], that the difficulty of factonzation can be applied for cryptological purposes We
shall not describe this appiication, but we note that for the construction of the
cryptographic scheme that they proposed it i1s important that primality testing 1s easy,
and that for the unbreakability of the scheme 1t 1s essential that factorization 1s hard
Thus, as far as factonzation is concerned, this 1s a negative apphcation a break-through
might make the scheme invalid and, 1if not restore the purity of computational number
theory, at least clear the way for applications that its devotees would find more
gratifying

It 1s important to point out that there 1s only historical evidence that factonzation 1s
an antrinsically hard problem Generations of number theonsts, a small army of
computer scientists, and legions of cryptologists spent a considerable amount of energy
on 1t, and the best they came up with are the relatively poor algonthms that Section
4 will be devoted to Of course, as long as the widely believed P NP-conjecture
remains unproved, complexity theory will not have fulfilled 1ts onginally intended
mussion of proving certamn algorithmic problems to be intrnsically bard, but with
factonzation the situation Is worse, stice even the celebrated conjecture just mentioned
has no implications about its intractability Factorizauion 1s considered easier than
NP-complete and although the optimistic conjecture that it might be doable in
polynom:al time s only rarely publicly voiced, it 1s not an illegitimate hope to foster

Proving upper bounds for the running time of number-theoretic algonthms also
meees with substantial difficulues We shall see that in many cases we have to be
satisfied with results that depend on certain heunstic assumptions, of which the
ngorous confirmation must perforce be left to posterity

Several other applications of computational number theory in cryptology have been
found, a prominent role bemng played by the discrete loganthm problem that we
formulated above For more mformation about these applicat'ons we refer to [12, 53]
Although the discrete logarnithm problem has classically attracted less attention than
the factoring problem, 1t does have a venerable history, see [27, Chapter VIII], [35,81]
The methods that have been proposed for its solution are also important for
factonzation algonithms, and we discuss them 1n Section 3 What we have said above
about the complexity of factorization applhies to the discrete logarithm problem as well.

Many more problems than those chat we deal with would fit under the heading
algorithms tn number theory, and we have preferred a thorough treatment of a few
representative topics over a more superficial discussion of many As guides for subjects
that we left out we mention Knuth’s book [37, Chapter 4] and the collection of articles
published 1n [47] Up-to-date information can often be traced through the current
issues of Mathematics of Computation An important subject that 1s much different in
spinit 1s computational geometry of number., 1 particular the basis reduction algorithm
of Lovasz [43] For a discussion of this area and its applications in hinear programming
and combinatorial optimization we refer to [31,72]

Throughout this paper, time will mean number of bit operations We employ the

ALGORITHMS IN NUMBFR THEORY ure

following notation. By Z we denote the ring of integers, and by R the set of real
numbers. For a positive integer n we denote by Z/nZ the ning of integers modulo n. For
a prime power ¢, the finite field containing g elements is denoted by F,, and its
multiplicative group by F¥; notice that for a prime number p we have that ¥, =Z/pZ.
The number of primes < x is denoted by n(x); the function = 1s called the prime coun-
ting function.

2. Preliminaries

Subsections 2.A~2.D contain some background for the matenal presented in the
remainder of this chapter. We suggest that the reader only consults one of these first
four subsections as the need arises.

2.A. Smoothness

In many of the algorithms that we will present, the notion of smoothness will play an
important role. We say that an integer is smooth with respect to y, or y-smooth, if all ns
prime factors are < y. In what follows, we will often be interested in the probability that
a random integer between 1 and x is smooth with respect to some y.

To derive an expression for this probability, we define (x, y) as the number of
positive integers < x that are smooth with respect to y. Lower and upper bounds for
¥(x, y) are known from [15, 25]. Combination of these results yields the following. For
a fixed arbitrary £¢>0, we have that for x> 10 and u<(log x)' ¢,

’l/(xa xl/u)zx,u—u+j(x.u)’

for a function f that satisfies f(x, u)/u—0 for u— oo uniformly in x. For fixed o, fe R
we find that for n—» o0

l]/(n“, nﬂ\/(lol log n)/log n) - na '(((X/ﬂ) /108 n/log log n) = (1 +o(1))(a/f)./log mitog log n.

which can conveniently be written as
Y, L) = - L) ™20+ o1

where L{n)=ev'*8 " 'es o8 n T4 follows that a random positive integer < n® is smooth with
respect to L{n)? with probability L(n)~ A *e) for ns oo,

For Be R we will often write L[] for L(n)?, and we will abbreviate L,[f+o(1)] to
L,[B], for n—»o0. Notice that in this notation L,[a]+ L,{#]= L,[max(a,)], and that
the prime counting function r satisfies n(L,[#])=L,[#].

2.B. Elliptic curves

We give an introduction to elliptic curves. For details and proofs we refer to [45, 75].
Our presentation is by no means conventional, but reflects the way in which we apply
elliptic curves.

Let p be a prime number. The projective plane P*(F,) over F, consists of the

678 A K LrNsTRA, HW LENSTRA, JK

equivalence classes of triples (x, y,z)e Fy xF,xF,, (x,y,2)#0, where two triples
(x, y,z) and (x', ¥, 2’} are equvalent 1ff cx=x', cy=y', and cz=z' for some ce F}, the
equivalence class containing (x, y, 2} 1s denoted by (x:y:z)

Now assume that p1s unequal to 2or 3 An elliptic curve over F1s apaira, be F, for
which 4a® +27b% #0. These elements are to be thought of as the cocfficients in the
Weierstrass equation

@n yr=x>+ax+b.
An elliptic curve a, b 1s denoted by E, ;, or simply by E.

2.2. SLT OF POINTS OF AN ELLIPTIC CURVE. Let E be an elliptic curve over F,. The set of
powts E(F,) of E over F, 15 defined by

E(F,)={(x:y:2)€ PX(F,). y’z=x"+axz? + bz}

There 15 one pont (x:y:z) € E(F,)for which z =0, namely the zero potnt (0:1:0), denoted
by O The other pornts of E(F,) are the points (x:y:1), where x, ye F, satisfy (2.1). The
set E(F,) has the structure of an abelian group The group law, which we will write
additively, 1s defined as follows.

2.3. Tue Grour Law. For any Pe E(F,) we define P+0=0+ P=P. For non-zero
P=(x; y,'1), Q=(x3:y,:1)e E(F,) we define P+Q=0 if x;=x; and y,=—y,.
Otherwise, the sum P+(is defined as the pont (x:—y:1)e E(F,) for which (x, y)
satisfies (2.1) and lies on the hine through (x,, y,) and (x,, y;); if x; =x,, we take the
tangent line to the curve in (x, y,) instead. With A=(y, —y,)/(x, —x3)if x, #£x;, and
A=(3x}+a)/(2y,) otherwise, we find that x=A?—x, ~x, and p=Ax~x;)+y;. The
proof that E(F,) becomes an abelian group with this group law can be found n [75,
Chapter 13].

2.4. TueorperOF E(F,). The order # E(F,) of the abelian group E(F,)equals p+1—¢
for some integer f with it} < 2\/;, a theorem due to Hasse (1934). Conversely, a result of
Deuring [26] can be used to obtain an expression for the number of times a given
integer of the above form p+ I —t occurs as # E(F,), for a fixed p, where E ranges over
allelhptic curves over F,, This result implies that for any integer ¢ with {t{ < 2. /p there s
an elliptic curve E over F, for which # E(F,)=p+1-—t A consequence of this result
that will prove to be important for our purposes is that # E(F,) 1s approximately
uniformly distributed over the numbers near p+ 1 «f E 1s uniformly distributed over all
elliptic curves over F,.

2.5. ProposiTioN (cf [45, Proposition{1.16)]) There are positive effectively computable
constants ¢y and ¢, such that for any prime number p> S and any set S of integers s for
which s—(p+)| < \/1; one has

N

#S5~2 #5
——— ey {log p) ' € — € —=——+¢,(log p)-(log log p)?,
A1t ORP S ASpIH

ALGORITHMS IN NUMBER 1 HEORY 679

where N denotes the number of pawrs a,be ¥, that define an elliptic curve E=E, , over ¥,
with # E(F,)e S

Because N/p? 1s the probability that a random pair a, b defines an elhptic curve
E over F, for which #E(F,)€ S, this proposition asserts that this probability 1s
essentially equal to the probability that a random integer near pi1s i S

2.6. CompuTING THE ORDER OF E(F,} For an elliptic curve E over F, the number
E(F) can be computed by means of the division points method, due 1o Schoof {71]
This method works by investigating the action of the Frobenius endomorphism on the
I-division points of the curve, for various small pnme numbers | An I-division point 1s
a point P over an extension of F,, for which I- P = 0, and the Frobemus endomorphism
15 the map sending (x y z) to (x? y? z#) The division points method 1s completely
determimistic, guaranteed to work if p 1s prime, and runs 1n O((log p)®) bit operations (cf
[46]), with fast multiphication techniques this becomes (log p)****! Its practical value
15 questionable, however

Another method makes use of the complex multiplication field The complex
multiphication field L of an elliptic curve E with # E(F,)=p+1—1 1s defined as the
imagnary quadratic field Q((¢*—4p)"/?) (cf (24)) For certain special curves the field
Lis known, for instance for the curve y? = x* + 4x and p = 1 mod 4 we have L =Q(1),
a fact that was already known to Gauss Knowing L gives a fast way of computing # E
(F,) Namely, suppose that Lis known for some elliptic curve E, then the ning of integers
A of L contains the zeros p, j of the polynomial X2 — X + p, and # E(F,)=(p—1)(p—~
1) Although this polynomial 1s not known, a zero can be determined by looking for an
element n 1n A for which nit=p (see (59)) This n can be shown to be umque up to
complex conjugation and units 1n 4 For a smtable umit uin A we then have that p=un,
so that # E(F,)=(un—1)(ut—1) In most cases 4 will have only two units, namely
1 and — 1, only if L=Q(1) (or L=Q(\/ — 3)) we have four (or six) units in 4 In the case
that 4 has only the units 1 and — 1, an immediate method to decide whether # E(F,)
equals (n — 1)@ —1)=m' or (—n— 1){— 7 — 1)=m" does not yet exist, as far as we know,
in practice one could select a random point P e F(F,) such that not bothm’- Pand m”- P
are equal to O, so that # E(F,)=m for the umque me {m', m"} for which m-P=0 (f
A contains four or six units there exists a more direct method [33, Chapter 18]

In (5 9) we will use this method in the situation where L, A, and p are known, the
elhptic curve E will then be constructed as a function of L and p

2.7. ErupTic curves MobpuLO i To motivate what follows, we briefly discuss elliptic
curves modulo n, for 4 positive integer n. First we define what we mean by the projective
plane PZ/nZ) over the nng Z/nZ Consider the set of all triples (x, y, z) € (Z/nZ)* for
which x, y, z generate the unit 1deal of Z/nZ, 1 ¢, the x, y, z for which ged(x, y, z, n)=1
The group of units (Z/nZ)* acts on this set by u(x, y, z) = (ux, uy, uz) The orbitof (x, y, z)
under this action 1s denoted by (x y z), and PXZ/nZ) 1s the set of all orbuts

We now restrict to the case that gcd(n, 6)=1 An elliptic curve E=E, , modulo n1s
a pair a,be Z/nZ for which 4a® +27b* € (Z/nZ)* It follows from Subsection 2 B that

680 AK LeNSTRA, HW LENSTRA, JR

for any prime p dividing n, the pair a=amod p, b=b mod p defines an elliptic curve
E, s over F,. The set of points of this latter curve will be denoted by E(F,)
The set of points E(Z/nZ) of E modulo n s defined by

E(@Z/nZ)={(x"y.z) € PHZ/mZ). y*z=x>+axz® + bz3}

Clearly, for any (x:y.z)e E(Z/nZ) and for any prime p dividing n, we have that
((x mod p):(y mod p) (zmod p))e E(F,) It 15 possible to define a group law so that
E(Z/nZ) becomes an abehan group, but we do not need this group structure for our
purposes Instead 1t suffices to define the following “pseudoaddition” on a subset of
E(Z/nZ)

2.8. PARTIAL ADDITION ALGORITHM Let V, = P¥(Z/nZ) consist of the elements (x* y: 1) of
P(Z/nZ) together with the zero element (0.1:0), which will be denoted by O. For any
Pe V,wedefine P+0=0+P=P.For non-zero P=(x,:y,:1), 0=(x:y;:)€ ¥,, and
any a€ Z/nZ we describe an addition algorithm that either finds a divisor d of n with
I <d<n, or determines an element R € V, that will be called the sum of P and Q.

() Ifx;=x;and y; = —y, put R=0 and stop.

(2 If x, #x,, perform step (2)(a), otherwise perform step (2)(b).

(2)(a) Use the Euchidean algorithm to compute s, t € Z/nZ such that s(x, —x;)+tn=
ged(x; —x,,n) If this ged 1s not equal to 1, call it d and stop. Otherwise put
A=s(y, —y,), and proceed to step (3). (It 1s not difficult to see that in this case
P=Q)

(2)(b) Use the Euchdean algonthm to compute s, t € Z/nZ such that s(y; + y,)+tn=
ged(y, +y2,n) I this ged 1s not equal to 1, call it d and stop. Otherwise put
A=s(3x?+a), and proceed to step (3).

(3) Put x=21%—x, —x3, y=AMdx — x,)+y;, R=(x:—y:1), and stop.

This fimshes the description of the addition algonthm. Clearly the algonthm
requires O((log n)?) bit operations. Notice that this algonthm can be apphed to any
P,QeV,, for any ae Z/nZ, irrespective as to whether there exists be Z/nZ such that
a, b defines an elliptic curve modulo n with P, Qe E, ,(Z/+Z).

2.9. PARTIAL ADDITION WHENTAKEN MODULO p. Let p be any prime dividing n, and let P,
denote the pomt of PX(F,) obtammed from P e V, by reducing its coordinates modulo p.
Assume that, for some ae Z/nZ and P,Q€ ¥V, the algorithm in (2.8) has been
successful in computing thesum R= P+ Q€ V,. Let ddenote a mod p, and suppose that
there exists anelement be F, such that 4a° +27b* # 0 and such that P, 0,€ E b(F,). 1t
then follows from (2 3) and (2 8) that R,=P,+Q,, in the group E, ,(F,).
Notice also that P=0 if and only if P,=0,, for Pe V,.

2.10. MuLTIPLICATION BY A CONSTANT The algonthm in (2 8) allows us to multiply an
element Pe V, by an integer ke Z, o in the following way. By repeated apphication of
the addition algonthm in (2 8) for some ae Z/nZ, we etther find a divisor d of n with
I <d<n, or determine an clement R=k-Pe V, such that according to (29) the
following holds for any prime p dividing n for which there exists an element be ¥, such

ALGUKIITHM) IN ISUMDER 1 B5EUR s

that 433 +27b2 #£0and P, E;4(F,), we have R,=k-P, in E,,(F,) where d=a mod p.

Notice that in the latter case R, =0, if and only if the order of P, € E, ,(F) divides k.
But R, =0, if and only if R =0, as we noted in (2.9), which is equivalent to R, =0, for
any prime g dividing n. We conclude that if k- P has been computed successfully, and if
g is another prime satisfying the same conditions as p above, then k is a multiple of the
order of P, if and only if k is a multiple of the order of P,.

By repeated duplications and additions, multiplication by k can be done in O(log k)
applications of Algorithm (2.8), and therefore in O((log k)(log n)?) bit operations.

2.11. RANDOMLY SELECTING CURVES AND POINTS. In Subsection 5.C we will be in the
situation where we suspect that n is prime and have to select elliptic curves E modulo
n (in (5.7)) and points in E(Z/nZ) (in (5.6)) at random. This can be accomplished as
follows. Assume that ged(n, 6)= 1. Randomly select a, be Z/nZ until 4a° + 27b* #0,and
verify that ged(n, 4a® +27b%) =1, as should be the case for prime nm; per trial the
probability of success is (n— 1)/n, for n prime. The pair a, b now defines an elliptic curve
modulo n, according to (2.7).

Given an elliptic curve E = E, , modulo n, we randomly construct a point in E(Z/nZ).
First, we randomly select an x € Z/nZ until x> + ax + b is a square in Z/nZ. Because we
suspect that n is prime, this can be done by checking whether (x* +ax +b)" " V3 =1,
Next, we determine y as a zero of the polynomial X2 —(x® + ax +b)e (Z/nZ)[X] using
for instance the probabilistic method for finding roots of polynomials over finite fields
described in [37, Section 4.6.2]. The resulting point (x:y:1) is in E(Z/nZ).

For these algorithms to work, we do not need a proof that n is prime, but if n is prime,
they run in expected time polynomial in log n.

2.C. Class groups

We review some results about class groups. For details and proofs we refer to [9, 70].
A polynomial aX*+bXY+cY*e Z[X, Y] is called a binary quadratic form, and A=
b? —4ac is called its discriminant. We denote a binary quadratic form aX 2 +bX Y+cY?
by (a, b, c). A form for which a>0 and 4 <0 is called positive, and a form is primitive if
ged(a, b, c)=1. Two forms (a, b, ¢) and (d', V', ¢') are equivalent if there exist o, f,y,0€ Z
withad—fy=1such that U2+ b'UV +c'Vi=aX2+bX Y+cY? where U=aX +7Y,
and V=pBX+3JY. Notice that two equivalent forms have the same discriminant.

Now fix some negative integer 4 with 4 = 0 or | mod 4. We will often denote a form
{a, b, ¢) of discriminant 4 by (a, b), since ¢ is determined by 4=>b?—4ac. The set of
equivalence classes of positive, primitive, binary quadratic forms of discriminant 4 is
denoted by C,. The existence of the form (1, 4) shows that C, is nonempty.

2.12. REDUCTION ALGORITHM. [t has been proved by Gauss that each equivalence class
in C, contains precisely one reduced form, where a form (a, b,) is reduced if

bl<a<e,
b=0 if |bj=a or if a=c.

These inequalities imply that a <, /]4)/3; it follows that C,,is finite. For any form (a, b, ¢)

el ——

of discriminant 4 we can eastly find the reduced form equivalent 10 3t by means of the
following reduction algorithm

(1) Replace (a, b) by (a, b— 2ka), where ke Z 1s such that ~a<b—2ka<a
(2) If(a, b, ¢)1s reduced, then stop, otherwise, replace {a, b, ¢) by (¢, — b, a) and go back
to step (1)

It 1s easily venified that this is a polynommal-time algonthm Including the
observation made 1n [37, Exercise 4 52 30] in the analysis from [39], the reduction
algorithm can be shown to take O((log a)? + log c) bit operations, where we assume that
the nitial b 1s already O(a) It 1s not unhkely that with fast multiplication techmques
one gets O({log a)' **+Jog ¢) by means of a method analogous to [69]

If the reduction algorithm applied to a form (', b', ¢’) yields the reduced form (a, b, c),
then for any value ax?+bxy+cy? a pair u=ax+yy,v=PFx+dy with au’+buv+
cvi=ax?+bxy+cy? can be computed if we keep track of a (2 x 2)-transformation
matnix in the algonithm This does not affect the asymptotic running time of the
reduction algorithm

2.13. ComposiTiON ALGORITHM The set C 4, which can now be identified with the set of
reduced forms of discriminant 4, is a finite abelian group, the class group The group
law, which we will write multiphcatively, 1s defined as follows The inverse of (a, b)
follows from an apphication of the reduction algonthm to (a, — b), and the unit element
1,18 (1, 1) for 4 odd, and (1,0) for 4 even To compute (a,, b,)*(az, b2), we use the
Euchidean algorithm to determine d =gcd(ay, a3, (by +b,)/2), and r, s, t € Z such that
d=ra,+sa,+1(b, +b,)/2 The product then follows from an apphlication of the
reduction algorithm to

(a,a2/d? by +2a,(s(by — b,)/2—tc,)/d),

where ¢, =(b3 — 4)/(4a;) 1t 15 again an easy matter to verify that this 1s a polynomial-
time algonthm

2.14. Amsicuous FOrRMs A reduced form 1s ambiguous if its square equals 1, for an
ambiguous form we have b=0, or a==b, or a=c From now on we assume that 4=1
mod4 It was already known to Gauss that for these 4's there 1s a byective
orrespondence between ambiguous forms and factonizations of |4] into two relatively
prime factors For relatively prime p and g, the factonzation |4 = pq corresponds (o the
ambiguous form (p, p) for 3p <4, and to {(p+ q)/4, (g— p)/2) for p<q<3p Notice that
the ambiguous form (1, 1) corresponds to the factorization |4|=1+{4]

2.15. Tuecrass NumBer The class number h4 of 4 1s defined as the cardinahty of the
class group C, Efficient algonthms to compute the class number are not known In
{707 an algorithm 1s given that takes time [4]'/* * "), for A— — o0, both 1ts runming time
and correctness depend on the assumption of the generalized Riemann hypothesis
(GRH) It follows from the Brauer-Siegel theorem (cf [41, Chapter XVI]) that
hy=14]""2*°" for A —o0 Furthermore, hA<(\/|—A—|log 14D/2 for A< ~3 It follows
from (2 14) that h41s even if and only if {4] 1s not a prime power

ALGORITHMS IN NUMBER THEORY 683

2.16. FiNDiNG aMBIGUOUS FORMS The ambiguous forms are obtamed from forrs
whose order 1s a power of 2 Namely, 1f (a, b) has order 2% with k>0, then (g, b)** 'isan
ambiguous form Because of the bound on h,, we see that an ambiguous form can be
computed 1 O(log |4)) squarings, if a form (a, b) of 2-power order 1s given

Such forms can be determined 1f we have an odd multiple u of the largest odd divisor
of h,, because for any form (c, d), the form (c, d)* 1s of 2-power order Forms of 2-power
order can therefore be determined by computing (¢, d)* for randomly selected forms
(¢, d), or by letting (¢, d) run through a set of generators for C,4, if n the latter case no
(¢, d)1s found with (c, d) # 1 4, then h4 15 odd, so that 4 1s a prime power according o
(215)

2.17. PriMe Forms For a prime number p we define the Kronecker symbol (4) by

=<0 if ged(4, p)#1,

(A) 1 if 4 1s a quadratic residue modulo 4p and ged(4, p)=1,
—1 otherwise

For a prime p for which (4)=1, we define the prime form 1, as the reduced form
equivalent to (p,b,), where b, =min{be Z,, b* = Amod 4p} 1t follows from a result
n {407 that, if the generalized Riemann hypothesis holds, then there 1s an effectively
computable constant ¢, such that C, 1s generated by the pnme forms I, with
p<c-log{4}))?, where we only consider primes p for which (4)=1 (cf [70, Corollary
6 2]), according to [6] 1t suffices to take c=48

2.18. SMOOTHNESS OF FORMS A form (a, b, ¢) of discnminant 4, with ged(a, A)=1, for
which the prime factonzation of a 1s known, can be factored into prime forms in the
following way If a=1I1,,,,..p** 1s the prime factonzation of g, then (a, b) = I oy 1377,
where s,e {—1, +1} satshes b=s,b, mod 2p, with b, as in (217) Notice that the
prime forms I, are well-defined because the pnmes p divide a, ged(a, 4)=1, and
b*=Amod4a

We say that a form (a, b) 1s y-smooth if a1s y-smooth In[74]1t has been proved that
under the assumption of the GRH, a random reduced form (a, b)e C 415 Ly [f1-smooth
with probability at least L, [— 1/(48)], for any fe R. o Since a<./{4|/3, this s what
can be expected on the basis of Subsection 2 A, the GRH 1s needed to guar.ntce that
there are sufiiciently many primes < Ly, [f] for which “)=1

2D Soluing systems of inear equations

Let 4 be an (n x n)-matnix over a fintte field, for some positive integer n, and let b be an
n-dimensional vector over the same field Suppose we want to solve the system 4x— b
over the field It1s well-known that this can be done by means of Gausstan elimiration
in O(n®) field operations This number of operations can be improved to O(n? *7°) (cf
[23])

A more important improvement can be obtained if the matrix 4 s sparse, 1€, 1f the
number of non-zero entries in 4 1s very small This will be the case in the apphications

684 A K LENSTRA, HW LENSTRA, Jr

befow There are several methods that take advantage of sparscness For two of those
algorithms, we refer to [22, 53] There 1t 15 shown that both the comugate gradient
method and the Lanczos method, methods that are known to be efficient for sparse
systems over the real numbers, can be adapted to fimte fields. These algorithms, which
are due to Coppersmith, Karmarkar, and Odlyzko, achieve, for sparse systems,
essentially the same running time as the method that we are going to present here.

2.19. THE COORDINATE RECURRENCE METHOD. This method 1s due to Wiedemann [82]
Assume that A4 is nonsingular. Let F be the mimmal polynomial of 4 on the vector
space spanned by b, Ab, A%b,.. Because F has degree <n we have

n

Fap=Y fi4'b=0,

i=0

and for any 120,

Z f‘AHlb:O

e=0
Let v, ; be the jth coordmnate of the vector A'b; then

(2‘20) z J/lvl +i.y =0
1=0

forevery t20and I €j<n Fixing j, 1 <7 <n, we see that the sequence (v;;);2 ; satisfies
the hnear recurrence relation (2 20) in the yet unknown coefficients f; of F Suppose we
have computed v, ; for i=0, 1,..., 2n as the jth coordinate of A'6 Given the first 2n + 1
1erms vy ,, Uy ,, V2. Of the sequence sattsfying a recurrence relation hke (2.20), the
mimimal polynomial of the recurrence can be computed i O{n?) field operations by
means of the Berlekamp-Massey algonthm [48]; denote by F, this mimimat
polynomual Clearly F, divides F

If we compute F, for several values of j, 1t 1s not unlikely that £ 1s the least common
multiple of the F,’s We expect that a small number of Fj’s, say 20, suffice for this
purpose (cf [53, 82]) Suppose we have computed F 14 this way. Because of the
nonsingularity of 4 we have f, #0, so that

(2.21) x=—fg} }":f,A‘—‘b
1=1

sausfies Ax=b

To analyze the runming time of this algorithm for a sparse matrix 4, let w(4) denote
the number of field operations needed to mult:ply 4 by a vector, The vectors 4'b for
t=0,1, ,2ncan then be computed in O(nw(A)) field operations The same estimate
holds for the computation of x Because we expect that we need only a few F’s to
compute F, the applications of the Berlekamp-Massey algonthm take O(n?) field
operations The method requires storage for O(n?) field elements At the cost of
recomputing the A6 1n (2 21), this can be improved to O(n)+ w(A) field elements if we
store only those coordinates of the A'b that we need (o compute the £,’s For a nigorous

ALGORITHMS IN NUMBER THEORY 685

proof of these timings and a determumstic version of this probabihstic algorithm we
refer to [82] How the singular case should be handled can be found in [82, 53]

2.22. SOLVING FQUATIONS OVER THE RING Z/mZ In the sequel we often have to solve
a system of linear equations over the ring Z/mZ, where m is not necessarily prime We
bricfly sketch how this can be done using Wiedemann’s coordinate recurrence method
Instead of solving the system over Z/mZ, we solve the system over the fields Z/pZ for
the pnmes pjm, hit the solutions to the rings Z/p*Z for the prime powers p*|m, and
finally combine these solutions to the solution over Z/mZ by means of the Chinese
remainder algorithm In practice we will not try to obtain a complete factorization of m,
but we just start solving the system modulo m, and continue until we try to divide by
a zero divisor, in which case a factor of m s found

Lifting a solution 4 xo=>b modulo p to a solution modulo p* can be done by writing
Axg —~ b= py for some integer vector y, and solving Ax, =y modulo p 1t follows that
Alxo~px,)=b modulo p? This process 1s repeated unti} the solution modulo p* 15
determined We conclude that a system over Z/mZ can be solved by Oflogm)
applications of Algonthm (2 19)

3. Algorithms for finite abelian groups

3 A Introduction

Let G be a finite abehan group whose elements can be represented in such a way that
the group operations can be performed efficiently In the next few sections we are
interested 1 two computational problems concerning G finding the order of G or of
one of its elements, and computing discrete loganithms in G For the latter problem we
will often assume that the order n of G, or a small multiple of n, 15 known

By computing discrete logarithms we mean the following Let H be the subgroup of
G generated by an element he G For an element y of G, the problem of computing the
discrete logarithm log,y of y with respect to h,1s the problem to decide whether ye H,
and if so, to compute an tnteg.r m such that k™ = p, in the latter case we write log, y =m
Evidently, log,y 1s only defined modulo the order of h Because the order of h is an
unknown divisor of n, we will regard log,y as a not necessarily well defined integer
modulo n, and represent 1t by an mteger in {0,1, ,n—1} Although log,y 15 often
referred to as the index of y with respect to h, we will only refer to 1t as the discrete
loganthm, or logarithm, of y

Examples of groups we are interested in are multiplicative groups of fintte fields, sets
of ponts of elliptic curves modulo primes (cf Subsection 2 B), class groups (cf
Subsection 2 C), and multiplicative groups modulo composite integers In the first
example n 1s known, and for the second example two methods to compute n were
mentioned 1n (2 6)

In all examples above, the group elements can be represented i a unque way
Equality of two elements can therefore be tested efliciently, and membership of a sorted
list of cardinality k can be decided 1n logk comparnisons Lxamples where unique

686 A K LeNSTRA, HW LENSTRA, JR

representations do not exist are for instance multiplicative groups modulo an
unspectfied prime divisor of an integer n, or sets of points of an elliptic curve modulo n,
when taken modulo an unspecified prime divisor of n (cf (27)) In these examples
inequality can be tested by means of a gcd-computation If two nomdentically
represented elements are equal, the ged will be a nontrivial divisor of n In Subsection
4 B we will see how this can be exploited

In Subsection 3 B we present some algorithms for both of our problems that can be
apphed to any group G as above By their general nature they are quite slow, the
number of group operations required 1s an exponential function of logn Algonthms
for groups with smooth order are given in Subsection 3 C (cf Subsection 2 Aj For
groups containing many smooth elements, subexponential discrete logarithm algo-
rithms are given 1in Subsection 3 D Almost all of the algorithms in Subsection 3 D are
only applicable to the case where G 1s the multiplicative group of a fintte field, with the
added restriction that h 1s a primitive root of the same field In that case G= H, so that
the decision problem becomes trivial An application of these techniques to class
groups 1s presented in Remark (3 13)

For practical consequences of the algorithms in Subsections 3 B through 3 D we refer
to the oniginal papers and to [53)

3 B Exponenutial algorithms

Let G be a finite abehan group as in Subsection 3 A, let he G be a generator of
asubgroup H of G,and let ye G In this section we discuss three algorithms to compute
logsy The algornithms have 1n common that, with the proper choice for y, they can
easily be adapted to compute the order n, of h, or a small multiple of ny

Of course, log,, y can be computed determimistically tn at most m, multiplications and
comparisons in G, by computing ¥ for:=1,2, until h'=y or k' =1, here | denotes
the unit element in G Then ye H if and only of k' =y for some 1, and f y¢ H the
algorithm terminates after O(n,) operations 1n G, n the latter case (and if y=1), the
order of h has been computed The method requires storage for only a constant number
of group elements

3.1. SHANK S BABY STI P GIANT STEP ALGORITHM (cf [38, Exercise 5 17]) We can improve
on the number of operations of the above algonthm we allow for more storage
betng used, and if a unique representation of the group elements exists, we describe
an algonthm that takes O(ﬁ log n,) multiplications and comparisons tn G, and
that requires storage for O(,/n,) group elements The algonithm 1s based on the
following observation If ye H and log, y <s? for some se Z . o, then there exist integers
rand j with 0<1, y<s such that y=k"*’ In this situation log,y can be computed as
follows First, make a sorted hst of the values b’ for0< jy <smn O(slog s) operations in G
Next, compute yh *for1=0,1, ,s—1untif yh™" equals one of the values in the hst,
this search can be done in O(log s) comparisons per 1 because the hstissorted If yh ™15
found to be equal to i, then log, y=1s+) Otherwise, if yh ~** 1s not found in the hist for
any of the values of 1, then either y¢ H or log, y>s?

This method can be turned into a method that can be guaranteed to use O(/n, x

D Iy S N O S T S R T S Ao

ALGORITHMS IN NUMBER THEORY 687

log n,) operations in G, both to compute discrete logarithms and to compute n,,. For the
latter problem, we put y=1, and apply the above method with s=2*for k=1,2,...in
succession, excluding the case where both i and j are zero. After

flogannl/2
O(S 2%log 2") = O(\/n-,,log ny)

k=1

operations in G, we find i and j such that h** */ = 1, and therefore a small multiple of n,,.
To compute log,y we proceed similarly, but to guarantee a timely termination of the
algorithm in case y¢ H, we look for h™" in the list as well; if some h™* is in the bist,
but none of the yh ~¥is, then y¢ H. We could also first determine n,,, and put s = [\/n:].

We conclude that both the order of h and discrete logarithms with respect to h can
be computed deterministically in nl/2*°") multiplications and comparisons in G,
for n,—oo. The method requires storage for O(\/r;) group elements. In practice
it can be recommended to use hashing (cf. [38, Section 6.4]) instead of sorting.

3.2. MULTIPLE DISCRETE LOGARITHMS TO THE SAME BASIS. If e > 1 discrete logarithms with
respect to the same h of order n,, have to be computed, we can do better than O(eﬁ x
log n,) group operations, if we allow for more than O(,/n,) group elements being
stored. Of course, if e>n,, we simply make a sorted list of b' for i=0,1,...,n,—1,
and look up each element in the list; this takes O(e logn,) group operations and
storage for n, group elements. If e<n,, we put s=[./e"n,], make a sorted list of
k! for 0<j <s, and for each of the e elements y we compute yh~*for i=0,1,..., {n,/s}
unul yh~" equals one of the values in the list. This takes

O /e n; logle-n,))

group operations, and storage for O(,/e*n,) group elements.

3.3. PoLrarp's RHO METHOD (cf. [58]). The following randomized method needs only
a constant amount of storage. It is randomized in the sense that we cannot give
a worst-case upper bound for its running time. We can only say that the expected
number of group operations to be performed is O(ﬁ) to compute discrete loga-
rithms, and O(ﬁ:) to compute the order ny, of k; here n is the order of G. Let us
concentrate on computing discrete logarithms first.

Assume that a number n is known that equals the order of G, or a small multiple
thereof. We randomly partition G into three subsets G,, G,, and G, of approximately
the same size. By an operation in G we mean either a group operation, or a membership
test x €? G;. For y e G we define the sequence y,,y,,y,,...in G by yo =y, and

h')’t—l if J/.~|€Gu
(34) = if y,-€Gy,
Y YVi-1 lf yu-leG:h

for i> 0. If this sequence behaves as a random mapping from G to G, its expected cycle
length is O(\/;) (sece [37, Exercise 4.5.4.4]). Therefore, when comparing y, and y,, for

688 AK LFNSTRA HW LENSTRA, J&

1=1,2, we expect to find y, =y,, fork= 0(\/;) The sequence has been defined 1in
such a way that y, = yy, easily yields y* = h™ for certam e,, my € {0,1, ,n—1} Using
the extended Fuchdean algonthm we compute s and ¢ such that s+e, +1-n=d where
d=gud(e,, n), 1f d=1, which 15 not unlikely to occur, we find log,y=s-m, mod n

If d > | then we do not immediately know the value of log, y, but we can exploit the
fact thdat 3 =h™ as follows We wntroduce a number />0, to be thought of as the
smallest known multiple of n,, Initially we put /=n Every time that [1s changed, we first
check that y' =1(f y' #1 then clearly y ¢ H), and next we compute new s, t, and d with
d=gcd(e,, {)=5"¢, +1+1 Note that k'™ =y'x" =1 so that n,)im,/d 1f d does not
divide m,, then change [to gud(!, Im,/d) Ultimately, d divides m, We have that
y? =k, so we may stop if d =1 Otherwise, we determine the order d of ¥ by means
of any of the methods described 1n Subsections 3 B and 3 C If this 1s difficult to do then
d 15 large (which is unlikely), and 1t 1s probably best to generate another relation of the
sote y*=h™ If d <d then change ! to Id /d Fally, suppose that d =d Let
y =yh™s™M then ye H if and oniy if y’ € H, and since ()" =1, this 1s the case if and
only if y belongs to the subgroup generated by i’ =h"¢ The problem with y and h1s
now reduced to the same problem with y” and #', with the added knowledge that the
order of h equals d The new problem can be solved by means of any of the methods
described 1n Subsections 3B and 3C

Of course, we could define the recurrence relation (3 4) 1n various other ways, as long
as the resulting sequence satishes our requirements

Notice that, if y € H, the recurrence relation (3 4) 1s detined over H If also the G;nH
are such chat the sequence behaves as a random mapping from H to H, then we expect
the discrete loganthm algorithm to runin O(\/n—,,) operations in G In the case that nor
some multiple of n, 1s not known, a multiple of n, can be computed in a similar way
1n about O(\/r‘x;) operauons in G To do this, one partitions G into a somewhat larger
number of subsets G, say 20, and one defines yo = l,and y, =h"y,_yf y,., € G, here
the numbers ¢; are randomly chosen from {2,3, , B—1}, where B1s an estimate for
n, (1 [68])

We conclude this secthon by mentioming another randomized algonithm for
computing discrete logarithms, the so-called Lambda method for catching kangaroos,
also duc to Pollard [58] [t can only be used when log, y 1s known o exist, and hes 1n
a specified interval of width w, 1t 15 not necessary that the order of G, or a small multiple
thercof, 1s known The method requires O(\/w) operatioas m G, and a small amount of
storage (depending on the implementation), but cannot be guaranteed to have success,
the faillure probability & however, can be made srbitrarily small, at the cost of
mcreasing the running time which depends linearly on | /log(l/e) We will not pursue
this approach further, but refer the interested resder to [58] Notice that, with w=n,
thus method can be used 1nstead of the rho method described above, if at least ye H

3 C Groups with smooth order

Lt some cases one might suspect that the order of G, or of h, has only small prime
tactors 1¢,1s s smooth for some small s € Z 5 5 (f Subsection 2 A) If one also knows an
upper bound B on the order, this smoothness can easily be tested Namely, in these

ALGORITHMS IN NUMBER THEORY 689

circumstances the order should divide

(3.5) k=»kis, B)= [] p",
pss
pprime
where t, € Z, 5 1s maximal such that p'» < B Raising h to the kth power should yield the

unit element 1n G, this takes O(s log, B) multiphications in G to verify If i* indeed equals
the unit element, the order of h can be deduced after some additional computations

3.6. Tae CHINESE REMAINDER THEOREM METHOD (¢f [56]) Also for the discrete loganthm
problem a smooth order 1s helpful, as was first noticed by Silver, and later by Pohlig and
Hellman[56] Letn, =11, p®* be the prime factonzation of n, I y e H, then it suffices
to determine log, y=m modulo each of the p*r, followed by an apphcation of the
Chinese remainder algortthm This observation leads to an algonthm that takes

Y. O(/e, max(e,, p)log(p- min(e,, p)))

plng
p prime

group operations, and that needs storage for

O(max (s /p'mm(ep.l?)))
Pty

p prime

group clements
To compute m modulo p®, where p 1s one of the primes dividing n, and e=e,, we
proceed as follows Write m=Y{-3m;p' modulo p*, with m;e {0,1, .,p—1}, and
noticc that
(m~(mmod p'Yn,/p'* ! =(ny/pIm, mod n,
for1=0,1, , e—~1 This imphes that, if ye H, then

(y h™ (m mod p'})m./p‘ (L (hm./p)'m

Because h=h"/" generates a cyclic subgroup H of G of order p, we can compute
mg,my, ,m..; in succession by computing the discrete logarithms of y, =
(y-h™(mmod 2 ymie' *t ywith respect to b, for 1=0,1, ,e—1 This can be done by means
of any of the methods mentioned in Subsection 3 B If §, ¢ fl for some 1, then y ¢ H, and
the algorithm terminates Wath (3 2) we now arrive at the estimates mentioned above

3D Subexponential algorithms

In this subsection we will concentrate on algorthms to compute discrete logarithms
with respect to a primitive root g of the multiplicative group G of a fimte fiecld In this
case the order of G is known In principle the methods to be presented here can be
applied to any group for which the concept of smoothness makes sense, and that
contams sufficiently many smooth elements This 1s the case for instance for class
groups, as 1s shown i Remark (3 13)

690 A K LENSTRA, HW LENSTRA, J&

We do not address the problem of finding a primitive root of G, or deciding whether
a given element 1s a primitive root Notice however that the latter can easily be
accomphlished 1If the factonization of the order of G 1s known It would be mteresting to
analyze how the algonithms in this subsection behave 1n the case where 1t not known
whether ¢ 1s a primitive root or not

A nigorous analysis of the expected running time has only been given for a shightly
different version of the first algorithm below [61] The timings of the other algorithms
in this section are heuristic estimates

3.7. RrmaRk Any algorithm that computes discrete loganthms with respect to
a primitive root of a finite field can be used to compute logarithms with respect to any
non-zero element of the field Let g be a primitive root of a fimte field, G the
multiplicative group of order n of the field, and hand y any two elements of G Todecide
whether ye (h)=H and, if so, to compute log, y, we proceed as follows Compute
log, h=m,, log, y =m,, and ind(h)=gcd(n, m,) Then ye H if and only if ind(h) divides
m,, and if ye H then

log, y ={m, /ind(h))(m,/ind(h))~ * mod ny,

where n, =n/ind(h) 1s the order of h

3.8. SMOOTHNESSIN(Z/p ZY* I G =(Z/p Z)* for some prime p, we dentify G with the set
{1,2, ,p—1} of least positive residues modulo p, the order n of G equals p—1 It
follows from Subsection 2 A that a randomly selected element of G that 1s <n” 1s
L,[f]}-smooth with probability L,[—«/(28)], for o, fe R, o fixed witha < 1,and n— o0

The number of primes < L,[f#]1s n(L,[f])=L,[#] In Subsection 4 B we will see that
an clement of G can be tested for L,[8]-smoothness in expected time L,[0], 1n case of
smoothness, the complete factorization 1s computed at the same time (cf (4 3))

3.9. SmooruNrssINFY.. If G =F1%.., for some positive integer m, we select an irreducible
polynomual f€ F,[X7 of degree m, so that Fy.=(F,{ X])/(f) The elements of G are
then identified with non-zero polynomials in F,[X of degree <m We define the norm
N(h) of an element he G as N(h)=2%%® Remark that N(f)= # F;n, and that the
order n of G equals 2™ —

A polynomial in F,[X7] 15 smooth with respect to x for some xe R, ,, if it factors as
a product of irreducible polynomials of norm <x It follows from a theorem of
Odlhyzko [53] that a random element of G of norm <n® 1s L,[#]-smooth with
probability L,[—a/(2f)], for a, fe R, fixed wich a< 1, and n—+oc0 Furthermore, an
element of G of degree k can be factored 1n time polynomual in k (cf [37]) The number
of wrreducible polynomials of norm <L,[f] 1s about

L,[p1NNog (L,[B])=L.[B]

These results can all easily be generahzed to fimite ficlds of arbitrary, but fixed,
charactenistic

3.10 THEINDEX CALCULUSALGORITHM Let g be a generator of a group G of ordernasn

ALGORITHMS IN NUMBER THEORY 691

(3.8) or (3.9); “prime element” will mean “prime number” (3.8) or “irreducible
polynomial” (3.9), and for G=(Z/p Z)* the “norm” of x € G will be x itself. Let ye G,
and let S be the set of prime elements of norm < L,[f] forsome f e R, . We abbreviate
L,[f] to L{f]. The algorithms to compute log, y that we present in this subsection
consist of two stages (cf. [81]):

(1) precomputation: compute log, s for all s€ S;

(2) computation of log, y: find a multiplicative relation between y and the elements of

S, and derive log, y using the result from the precomputation stage.

This gives rise to an algorithm whose expected running time is bounded by
a polynomial function of L(n); notice that this is better than O(n®) for every £ > 0(cl. [1]).

First, we will describe the second stage in more detail, and analyze its expected
running time. Suppose that the discrete logarithms of the prime elements of norm
< L] all have been computed in the first stage. We determine an integer e such that
y-g* factors as a product of elements of S, by randomly selecting integersee {0, 1,...,n— 1}
until y-g° e G is smooth with respect to L{f]. For the resulting e we have

yeg©=[]s",

s€eS

so that

log,y= ((Y e, log, s)-e)mod n,
s€S

where the log, s are known from the precomputation stage. By the results cited in (3.8)
and (3.9) we expect that L{[1/(2p)] trials suffice to find e. Because the time per trial is
bounded by L{0] for both types of groups, we expect to spend time L{1/2f)] for each
discrete logarithm.

Now consider the precomputation stage, the computation of log, s for all se S. We
collect multiplicative relations between the elements of S, i.e., linear equations in the
log, s. Once we have sufficiently many relations, we can compute the log, s by solving
a system of linear equations.

Collecting muitiplicative relations can be done by randomly selecting integers
ee{0,1,...,n—1} uniil g° € G is smooth with respect to L{#]. For a successful e we
have

ge = n se,

seS

which yields the linear equation

(3.1 e =(Y e, log, s>mod n
s€S
We need about |S}~ L[] equations of the form (3.11) to be able to solve the resulting
system of linear equations, so we repeat this step about L[] times.
It follows from the analysis of the second stage that collecting equations can be done
in expected time L{fi+1/(28)]. Because the system can be solved in time L[3f] by

ALGORITHMS IN NUMBER THEORY 691

(3.8) or (3.9), “prime element” will mean “pnime number” (3.8) or “irreducible
polynomal” (39), and for G=(Z/p Z)* the “norm” of x e G will be x itself Let yeG,
and Jet S be the set of prime elements of norm < L,[f] for some fe R, . We abbreviate
L,[5] to L[f]. The algonthms to compute log, y that we present in this subsection
consist of two stages (cf [81])

(1) precomputation compute log, s for all se S,

(2) computation of log, y: find a muitiplicative relation between y and the elements of

S, and denive log, y using the result from the precomputation stage.

This gives nise to an algorithm whose expected runmng thime 15 bounded by
a polynomial function of L(n), notice that this is better than O(n*) forevery e >0(cf [1])

First, we will describe the second stage m more detail, and analyze its expected
runmng time Suppose that the discrete logarithms of the prime elements of norm
< L{f3] all have been computed in the first stage We determine an integer ¢ such that
y+g* factors as a product of elements of S, by randomly selecting integerse€ {0, 1, ..,n—1}
untl y-g°€ G 1s smooth with respect to L[f]. For the resulting e we have

y-g*=[]s"
se§

log,y= ((> e log, s)—e)mod n,
S€S

where the log, s are known from the precomputation stage By the results cited in (3 8)
and (3 9) we expect that L{1/(2p)} trials suffice to find e Because the ime per trial 1s
bounded by L{0] for both types of groups, we expect to spend ume L[1/(2f)] for each
discrete loganthm

Now consider the precomputation stage, the computation of log, s for all se § We
collect multiplicative relations between the elements of S, 1e., hnear equations in the
log,s Once we have sufhciently many relations, we can compute the log, s by solving
a system of linear equations.

Collecting multuphcative relations can be done by randomly selecting ntegers
ee{0,1,. .,n~—1} unul g°e G 1s smooth with respect to L[#]. For a successful ¢ we
have

so that

ge — [_[5o

18

which yields the linear equation

(3.11) e= (2 e log, s>mod n.

568
We need about |S|~ L[] equations of the form (3 11) to be able to solve the resulting
system of hinear equations, so we repeat this step about L[] times

it follows from the analysis of the second stage that collecting equations can be done
n expecied tume L{fi+ 1/(2p)]. Because the system can be solved in ume L[3f] by

692 A K LENSTRA HW LENSTRA, Jr

ordinary Gaussian ehmination (cf Subsection 2D and (2 22)), the precomputation
stage takes expected tume L{max(fi+ 1/(28), 3p)), which s L%} for the optima) choice
p=}% This dominates the cost of the second stage which takes, for =14, time L[1] per
logarithm The storage requirements are L{ 1] for the precomputation (to store the
system of equations), and L[}] for the second stage (to store the log,s lor s€)

An important improvement can be obtained by noticing that in the equations of the
form (3 11) at most log, n of the |S] = L[#] coefficients e, can be non-zero This implies
that we can use the coordinate recurrence method described in (2 19), which has,
combined with (2 22), the following consequence Multiplying the matnx defimng the
system by a vector can be done 1n time (log, n)L[f], which is L[f] The system can
therefore be solved 1n ume L[2f], so that the expected tme for the precompu-
tation stage becomes L{max{8+ 1/(2f8),2p)] For =\/§, we_get L[ﬁ] anthmetic
operations m G or Z/nZ for the precomputation, and L[,/4] operations per loga-
rithm The method requires storage for L[ﬂ] group elements both n the precomputa-
tion and mn the second stage We refer to [61] for a rigorous proof that a shghtly
modified version of the index-calculus algorithm runs in time L[\[Z], for both of our
chosces of G

3.12. Remark As suggested at the end of (39), the algorithm i (3 10), and the
modifications presented below, can be adapted to fimte ficlds of arbitrary, but fixed,
charactenstic For F,: a modified version of the index-calcuius aigorithm s presented
in [29], according to Odlyzko [53] this method applies to F,m, for fixed m, as well Itis
an as yet unanswered question how to compute discrete logarithms when both p and
m tend to infinity

3.13. Remarx The wdeas from the index-calculus algonthm can be applied to other
groups as well Consider for instance the case that G 1s a class group as n Subsection
2 C, of unknown order n Suppose we want to compute the discrete logarithm of y with
respect to h, for h, ye G Let S be a set of prime forms that generates G (cf (217)) The
mapping ¢ from Z° to G that maps (e,),c s € Z5 1o I, . 55 € G1s a surjection The kernel
of ¢ 15 a sublattice of the lattice Z°, and Z5/ker(¢)= G In particular the determinant of
ker(p) equals n

To calculate ker(p), we introduce a subgroup A of Z5 to be thought of as the largest
subgroup of ker(p) that1s known Instially one puts A = {0} To enlarge A, one looks for
relations between the eiements of S Such relations car be found 1n a way similar to the
precomputation stage of (3 10}), as described 1n (4 12), the primitive root g 1s replaced by
a product of random powers of elements of S, thus producing a random group element
Every relation gives rise to an element r € ker(g) One tests whether r € A, and if not one
replaces 4 by A+ Zr,if A1s given by a basis in Hermute form, this can be done by means
of the algonthm of [36] Repeating this a number of times, one may expect to find
a lattice 4 contaiming |S] independent vectors The determinant of A 1s then a non-zero
multuiple of n After some additional steps it will happen that A does not change any
more, 50 that one may hope that A=ker(p) In that case, det{A)=n, and Z5/41=G

Supposing that A =ker(p), we can write G as a direct sum of cychic groups by
bringing the matrix debmng A to diagonal form [36] This may change the set of

generators of G To solve the discrete logarithm problem one expresses both hand y as
products of powers of the new generators, and apphes (3 7) repeatedly Notice thatif the
assumption A4 =ker(p) 1s wrong (1e, we did not find sufficiently many relations), we
may incorrectly decide that y ¢ ¢h)

3.14. A METHOD BASED ON THE RESIDUE LISTSIEVE FROM [22] We now discuss a vanant of
the index-calculus algonithm that yields a better heuristic running time, namely L[1]
for the precomputation and L[1] per individual logarithm Instead of looking for
random smooth group elements that yield equations hke (3 11), we look for smooth
clements of much smaller norm that stll produce the necessary equations Because
elements of smaller norm have a hagher probability of being smooth, we expect that this
will give a faster algorithm

For ease of exposition we take G=(Z/p Z)*, as in (3 8), so that n=p—1 Let the
notation be as1n (3 10) Linear equations n the log, s for s € § are collected as follows
Let ae R, and let u and v be two mtegers in {[\/;]+ 1, , [\/;J—FL[(I]]}, both
smooth with respect to L[] If uv— p s also smooth with respect to L{], then we have
found an equation of the type we were looking for, because log, u +log, v=log,{(uv—p)

We analyze how much time it takes to collect L{#] equations in this way The
probabibty of up—p = O(L[a]\ﬂ)) being smooth with respect to L[] 1s L[- 1/(4f)], so
we have to consider L[8+ 1/(45)] smooth pairs (u, v), and test the corresponding uv — p
for smoothness This takes tume L[S+ 1/(4f)] It follows that we need L{$/2 + 1/(8})]
mtegers u e {[ﬁ]+) [\/;) + L[«]]} that are smooth with respect to L[S} For
that purpose we take L[/2 + 1/488)+ 1/(45)] integers 1n {[\/;] +1, [\/p—) +L{a]]}
and test them for smoothness, because the probability of smoothness 1s L[— 1/(45)]
Generating the w’s therefore takes time L[f/2+3/(88)] Notice that we can take
o=PF/2+3/(88) Notice also that u,v, and uv—p are not generated randomly, but
instead are selected 1n a determimistic way Although we cannot justify 1t theoretically,
we assume that these numbers have the same probability of smoothness as random
numbers of about the same size The runming times we get are therefore only heuristic
estimates

Combined with the coordinate recurrence method (cf (2 19), (2 22)), we find that the
precomputation takes time L[max(f+ 1/(4f), /2+ 3/(88), 2] This 1s mnimized for
fi=14, so that the precomputation can be done in expected time L[1] and storage L[4]
Notice that for f=1} we have a=1

The second stage as described n (3 10) also takes ume L[1] If we keep the L[1]
smooth «’s from the precomputation stage, then the second stage can be modified as
follows We find e such that y-g°mod p 1s smooth with respect to L[2] in tme L{4]
To calculate log,y, it suffices to calculate log,x for each prime factor x<L[2]
of y-g*mod p For fixed x this 1s done as follows Find v in an interval of size L[}]
around \/;;/x that 1s smooth with respect to L[4] in ume L[4] Finally, find one of the
L{4] smooth u's such that uvx —p=0O(L[3]/p) 15 smooth with respect to L{1] in
ume L[}] The value of log, x now follows Individual logarithms can therefore be
computed tn expected time and storage L{}]

Generahzation of this idea to G=F3%., as i1 (3 9), follows immediately if we select
some polynomial g € F,[X] of norm about 2™ (for instance g = X'™?1), and compute

Aadid

q,re F2[X]such that f=qg+r(cf (39)) with degree(r} <degree(g) In the precomput-
ation we consider u=g-u, v=q+ i for polynomials &, i€ F,{ X] of norm <L[«]}, so
that N(uv— f) 1s close to L{a}2™?; here L{a]=Lym-,[o] In the second stage we wnite
g=hx+x for h, ce F,{ X] with degree(x)<degree(x), where x 1s as above, choose
v=h+0 with N(v}< L[}], and consider uvx— f The running time analysis remains
unchanged Instead of finding g, g, r as above, we could also choose f in (3 9) such that
S=X"+f, with degree(f,)<m/2, so that we can take g=qg= X!+ 12

3.15. A METHOD BASED ON THE LINEAR SIEVE ALGORITHM FROM [22] Again we constder
G=(Z/pZ)* Anmprovement of (3 14) that s of practical importance, although it does
not affect the timings when expressed 1n L(n), can be obtained by including the numbers
ue {[\/;3]+ L, [\/E+L[a]]} n the set S as well For such u and v we again have
uv-—p:O(L[a]\/p), but now we only require that uv—p is smooth with respect to
L[f], without requiring smoothness for u or v It follows in a similar way as above that
the L{#]+ L[] equattons can be collected in time L[1] and storage L[$] for =1 and
a=f/2+ 1/(88)=4 The reason that this version will run faster than the algonthm from
(3 14) 1s that uv—p 1s now only O(L[ﬂ\/ﬁ), whereas 1t 1s O(L[l]\/ﬁ) i (314) In
practice this will make a considerable difference 1n the probability of smoothness The
second stage can be adapted in a straightforward way The running times we get are
again only heunstic estimates

In the methods for G=(Z/pZ)* described 1n (3 14) and (3 15), the use of the
smoothness test referred to in (3 8) can be replaced by sieving techniques This does not
change the asymptotic runming times, but the resulting algorithms will probably be
faster i practice [22]

3.16. A MORE GENERAL L FUNCTION For the description of the last algorthm n this
subsection, the bimodal polynomials method, 1t will be convenient to extend the
definition of the function L from Subsection 2 A shghtly Foroa,re R with0<r<1, we
denote by L,[r,a] any function of x that equals

i 1-r
e(a+o(n)(log x¥(log tog x} , fOl' X —b 00

Notice that this 1s (log x)* for r=0, and x*for r=1, up to the o(1) 1 the exponent For
r=3% we get the L from Subsection 2 A

The smoothness probabilities from Subsection 2 A and (3 9) can now be formulated
as follows Let o, fB,r,seR be fixed with o, >0, 0<r<1, and O0<s<r From
Subsection 2 A we find that a random positive integer <L, [ra]is L. [s,8]-smooth with
probability L, [r—s, —a(r —s)/f], for x—+00 From the same theorem of Odlyzko re-
ferred ton (3 9) we have that, for r/100 < s < 99r/100, a random polynomial in F,[X] of
norm <L,[rax] 1s smooth with respect to L,[s5B8] with probability L,[r-—s,
—ulr—s)/f1], for x—o0

3.17. CoPPFRSMITHS BIMODAL POLYNOMIALS METHOD (¢f [21]) We conclude this
subsection with an algorithm that was especially designed for G =F%.., as m (39) This

ALGORITHMS SN NUMBER THEORY 695

algonithm does not apply to fields with a large charactenistic [tis agan a variant of the
mdex-calculus algorithm (3 10) Let f be a monic polynomial in F,[X] of degree m as
in (39), so that Fo.. =(F,[X]/(f). We assume that f can be written as X™ + f, for
SreF{X] of degree <m?3. Because about one out of every m polynomuals in F,[X |
of degree m 1s wrreducible, we expect that such an f can be found

We use the function L from (3.16), and we abbreviate Lym_ , [r;0] to L{r,a] Notice
that with this notation

L{ra] =22 Yotimlogamt = g5 o >0, and m— co.

We will see that the precomputation stage can be carried out in expected time L[4;2%*]
and that individual fogarithms can be computed 1n expected time L[&;ﬂ}. Notice that
this 1s substanually faster than any of the other algorithms 1n this section.

Let S be the set of irreducible polynomials in F,[(X] of norm < L{4;#], for some
B #0. Furthermore, let k be a power of 2 such that N(X1™*1) is as close as possible to
N(v*), for a polynomial v € F, [X] of norm L{},], this 1s achieved for a power of 2 close
to 7 2m'3(log,m)~'*. We find that

t=K/(B~ 1 m> ogym)™ 1)

satisfies \/§<zs\/5 and that N(X"""“)SLB,\/B/:] and N(v"){L[i,tﬂ]. For
polynomials v,,v,€ F;[X] of norm <L[}.8], we take u, =X™**1y 4y, and
u; =umod f. Remark that the polynomial u, can be considered as a string of bits with
two peaks; this explans the name of the method. Since

log, u, =(k*logyu,)mod(2™ — 1),

we find a hnear equation in the log, s for s € S, if both u,’s are smooth with respect to
L{3,8] Because the equations generated in this way are homogeneous, we assume that
g 1s smooth with respect to L{4;/8] as well. To analyze the probability that both u,’s are
smooth, we compute their norms. By the choice of k& we have that N{u,)< L[%,\/ B/,
Because & 15 a power of 2, we have
uy = (XU D5t 4 v)mod f
=)(([m/k]+ l)k—mfl v‘l‘ + U;,

so that N(u,)< L(%,t\/ﬁ]. The probabihity that both are smooth with respect to L[3,/]
therefore 15 assumed to be

L%~ 1/3t/ B LI% — /3Bl = LB, — (e + ¢ W3 /B

The L[3,6]? pairs (v, v;) must suffice to generate the ~ L{4,8] equations that we need
(where we only consider polynomuals v,, v, that are relatively prime because the pairs
(v,,v2) and (wp;, wevy) yield the same equation). It follows that B must satisfy

L2 > LIEB+0+17Y3/B].
The optimal choice for f 1s (¢ +¢7*)/3)*3, and the value for t then follows by taking

696 A K LENsTRA, HW LENSTRA, JR

¢ with \/;<l<\/§ such that
e+t 1Y) VPt P (logymy M}

s a power of 2 In the worst case t=\/§ we find B=(})"*=0794, so that the
precomputation can be done in time 21! 388 ¥etim!logam (of (3 19) (2 22)) If we are so
lucky that ¢ can be chosen as 1, we find #=(§)"/*~0.764, which makes the
precomputation shightly faster.

To compute log, y for y € F%.. we proceed as follows. We find e such that y-g“mod f of
norm < L{1,1] 1s smooth with respect to L[%1] i time L[},}] Let y be one of the
irreducible factors of y -g®mod f with N(7)< L[%,1]. Let k be a power of 2 such that
N(X!™*) = N(v*) for a polynomial v € F,[X] of norm L[%;1], 1n the worst case we get
N(X"'"“‘):L[é,\/i] and N(v*)=L[2,./2]. Find polynomials v,,v, € F,[X] of norm
<L{3}1] such that j divides u, =X"**!p 4u, and such that both u,/y and
u, =uf mod f are smooth with respect to L[}; 1]. It follows from the choice for &
that u, /y and u; have norms bounded by L[3;, /3] and L[é;\/i], respectively, so that the
probability that both are smooth with respect to L[4,1] is assumed to be

L{%—/2/6)- L% — /23] = Li& — V/11.

Because L[4,13%/L[%;1] of the pairs (v,, v,) satisfy the condition that y divides u,, we
must have that

L3z Lik/A).

This condition 1s satisfied, and we find that the computation of the u,’s can be done 1n
time

LH’\/;] = 2172 +o(1)m logam)¥/

Because log, u, = (h+(log,(u, /y) +log, y))mod(2™ — 1), we Lave reduced the problem
of computing the discrete fogarithm of a polynomual of norm L{#%;1] (the factor j of
y+g“mod/) to the problem of computing the discrete loganthms of polynomials of
norm < L[4,1] (the irreducible factors of u,; /y and u;). To express log, y in terms of
log, s for s € S, we apply the above method recursively to each of the irreducible lactors
of u;/y and u,, thus creaung a sequence of norms

LA+ L8], LO+41D,. .

that converges to L{{;1] The recursion 1s always applied to <m polynomials per
recursion step, and at recursion depth O(log mj all factors have norm < L[},1], so that
the total ume to express log, y in terms of Jog, s for se § 1s bounded by

mO(loum)L[g’\/;] = 2“«’!‘/3+o(l))m‘“(lng;m)m.

We refer to [217] for some useful remarks concerning the implementation of this
algonthm,

ALGORITHMS IN NUMBER THEORY 697

4. Factoring integers

4 A Introduction

Fimte abehan groups play an important role in several factoring algorthms To
lustrate this, we consider Pollard’s p— | method, which attempts to factor a composite
number n using the foliowing observation For a prime p and any multiple k of the order
p—1 of (Z/p Z)*, we have a* =1 mod p, for any nteger a that 1s not divisible by p
Therefore, if p divides n, then p divides gcd(a* —1, n), and 1t 1s not unlikely that
a nontrivial divisor of n 1s found by computing this gcd This imphes that prime factors
p of n for which p— 1 15 s-smooth (cf Subsection 2 A), for some s€ Z.,, can often be
detected in O(s log, n) operations in Z/n Z, if we take k =k(s, n)as in (3 5) Notice that, n
this method, we constder a multiplicative group modulo an unspecified prime divisor of
n, and that we hope that the order of this group 1s smooth (cf Subsections 3 A and 3 C)

Unfortunately, this method 1s only useful for composite numbers that have prime
factors p for which p— 1 1s s-smooth for some small s Among the generalizations of this
method {7, 57, 84], one method, the elliptic curve method [45), stands out nstead of
relymg on fixed properties of a factor p, it depends on properties that can be
randomized, independently of p To be more precise, the multiphcative group (Z/p Z)*
of fixed order p— 1 1s replaced by the set of points of an elhptic curve modulo p(cf (2 2))
This set of points 1s a group whose order 1s close to p, varying the curve will vary the
order of the group and trymng sufficiently many curves will almost certainly produce
a group with a smooth order

Another way of randomizing the group is by using class groups (cf Subsection 2 C)
For a small positive integer ¢t with t = —nmod 4, we have that 4= —tn satisfies A= 1
mod 41fnisodd According to(2 14)and (2 16)a factonzation of 4 can be obtained if we
are able to compute an odd multiple of the largest odd divisor of the class number i, If
h4 15 s-smooth, such a multiple 1s given by the odd part of k(s, B) as in (3 5), where
B=14]V2*M (cf (215)) By varying t, we expect to find 4 smooth class number after
a while with s=L,[4], we expect L,[}] trials (cf Subsection 2 A, (2 15)), so that, with
Subsection 3 C and (2 16), it takes expected tme L,[1] to factor n For details of this
method, the class group method, we refer to [68]

In the next few subsections we will discuss the elliptic curve method (Subsection 4 B),
its consequences for other methods (Subsection 4 C), and a very practical factoring
algorithm that does not depend on the use of elliptic curves, the multiple polynomial
vanation of the quadratic sieve algonthm (Subsection 4 D) In Subsection 4 E we
mention an open problem whose solution would lead to a substantialiy faster factoring
algonithm

Other methods and extensions of the ideas presented here can be found in
[37,47,66] The running times we derive are only informal upper bounds For rigorous
proofs of some of the results below, and for fower bounds, we refer to [59, 61]

4 B Factoring integers with elliptic curves

Let n be a composite integer that we wish to factor In this subsection we present an
algorithm to factor n that 1s based on the theory of elliptic curves (cf Subsection 2 B)

698 AK. LENSTRA, H W. LENSTRA, J1

The running time analysis of this factoring algorithm depends upon an as yet unproved
hypothesis, for which we refer to Remark (4.4).

4.1. THE ELLIPTIC CURVE METHOD (cf. [45]). We assume that n> 1, that gcd(n, 6)=1, and
that n is not a power with exponent > 1; these conditions can easily be checked. To
factor n we proceed as follows:

Randomly draw a,x,ye Z/nZ, put P=(x:y:1) e V, (cf. (2.8)), and select an integer
k=k(s, B) as in (3.5) (with s and B to be specified below). Atiempt to compute k- P by
means of the algorithm described in (2.10). If the attempt fails, a divisor d of n with
1 <d <n is found, and we are done; otherwise, if we have computed k- P, we start all
over again,

This finishes the description of the algorithm.

4.2, EXPLANATION OF THE ELLIPTIC CURVE METHOD. We expect this algorithm to work, for
a suitable choice of k, for the following reason. Let p and g be primes dividing n with
p<g. In most iterations of the algorithm it will be the case that the pair a, y* —x* —ax
when taken modulo p (modulo ¢) defines an elliptic curve over F, (over F,;). Now
suppose that k is a multiple of the order of P; the value for k will be chosen such that
a certain amount of luck is needed for this to happen. Ifit happens, it is unlikely that we
are 5o lucky for q as well, so that k is not a multiple of the order of P,. Then k- P cannot
have been computed successfully (see (2.10)), and therefore a factorization of n has been
found instead.

4.3. RUNNING TIME ANALYSIS. Let p be the smallest prime divisor of n, and let feR .
We assume that the probability that the order of P, is smooth with respect to L[] is
approximately L,[—1/2/] (cf. Subsection 2.A and (2.4), and see Remark (4.4)).
Therefore, if we take k=k(L,[f], p+ 2ﬁ + 1)asin (3.5)(cl. (2.4)), then about one out of
every L,[1/(2f)] iterations will be successful in factoring n. According to Subsection
3.C and (2.10) each iteration takes O(L,[f1-log p) additions in ¥,, which amounts to

O(L,[S1(log p)(log n)*)

bit operations. The total expected running time therefore is
O((log p)(log n)* L,[B+ 1/2H)])

which becomes O({log n)? L,[ﬁ]) for the optimal choice ﬁ=\/£.

Of course the above choice for k depends on the divisor p of n that we do not know
yet. This can be remedied by replacing p by a teatative upper bound v in the above
analysis. If one starts with a small v that is suitably increased in the course of the
algorithm, one finds that a nontrivial factor of n can be found in expected time
O((log n)? L,,[\/i]) under the assumption made in (4.4). In the worst case v= ﬂ this
becomes L,[1]. The storage required is O{logn).

Another consequence is that for any fixed a € R, ¢, an integer n can be tested for
smoothness with respect to v=L,[«] in time L,[0]; in case of smoothness the complete
factorization of n can be computed in time L,[0] as well.

ALGORITHMS IN NUMBER THEORY 699

For useful remarks concerning the implementation of the elliptic curve method we
refer to [13, 50,44]

44. Remarx A pomnt that needs some further explanation 1s our assumption in (4 3)
that the order of P, 1s L,{ #]-smooth with probability approximately L,{ —1/(2f)] Let
E,5(F,) be the group under consideration Regarding a and b as random integers
modulo p, Proposition (2 5) asserts that the probability that # E, 5(F,) 1s smooth with
respect to L,[f] and contained in the interval (p—-\/ﬁ+ L p+ /p+1)1s essentially
the same as the probability that a random integer in (p—-\/ﬁ-% Lp +\/E+ s L[S}
smooth

From Subsection 2 A we know that a random nteger <p s L,[f]-smooth with
probabitity L[~ 1/(2f5)], and we assume here that the same holds for random ntegers
n (p—\/ﬁ+ L,p+ /p+1) Because this has not been proved yet, the runming times
1n (4 3) are conjectural

Of course, if #E, 5(F,) 15 L,[f]-smooth, then the order of P, 1s L,[f#]-smooth as
well

4.5, A RIGOROUS SMOOTHNESS TEST As explaned in (4 4), the running times 1n (4 3) are
conjectural The result concermng the elliptic curve smoothness test can, however, be
ngorously proved, in a shghtly weaker and average sense Briefly, the following has
been shown 1 [61]

4.6. ProposiTION There 1s a variant of the elliptic curve method for which the following
statement is true For each positive real number o there exists a function 8 with 0(x)=o0(1)
Jor x—00, such that the number (x, y) of y-smooth integers k < x that with probabiluy at
least 1 —(log k)/k are factored completely by the method in time at most L. [0(x}] satishes

¥'(x, Ly[a])=y(x, Li[a])(1 + O((log log x)* **(log x) " '/?)),
with the O-constant depending on o

In other words, apart from a small proportion, all smooth numbers behave as one
would expect based on Subsection 2 A The “vanant” mentioned 1n Proposition (4 6) 1
very sumple first remove prime factors <e®*%8 18 %1 by ria] division, and aext apply
the elliptic curve method to the remaining quotient, if it 1s not already equal to 1

4 C Methods depending on smoothness tests

The factoring algonithms presented so far are successful as soon as we find a cercam
abelian group with smooth order In Subsections 4 C through E we will see a different
apphcation of smoothness Instead of waiting for the occurrence of one lucky group
with smooth order, the algorithms in this subsection combine many lucky instances of
smooth group elements For the algorithms in the present subsection the elliptic curve
smoothness test that we have seen at the end of (4 3) will be very useful to recognize
those smooth group clements The algonthms in Subsections 4 D and 4 E do not need

700 AK. LENSTRA, H W. LENSTRA, JR

smoothness tests, but instead rely on sieving techniques. We abbreviate L,[#] to L[]
(cf. Subsection 2.B).

4.7. DIXON'S RANDOM SQUARES ALGORITHM (¢f. [28, 59]). Let n be a composite integer
that we wish to factor, and let $e R, ;. In this algorithm one attempts to find integers
x and y such that x* = y*modn in the following way:

(1) Randomly select integers m until sufficiently many are found for which the least
positive residue r(m) of m*mod n is L{f}-smooth. '

(2) Find a subset of the m’s such that the product of the corresponding r(m)’s is
a square, say x>.

(3) Put y equal to the product of the m's in this subset; then x? = y*mod n.

Dixon has shown that, if n is composite, not a pnme power, and free of factors
< L[], then with probability at least 4, a factor of n will be found by computing
ged(x + y,n), for x and y as above (cf. [28]). Therefore, we expect to factor n if we repeat
the second and third step a small number of times. We will see that this leads to an
algorithm that takes expected time L[\/i], and storage L[\/g].

Before analyzing the running time of this algorithm, let us briefly explain how the
second step can be done. First notice that n(L[#])=L[f] (cf. Subsection 2.A).
Therefore, each r{m) can be represented by an L[#]-dimensional integer vector whose
ith coordinate is the number of times the ith prime occurs in r(m). A linear dependency
modulo 2 among those vectors then yields a product of (m)’s where all primes occur an
even number of times, and therefore the desired x2. This idea was first described in [52].

To analyze the running time of the random squares algorithm, notice that we need
about L[] smooth m’s in the first step to be able to find a linear dependency in the
second step. According to Subsection 2.A a random integer <n is L[f]-smooth with
probability L{ —1/(2$)], and according to (4.3) such an integer can be tested for
smoothness with respect to L[#] in time L[0]. One L[f]-smooth r(m) can therefore be
found in expected time L[1/(28)], and L[f] of them will take time L[+ 1/(2f)]. Itison
this point that the random squares algorithm distinguishes itself from many other
factoring algorithms that we discuss in these sections. Namely, it can be proved that, for
random mi’s, the r(m)’s behave with respect to smoothness properties as random integers
<n(cf. [28]). This makes it possible to give a rigorous analysis of the expected running
time of the random squares algonithm. For practical purposes, however, the algorithm
cannot be recommended.

The iinear dependencies in the second step can be found by means of Gaussian
ehmination in time L{3f]. The whole algorithm therefore runs in expected time
L{max($+1/(2f), 38)]. Ths is minimized for f=4, so that we find that the random
squares algorithm takes ume L[] and storage L[1].

Asin Algonthm (3.10), however, we notice that at most fog, nof the L[ff]coordinates
of each vector can be non-zero. To multiply the matrix consisting of the vectors
representing rim) by another vector takes therefore time at most (log, n)L{f] = L{#].
Applying the coordinate recurrence method (cf. (2.19)) we conclude the dependencies
can be found in expected time L[2f], so that the random squares algorithm takes
expected time L{max(8+ 1/(2f), 2p)], which is L[\/i] for = \/ {. The storage needed

ALGORITHMS IN NUMBER THEORY v

is L[\/;]. For a rigorous proof using a version of the smoothness test from (4.5) that
applies to this algorithm we refer to [61]. Notice that the random squares algorithm is
in a way very similar to the index-calculus ajgorithm (3.10).

4.8. VALLEE'S TWO-THIRDS ALGORITHM (¢f. [79]). The fastest, fully proved factoring
algorithm presently known is Vallée’s two-thirds algorithm. The algorithm is only
different from Dixon's random squares algorithm in the way the integers m in step
{4.7)(1) are selected. Instead of sclecting the integers m at random, as in (4.7), it is shown
in [79] how those m can be selected in an almost uniform [ashion in such a way that the
least absolute remainder of m? mod n is at most 4n*3. According to Subsection 2.A the
resulting factoring algorithm then takes expected time L{max(# +(§)/(28), 2)], which
is L[\/gﬁ for fi= \/§ . The storage needed is L[ﬁ], For a description of this algorithm
and for a rigorous proof of these estimates we refer to [79].

4.9. THE CONTINUED FRACTION ALGORITHM (cf. [52]). If we could generate the m's in step
(1) of the random squares algorithm in such a way that the r(m)’s are small, say < \/ﬁ,
then the r(m)’s would have a higher probability of being smooth, and that would
probably speed up the factoring algorithm. This is precisely what is done in the
continued fraction algorithm. We achieve an expected time L{1] and storage L[4].

Suppose that n is not a square, let a,/b; denote the ith continued fraction convergent
to \ﬁ and let r(a;) = a? — nb?. It follows from the theory of continued fractions (cf. [32,
Theorem 164]) that |r(a,){ <2 ﬁ Therefore we replace the first step of the random
squares algorithm by the following:

Compute a,modn and r(a;) for i=1,2,... until sufficiently many L[f]-
smooth Ha,)’s are found.

The computation of the a;mod n and r(a;) can be done in O({log n)?) bit operations
(given the previous values) by means of an iteration that is given in [52]. The second
step of the random squares algorithm can be adapted by including an extra coordinate
in the vector representing r{a;) for the factor — 1. The smoothness test is again done by
means of the elliptic curve method. Assuming that the |r(a;)} behave like random
numbers <2\/71 the probability of smoothness is L[1/(4/}], so that the total running
time of the algorithm becomes L{max(f + 1/(4f3), 2f)]. With the optimal choice fi = } we
find that time and storage are bounded by L{1] and L[4], respectively.

We have assumed that the |H{a,)} have the same probability of smoothness as random
numbers <2_/n. The fact that all primes p dividing r(a;} and not dividing n satisfy
(5)=1, is not a serious objection against this assumption; this follows from {74,
Theorem 5.2] under the assumption of the generalized Riemann hypothesis. More
serious is that the r(a;) are generated in a deterministic way, and that the period of the
continued fraction expansion {or \/ﬁ might be short. In that case one may replace n by
a small multiple.

The algorithm has proved to be quite practical, where we should note that in the
implementations the smoothness of the r(a,) is usually tested by other methods. For
a further discussion of the theorctical justification of this method we refer 1o [59).

Ue A K LFNSTRA H W LENSTRA JR

4.10. SEYSENS C1ASS GROUP ALGORITHM (¢f [74]) Another way of achieving time L[1]
and storage L[}] 1s by using class groups (cf Subsection 2 C) The advantage of the
method to be presented here 1s that its expected running time can be proved rigorously,
under the assumption of the generalized Riemann hypothesis (GRH) Let n be the
composite mnteger to be factored We assume that n 1s odd, and that —n=1mod 4,
which can be achieved by replacing n by 3n 1f necessary Put 4= —n, and consider the
class group C, We introduce some concepts that we need 1n order to describe the
factorization algorithm

4.11. RANDOMLY GENERATING REDUCED FORMS WITH KNOWN FACTORIZATION Consider the
pnime forms I,, with p < c-(log|A|)?, that generate C 4 under the assumption of the GRH
(cf (217)) Lete,e{0,1, ,|4]—1} be randomly and independently selected, for every
1, ltfollows from the bound on the class number A, (cf (2 15})) and from the fact that the
1, generate C 4 that the reduced form ITJ¢r behaves approximately as a random reduced
form n C 4, 1¢, for any reduced form fe C, we have that f =T1I;» with probability
(1 +o(1))/h,, for n— oo (cf [74, Lemma 8 2])

412. FINDING AN AMBIGUOUS FORM Let e R, notice that L{B]>c(logld))* We
attempt to find an ambiguous form (cf (2 14)) 1n a way that 1s more or less similar to the
random squares algorithm (4 7)

A randomly selected reduced form (a,b)e C4 can be wnitten as I1, . 517 with
probability L[- 1/48)] (cf (2 18)), where at most Oflog|Adl) of the exponents ¢, are
non-zero According to (4 11) we get the same probability of smoothness if we generate
the forms {q, b) as 1s done 1 (4 11) Therefore, if we use (4 11) to generate the random
reduced forms, we find with probability L[— 1/(4)] a relation

€p T

n Ip - ﬂ IP

p < c Uoglal)? p s Lip)
pprime P prime

With r,=e,—t,, where e, =0 for p>c-(log|4])?, we get

(4.13) [T 1p=1,

pLig)

p prime
Notice that at most c-(log{d])? +log|d| of the exponents r, are nen zero If all
exponents are even, then the left-hand side of (4 13) with r, replaced by r,/2 1s an
ambiguous form Therefore, if we have many equations bike (4 13), and combine them in
the proper way, we might be able to find an ambiguous form, as in the random squares
algonithm (4 7) this 1s done by looking for a hnear dependency moduloc 2 among the
vectors consisting of the exponents r,

There 1s no guarantee, however, that the thus constructed ambiguous form leads to

a nontrivial factorization of [4] Fortunately, the probabtlity that this happens 1s large
enough, as shown in [74, Proposition 8 6] or [42, Section (4 6)] 1if L[] equations as n
(4 13) have been determuned n the way descrnibed above, then a random hnear
dependency modulo 2 among the exponent vectors leads to 4 nontrivial factorization

with probability at least 4 —o(1)

ALGORITHMS IN NUMBER THEORY 703

4.14. RUNNING TIME ANALYsis The (L[] x L[$])-matnx contaiming the exponent
vectors is sparse, as reasoned above, so that a linear dependency modulo 2 can be found
in expected time L{2ff] by means of the coordinate recurrence method (cf (2 19)) For
a randomly selected reduced form (a,b), we assume that a can be tested for
L[p}-smoothness in time L[0] (cf (4 3)) Generation of the L{#] equations like (4 13)
then takes time L{fi + 1/(40)), under the assumption of the GRH The whole algorithm
therefore takes expected ume L{max(f + 1/(48), 28)], which s L{ 1] for =3, under the
assumption of the generaiized Riemann hypothesis

We can prove this expected running time nigorously under the assumption of the
GRH, if we adapt the smoothness test from Proposition (4 6) to this situation The
argument given in [42] for this proofis not complete, the proof can however be repaired
by incorporating {61, Theorem B’] in the proof of {74, Theorem 5 2]

4D The quadratic sieve algorithm

In this subsection we bnefly describe practical factonng algorithms that run
expected ume L,[1], and that existed before the elhiptic curve method As the methods
from the previous subsection, but unlike the elliptic curve method, the running times of
the algonithms to be presented here do not depend on the size of the factors
Nevertheless, the methods have proved 10 be very useful, especially in cases where the
elliptic curve method performs poorly, 1 e, 1f the number n to be factored 1s the product
of two primes of about the same size We abbreviate L,[f] to L{f]

4.15. POMERANCE S QUADRATIC SIEVE ALGORITHM (¢f [59]) The quadratic sieve algo-
rithms only differ from the algonthms 1 (47), (48), and (49) n the way the
L[f}-smooth quadratic residues modulo n are determined, for some fe R, In the
ordinary quadratic sieve algonthm that 1s done as follows Let r(X) =([\/r—l] +X)*—n
be a quadratic polynomial in X For any me Z we have that

r(m)s([\/r—:]er)zmodn

1s a square modulo n, s0 n order to solve x? = y?’mod n we look for ~ L[ff] integers
m such that r(m) s L[f}-smooth

Let aeR.o and let [m|<L{«] Then |r(m)|=O(L[«] /) s0 that irtm) 1s L[AT-
smooth with probability L[—1/{483)] according to Subsection 2 A, if {r(m)) behaves as
a random integer SL[a]ﬁ Under this assumpuion we find that we must take o>
B+ 1/(4), n order to obtain sufficiently many smooth rim)’s for Jmi< L{a]

We have that (})=1 for primes p#£2 not dividing n, because 1If pir(m), then
([\ﬁ]+m)2 =nmodp As in (49), this 1s not a serious objection against our
assumption that the r{m)’s have the same probability of smoothness as random
numbers of order L[a] \/ﬁ (cf [74, Theorem 5 3] under the GRH) The problem s to
prove that at least a certain fraction of the rim)’s with [m{ < L{a] behave with respect to
smoothness properties as random numbers of order L[] \/ﬁ For a further discussion
of this point see [59]

Now consider how to test the L{o] numbers r(m) for smoothness with respect 1o
L[B] Ofcourse, this can be done by means of the elliptic curve smoothness test in ime

704 AK LENsTRA HW LENSTRA IR

L{a] (cf (4 3)), thus giving a method that runs in time L{max(f + 1/(48), 2$)] = L[1] for
B=3%(cf (2 19)) The same time can, however, also be achieved without the elliptic curve
method Let pbea prime < L[] not dividing nsuch that p#24nd (3) =1 The equation
1 X)=0mod p then has two solutions m, (p) and m(p), which can be found by means of
a probabilistic method 1n time polynomual n log p (cf [37, Section 462]) But then
rim,(p)+Ap)=0mod p for any k € Z Therefore, if we have a hist of values of r(m) for all
consecutive values of m under consideration, we easily find the muluples of p among
them atlocations m,(p)+ kp for any k € Z such that {m,(p)+ kp|< L{a],and1=1,2 For
every p this takes twice time L{a]/p, so that for all p< L[] with (&) =1 together, this
so-called sieving can be done in ime X, L{a]/p=L{a] A similar procedure takes care of
the powers of p and p=2 We conclude that we indeed get the same time L[1] as with
the elliptic curve smoothness test, but now we need to store all L[1] values Hm) We
should note, however, that sieving 1s 1n practice much faster than applying the ellipuic
curve smoothness test, and that the sieving interval can easily be divided into smaller
consecutive intervals, to reduce the storage requirements (Actually, not the r(m)'s, but
their loganthms are stored, and the r(m)’s are not divided by p but Jog p 1s subtracted
from log r(m) during the sieving) For other practical considerations we refer to [59]

4 16. THE MULTIPLE POLYNOMIAL VARIATION (¢f [60,76]) Because there 1s only one
polynomial 1n (4 15) that generates all smooth numbers that are needed, the size of the
sieving interval must be quate large Also, the quadratic residues r(m) grow hinearly with
the size of the snterval, which reduces the smoothness probability If we could use many
polynomials as in (4 15) and use a smaller interval for each of them, we might get a faster
algonthm This 1dea 1s due to Davis (cf [24]), we follow the approach that was
independently suggested by Montgomery (cf [60,76]) This algorthm still runs in
expected time L[1)

Let (X)=a?X2 +bX +¢, for a,b,ce Z In order for r(m) to be a quadratic residue
modulo n, we require that the discriminant D = b? —4a®c1s divisible by n, because then
r(m)=(am + bj(2a))* mod n We show how to select a, b and ¢ so that [r{m)| = O(L[a]\/ﬁ)
for |m| < L[a] Let D=1 mod4 be a small multiple of n, and let a=3 mod 4 be free of
primes < L{f] (f p divides a then r(X) has at most one root modulo p), such that
2 z\/l_)/L[a] and the Jacobr symbol () equals 1 For a we take a probable prime
atisfying these conditions (cf (5 1)) We need an integer b such that b? = D mod 442, the
value for ¢ then follows We put b, = D*"*mod g, so that b?= D mod a because a 1s
1 quadratic residue modulo D and D=1 mod4 Hensel’s lemma now gives us

b=b, +a*((2b,)"" (D~ b})/aymod a),

{ b 1s even, we replace b by b--a?, so that the resust satisfies b2 = D mod 4a?

It follows from a? & /D/L{] that b= O(/D/L[c}), s0 that ¢ = O(L[a}./D) We find
hat r(m):O(L[a]\/D) for m{< L[a] For any a as above, we can now generate a
juadratic polynomual satisfying our needs Downg this for many «'s, we can sieve over
tiany shoiter intervals, with a higher probability of success Remark that this can be
lone o parallel and independently on any number of machines, each machine working
n 1ts own sequence of a’s, see [17,44, 60,76, 78] for a discussion of the practical
rroblems involved The multiple polynomial variation of the quadratic sieve algonthm

ALGORITHMS IN NUMBER THEORY 705

is the only currently available method by which an arbitrary 100-digit number can be
factored within one month [44].

4.E. The cubic sieve algorithm

In this final subsection on factorization we mention an open problem whose sotution
would lead to a factorization algorithm that runs in expected time L,[s] for some s with
\/§ <s< 1. Instead of generating sufficiently many smooth guadratic residues modulo
n close to _/n as in Subsection 4.D, one attempts to find identities modulo n that in-
volve substantially smaller smooth numbers, and that still can be combined to yield
solutions to x?> = y?modn. The idea presented herc was first described in [22]; it
extends a method by Reyneri [65] to factor numbers that are close to perfect cubes. We
again abbreviate L,[f] to L[f8].

Suppose that for some f <} we have determined integers a, b, ¢ such that

lal, 1B}, c) <n***,
4.17) b =a’cmodn,
b* #a%c.

Notice that the last two conditions imply that at least one of {al, |b], and |c| is >(n/2)!/?,
so that ./} —(log,2)/6.

Consider the cubic polynomial (aU + b)(aV +b)(a{ — U — V) + b). Fix some a with
o> f. There are L[2a] pairs (u, v) such that [ul, [vl, and |u+ v| are all <L[«]. Foreach of
these L{2a] pairs we have

(au + b)(av + b)(a(— u —v) + b) = — a* uv(u + v)~ a? b(u? + v* +uv) + b3
= a?(—auv(u +v)— b{u* + v* +uv)+ c)mod n,

due to (4.17). Because — auv(u + v)—b(u? +v* +uv)+c=O(L[3aIn**’) (cf. (4.17)), we
assume that each pair has a probability L[—28%/(2f)]= L{— B] to produce a relation
modulo n between integers au+ b with {u] < L{«] and primes < L[#] (cf. Subsecticn
2.A). The L{2a] pairs taken together therefore should produce L[2a- 8} of those
relations. Since there are L{a] integers of the form an+ b with |u] < L[«] and n(L[£])
primes <L[f], and since L[a]}+n(L[B})=L[a], these L[2a—f] relations should
suffice to generate a solution to x* = y*modn.

For each fixed u with Ju) < L{a], the L[f]-smooth integers of the form ~ auv(u + v) ~
b(u? +v? +uv)+c for |v] and |u +v| both < L[«] can be determined in time L{«] using
a sieve, as described in (4.15). Thus, finding the relations takes time L[2a]. Finding
a dependency modulo 2 among the relations to solve x* = ymod n can be done by
means of the coordinate recurrence method in time L[2a]j(cf. (2.19)).

With the lower bound on § derived above, we see that this leads to a factoring
algorithm that runs in expected time L,{s] for some s with \/§ <s<,atleast if we can
find a, b, c as in (4.17) within the same time bound. If a, &, and ¢ run through the integers
<n!B3tet in absolute value, one gets n' ¥V differences b* —a’c, so we expect that
asolution to (4.17) exists. The problem is of course that nobody knows how to find such
a solution efficiently for general n.

706 A.K. LENSTRA, HW LENSTRA, JR

The cubic sieve algorithm might be useful to factor composite n of the form b® —¢
with ¢ small, and for numbers of the form y" 11 (cf. [14]). For a discrete logarithm
algorithm that is based on the same idea we refer to [22].

5. Primality testing

5.A. Introduction

As we will see in Subsection 5.B, it is usually easy to prove the compositeness of
a composite number, without finding any of its factors. Given the fact that a number is
composite, it is in general quite hard to find its factorization, but once a factorization is
found it is an easy matter to verify its correctness. For prime numbers it is just the other
way around. There it is easy to find the answer, i.e., prime or composite, but in case of
primality it is not at all straightforward to verify the correctness of the answer. The
latter problem, namely proving primality, is the subject of Subsections 5.B and 5.C. By
primality test we will mean an algorithm to prove primality.

In Subsection 4.B we have seen that replacing the multiplicative group (Z/p Z)* in
Pollard’s p— | method by the group E(Z/p Z), for an elliptic curve E modulo p (cf.
Subsection 2.B), resulted in a more general factoring algorithm. In Subsection 5.C we
will see that a similar change in an older primality test that is based on the properties of
(Z/p Z)* ieads to new primality tests.

This older algorithm is reviewed in Subsection 5.B, together with some well-known
results concerning probabilistic compositeness algorithms. The primality tests that
depend on the use of elliptic curves are described in Subsection 5.C.

More about primality tests and their implementations can be found in [83, 47].

5.B. Some classical methods

Let n be a positive integer to be tested for primality. In this subsection we review
a method, based on a variant of Fermat's theorem, by which compositeness of n can
easily be proved. If several attempts to prove the compositeness of n by means of this
method have failed, then it is considered to be very likely that nis a prime; actually, such
numbers are called probable primes. It remains to prove that such a number is prime.
For this purpose, we will present a method that is based on a theorem of Pocklington,
and that makes use of the factorization of n—1.

5.1. A PROBABILISTIC COMPOSITENESS TEST Fermat’s theorem states that, if n is prime,
then a” = a mod n for all integers a. Therefore, to prove that n is composite, it suffices to
find an integer a for which a@"#amodn; such an a is called a witness to the
compositeness of n. Unfortunately, there exist composite numbers, the so-called
Carmichael numbers, for which no witnesses exist, so that a compositeness test based on
Fermat's theorem cannot be guaranteed to work.

The following variant of Fermat’s theorem does not have this disadvantage: if n is
prime, thena* = + 1 mod nora*? = — 1 mod nforanintegerie {1,2,...,k—1},where

M

ALGORITHMS IN NUMBER THEORY 01

O0<a<nand n—1=u-2*with u odd Any a for which no such i exists 15 agan called
a witness to the compositeness of n, of a1s not a witness, we say that n passes the test for
this a It has been proved [64] that for an odd composite n, there are at least 3(n— 1)/4
witnesses among {1,2, ,n—1} Therelore, f we randomly select some @’s from this
interval, and subject n to the test using these a’s, 1t 1s rather unhkely that a composite
n passes all tests A number passing several tests, say 10, 1s called a probable prime

In [49] Muller has shown that, if the generalized Riemann hypothesis holds, then
there 1s for each composite n a witness m {2,3, ,c-(logn)*} for some effectively
computable constant ¢, according to {5] the value ¢ =2 suffices Notice that a proof of
the generalized Riemann hypothesis therefore would lead to a primality test that runs
mn time polynomal in logn For a weaker probabilistic compositeness test, based on
Jacobi symbols, see [77], 1t 1s weaker in the sense that each witness for this test 1s also
a witness for the above test, but not conversely

Now that we can recognize composite numbers, let us consider how to prove the
primality of a probable prime

5.2. POCKLINGTONS THEOREM {(cf [55]) Let n be an integer > 1, and let s be a positive
dwisor of n— 1 Suppose there 1s an integer a satisfying

a" !'=1modn,

l ged(@® Y — 1, n)=1 for each prime q diwiding s
I Then every prime p dinding n1s 1 mod s, and if s>\/;——l then n 1s prime

We omit the proof of this theorem, as 1t can easily be deduced from the proof of
a similar theorem below (cf 5 4)), by replacing the role thats played by E(Z/p Z) m that
prool by (Z/p Z)* here Instead, let us consider how this theorem can be employed to
prove the pnmality of a probable prime n

Apparently, to prove the primahty of n by means of this theorem, we need a factor s of
n—1, such that s> _/n~—1, and such that the complete factorization of s 1s known
Given such an s, we simply select non-zero integers ae Z/n Z at random unti} both
conditions are satisfied For such a, the first condition must be satisfied, unless n is
composite The second condition might cause more problems, but if n 1s prime then
g—1 out of ¢ choices for a will sahisfy 1t, for a fixed g dividing s Therelore, if an
a satisfying both conditions has not been found after a reasonable number of trials, we
begin to suspect that n 1s probably not prime, and we subject n to some probabihistic
compositeness tests as in (5 1)

The man disadvantage of this method s that an s as above 1s not easy to find,
becdause factoring n~ 1 1s usually hard If nis prime, then n— 1 1s the order of (Z/p Z)*
for the only prime p dividing n, 1n the next subsection we will randomize this order by
replacing (Z/p Z)* by E(Z/pZ) For other generalizations of this method we refer to the
extensive fiterature on this subject [14, 47, 66, 73, 83]

5.3. THE Jacosi sum TesT (¢f [3,20]) The first pnmahty test that could routinely
handle numbers of a few hundred decimal digits was the Cohen Lenstra version [20] of

[
708 A K Lenstka, HW LENSTRA Jr

the primality test by Adleman, Pomerance, and Rumely {3] N runs in time
{log n)®ostoslosm which makes 1t the fastest deternimstic primality test Details
concerning the implementation of this algonthm can be found in [197 For
a description of an improved version and its implementation we refer to [11]

5 C Primaluy testing using elliptic curves

We assume that the reader 1s famhar with the matenal and the notation mtroduced
i Subsection 2B In this subsection we discuss the consequences of the following
analogue of Theorem (52)

5.4. TuroreM Let n>1 be an integer with gcd(n, 6)=1 Let E= E,, be an elhptic curve
modulo n (¢f (2 7)), and let m and s be positive integers with s diwiding m Suppose there 1s
a pomnt Pe(V,—{0})NEZ/nZ) (f (2 8)) satisfying

m-P=0 (J (210)),
(m/q)* P 1s defined and diferent from O, for each prime ¢ diwiding s,

where in (2 10) we choose the a that 1s used in the defimition of the elliptic curve E,), Then
E(k ,)=0 mod s for every prime p dwiding n(cf (2 2), 2 7)), and if s>(n"'* + 1)? thenn1s
prime

Proor Let p be a prime dividing n, and let Q=(m/s): P, € E(F,) By (2 10) we have
s*G=m:P,=(m*P),=0,, s0 the order of Q divides s If ¢ 1s a pnme dividing s then
(s/g)* Q =(m/q)- P, =((m/q)- P), # O,, because (m/q)- P# O (cf (29)) The order of Q15
therefore not a divisor of s/q, for any prime q dividing s, so this order equals s, and we
find that # L(k,)=0mods

In (24) we have seen that # E(F,)=p+1—1, for some nteger ¢t with IIISZ\/E
{Hasse’s inequality) It follows that (p'2 +1)2 = # E(F,) Wuth s>(n'*+1)* and
E(b)= 0mod s this imphes that p> f, for any pnime p dividing n, so that n must be
prime This proves the theorem [J

55. Rimark The proof of Theorem (5 2) follows the same hines, with p- 1 replacing m

Theorem (54) can be used to prove the primality of a probable prime n in the
following way, an idea that 15 due to Goldwasser and Kilian (cf [30]), for earher
applications of elhptic curves to primaliy tests sez [10, 18]

5.6. Ou1iine O THE PRIMALITY TEST First, select an elliptic curve £ over Z/nZ and an
integer m, such thatm= # E(Z/n Z)if n1s prime and such that mcan be wnitten as kg for
4 smallinteger k> 1 and probable prime ¢ > (n'/* +1)2,1n(5 7) and (5 9) we will present
two methods to select £ and m Next, find a point Pe E(Z/nZ) satsfying the
requirements 1n Theorem (5 4) with s = ¢, on the assumption that g 1s prime This 1s done
as follows turst, use (211) to find a random pomnt Pe £(Z/nZ) Next, compute
(m/g)-P=h+P, M h+P 15 undehned, we find a nontrnivial divisor of n, which 1s

ALGORITHMS IN NUMBER THFORY 09

exceedingly unhkely if k- P=0, something that happens with probabibty <4 if n1s
prime, select a new P and try again Otherwise, venify that g« (k- P)=m* P =0, which
must be the case if n 1s prime, because 1n that case # E(Z/nZ)=m The existence of
P now proves that n1s prime if ¢ 15 prime, by (54) Finally, the primality of ¢ 15 proved
recurssvely

We will discuss two methods to select the pair E,m

5.7. THE RANDOM CURVE TEST (¢f [30]) Select a random elliptic curve E modulo n as
described 1n (2 11), and attempt to apply the division points method mentioned in (2 6)
to E H this algorithm works, then it produces an tnteger m that 1s equal to # E(L/n Z)1f
nis prime If the algorithm does not work, then n 15 not prime, because 1t 1s guaranteed
to work for prime n

This must be repeated until m sausfies the requirements n (5 6)

5.8. THE RUNNING TIME OF THE RANDOM CURVF TEST First remark that the recursion
depth 15 Otlog n), because k> 1 so that qs(\/ﬁ—% 1)?/2 (cf (24)) Now consider how
often a random elhiptic curve E modulo n has to be selected before a pair £, nt as in (5 6)
1s found Assuming that n1s pnme, # E(Z/n Z) behaves approximately hke a random
nteger near n, according to Proposition (25) Therefore, the probabihty that m=kg
with k and ¢ as 1n (5 6) should be of the order (logn) !, so that O(log n) random choices
for E should suffice to find a pair E,m

The problem 1s to prove that this probability 1s indeed of the order (logn) °, for
a positive constant ¢ This can be shown to be the case iIf we suppose that there 1s
a positive constant ¢ such that for all xe R, the number of primes between x and
x+\/f;c (cf (24)) 1s of the order \/;(log x)7° Under this assumption, the random
curve test proves the primality of n n expected time O(logn)®*<) (cf [30])

By a theorem of Heath-Brown, the assumptton 1s on the average correct In [307 1t 1s
shown that this imphes that the fraction of primes r for which the algonithm runs in
expected ttme polynomial 1 logn, 1s at least 1—O(2~""*"*') where |=[log,n] In
their oniginal algonthm, however, Goldwasser and Kilhan only allow k=2, ie, they
wait for an elliptic curve E such that # E(Z/n Z)=2q By allowing more values for , the
fraction of primes for which the algorithm runs 1n polynomal time can be shown to be
much higher [62] (cf [2]) For a primalty test that runs in expected polynomial ime
for all n, see (5 12) below

Because the random curve test makes use of the division points method 1t 1 not
considered to be of much practical value A practical version of (5 6) s the following
test, due to Atkin [4] Details concerning the implementation of this algonthm can be
found n [51]

59. Tue compLEX MULTIPLICATION TEST {¢f [4]) Here one does not start by selecting L
but by selecting the complex multiphcation field L of F (cf (2 6)) The field L caa be used
to calculate m, and only 1f m1s of the required form kq (cf (5 6)), onc determines the pair
a, b defining L

This 1s done as foliows Let 4 be a negative fundamental discriminant < —7 e
A=0or 1 mod 4 and there 1s no se Z ., such that 4/s? 1s a discnimrnant Denote by

710 A K LENSTRA HW LeNnsTRA JR

L the imagary quadratic field Q(\/E) and by A=2Z[(4 +\/j)/2] its ring of integers
(cf (26)) Wetrytofindvwithvw=n1mn 4 Itisknown that (4)=1 and (%)= 1 or the odd
prime dwvisors p of 4 are necessary conditions for the existence of v, where we assume
that ged(n, 24)=1 H these conditions are not satisfied, sefect another 4 and try agam
Otherwise, compute an integer b€ Z with b* = Amod n This can for mnstance be done
using a probabihstic method for finding the roots of a polynomial over a finute field {37,
Section 4 6 2], where we assume that n 1s prime, for this algonthm to work, we do not
need a proof that nis prume If necessary add nto b to achieve that b and 4 have the same
parity We then have that b= 4 mod 4n, and that n=Zn+ Z((b+ \/Z)/Z) 1s an ideal in
Awithn-i=A-n Attempt to solve n=A4 - v by looking for a shortest non-zero vector
1n the lattice n If pp=n then take v=y, otherwise vv=n 1s unsolvable

Finding p, and v if it exists, can for example be done by means of the reduction
algonthm (212) With b as above, consider the form (a,b,c) with a=n and
c=(b* — 4)/(4n) For any two integers x and y the value ax® + bxy + cy? of the form at
x, y equals |xn+ y{(b+ ﬁ)/Z)lz/n, the square of the absolute value of the correspond-
ing element of n divided by n It follows that u can be determined by computing integers
x and y for which ax? 4 bxy 4 cy? 1s mimimal More 1n particular, it follows that v with
vv=n exists 1if and only 1f there exist integers x and y for which the form assumes the
value 1

Because ged(r, 24) = 1, we have that ged(n, b) = 1, so that the form (g, b, ¢) 1s pimitive,
which makes the theory of Subsection 2 C applicable Apply the reduction algorithm
(212) to (a, b, ¢), obviously, the set {ax? + bxy+cy* x,yeZ} does not change in the
course of the algonthm Because a reduced form assumes its munimal value for x =1
and y=0, the x and y for which the original form (a, b, ¢) 1s mmimized now follow, as
mentioned 1n the last paragraph of (2 12) The shortest non-zero vector g€ n 1s then
given by xn+ y((b+ \/z_i)/Z) Now remark that ax? +bxy+cy?=1 1if and only if
the reduced form equivalent to (a, b, ¢) 1s the umt element 1, Therefore, if the reduced
formequals 14, put v=y, otherwise select another 4 and try again because v with vi=n
does not exist

Assuming that v has been computed, consider m=(v—1§i—1), and m’ =(—v—1)
(—v - 1) If nexsther m nor m 1s of the required form kg, select another 4 and try agam
Supposing that m = kq, an elliptic curve E such that # E(Z/nZ)=mf n1s prime can be
constructed as a function of a zero 1n Z/nZ of a certain polynomial F,e Z{X] To
determune this polynomual F, define, for a complex number z with imz>0,

w 3 .4\3
(1+240 g X "k)
o1 14

g [T (—¢*
k=1

)=

where g=¢** Then

)

(a b)
with (4, b) ranging over the set of reduced forms of discrimmant 4, see (2 12) The degree

- D L N SO S

ALGORITHMS IN NUMBER THFORY T

of F, equals the class number of L, and 1s therefore z\/Tle. As these polynomuals
depend only on 4, they should be tabulated More about the computation of these
polynomals can be found n [80, Sections 125-133]

Compute a zero jeZ/nZ of F, over Z/nZ, and let ¢ be a quadratic non-residue
modulo n (assuming that n 1s prime). Put k=3/(1728 —), then k 1s well-defined and
non-zero because 4 < —7 Fnally, choose E as the elhptic curve Ej, 5, of Eyp2 5503 I
such a way that # E(Z/n Z)=mf n1s prime, the nght choice can be made as descnibed
at the end of (2 6).

We made the restriction 4< —7 only to simplify the exposition. If n=1mod 3
({respectively n = 1 mod 4), one should also consider 4 = — 3 (respectively 4= —4), as it
gives nise te six (four) pairs E, m; the equations for the curves can in these cases be
determined n a more straightforward manner, cf. [46]

5.10. THE RUNNING TIME OF THE COMPLEX MULTIPLICATION TEST. We present a heuristic
analysis of the running time of the method just described The computation of v is
dominated by the computation of \/Z mod n and thercfore takes expected time
Of(log n)*) (cf. [37, Secuon 4 6.2]); with fast multiphication techmques thus can be
reduced to O((log n)***). It is reasonable to expect that one has to try Of{log n)***)
values of 4 before m (or m') has the required form, so that we may assume that the final
4 1s Offlog ny? ¢). For a reduced form (g, b) and z=(b+\/—A_)/(2a), 4=¢€*"*, one can
show that |j(z)—¢~'{ <2100, and i, with the same notation, the summation in the
definition of j (z) 1s terminated after K terms and the product after K factors, then the
error 18 O(K?¢*) To bound the coefficients of F, we notice that j(z) can only be large
for small a Since the number of reduced forms (a, bj with a fixed a 1s bounded by the
number of divisors of a, there cannot be too many large j(z)’s. It follows that one
polynomial F, can be computed 1n time [4]* *** = O((log n)* **), 1t is likely that it can
be done in ime |4} *°*? = O((log n)* **) using fast muluphication techmques Assuming
that n 1s prime, a zero of F4 can be computed 1n ume

Of(deg F 4)*(log n)*}=O((log n)***}
(ordinary), or
O((deg F4)(log n)* **)=O((log n)* **)

{fast) Heunsucally, it follows that the whole primality proof takes time Oflog n)®**),
which includes the O(log n) factor for the recursion The method has proved to be quite
practical as shown n [51]

With fast multiplication techmques one gets Of(log n)°*¢). As Shallit observed, the
latter result can be improved to O((log n)* **), if we only use 4's that can be written as
the product of some small primes, to compute the square roots modulo n of the 4’s, it
then suffices to compute the square roots of those small primes, which can be done at
the beginning of the computation

5.11. Remarxk. [t should be noted that both algonithms based on (5 6), if successful, yield
a certificate of primality that can be checked in polynomai time

L

712 A K LENsTRA, HW LENSTRA In

5.12. Tyt aBeLIAN VARIETY TEST (¢f [2]) A primalty test that runs m expected
polynomial ume for all n can be oblamned by using abelian vaneties of higher
dimensions, as proved by Adleman and Huang in [2] We explan the basic idea
underlying their algorithm, without attempting to give a complete description

Abelian varieties are higher dimensional analogues of elliptic curves By defimtion,
an abelian variety over a field K 1s a projective group variety A over K The set of points
A(K) of an abeian variety over a field K has the structure of an abelian group
Moreover, if K=F, then # A(F,)=p® + O((4py¥ ~'/2), where ¢ 1s the dimension of 4
One dimensional abehan varieues are the same as elliptic curves

Examples of abehan vaneties over F,, for an odd prime p, can be obtained as follows
Let f be a monic square-free polynomial of odd degree 2g + 1 over F,, and consider the
hyperelliptic curve v? = f(x) over F, Then the Jacobian A of this curve 1s an abelian
variety of dimension g over ', The elements of A(F,) can in this case be regarded as
pairs (a,b) with a,beF,[T], a monic, b*=fmoda and degree(b)<degree(a)
<g Note the analogy with the definition of reduced forms in Subsection 2 C and (2 12),
with f playing the role of 4 The composition in the abelian group A(F,) can be done as
mn (2 13) (cf [16]) Yhe order of A(F,) can be computed as described 1n {2], or by an
extension of a method by Pila, who generalized the division poiats method {(cf (2 6)) to
curves of lugher genus and to abelian varieties of higher dimension [54]

The abelian vanety test proceeds in a similar way as the random curve test, but with
g=1 replaced by g=2 The order of 4(F,) is then 1n an mnterval of length O(x>*)
around x=p? The mamn difference with the random curve test is that it can be proved
that this interval contains sufficiently many primes [34] The problem of proving the
primabty of a probable prime n is then reduced, in expected polynomial time, to
proving the pnmahty of a number of order of magnitude n> Although the recursion
obviously goes n the wrong direction, 1t has been proved in [2] that, after a few
Herations, we may expect to hit upon a number whose primahty can be proved in
polynomial ime by means of the random curve test (57)

Acknowledgment

The second author s supported by the National Science Foundation under Grant
No DMS-8706176

References

{11 ApLEman LM A subexponential aigonthm for the discrete loganthm problem with applications, in
Proc 20th Arn IELE Symp on Foundations of Camputer Science (1979) 55-60

[2] ApLimMAN LM and M A HUANG, Recogmzing p imes in random polynomial ime Research report,
Dept of Computer Science, Univ of Southern Calforna 1988, extended absiract in Proc 19th Ann
ACM Symp un theory of Computing (1981) 462469

{3} ApteMaN LM C PoMEeranceand RS RumELY On distinguishing pnme numbers from composite
numbers Ann of Math 117 (1983) 173 206

[4] AikiN AOL Pursonal communication, 1985

(5]

[6]
7

(8}
[93
{10]

(1]
{12}

{13]
[14]

[15]

[i6]
{17}

[18]
[19]
[20]
24
223

[23]

(24]
(23]
[26]
(271

(28]
[29)

(30]
(31
132)
33]

ALGORITHMS IN NUMBER THFORY 13

Bach, E Analytic Methods in the Analysis and Design of Number-theoretic Algorithms (MIT Press,
Cambndge, MA, 1985)

Bach, £, Exphait bounds for primahty tesung and related problems, Math Comp, to appear
BacH, E and J SuaLLiT, Cyclotomic polynomuals and factoring, in Proc 26th Ann IELE Symp on
Foundations of Computer Science (1985) 443-450, also Math Comp 52 (1989) 201-219

Beti, T, N CoT and 1 INGEMARSSON, eds, Advances in Cryptology, Lecture Notes tn Computer
Science, Vol 209 (Springer, Berlin, 1985)

Borevic, Z1 and I R SAFAREvIC, Teorya Cisel (Moscow 1964, translated into German, Enghish and
French)

BosMa, W, Primality testing using elliptic curves, Report 85-12, Mathematisch Instituut, Unmiv van
Amsterdam, Amsterdam, 1985

BosMa, W and M -P van per Hulst, Fast pnmality testing, In preparation

BrassarD, G, Modern Cryptology, Lecture Notes in Computer Science, Vol 325 (Spninger, Berhn,
1988)

BreNT, R P, Some integer factornization algonthms using elliptic curves, Research Report CMA-R32-85,
The Austrahan National Univ, Canberra, 1985

BRILLHART,J , D H LEHMER, J L SELFRIDGE, B TUCKERMAN and S S WAGSTAFF JR, Factorizations of
b +1, b=2,3,56,7,10,11,12 up to High Powers, Contemporary Mathematics, Vol 22 (Amer
Mathematical Soc, Providence, RI, 2nd ed, 1988)

CANFIELD, E R , P ErDOs and C POMERANCE, On a problem of Oppenheim concerning “Factorisatio
Numerorum”, J Number Theory 17 (1983) 1-28

CANTOR, D G, Computing in the Jacobian of a hypereliptic curve, Marth Comp 48 (1987) 95 101
CaroN, TR and R D SiLvFRMAN, Parallel implementation of the quadratic sieve, J Supercomput
1 (1988) 273-290

CHUDNOvVsKY DV and G V CHUDNOVSKY, Sequences of numbers gencrated by additsors in formal
groups and new pnmality and factorization tests, Adv in Appl Math 7 (1986) 187 237

CoHEN, H and A K LENSTRA, Implementation of 2 new primality test, Math Comp 48(1987) 103-12]
CoHen, H and H W LENSTRA, Jr, Primality testing and Jacob: sums, Math Comp 42(1984)297-330
CoppPersMITH, D, Fast evaluation of loganithms n fields of characienstic two, IEEE Trans Inform
Theory 30 (1984) 587 594

CoppERSMITH, D, AM ObpLYZKC and R SCHROEPPEL Discrete loganthms in GF(p), Algorithmica
1 (1986) 1-15

CorpersMiTH, D and S WINOGRAD, Matrix multiphication via anthmetic progressions, J Sym-
bolic Comput , to appear, extended abstract in Proc 19th ACM Symp on Theory of Computing (1987)
1-6

Davis, J A and DB HoLpripGe, Factonzation using the quadratic sieve algorsthm, Tech Report
SAND 83-1346, Sandia National Laboratories, Albuquerque, NM, 1983

Dk BRUUN, N G, On the number of positive integers < x and free of pnme factors > y, 11, Indag Math
38 (1966) 239 247

DeuriNG M, Die Typen der Multiplikatorenninge elhpuscher Funktionenkorper, Abh Math 5em
Hansischen U 14 (1941) 197-272

Dickson, L £, History of the Theory of Numbers, Vol I (Carnegie Institute of Washington, 1919,
Chelsea, New York, 1971)

Dixon, J D, Asymptotically fast factorization of integers, Math Comp 36 (1981) 255-260

EL GAMAL, T, A subexponential-time algorthm for computing discrete logarithms over GF(p?), JEEE
Trans Inform Theory 31 (1985) 473481

GoOLDWASSER, § and J KiLIaN, Almost all pnimes can be quickly certified, in Proc 18th Ann ACM
Symp on Theory of Computing (1986) 316-329

GROTSCHEL, M, L. Lovasz and A SCHRUVER, Geometric Algorithms and Combinatorial Optymzation
(Springer, Berhn 1988)

Harpy, GH and EM WRIGHT, An Introduction to the Theory of Numbers (Oxford Umv Press,
Oxford, 5th ed, 1979)

IRELAND, K and M ROSEN, 4 Classical Introduction to Modern Number Theory, Graduate Texts i
Mathematics, Vol 84 (Springer, New York, 1982)

714

(34]
035]
[36]
(371
(38]
(39]
[40]

{41]
[42}

{43]
[44]
(45}
[46)
[47]
(48]

[49]
150)

[s1]
[52}

[53]
[54]

(55}
[56]
{57}
[58]
59}

(60}
[6t]

162}
163

164]
[65]
L66]

A K LENSTRA, HW LENSTRA, JR

Iwanirc, H and M JuTiLa, Primes 1n short intervals, Ark Mat 17 (1979) 167176

Jacos CGJ, Canon Aruthmeticus (Berhn, 1839)

KANNAN, R and A BACHEM, Polynomal algorithms for computing the Smith and Hermite normal
forms of an integer matnix, SIAM J Compur 8 (1979) 499-507

KNuUTH, DE, The Art of Comp Progr Vol 2, S ical Algortithms (Addison-Wesley,
Reading, MA, 2nd ed, 1981)

Knuth, DE, The Art of Computer Programming, Vol 3, Sorting and Searching (Addison Wesley,
Reading, MA, 1973)

Lacarias, JC, Worst-case complexity bounds for algorithms in the theory of integral quadratic
forms, J Algorithms 1 (1980} 142186

LaGARIAs, J C, HL MONTGOMERY and AM ObpLYZKO, A bound for the least prime 1deal 1n the
Chebotarev density theorem, Invent Math 54 (1975) 137-144

LanG S, Algebraic Number Theory (Addison-Wesley, Reading, MA, 1970)

LENSTRA, A K, Fast and ngorous factonization under the generalized Riemann hypothesis, Proc Kon
Ned Akad Wet Ser A 91 (Indag Marh 50) (1988) 443-454

LensTRA, A K, H W LENSTRA, JR and L LovAsgz, Factoring polynomials with rational coefficients,
Math Ann 261 (1982) 515-534

LensTRA, A K and M'S MANASSE, Factonng by electronic mail, to appear

LeNsTrA, JR, H W, Factoring integers with elliptic curves, Ann of Math 126 (1987) 649673
LENSTRA, Jr, H W, Elliptic curves and number-theoretic algorithms, in Proc Internat Congress of
Mathematicians, Berkeley, 1986 (Amer Mathematical Soc, Providence, RI, 1988) 99-120
LENSTRA, JR, H W and R TUDEMAN, eds , Computational Methods im Number Theory, Mathematical
Centre Tracts, Vol 154/155 (Mathematisch Centrum, Amsterdam, 1982)

Massey, J L, Shift-register synthesis and BCH decoding, IEEE Trans Inform Theory 13 (1969)
122-127

MiLLer, G L, Riemann’s hypothesis and tests for primality, J Comput System Sct 13(1976) 300-317
MONTGOMERY, P L, Speeding the Pollard and elliptic curve methods of factorization, Math Comp 48
(1987) 243 264

Morain, F, Implementation of the Goldwasser~Kihan-Atkin primality testing algonthm, INRIA
Report 911, INRIA Rocquencourt, 1988

MORRISON, M A and J BRILLHART, A method of factonng and the factonzation of F, Math Comp 19
(1975) 183-205

ObLYzko A M, Discrete fogarithms and their cryptographic significance, in [8] 224-314

PiLa, J, Frobenius maps of abehan varieties and finding roots of unity n fiite fields, Tech Report,
Dept of Mathemaucs, Stanford Umv., Standford, CA, 1988

POCKLINGTON, H C, The determination of the prime and composite nature of large numbers by
Fermat s theorem Proc Cambridge Philos Soc 18 (1914-16) 29-30

PoHLIG, S C and M E HFLLMAN, An improved algorithm for computing loganthms over GF{ p) and
s cryptographic significance, IFEE Trans Inform Theory 24 (1978) 106-110

PoLLaRD, J M, Theorems on factonzation and primality testing, Proc Cambridge Philos Soc 76
(1974) 521-528

PorLarD,J M, Monte Carlo methods for index computation (mod p) Math Comp 32(1978)918-924
POMERANCE, C, Analysis and comparison of some integer factoring algonthms, in [47] 89-139
POMERANCE, C, The quadratic sieve factoning algonthm, in [8] 169-182

Pomrrance, C, Fast, ngorous factonization and discrete legarithm algortthms, i DS Johnson, T
Nishizeki A Nozaks and HS Wilf, eds, Discrete Algorithms and Complexity (Academic Press,
Orlando, FL 1987) 119 143

POMERANCE, C, Personal communication

POMERANCE, C ., J W SmiTH and R TULER, A pipehine architecture for factoring large integers with the
quadratic sieve algorithm, SIAM J Comput 17 (1988) 387-403

Rasin M O, Probabihstic algonthms for testing pnimality, J Number Theory 1. (1980) 128—-138
Reynert J M, Unpubhshed manuseript

Ritser H, Prime Numbers and Computer Methods for Factorization, Progress in Mathematics, Vol §7
{Birkhauser, Boston, 1985)

[67]
[68)
(69]
£70]
(m
(721
{73
(741
[

(761
[

{78]
(791

(80]
81]

(82}

[83]
[84]

ALGORITHMS iN NUMBER THFORY 715

RIVEST, R L., A SHAMIR and L ADLEMAN, A method for oblaimng digital signatures and public key
cryptosystems. Comm ACM 21 (1978) 120-126

SCHNORR, C P and H W LENSTRA, JR, A Monte Carlo factoring algorithm with hnea: storage Math
Comp 43 (1984) 289-311

SCHONHAGE, A , Schnelle Berechnung von Kettenbruchentwicklungen, Acta Inform 1(1971) 139-144
ScHOOF, R 1, Quadratic ficlds and factorization, in {47] 235-286

ScHOOF, R J, Elptic curves over finite fields and the computation of square roois mod p, Math Comp
44 {1985) 483494

SCHRUVER, A, Theory of Linear and Integer Programming (Wiley, New York, 1986)

SELFRIDGE, J L and M C WuUNDERLICH, An efficient algonthm for testing large numbers for primality,
m Proc 4th Manitoba Conf Numerical Math, Umiversity of Manitoba, Congressus Numerantium,
Vol XII (Utilitas Math, Winnipeg, Canada, 1975)

SEYSEN, M, A probabilistic factonization algorithm with quadratic forms of negative discriminant,
Math Comp 48 (1987) 757-780

SILVERMAN, JH, The Arnthmetic of Elhptic Curves, Graduate Texts in Mathematics, Vol 106
(Springer, New York, 1986}

SiLVERMAN, R D, The multiple polynomual quadratic sieve, Math Comp 48 (1987) 329-339
SOLOVAY, R ,and V STRASSEN, A fast Monte-Carlo test for pnmality, SIAM J Comput 6(1977)84-85,
Erratum, ihidem 7 (1978) 118

Te Rieve, H1J, WM LiceN and DT WiNTER, Factoning with the quadratc steve on large veclor
computers, Report NM R8805, Centrum voor Wiskunde en Informatica, Amsterdam, 1988
VALLEE, B, Provably [ast integer factoning algonthm with quast-uniform small quadratic restdues,
INRIA Report, INRIA-Rocquencourt, 1988

WeBER, H, Lehrbuch der Algebra, Band 3 (Vieweg, Braunschweig, 1908)

WeSTERN, A E and J C P MILLER, Tables of Indices and Primitive Roots, Royal Society Mathematical
Tables, Vol 9 (Cambridge Umiv Press, Cambnidge, 1968)

WIEDEMANN, D H, Solving sparse hinear equations over hnite fields, JEEE Trans Inform Theory 32
(1986) 54-62

WiLtiams, H C, Pnmahty testing on a computer, Ars Combin 5 (1978) 127185

WirLiams, HC, A p+ 1 method of factonng, Math Comp 39 (1982) 225-234

