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Dynamics of Line Defects in Nematic Liquid Crystals
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An experiment is performed in which a topological line defect (S = —
—, ) is forced to move with con-

stant speed c under the action of an applied voltage V. We argue that the line speed is determined by a
competition between the viscous damping and the free energy that the system gains by displacing the
line, so that c PV, with P=(I/2&b)(a, lt. /x)'~2 and b a number —1 determined only by viscous effects
close to the core of the defect.

PACS numbers: 61.30.Jf, 47.35.+i, 62.30.+d

In the search for a fundamental understanding of the
dynamics of nonlinear systems, there has recently been
considerable interest in the dynamics of nematic liquid
crystals. ' Nematic liquid crystals are the simplest of
the liquid-crystal phases and a great deal is already
known about their static and dynamic behavior, well de-
scribed by nonlinear partial differential equations, par-
ticularly in the limit of small deviations from equilibri-
um.

One reason for studying nonlinear dynamical proper-
ties is that domain walls in liquid crystals are often de-
scribed by nonlinear equations reminiscent of the sine-
Gordon equation, but with the important difference that
they are first order in time instead of second order. This
is because of the large viscous damping. For equations
of this type, the recently developed marginal stability
theory predicts the propagation speed of a domain wall
separating a stable and an unstable state. Since electric
and/or magnetic fields can be used to create such states
in liquid crystals, domain walls of this type can be stud-
ied experimentally. In agreement with theory, their
speed is determined by a balance of the viscous damping,
the electrostatic energy difference between domains, and
the elastic energy of the wall.

Nematic defects are macroscopic objects; so direct ob-
servations of their behavior can be made simply with use
of an optical polarizing microscope. They are topologi-
cal in character and can be created under controlled con-
ditions in the laboratory but their dynamics have re-
ceived only limited attention. In the absence of external
fields, the elastic deformation induced by a defect falls
off slowly (inversely proportional to the distance from
the defect), and the "interaction" energy between de-
fects or between a defect and a wall therefore depends
logarithmically on the distance. As a result, the annihi-
lation time of two S =+1 defects is proportional to the
square of the initial separation. To study defect dynam-
ics without the influence of walls, the induced deforma-
tions have to be localized in a region far from boun-
daries. This can be done with the aid of external fields.
In the experiment described in this paper we create a line
defect whose excess energy is linearly proportional to its
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FIG. l. (a) The experimental geometry; Vz V„O. (b)
The left line moves to the right when Vq is turned on. (c) The
director pattern after the first reorientation wave has swept
through immediately after V, is turned on. The director con-
figuration is metastable to the left of the line and stable to the
right of the line. The line moves to the left.

distance from one of the walls; we study its motion and
show that it rapidly approaches a constant speed, as ex-
pected on the basis of elementary considerations. Al-
though the propagation of a line is physically different
from domain walls, its speed is again determined by the
competition between the free energy gained by displacing
the line and viscous damping hindering its motion. The
problem is analogous to that of a solid body falling
through a viscous medium in a constant force field.

Figure I (a) shows the experimental setup. The
nematic liquid crystal 5CB (pentylcyanobiphenyl) is
sandwiched between two transparent InO electrodes
separated by wire spacers. The wires are electrically in-
sulated from the InO surfaces by a thin coating of var-
nish. All the surfaces are treated so that the director n,
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the preferred direction along which the liquid-crystal
molecules tend to align, is perpendicular to them.
These boundary conditions force the director to form
S= —

& line defects parallel to the wires in the mid-
plane of the sample. The sample thickness 2h is 140 pm,
determined by the wire thickness, and the distance be-
tween the two wires is —1 mm. The experiment is to ap-
ply a 1-kHz ac voltage, Vp =90 V, between the two wires
forcing the line to move away from the wire [Fig. 1(b)]
since the dielectric anisotropy e, of 5CB is positive,
s, —10. Eventually the line comes to rest a distance I
from the wire. Vp is then turned off and simultaneously
(within 50 psec), a vertical voltage, V„, is applied to the
InO electrodes forcing the line to move back towards the
wire (l 0) with a speed c. The experiment is filmed
with a video camera and the motion of the line analyzed.

As soon as V, is turned on a wave of director reorien-
tation moves through the material without displacing the
line. We interpret this as a readjustment of the director
pattern, shown in Fig. 1(c), to one in which the vertical
distortion is now localized in the middle of the sample.
After this, the line defects start to move towards the
wire. The first reorientation wave is fast (milliseconds)
compared to the motion of the line defect (seconds).

The importance of this first wave is that it sets up a
stable but more energetic director configuration on the
wire side of each line. Physically, if the center of the line
is at y =0, then for y & 0 the director wants to turn one
way and for y & 0 the other way. For concreteness, con-
sider the left defect. The only way the less energetic
configuration can replace the more energetic splay-bend
distortion of the director is by movement of the line to
the left. While the region to the right is absolutely
stable, ' the region to the left is metastable. The line de-
fect can thus be viewed as an energy barrier that has to
be overcome before the total energy can be reduced by
replacing the metastable state with the absolutely stable
state. The physics is therefore different from that of the
motion of a wall that separates an unstable state from a
stable state, discussed in the introduction.

Contrary to the case of the interaction of two defects
in the absence of fields, the electric field in this experi-
ment confines the distortion of the director to a thin re-
gion around y=0. This results in an excess energy for
the line that is linear in the distance l from the wall, and
implies a constant force on the line. As discussed in
more detail below, we then expect the line speed to ap-
proach a constant value c whose voltage dependence is
determined by the change in excess energy with voltage.
This is borne out by the experiments.

A few millseconds after the application of V„, the line
starts to move towards the wire. We track it over a dis-
tance of about 200 pm from the beginning of its motion
until it comes to rest close to the wire. Figure 2(a)
shows the variation of c with applied voltage at 32 C.
Except for the region V—0, c is proportional to the ap-
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FIG. 2. Characteristics of the line motion. (a) Line speed vs
the applied vertical field showing that the speed is linear in the
applied voltage. The slope of this line is P. (b) P vs tempera-
ture for 5CB. The nematic to isotropic transition temperature
for 5CB is 36'C.

plied voltage. A linear least-squares fit to the data gives
the constant of proportionality as P =4.7 pm/Vsec. Fig-
ure 2(b) shows P as a function of temperature. The data
are shown as points.

Using the definition of the coordinate axis shown in

Fig. 1, and calling 0 the angle between n and the x axis,
we then have for the free energy in the one-constant ap-
proximation

r '2 r '2
F= —'J dVK +

Bx By

a E sin Ht.4n

(la)

The fundamental length scale ( set by the competition of
the elastic and electric forces is g

= (4rrK/e, E ) '~ .
From this, we get (/2h =0.22/V, in 5CB, so that for V,
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strain and the core size. Since such details are not
known with great accuracy, the above estimates are
crude, and our approximation for y,ff should be con-
sidered correct to only about 20%.

The data of Fig. 2(a) give p=c/V„=4. 7 pm/Vsec,
with an error of about 5% estimated from the scatter in
the data. For 5CB at 30'C, '

yr =0.50 dyn/cm sec,
(Kr +K3)/2 =5.5 x 10 dyn, s, =9.8, gh =0.25 poise,
and yz= —0.56 poise. With these values, Eq. (6) pre-
dicts p=c/V= 4 2b '

p. m/Vsec. Comparison with the
experimentally obtained value then gives b =0.9, slight-
ly more than a factor of 2 smaller than our crude esti-
mate, suggesting that the core drags some material with
it to reduce the director rotations. Figure 2(b) compares
the experimentally observed temperature dependence of
p with the temperature dependence as predicted with the
aid of Eq. (6) with fixed b. In both cases, the tempera-
ture dependence appears to be qualitatively correct.

While we interpret the data as support for our basic
notion that the director pattern simply translates in the
applied field with a speed determined by a balance of the
viscous force against the elastic and electrostatic ener-
gies, a more stringent comparison of theory and experi-
ment requires a closer examination of backflow effects
(taken into account here in an approximate way by pick-
ing an effective viscosity that is the average of the pure
splay and bend viscosities ), and of the dissipation and
possibly drag in the small region around the core. Since
in our experiment the driving force of the motion is
known accurately (even when the splay and bend elastic
constants are not the same' ) while the dissipation is
determined only by the details of the core structure, we
hope that this will provide a way to study small-scale
properties of defects through their dynamics. '

In conclusion, we have studied the motion of a line de-
fect when its driving force is precisely known and in-
dependent of the position of the defect. The resulting
line speed is accounted for by a simple balance between
the change in free energy gained by displacing the line
and the energy dissipation near the defect. The experi-
ment therefore opens up the possibility to study viscous
effects near the highly strained core region.

KB 8/By = —(d/d8)(s, E /8tr) sinz8. (2)

A first integral of this equation can be obtained easily.
To see this note, that (2) is like the equation of motion
for a particle in a potential. Here, the analog of energy
conservation of the particle translates to constancy of the
sum of the elastic and electric energy density in (1), i.e.

—'K(B8/By) + (s,/8tr)E sin 8=const. (3)

On the boundaries, 8= ~ tr/2 and B8/By is negligible for
h»g, hence const=c, E /8tr. Equation (3) then finally
yields for F,„,

+h
F,„,=F~„+2l dy E cos 8

8tr

=F~«+ l(s, K/tr) 't E, (4)
where the integral was evaluated by transformation to 0
as the integration variable, with use of dx =(d8/~ cos8~.

The driving force for this motion is —dF,„Jdl, while
the energy is dissipated only in a small region of radius
of order g around the defect line. Thus, on dimensional
grounds, we expect an equation for its motion of the
form

2by, trdl/dt = —dF,„Jdl = —E( ~Ks/ )t'rt, (5)

implying that the velocity" c = —dl/dt is

c = (E/2b y,rr) (s,K/tr) 't'. (6)

In these equations yeff is an effective viscosity and b a
number of order unity. The term on the left-hand side
represents the friction that occurs in a region of size g
near the defect where the director changes rapidly in
time. The number b depends only on the details of the
energy dissipation in this region, where the strain is
singular. As a result, b, which in principle has to be
determined by solving of the full hydrodynamic equa-
tions for the two-dimensional flow around the defect, will
depend on the core size and may show some weak field
dependence as well. A rough estimate (expected to be
an overestimate' ) for b, obtained by approximation of
the structure near the defect by that of the defect in the
absence of fields, gives b = 2. 1 for fieM strengths used in
our experiments. Because the strain near the defect con-
sists of both splay and bend, we take y,ff 2 (@be d

+ y»r, y), where3 y»r, y
—yr, the orientation viscosity, but 'Zhu Guozhen, Phys. Rev. Lett. 49, 1332 (1982).

larger than a few volts the free-energy density is nonzero only in a region thin compared with the sample thickness. For
distances much larger than ( to the left of the defect (B8/Bx) 2 is negligible and since 8=rr/2 in the undistorted state to
the right of the line, the region to the left has for l » g an excess free energy per unit line length,

p+h
F,„,=l dy[ 2 K(B8/By) —(s,/8n)E (sin 8 —I)]+F (lb)

Here l is the distance between the wire and the defect
line and F~« is the free energy of the core region within &bend yl Q)/(rlh y2) because of backflow effects. As
a distance g from the line defect. To evaluate the first mentioned earlier, the terms yeff and b on the left-hand
term in F,„,we first express B8/By in terms of sin 8. The side of Eq. (5) both depend on the precise structure near
equation away from the disclination is the core, such as the splay and/or bend character of the
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This idea goes back to the work of Brochard, Ref. 4.
Elastic forces do not play a significant role in this initial re-

orientation that takes place in a time of order y/e, E with y
the appropriate combination of viscosities damping the splay-
bend deformation. In the regime studied here, this is about a
few milliseconds agreeing with our experimental observations.

This picture is supported by a more detailed stability
analysis. To the left of the line defect, the director approaches
the x-indpendent profile 80(y) given by Eq. (2). On our substi-
tuting 8 80(y)+68(y)e '+ (E )0) and linearizing, A8 is

found to obey an equation of Schrodinger type with co playing
the role of the energy eigenvalue. With the use of arguments
similar to those discussed by A. C. Scott, F. Y. F. Chu, and
D. W. McLaughlin, Proc. IEEE 61, 1443 (1973), it can then
be shown that m&0, so the region to the left of the line is
linearly stable.

In Ref. 9 the annihilation of two defects in the absence of
fields is studied. Here, F„,—ln(l) and Eq. (5) gives I2
—(t —to).

The energy dissipation per unit time and line length is ac-

cording to Ref. 3 f y(88/Bt) dxdy c yf (88/Bx) dxdy.
Equating this to the change in elastic energy per unit time

( cdF,„Jdl) yields b —,
' f (88/Bx) dxdy. The use of the

expression for 8 near a —j defect, 8 —P/2, gives

b —,
'

Jl dr Jl dp(sin tt/4r) —,
'

tr In(&/r, ),
C

where r, is the core size. From the formula after Eq. (la) we
get g —6000 A for V 50 V; taking r, 28 A, we then get
b-2. 1. We expect this to be an overestimate since the effect
of the electric field will be to reduce (88/Bx) 2 in the expression
for b, and since the core size may be a few times the molecular
size.

K. Skarp, S. Lagerwall, and 8. Stebler, Mol. Cryst. Liq.
Cryst. 60, 215 (1980).

'~The field 8(y) in (lb) away from the defect is a combina-
tion of splay and bend; the analysis leading to (4) can be ex-
tended to the case ECI Wit:3. For 5CB, the resulting correction is
about 3%.

i5In this regard, we note that in Ref. 12 a larger value of the
core size would give a lower estimate of b, e.g. , r, 60 A, gives
b = 1.8.
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