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0. Introduction,

TUCKALS?2 is a program to perform a three-mode principal component
analysis, in which components are computed over only two of the three modes,
and in which the third mode retains its original order. The technique was
developed by Tucker (1972) building on his earlier work (Tucker, 1966).
Improved estimation procedures were devised by Kroonenberg & De Leeuw

(1980). The technique has been fully described and illustrated by Kroonenberg
(1983a), and an annotated bibliography is Kroonenberg (1983b).

Three-mode principal component analysis is a technique to deal with data
which can be classified by three kinds of entities (called modes), say subjects,
variables, and occasions. These terms should be considered generic , rather than
specific ones. Three-mode data can be arranged into a three-dimensional block
or array X. The three modes will be called A, B, and C, respectively (see Figure
1). The orders of X are I, J, and K (upper case), and i, j, and k (lower case) are
the indices for the elements of the respective modes.

Figure 1  Data matrix X
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, A three-mode matrix can be seen as composed of two-mode submatrices
alled slices, and of one-mode submatrices (or vectors), called fibers. These
vo-way submatrices will be referred to as frontal slices, horizontal slices, and
iteral slices (Figure 2). The fibers will be called rows, columns, and tubes
“igure 3). Throughout this text Xy will denote the k-th of K frontal slice of X.
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Figure 2 Slices, the two-way submatrices of X
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The matrices of component loadings are named after the modes they refer
to, but as usual, the names of vectors and matrices are printed in bold face. Thus
A is the component matrix for Mode A and so on. The core matrix is denoted
by H. The terminology presented here is largely based on Harshman and Lundy
(1984a,b). The only difference lies in the choice of A and B. Harshman and
Lundy call Mode B what is called Mode A here, and vice versa.

1. Characteristics of input data,

TUCKALS?2 is a three-mode program which is primarily geared towards
metric three-way three-mode data, which are fully crossed with respect to all
modes. There are no special provisions for conditionality, nor for missing data
The program may be used for three-way two-mode data, such as multiple
covariance matrices or (double-centred) (dis)similarity matrices. In the latter
case it is implicitly assumed that the dissimilarities are equal to squared distances
rather than ordinary distances. If this is unacceptable, corrections should be
made before the analysis proper. There are no specific provisions in the
program for nonmetric data, such as optimal scaling or similar procedures for
handling ordinal or nominal data.

2. Data manipulation.

Several centrings can be performed in the program, primarily on frontal
slices of the three-way matrix, such as centring rows, columns or frontal slices,
and standardization of frontal slices, but the program is not specifically geared
towards comprehensive data manipulation. In practice, the centring options
suffice for most data sets, especially as by transposing the data matrix all desired
centrings can be performed. Centring on three modes at the same time is seldom
necessary. However, for full data manipulation, the program NDISMIS3 by
Brouwer (1985) or Harshman and Lundy's PARAFAC (q.v.) can be used; they
contain most of the desired options for centring and standardization. The latter
program includes an (iterative) standardization procedure for simultaneously
standardizing two or three modes.




3. Mathematical models ,

The prc;gram handles the Tucker2 model, in which orthonormal
components are computed for two of the three modes. The weights for
combinations of components of the first two modes for each of the elements of
the third mode are computed as well. They form together the core matrix H
which has orders equal to the number of components of two of the modes times
the size of the third mode, i.e. PxQxK.

The model is formally described as

P
Xijk = Y, gaipquhqu + €ijk
p=1g=1

where i=1,..1, j=1,..,J, and k=1,..,K; P and Q are the number of components
for the first two modes, and A = (ajp) and B = (bjq) are the component matrices
of the first and second mode respectively. H = (hpgk) is the PxQxK core matrix,
and E = (ejjk) the three-mode matrix with errors of approximation. A matrix
formulation of the model is

Xx = AHB' + Ex» k=1,...,K
in which the H are the (unrestricted) individual characteric matrices .

When instead of direct fitting of the original data, indirect fitting is used for
cross-product or covariance matrices, mostly A and B will become identical or
sign permuted versions of each other, and the core matrix H will in general be
symmetric with possibly sign inversions. The Tucker2 model is then identical to
the IDIOSCAL model of Carroll & Chang (1970,1972). When three-mode data
fitted directly, and the Hx are restricted to be diagonal, the model is an
orthonormal version of PARAFAC (q.v.), and when the component matrices A
and B are no longer required to be orthogonal then the model is equal to the
basic PARAFAC model. Finally when in the above case the input frontal slices
are symmetric generally the component matrices will be symmetric as well, and
the model is equal to the INDSCAL model (q.v.).

The model is essentially non-stochastic and data-analytic. It suffers from
rotational indeterminacy of the components, but this indeterminacy allows for a
nonrestricted, easy to fit, model. The indeterminacy implies that after a
solution is obtained the orthonormal solution may be transformed in several
ways without loss of fit, if the appropriate inverse transformations are applied as
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well.  The present program has no transformational capabilities for the
component matrices, but transformed solutions can be reintroduced into the
program to evaluate especially the core matrix after transformation, but also the
effect of the transfqrmations on the redistribution of variability over the
components can be assessed. Incorporated in the program is , however, an
orthonormal transformation procedure to diagonalize the core matrix as much
as possible. In a new experimental version of the program, also a no-singular
transformation procedure operating on the core matrix is included, which gives
a PARAFAC solution if such a solution exists. If not it provides either an
approximation to the PARAFAC solution, or it degenerates in a similar manner
as PARAFAC does (for details see Harshman and Lundy, 1984a, and Brouwer
and Kroonenberg, 1985).

L. Ouimization slsesis

The estimation of the Tucker2 model is achieved via an alternating least
squares algorithm which minimizes the loss function

K
2 IIXx - AHB|2
k=1

The minimization problem can be reduced by solving first for H as
H*x=A'XkB, and substituting H* into the loss function to obtain -

K
Y IIXx -AA'XkBB'||2
k=1

This last loss function can be solved via cyclically estimating A for fixed B,
followed by B for fixed A, and then A for fixed B again, etc. Each subproblem
is an eigenvalue-eigenvector problem of a dimension equal to the number of
components for the mode in question, and it can be handled efficiently by using a
Jac&bi procedure embedded in Bauer-Rutishauser's simultaneous iteration
method.

To start iterations, the solutions obtained via Tucker's Method I are used,
which will already provide the solution if an exact solution exists. As in
virtually all problems of this kind, only convergence to a local minimum is
assured, however, the specific initial configuration has shown to steer the
algorithm in the proper direction. The general impression is that local minima
do not form a serious problem.




5. Results
The primary output of the program consists of the following parts

1. The information on the overall fit of the model, and several partitionings of
this fit by the elements (i.e. variables, subjects, occasions) of each mode, as
well as by the component combinations via the extended core matrix; _7

2. Components scaled in several ways; i

hat a4

3. Core matrix scaled in several ways;
Optional supplementary information includes
4. Input data; .
5. (Optionally) removed means and scale factors, and scaled data;
6. Initial configurations;
7. Iteration history;

8. Residuals, fitted data , squared residuals;

9. Analysis of variance of squared residuals;
10. Joint plot of the first two modes, based on the average core slice;
11. Distances (inner products) of points in the joint plot;

12. Component scores for all first-third mode combinations on the components
of the second mode;

13. Many plots can be produced to visually inspect the solutions;

14. Coordinates of components, joint plot, and component scores, core matrix,
(squared) residuals, fitted data, and fits per element can be written to external
units;

14. External configurations can be read in, to restart analyses, to evaluate .rcsults
from other studies, to evaluate component spaces after transformation, to
construct core matrices for PARAFAC components (as in PFCORE , q.v.).
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The program was originally written in portable FORTRAN-1V, but was
adapted to FORTRAN77. It is designed for main frames, and it runs
satisfactorily on machines like the IBM8083, CDC, Fujitsu, and under UNIX on
Perkin Elmer and MicroVAX, and other machines.

The program has an option for dynamic array allocation and accordingly
its size depends on the variable array size. The program itself is approximately
300K, and the variable array size depends on 1, J, K., P, and Q. 1f no dynamic
array allocation is used, the standard array space is 120K, which can easily be
enlarged by changing only a few statements. A problem of 160 by 12 by 8 with
two components for each mode runs in 434K memory, and a 12 by 12 by 11
with five components for each mode in 326K memory.

The input is based on fixed column entry, and the program has an editing
facility for checking the input parameters without execution. The echo of the
input parameters is at the same time a complete input description.

It is contemplated to extend the program to provide options for producing
output in accordance with other standard programs for three-mode analysis,
such as PARAFAC and STATIS. Further possible developments consist of
porting the program to microcomputers by rewriting it into C, including some
transformational procedures on both the components and the core matrix,
including the Weesie and Van Houwelingen algorithm to allow for missing data,
and possibly extending the program to handle four modes.

The program is available from the author (P.M. Kroonenberg,
Department of Education, University of Leiden, P.O. Box 9507, 2300 RA
Leiden, The Netherlands), and the costs are US$150 . Further details can be
obtained from the above address.
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