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We present an experimental and theoretical study of electron transport in constricted
geometries, defmed in a high mobility two-dimensional electron gas (2DEG). In zero
magnetic field, the conductance of single point contacts, defined by a lateral depletion
technique, changes in quantized Steps of 2e2/h, when the width is varied. This
quantization, which persists in a magnetic field, is shown to result from the ballistic
transport through the point contact, in which one-dimensional subbands are formed.
Electron focusing has been observed in a double point contact geometry, showing ballistic
and phase coherent transport along the boundary of a 2DEG. A description of the
focusing is given in terms of a non-local voltage measuremenL

INTRODUCTION

Electron transport in low dimensional Systems has been studied predominantly in the

diffusive regime, where the elastic mean free path IQ is smaller than the dimensions of the

System. In this diffusive regime, quantum effects in the conductance at low temperatures

may manifest themselves äs localization, the constructive interference of back scattered

electron waves, or äs aperiodic oscillations äs a function of magnetic field, known äs

universal conductance fluctuations. The observation of these effects is directly related to

the fact that phase coherence is not destroyed by elastic scattering, and mayextend on a

scale far beyond the mean free path le between impurity scattering.

We have studied electron transport in the ballistic regime, where electrons are scattered

(or reflected) at the boundaries of the conductor only. This has been achieved by defining
submicron geometries in the two-dimensional electron gas of high-mobility (1£=8.5μιτι)

GaAs/AlGaAs hetero structures. The two-dimensionality of the electron transport in

hetero structures makes these Systems ideal starting points for the study of electron

transport in constricted geometries. Confmement in two directions can be obtained by

fabricating narrow wires in a 2DEG, either with etching techniques1, or by lateral

depletion, using a split-gate on top of the hetero structure2. The large Fermi wave length



40

λρ (typically 40 nm) makes ihese Systems attractive for the study of quantum transport

Because of the lack of impurity scattering in ballistic Systems, localization and universal

conductance fluctuations are suppressed. The quantum size effects, arising from the

lateral confinement of electrons, are therefore preferably studied in a ballistic System.

We give a survey of our experimental and theoretical study of electron transpon in

narrow and short constrictions, through which quantum ballistic transport occurs. With a

double point contact geometry, the coherent ballistic electron transport along the 2DEG

boundary has been investigated

QUANTUM BALLISTIC TRANSPORT IN SINGLE POINT CONTACTS.

The inset of Fig. l shows a schematic layout of the samples used to study electron

transport in narrow and short constrictions. By means of electron beam and optical

lithography a split gate is fabricated on top of the hetero structure, having a width of 250

nm between the gate electrodes. The point contact is defined by depleting the electron gas

underneath the gate. At Vg=-0.6V the electron gas undemeath the gate is fully depleted

and a constriction with W«250 nm is formed. A further reduction of the gate voltage

narrows the constriction until it is fully pinched off at Vg=-2.2V. Ohmic contacts,

between which the resistance can be measured, are attached to the wide regions.

Fig. l Conductance

quantization in zero

magnetic field. The

inset shows a

schematic layout of

the sample. The

depletion regions

around the gates are

indicated.

-1.0-2.0 -1.8 -1.6 -1.4

GATE VOLTAGE (V)

-1.2

In the experiments the resistance between the ohmic contacts is measured äs a function

of gate voltage, both in the absence and presence of a magnetic field. The result for zero

magnetic field3 is given in Fig.l. Similar results have been obtained independently by
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Wharam et alA The conductance of the point contact is shown, obtained from the

measurement after subtraction of a constant series resistance. A sequence of plateaux is

observed, where the conductance is quantized in mulriples of 2e2/h.

To interpret these results, we model the constriction region äs a narrow channel, in

which the electrons are confined by an electrostatic potential eV(x)= 1/2 mcüo2 x2 + eV0.

As a result of this confinement one-dimensional subbands are formed with subband

Separation ncuo. The narrow channel may now be envisaged äs an electron wave guide

with dispersion relation:

• + eV0 (l

The modes, or l D subbands, in which the electron waves propagate are indexed with n

(=1,2,3,..) and ky denotes the wave vector along the channel. In Fig. 2 the subband

occupation is shown for two different values of the gate voltage.

Fig.2 Subband occupation for two different gate voltages. A decrease in gate voltage

reduces the number of occupied subbands.

In the wide 2DEG regions the electron states are occupied to the Fermi level EFB

(=12.5 meV). A reduction of the gate voltage increases both Cu0) which is a measure of the

lateral confinement, äs well äs eV0, the electrostatic energy in the constriction. As shown

in Fig. 2, both result in a reduction of the number of occupied subbands Nc.

By applying a voltage V over the constriction, the right and left-going states are

populated to different electrochemical potentials μι and μ2· As is clear from fig. 2, the net

current I results from the energy interval εΥ=μι-μ2, in which only right-going states are

occupied. The conductance can now be evaluated:
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Ι ι Nc μι ]
Gc = γ = γ Σ l 5-eNn(E)vn(E)dE (2.

μ2

Essential for the quantization is the energy and subband index independence of the

product of spin-degenerate l D density of states Nn(E)= 2/π (dEn/dky)'1 and the velocity

Vn(E) = l/h dEn/dky , which gives the result:

r Nc 2e2 2e2 _ , EF K „
G c = Σ -ü- = -r-Int(— - + ) (3

n=l n n

In the classical limit Nc»l, this equation describes a Sharvin contact resistance5. Eq. 3

can also be viewed äs a direct consequence of the quantum mechanical. Landauer

formula6, applied to the case of a perfect conductor. The resulting finite conductance was

first identified äs a quantum contact resistance by Imry^. Eq. 3 predicts a contact

resistance of 2e2/h per occupied quantum channel. The conductance increases stepwise

whenever the Fermi level EF, controlled by the gate voltage, reaches a new l D subband.

It must be noted, however, that Eq. 3 has been derived for an infinitely long channel.

The actual constrictions are not only narrow but also short (The length L may be estimated

from the geometry of the depletion regions, shown in Fig. 1). Also Eq. 3 only holds if no

electron states with negative velocity are occupied in the energy ränge μι-μ2, which

requires the absence of back scattering in or near the constriction. Although impurity

scattering may probably be neglected (le»W,le»L), quantum mechanical reflection of

electron waves may occur äs a result of the relatively abrupt widening at the ends of the

constriction. We surmise that the transition regions in between the quantized plateaux may

be explained by the partial reflection of electron waves.

In a perpendicular magnetic field hybrid magneto-electric subbands are formed äs a

result of both electric and magnetic confmement. Because of the translational invariance

along the narrow channel, the electron transport may still be envisaged äs propagation of

electron waves, which now have a different dispersion8 :

En = (n - j)hcu + ~^~^ eVo . with τη"=τη — J ' and ω = Λ/ ωο +(ln~)2 ^4

The magnetic fields increases the subband Separation which is already present in a

narrow channel. Despite the different dispersion relations the relation Nn(E) vn(E) = 4/h

still holds in a magnetic field and the conductance is:

G c = Σ Γ = - I n t ( . + ) (5
n=l n n
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Eqs. 4 and 5 show a gradual transition between the quantization in zero field,
determined by CUQ, and the quantization in high magnetic fields, determined by Cuc=eB/m.

Experimentally this is observed in Fig. 3, which shows the conductance of a point

contact, obtained from the measured resistance for several values of the magnetic field,

after subtraction of a gate voltage independent series resistance^.

12

Fig. 3 Conductance

quantization in a magnetic

field. A magnetic field

increases the subband

Separation, which leads to

broadening of the plateaux.

-2 -1.8 -1.6 -1.4 -1.2 -l
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As in the zero field case, a sequence of quantized plateaux is observed. The effect of

the magnetic field is to reduce the number of plateaux in a given gate voltage interval.

This clearly shows magnetic depopulation of subbands. At high fields plateaux at odd

multiples of e2/h are beginning to be resolved äs a result of the spin-splitting of the l D

subbands in the constriction. Spin-splitting in a parallel magnetic field has been srudied

by Wh'aram et al.4

COHERENT ELECTRON FOCUSING

In the previous sections the electron motion was restricted laterally by the electric field

of the split-gate. However, äs we will discuss below, electrons can also be confined to

the boundary of the 2DEG by the application of a magnetic field. Classically, electrons

propagate along the boundary in skipping orbits (see inset Fig. 5) with cyclotron radius

lc= mvF/(eB), with multiple specular reflections at the 2DEG boundary. As a result of the
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translational invariance in the direction along the boundary, the quantum mechanical

transport may be treated äs the propagation of electron waves along the 2DEG boundary.

The quantization of the periodic motion perpendicular to the boundary, associated with the

skipping orbits, leads to discrete modes in which these waves can propagate. These

modes, or magnetic edges states, also play a role in the (quantum) Hall effect in narrow

wires^O. Experiments have been perforrned^, in which electrons are injected into the

2DEG by means of an injector point contact, and are collected in a second point contact,
with Separation L=3jim, after deflection by the magnetic field (see Fig.4)

Fig. 4 Experimental set

up for the electron

focusing experiment. A

gate on top of a Hall bar

defines the injector and

collector point contacts.

The inset shows the

double point contacts.

F ig .5 E lec t ron

focusing spectra at

several temperatures. At

4 K focusing peaks at

the classical positions

(arrows) are seen, at

lower temperatures a

fine structure is

resolved.

-0.4 -0.2 0 0.2 0.4 0.6
B (T)
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The classical propagation in skipping orbits gives rise to electron focusing. Peaks are

observed in the collector voltage for fields Bf = n 2mvF/(eL), (indicated by arrows in

Fig.5) where an integer number n of cyclotron diameters fits in between the point

contacts. At 4 K up to 8 peaks are observed, which illustrates the high degree of

specularity of the reflections at the 2DEG boundary. At low temperatures fine structure

develops in the collector signal. This can be understood by the coherent exitation of a

number of edges states by the injector. At the collector point contact interference12 occurs,

depending on the relative phases of the waves. The observation of this interference shows

the phase-coherent propagation of electron waves along the 2DEG boundary.

The electron focusing experiment may be described äs a non-local voltage

measurement. In a three-terminal setup, shown in Fig.5, the collector signal for reverse

fields is a measure of. the longitudinal resistance, whereas for positive fields a Hall

resistance RXy is superimposed. Alternatively the experiment has been performed äs a

four-terminal Hall measurement (Hg.6).

Fig. 6 Electron

focusing in a

four-terminal Hall

geometry.

-0.5
-0.3 -0.2 -0.1 0 0.1

B (T)
For reverse fields the classical Hall resistance Rxy= B/(ne) is observed, for positive fields

the electron focusing gives rise to a modulation around the average Hall voltage13.

CONCLUSIONS

We have observed a number of new phenomena associated with quantum ballistic

transport. The possibility to make constrictions which resemble an electron waveguide,

by means of lateral confinement from a split-gate, has led to the observation of

conductance quantization in the absence of a magnetic field. The propagation of electron

waves along a 2DEG boundary has been studied with an electron focusing experiment.
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The results show that quantum transport can be controlled on a microscopic scale, which

leads us to expect more fascinating developments in this new field.
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