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ABSTRACT

We have isolated the Xenopus homolog (Xint-1) of the mouse protooncogene int-1 from a neurula
stage 17 cDNA library. The deduced protein sequence of Xint-1 includes 371 amino acids. The
Xint-1 protein is more similar to the mammalian int-1 product (69 %), than to the Drosophila counter-
part of int-1, wingless (50%). Xint-1 shares several characteristics of secreted proteins with the other
int-1 homologs: it has a hydrophobic leader, multiple conserved potential N-linked glycosylation
sites and is rich in cysteine residues. All 23 cysteines are conserved in the three proteins. Xinz-1
is transiently expressed during the neurula stages of early Xenopus development.

INTRODUCTION

The int-1 gene is a proto-oncogene that is activated in certain mouse mammary tumors
by integration of the MMTYV provirus in the host genome (1 —3). Transcripts of this gene
are found in mammary tumors, but no expression is detected in normal adult tissues,
except for the testis of sexually mature mice (4). Expression of the int-1 gene during
normal development is temporally and spatially regulated. Transcripts are found in murine
embryos between day 9 and 14.5; in situ hybridization reveals that RNA accumulation
is confined to certain regions of the neural plate and its derivatives (5). The murine int-1
product has characteristics of a secretory protein: it has a hydrophobic leader, four poten-
tial glycosylation sites and is rich in cysteine residues (2). The gene product enters the
secretory pathway and is glycosylated at several sites (6). Int-1 is extremely conserved
between the mouse and man: only 4 of the 370 amino acids are different (7).

A step forward in unraveling the function of the inr-1 gene in normal development was
the identification of the Drosophila homolog (8). Almost 55% of the amino acids are con-
served between Drosophila int-1 (Dint-1) and mouse int-1. Dint-1 also has a hydrophobic
leader, potential glycosylation sites and all 23 cysteine residues are conserved. These struc-
tural similarities suggest homologous functions of the two proteins. Dint-1 is expressed
during development, but transcripts are hardly detectable in adults. Interestingly, Dins-1
turned out to be the known segment polarity gene wingless (wg) (8 —10). Expression studies
in developmental mutants show that wg/Dinz-1 belongs to a hierarchical network of genes
that govern Drosophila development (reviewed in 11).

The present view on the function of wg/Dint-1 is that it functions as an extracellular
differentiation factor that contributes to the developing fate of neighboring cells by affec-
ting their gene expression (12). There is no strong evidence on the function of the mouse
int-1 gene, but it is surmised, that mouse int-1 also functions as an extracellular differen-
tiation factor (reviewed in 13).
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Recently another member of the ins-1 family which shows a high similarity with the
int-1 gene has been identified in man: 36% of the amino acid sequence is identical with
that of int-1 (14). Expression of this int-1 related protein (irp) is not restricted to develop-
ment.

We have initiated a study of the int-1 gene in Xenopus laevis. Xenopus is among the
few vertebrate organisms of which embryos can be studied in very early development by
tissue transplantation. Moreover, it has recently been shown that Xenopus offers great
opportunities to analyse the effects of manipulation of gene activity by injecting sense RNA
or antisense RNA of developmentally regulated genes into embryos (15, 16). Considerable
knowledge exists with regard to cell lineage descendence in the Xenopus embryo in general
(17) and specifically with regard to the central nervous system (18, 19). We expect that
a detailed study of the Xenopus int-1 gene, its expression and regulation, will yield new
information with regard to vertebrate pattern formation, particularly during neurogenesis.

In this report we describe the isolation of a cDNA clone containing the Xenopus homolog
of the int-1/wingless gene. The amino acid sequence is highly conserved between Xenopus,
mouse, man and Drosophila. Comparison of the int-1 and irp-sequences reveals several
regions of functional interest that are virtually identical in all four genes. The Xenopus
int-1 gene is transiently expressed during the formation of the central nervous system.

MATERIALS AND METHODS

Fertilization of Xenopus laevis eggs

Frogs were induced to ovulate by injection of 375 units Pregnyl (Organon). Eggs were
fertilized in vitro. Development of the fertilized eggs was allowed to proceed at 16 —23°C
in 25% MMR (20). The embryos were dejellied using 2% cysteine-HCI pH 7.8. Staging
of the embryos was carried out according to the normal table (21).

Screening of cDNA libraries

cDNA libraries of stage 17 (22) and stage 22 —24 in Agt10, constructed by Dr. D.A. Melton,
were screened with mouse int-1 cDNA probes. Two probes were used, the 0.6 kb FnuD
II-Cla 1 fragment from the 5’ end and the 1.5 kb Cla I-Bgl II fragment of the 3’ end of
the mouse int-1 gene (23). Hybridization with random-primed DNA probes (24) was
carried out at 42°C in 35% formamide, 5 mM EDTA, 1% glycine, 0.9 M NaCl, 50 mM
sodiumphosphate pH 7.5, 0.1% Ficoll, 0.1% polyvinylpyrrolidone and 100 pg/ml sheared
salmon sperm DNA. The filters were washed in 1XSSC, 0.1% SDS at 50°C. Positive
clones were selected and rescreened.

DNA sequencing

For sequence analysis restriction fragments were subcloned in pGEM blue (Promega
Biotec). Cloning and analysis were according to standard procedures (25). Nucleotide
sequences were determined by the dideoxy chain termination method (26) using double
stranded supercoiled plasmid DNA (27).

RNA isolation and hybridization

Total RNA was isolated as described (28). Embryos or oocytes were homogenized in
guanidinium thiocyanate and RNA was pelleted through a CsCl cushion. Poly (A)*RNA
was selected on an oligo(dT)-column, fractionated by electrophoresis in 0.8 % agarose slab
gels containing formaldehyde (6.6% v/v) and transfered to nitrocellulose filters. Hybridiza-
tion with random primed DNA was carried out at 42°C in 50% formamide, 20 Mm sodium
phosphate pH 6.5, 4 XSSC, 5xDenhardt’s (25), 0.1% SDS, 2 Mm sodium pyrophosphate,
10% dextran sulphate and 100 ug/ml sheared salmon sperm DNA. The final wash was
in 0.2XxSSC, 0.1% SDS at 65°C.
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Figure 1 Nucleotide sequence of part of the Xenopus int-1 cDNA and the amino acid sequence deduced for the
int-1 protein

The 5’ noncoding region, the coding region and part of the 3’ untranslated region of the isolated cDNA clone
are shown. The longest open reading frame spans 1113 nucleotides and is preceded by three stop codons in the
same frame. The six potential sites for N-linked glycosylation and the stop codons in the leader are indicated
by thin underlining and possible sites for cleavage by proteases are indicated by fat underlining. An open
arrowhead marks the potential signal peptide cleavage site.

RESULTS

Isolation and nucleotide sequence of the Xint-1 cDNA

To identify the Xenopus homolog of the mammalian int-1 gene, two cDNA libraries, one
of mid (17) and one of late (22—24) neurula stage embryos, were screened with mouse
int-1 cDNA probes under conditions of low stringency. Two probes, representing the 5'and
3’ ends of the coding region of the mouse int-1 gene (23), were used. One cDNA clone
from the stage 17 library hybridized with the 5’ fragment of the mouse int-1 gene. This
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Figure 2 Comparison of the predicted amino acid sequences of the Xint-1, mouse int-1 (2), Dint-1/wingless (8)
and irp (14) proteins

Horizontal lines are gaps introduced to align the four proteins. Conserved amino acids are indicated by an asterisk.
Potential glycosylation sites are underlined, potential protease cleavage sites are boxed.

clone contains a Xenopus DNA insert of approximately 3.4 kb. The size of this cDNA
corresponds with that of the transcript detected by RNA blotting (see below).

The nucleotide sequence of the 5’ untranslated region and the predicted coding region
of the Xinr-1 gene are shown in Figure 1. The longest open reading frame, starting at
the ATG codon at position 158, covers 1113 nucleotides, encoding a protein of 371 amino
acids (41 kD). The nucleotides surrounding the start codon match the consensus sequence
for initiation of translation (29). As three stop codons are located in the same frame more
upstream, we assign the ATG at position 158 as the start codon for translation.

Comparison of the length of the transcript with the isolated cDNA shows that the length
of the 3’ untranslated region is about 2.2 kb.
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Figure 3 Expression of the Xint-1 gene during embryonic development

RNA blot analysis was performed on total or poly (A) *RNA from different stages of development of Xenopus
laevis (21). Fifteen micrograms of total RNA (panels A/B) or 5 micrograms of poly (A)*RNA (panels C/D)
were layered in each lane. Blots were hybridized with random primed Xinr-1 cDNA. Bars indicate the size of
the markers (2.0 and 4.5 kb) and an arrow marks the size of the single Xint-1 transcript with an estimated length
of 3.5 kb. Panel B shows rehybridization of the filter in A with the random primed H3 histone gene of X.laevis
(35). Panel D shows rehybridization of the filter in C with the random primed cytoskeletal actin gene of X.laevis (36).

Characteristics of the predicted Xint-1 protein and similarity with int-1, wingless and irp
Analogous to the mouse and Drosophila counterparts, the predicted Xins-1 protein has
characteristics of a secretory protein: it has a hydrophobic leader, is rich in cysteine residues
(23 out of 371 amino acids), contains several potential glycosylation sites and lacks a
transmembrane domain (31). Using the weight matrix method described in ref. 32, we
found that the most likely site for cleavage of the signal peptide is between amino acids
19 and 20.

The amino acid sequences of the int-1 and irp products are highly conserved between
Xenopus, mouse, man and Drosophila: 69% of the amino acids of the Xinz-1 product are
identical in the murine and human counterparts, 50% in the wg/Dint-1 product and 40%
in the human irp product. In addition 14, 16 and 15% of the amino acids in the respective
proteins is structurally similar. Wg/Dint-1 has an insert of 85 amino acids that is absent
in the other proteins (see Figure 2). All of the cysteines in Xint-1 are conserved in the
mouse and Drosophila int-1 proteins and the irp product lacks one of the cysteines. Con-
servation is not restricted to particular regions of the coding sequence, but found over
the entire length of the protein. Apart from the cysteines, some possible functional sites
are conserved in all four proteins, potential Asn-linked glycosylation sites as well as potential
protease cleavage sites. The Xint-1 protein has six potential N-linked glycosylation sites,
three of which are conserved in mouse and one in Drosophila.

Several double and triple basic residues in the inz-1 protein have been pointed as poten-
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tial sites for cleavage by proteases (33). Three of these possible protease cleavage sites
of the murine int-1 product are conserved in Xenopus, all being located in hydrophilic
regions of the protein. Although the predicted protein structure of the int-1 genes, the biosyn-
thesis of the mouse ins-1 protein (6) and the phenotypes of wg/Dint-1 mutants suggest
that the int-1 proteins are secreted (34), the mouse inz-1 protein could not be detected on
the cell surface or in extracellular fluids (6). This might indicate that the protein is rapidly
cleaved outside the cell into fragments.

Expression of the int-1 gene is temporally regulated

We have examined the expression of Xint-1 during embryonic development using RNA
blot analysis. The Xins-1 gene turns out to be transiently expressed during neurulation.
A single transcript of about 3.5 kb can be detected in the early neurula (stage 15) and
is still present in mid (17) and late (20) neurula stages (Figure 3A). No expression was
found in oocytes, eggs, the blastula and gastrula stages, or in the tailbud stage (32 —34)
(Figure 3C). Rehybridization with a Xenopus H3 histone gene probe (Figure 3B)
demonstrated that somewhat different levels of total RNA were loaded. The level of histone
H3 mRNA has been shown to be nearly constant during early development, while being
higher in oocytes than in early developmental stages (37). Quantification of the histone
H3 and Xint-1 mRNA expression by densitometry revealed no significant differences in
the levels of Xin-1 mRNA in the different neurula stages relative to the amount of H3
mRNA. The poly (A)*RNA was rehybridized with a Xenopus cytoskeletal actin probe
(Figure 3D). The expression of cytoskeletal actin mRNA was undetectable in the early
stages of development but there was an increase in cytoskeletal actin mRNA expression
in the tailbud stages, in accordance with the temporal change described before (36). No
Xint-1 transcripts could be detected in the tailbud stage.

DISCUSSION

Little is known about the function of the int-1 gene in early vertebrate development. In
Drosophila, wglint-1 is a member of a network of regulatory genes that direct develop-
ment (12). Most likely wg/int-1 is an extracellular factor that interacts with receptors on
neighboring cells, changing their pattern of gene expression (13). Support for this hypothesis
comes from the observation that wg/int-1 is not cell autonomous (38) and that expression
of the segmentation gene engrailed in adjacent cells is influenced by wg/int-1 expression
(12).

The temporal expression patterns of the int-1 genes during early development of the
mouse and Xenopus are similar. Int-1 expression was detected by RNA blotting from day
9 to day 12.5 of gestation (4). By more sensitive in situ hybridization it was demonstrated
that int-1 transcripts continue to be present in a small subpopulation of cells until at least
14.5 days of gestation (5). In this period neurulation, somitogenesis and early organogenesis
take place. We could not detect expression of Xint-1 in eggs, blastula or in gastrula stages.
The Xint-1 transcripts are first detected at stage 15 of embryonic development, the early
neural fold stage. In stage 20 embryos, when the neural folds are fused and the neural
tube is almost closed, the Xint-1 mRNA is still detectable. In stage 32 —34 embryos Xint-1
expression, is no longer found. This stage of development would be comparable in several
aspects with the day 12 mouse embryo (39, 21).

In situ hybridization studies of the murine int-1 revealed that expression is restricted
to specific regions of the neural plate and developing spinal cord and brain (5). We have
not yet determined the spatial distribution of Xint-1 transcripts, but expression of murine
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and Xenopus int-1 is found during similar developmental stages.

The structural similarity with wg/inz-1 and the fact that Xint-1 and murine in#-1 are ex-
pressed at the time when formation of the neural tube occurs suggest that Xinz-1 may be
a differentation factor involved in neural development. In Xenopus, neurogenesis has been
studied extensively. It is thought that predisposition of the ectoderm as well as induction
by extracellular factors, having a position dependent role, are involved in neural induction
(40). The homeobox containing gene XIHbox6 which is transiently expressed during
neurulation is implicated in the predisposition of the ectoderm to form nerve in response
to induction by the underlying mesoderm (40). The Xint-1 product, having the structure
of an extracellular protein and being transiently expressed during the formation of the neural
tube, may be involved in establishing specific local differentiation within the neural
ectoderm.
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