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Dynamical Velocity Selection: Marginal Stability
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Dee and co-workers have advanced the idea that the natural velocity of fronts propagating into an un-
stable state is related to the stability of these fronts through "marginal stability. " It is shown that this is
indeed the case if front solutions lose stability through one particular mechanism. Marginal stability is
derived for front propagation in the Swift-Hohenberg equation, and for an extension of the Fisher-
Kolmogorov equation, is only consistent with the existence of nonuniformly moving fronts in a certain
range of parameters.

PACS numbers: 68. 10.La, 03.40.Kf, 47.20.Ky

In the last few years it has become appreciated in the
physics community that the propagation of fronts into an
unstable state forms a particularly interesting class of
dynamical problems. ' Such fronts arise in such diverse
fields as biology, combustion, nerve propagation,
chemistry, and mathematics. " In most examples stud-
ied, the states before and behind the front are rather
featureless, and the fronts appear as wall-like excitations
resembling propagating walls in liquid crystals. Physi-
cally richer examples of front propagation can be creat-
ed, however, in fluid-flow instabilities when the system is

suddenly brought above the threshold for a finite-
wavelength instability. In such experiments, the front
propagation induces the wavelength selection of the state
emerging behind it, thus leading to a form of dynamical
pattern selection. It is the purpose of this paper to clear-
ly identify the marginal-stability mechanism of front
propagation advocated by Dee and co-workers, ' building
on their ideas and those of Shraiman and Bensimon. '

The prototype equation exhibiting the simplest type of
front propagation (without induced pattern selection) is

the Fisher-Kolmogorov (FK) equation it//r)t =rl P/Bx
+p —

P . The typical situation of interest here is the one
in which a front is moving to the right, replacing the un-

stable state &=0 by the stable state p= 1. What deter-
mines the velocity t of a front growing out of a
sufficiently localized region where pe0 initially? This
question is not answered by steady-state considerations,
since the equation 8 p/Bx = —vrl@/r)x —&+p for uni-

formly translating fronts p(x —i t) admits solutions for
any velocity t (as can easily be seen by exploiting the
analogy with the equation of motion for a particle in a
potential and subject to friction). That there is, never-
theless, some naturally selected velocity l

* was shown by
Aronson and Weinberger, who rigorously proved that
the speed of the physically most relevant fronts that are
initially sufficiently localized [such that p(x, t =0) drops
off faster than e ], approaches the value v* =2 for
long times.

The result by Aronson and Weinberger strongly sug-
gests that some sort of dynamical velocity-selection

rip rl p= —2 — +(~ —l)y —y',ex' ex 4 (2)

0& p&1.

These equations admit stable periodic states. In the nu-
merical studies, ' the front speed was indeed found to ap-
proach the marginal-stability velocity.

Marginal stability can be tested experimentally in the
Taylor-Couette and Rayleigh-Benard flows, since just
above the onset for instability these are described by the
AE and SH equations. '" In the Taylor-Couette insta-
bility, the velocity of fronts was found to be a factor of
2 smaller than predicted by the theory. This discrepancy
is as yet unresolved. ' Recent results on front propaga-
tion just above the Rayleigh-Benard instability, however,
are in excellent quantitative agreement with the theoreti-
cal prediction.

Clearly, for front propagation into an unstable state,
marginal stability emerges as a viable dynamical veloci-
ty-selection mechanism with important practical and
conceptual implications. In this paper I extend the ideas
of Dee and co-workers' and of Shraiman and Bensi-

mechanism exists. This point of view was clearly advo-
cated first by Dee and co-workers, ' who pointed out that
the velocity I.

* =2 of the FK equation is just the one at
which the front appears to be "marginally stable, " in
that front solutions that move slower than» are unsta-
ble to perturbations (in the co-moving frame), while
those that move faster are stable. The marginal-stability
hypothesis —i.e., the conjecture that the natural speed
for propagation of initially localized fronts into an unsta-
ble state is in general the one corresponding to the
marginal-stability point —was tested numerically by Dee
and co-workers ' for several equations in which fronts
give rise to dynamical pattern selection, e.g. , the arnpli-
tude equation '' (AE) for complex p,

dplitt =6 P/6x +P —
~ p ~

and the Swift-Hohenberg' (SH) for real p,
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FIG. l. (a) The growth of a crystal, indicated by the dashed
lines, becomes gradually more dominated by the growth of the
slo~est facet. (b) Illustration of the fact that the velocity de-
creases with the steepness of the profile. (c) For a profile con-
sisting of two parts moving with difrerent speeds roughly pro-
portional to their width, the crossover point moves up in time,
so that the fast part "retreats" from the leading edge.

mon, ' so as to manifest the mechanism that can drive
the front velocity to the marginal-stability value. I find
that this happens when the front solutions lose stability
because the group velocity for perturbations becomes
larger than the envelope velocity. In this case, a
Burgers-type equation ' for the local front structure
drives the speed of (initially localized) fronts towards the
marginal-stability velocity t *. The marginal-stability
scenario is shown not to apply if the steady-state solu-
tions lose stability because of another mechanism, and
this occurs in an extension of the FK equation. For the
AE and SH equations, however, the marginal-stability
point is attractive, as found empirically by Dee and co-
workers. '

I first give an intuitive explanation for the seemingly
counterintuitive result that natural front velocity is the
slowest one at which a profile is stable. In passing, we
note that such an efrect is well known for crystal growth:
If difTerent facets of a crystal have diAerent growth rates
as in Fig. 1(a), the growth of the crystal becomes pro-
gressively dominated by the si'o~est facet. This can be
viewed as a simple example of' a dynamical selection
mechanism. An important property of the type of fronts
we are interested in here is that there is a branch of
(stable) solutions whose velocity is increasing with the
width of the profile (or its envelope). Figure 1(b) illus-
trates this for two profiles gro~ing into an unstable state.
If their local growth rate is (about) the same, we see that
f or geometrical reasons the steeper profile has the
slowest velocity; thus the velocity is an increasing func-
tion of the width. Consider now the profile of Fig. 1(c),
which consists of two parts with difrerent steepness and
corresponding speeds. Clearly, the slowest-moving part
(full line) expands at the expense of the faster part

(dashed line), and increasingly dominates the appear-
ance of the front. This velocity-selection mechanism is
an immediate consequence of the fact that the faster-
moving portion efrectively decreases the width of the
profile and hence its speed. Of course, the discontinuities
in slope of' Fig. 1(c) do not occur f'or the smooth profiles
relevant for Eqs. (1) and (2), but we shall see that essen-
tially the same dynamical mechanism can drive I to-
wards the marginal-stability value i

* in those cases.
If we consider instead of Fig. 1(c) a profile whose

asymptotic (large-x) behavior is given by the slower-
decaying dashed portion, because the initial conditions
are not sufficiently localized, this faster-moving portion
actually expands in time and dominates the long-time
behavior. Analogously, the marginal-stability point is

only approached for sufficiently localized initial condi-
tions, and this was indeed found by Aronson and Vv'ein-

berger for the FK equation.
I now support the above discussion by an analysis in

the leading edge of the profiles that extends work by
Shraiman and Bensimon' on first-order partial-difTer-
ential equations. The analysis will be quite general for
propagation into an unstable state & =0 described by an
equation p, =F(p, p, . . . ), but I will illustrate the argu-
ments by specifying to the AE and SH equations. (I use
the AE as an example to stress that the discussion ap-
plies to equations that allow periodic states as well. ) It is
convenient' to transform to the variable u by writing
p =e ", where I allow u to be complex since for the AE
and SH equation p is oscillatory. In the leading edge,
where u "(—:Reu) —~ for x —~, the dynamical equa-
tion for u then becomes of the form

u, = f(q, q„, — (3)

Note that when q =k, independent of x, we have
f(q =k, 0, 0, . . . ) = co(k), where cu(k) is given by the
dispersion relation for perturbations of the form
p —e '+ ' [for the AE equation we have, e.g. , ru(k)
= 1+k']

In a frame moving with a constant velocity t, (3) be-
comes u, =vq —f(q, q„. . . ). Let us first consider
steady-state front solutions, i.e. , a solution q =k
(=const) whose envelope propagates with a speed v.
For such a solution, Reu, =0 in the moving frame, and
thus we get Re[vk f(k)] =0,or—

~ (k) =Ress(k)/Rek.

To study the stability of these solutions, let us consider a
small bounded perturbation 6—e " in u, with Rep & 0.
From the above equation for u, in the moving frame, we

where q=u, . For the AE we have, e.g. , f(q, q, ) =1
+q-' —q, and for the SH equation

f(q, q„q, ,q„„)=e —
I
—2q —

q +2q, (1+3q )

&qqx w
+ q vx x.
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then find that perturbations with small
~ p ~

are stable if
Re[Iv(k) fq—(q =k)]p] & 0 for arbitrary small p with
Re@ & 0. Since f(q =k) =co(k), this inequality is

obeyed, provided that

(0) (b)

Re k"

Im(dru/dk) =0; i (k) & Re(dru/dk). (5) AE z

The first part expresses that only those profiles whose
wavelength ). =2'/Imk (for given Rek) is the most un-
stable one are insensitive to small perturbations [clearly,
Im(dao/dk) =0 is a necessary but not a suScient condi-
tion; the necessary conditions and the stability to arbi-
trary wavelength perturbations are discussed later]. To
understand the second part, note that Re(dro/dk) plays
the role of the group velocity' with which a local distur-
bance moves. So, when viewed in the co-moving frame,
a disturbance moves to the left for ~ & Re(dcu/dk): The
profile is stable because disturbances retreat from the
leading edge in much the same way as the break point in

Fig. l(c) retreats!
All stable solutions will at least have to satisfy the

condition Im(den/dk) =0. Using this equation to express
Imk as a function of k"=Rek, we can write the velocity
of these solutions as a function of k' only. The resulting
functions c(k") for the AE and SH equations are depict-
ed in Fig. 2(a). Note that ~ diverges for k' 0 and, ac-
cording to Fig. 1(b), this is a general feature of the solu-
tion for front propagation into an unstable state. More-
over, the second condition in (4) shows that these solu-
tions are stable to long-wavelength perturbations be-
cause the group velocity is smaller than the envelope ve-
locity. The marginal-stability point k =k *, v = i *,
where the latter effect ceases to ensure stability, is, ac-
cording to (5), given by

'

Im =0,dM

dk
dco

dk
k =k*

where a subscript u denotes differentiation with respect
to u", we obtain upon differentiation of Eq. (3)

q( = [f' f~q']q„+.Lq, — (7)

with ~
* given by (4). It is straightforward to show that

these equations precisely determine the extrema of the
branch i (k') given by Im(den/dk) =0; they are indicat-
ed by dots in Fig. 2(a). Taken together, these results
therefore demonstrate that there often is a branch v(k")
of stable-front solutions for small k", at the bottom of
which lies the marginal-stability point.

To understand how the speed of a front solution devel-
ops, let us consider profiles whose envelopes are mono-
tonically decreasing. It is then useful' to write an equa-
tion for the evolution of q in terms of the variables u'
and t, since u' moves with the profile. Using that

Rek Ur

FIG. 2. (a) I as a function of Rek for solutions of the AE
and SH equations (f'or e= —, ), satisfying Im(dru/dk) =0. (b)
Qualitative sketch of the dynamical behavior of q' for two
diferent initial conditions. The initial q' is drawn with a solid
line and the one at a later time with a dashed line.

with .Eq = fq q„„—f~ q„„„—— . . Although q =k is a
solution of Eq. (7), we recognize in the term between
square brackets for q=k the combination k'[r (k) —fz]
=k'[t (k) —dru/dkl that according to (5) determines the
stability of solutions. Therefore, the marginal-stability
point where this term vanishes corresponds to a special
fixed point of this equation, and the relevant nonlineari-
ties for velocity selection are in the first term on the
right-hand side of (7), provided that the operator j is
stable. To illustrate this, consider the case in which the
highest derivative in I is of second order, as is the case
for the AE equation. We can then approximate
Eq =Dq„„with D = f~ (=Rek &—0 for the AE equa-
tion), and consider the term between square brackets
as a function of q only, so that (7) reduces to q,
=c(q)q„+Dq„„, with e(q) real in view of (5). This is

of' the form of the well-known Burgers equation, ' for
which it is straightforward to show that the nonlinear
term indeed drives q to the marginal-stability value for
sufticiently localized initial conditions. More generally,
let us for the moment concentrate on the first term in Eq.
(7), so that q, =[f' —q"f~]q„, where we approximate f
as a function of q only. In view of the above analysis,
the term between square brackets is positive for small q'
along the stable branch and vanishes at q=k*. Thus,
upon writing q(u", t) =k*+p(u", t), we get to lowest
nontrivial order p, = —cpp„with c a positive constant.
In the most important case in which the initial profile
is su

anciently

local ized, i.e. , d rops ofT faster than
exp[ —(Rek*)x], q' is larger than Rek* for large u", as
sketched in Fig. 2(b). Since p„ is positive in this case p
decays according to the above equation; in other words,
q' approaches Rek* for all u', and by implication the
front velocity I approaches t *. A case in which the ini-
tial conditions fall off less I'ast than exp[ —(Rek*)x] is
also depicted in Fig. 2(b). As indicated, q' then stays
smaller than Rek* at later times, and as a result the
speed of the profile will approach a value larger than I *.
Thus, provided that the operator L is stable, we see that
the first term in (7) both governs the stability of fronts
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and drives the velocity to the marginal-stability value.
This is the mechanism illustrated in Fig. 1. Within the
context of this approach, these considerations therefore
show that the results derived by Aronson and Wein-
berger for the FK equation can indeed be generalized to
a large class of equations describing front propagation
into an unstable state. For a specific equation, however,
the condition under which the first term in (7) drives v

towards t.
* is the requirement that the operator L be

stable on the branch of solutions obeying (5). For the
AE equation this is indeed the case, as follows from the
earlier observation that Xq =Dq„„(with D = fz-
=k"), so that Eq. (7) reduces to a Burgers-type equa-
tion' from which the same conclusions are reached as
above. In a more detailed paper I will show that the
eigenmodes of L for the SH equation are indeed stable
and hence, together with the above analysis, that the
marginal-stability point of this equation is attractive.
This provides an a posteriori justification for the numeri-
cal observations of Dee and co-workers. '

If front solutions first lose stability because the eigen-
modes of L become unstable, "marginal stability" does
not hold. That the requirement that L be stable is a
nontrivial condition is shown by the extended FK equa-
tion p, =p, —gent„+p —

p . For ) ( —,', , the margin-
al-stability point is attractive, and the front velocity will

approach t. *. For y & —,', , however, the eigenmodes of
X of uniformly translating solutions p(x —t t) go unsta-
ble first, so that marginal stability cannot hold for these
type of fronts; for y&, '&, marginal stability can there-
fore only apply to nonuniformly moving fronts whose dy-
namics do not correspond to a simple translation of the
profile as a whole. This is presently being tested by Dee.

An important underlying assumption of the present
formulation is that there is a continuous branch of stable
steady-state solutions, since only then is the dynamics
not constrained by strong nonlinearities behind the lead-
ing edge. For the FK equation, the particle-on-the-hill
analogy demonstrates the existence of this branch of
stable solutions. This analogy is specific to the FK equa-
tion, but a counting argument demonstrates that the ex-
istence of a continuum family of stable fronts is a gen-
eral feature of uniformly moving fronts p(x —t t) propa-
gating into a steady state. Furthermore, Collet and Eck-
mann' have recently shown that the SH equation ad-
mits (for small e) a tuo parameter family o-f front solu-
tions as a result of the additional freedom introduced by
the wavelength k of the pattern emerging behind the
front. This is likely to occur in general for fronts lead-

ing to periodic states. Clearly, most of these front solu-
tions of the SH equation will be unstable, since there is

no reason to expect that im(dco/dk) =0 for an arbitrary
solution. As a result, the solutions that are stable will

form only a one-parameter continuous subset of these,
which is just what one expects to be necessary for the
leading-edge analysis to work. These questions as well

as a number of open problems will be discussed in a
more detailed account, in which I will also generalize
some other observations by Dee and co-workers ' and dis-
cuss important differences between solutions whose en-
t. elope is moving with a constant velocity and solutions
p(x —vt) that correspond to a uniform translation of the
profile as a whole.

I am grateful to Pierre C. Hohenberg and G. Dee for
hei pfu 1 discussions.
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