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Abstract
The behaviours of a child and a therapist are scored every five seconds, which gives two

parallel streams of observations. These are modelled with Markov chains, which can be recast
as multinomial response models, which can be analysed with standard software.

Two substantive problems receive special attention. Firstly, we will examine autodependence
and crossdependence. Secondly, at five-second intervals, most of the behaviour is constant
between two succesive observations. Hence there is a special interest in modelling changes in
behaviour, that is off-diagonal transition probabilities. This leads to multinomial response models
for incomplete tables. With standard packages such analyses can be done, but there are errors,
traps, and pitfalls along the way. For this reason we compare BMDP4F, SAS CATMOD, and
SPSS LOGLINEAR.

1. Introduction
In the behavioural sciences a commonly occurring data type is that of parallel streams of

categorically coded behaviour of two partners, sometimes called sequential dyadic data. In this
paper we will model such streams, in particular the combined scores of several child-therapist pairs,
whose behaviours were scored every five seconds. Two substantive problems receive special
attention. Firstly, we will evaluate autodependence (behaviour predicted by own previous behaviour)
and crossdependence (behaviour predicted by previous behaviour of the partner). This can be done
in a fairly routine way with multinomial response models using standard software packages.
Secondly, at five-second intervals, most of the behaviour is constant between two succesive
observations. Hence special care has to be taken to model changes in behaviour, which leads to
multinomial response models applied to incomplete contingency tables. This is much less routine, as
will be shown below.

Especially in psychology parallel streams of behaviour have been studied intensively, and some
of the relevant papers are Allison and Liker (1982), Budescu (1984), Wasserman and lacobucci
(1987), lacobucci and Wasserman (1988), and their references. Most of the papers in the field,
however, only deal with binomial response models, whereas our dependent variables are four
category ones. In the present paper a balance is sought between application and methodology, but a
full methodological paper is currently in preparation.

2. The observational design
Behaviour of both child and therapist have been scored every five seconds during approximately

one-hour sessions. Over 70,000 observations were made on 117 pairs (81 children and 4 therapists).
Even though important for some substantive questions, we will pay no attention to differences
between the various child-therapist combinations, but treat the data as if they came from one single
child-therapist combination. The behaviours of the child will be denoted by C, and that of the
therapist by T. It will be convenient to denote current behaviour by C0 - C, and T0 » T,
behaviour one interval ago by C, = lag(C), and T. = lag(T), etc. From C and T and their lagged
variables we have to build contingency tables for the analysis. Suppose we want to build the table
CxC.1xr.xC.j!x7'.2. Then we have to create the variables lag(Q, lag(lag(C)), lag (7), and lag(lag(7;)).
One could do this for each different pair child-therapist separately, but we wifl stack all time series,
separating two series by a pseudo-observation with missing values. Hence an observation from the
beginning of a time series that contains a lagged variable belonging to another time series will
always contain a lagged variable with a missing value. Such cases will be automatically eliminated
when we build the contingency table. Thus we have created a (71,276 + 104 - 1) by 5 matrix, from
which we can build the frequency table CxC.,\T.,xC.2xT.2, ignoring cases for which any variable is
missing.

The original scores were coded using about 34 categories, which were receded to four
categories for each of the partners: NonPlay, Play Preparation, Functional Play, and Imagery Play;
for details see Harinck and Hellendoorn, 1987; Hellendoorn, Kroonenberg, and Harinck (1990).
Thus C and T and their lagged variables are categorical variables with four categories.

3. The model
We want to build a model that predicts the present behaviours C and T from past behaviour.

More precisely, we want to model the probabilities Pr(C = /) and Pr(T — f) for i, j =» 1..4
conditionally upon C.,, T.,, C.2) T.2> etc.. We will refer to p, the vector of values of these variables
(denoted with lower case letters), as a condition or pattern. Suppose we want to condition on C.,,
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7".„ C.2, and T.2, then the condition is the pattern p = (c.„ f.„ c.2> f.2). Thus the probabilities we
want to model are

TTCipl =M Pr(C = i | given condition p) for i = 1..4 (la)
and,

TTTJ)I = M Pr(7" = j | given condition p) for ; = 1..4 (Ib)

Such probabilities are also called 'transition probabilities'; they give the probability of the transition
to state i (or /) at the next time point, given the condition p. Restricting ourselves to (la), we
assume that irc,y can be predicted from the previous state and some past states. This is precisely
the Markov stauonarity assumption, in other words our model is a Markov chain model. On how
many variables we have to condition, i.e. the order of the Markov chain, will be evaluated by means
of the data. Within the limits allowed by the substantive theory, we are looking for a reasonably
well fitting model, which is as simple as possible.

3.1. The parameter model
As predictors hi this model we may use the same variables that were used for conditioning.

More specifically, our model of the ir^p, may be

log iTcp, = sum of the effects of the predictors and certain interactions, (2)

The right-hand side is a model as in analysis of variance, consisting of a constant, one-way margins
('mam effects'), two-way margins ('two-way interactions'), etc. For the logarithmic transformation
we have the same good reasons as in log-linear models. Firstly 'independence of probabilities'
conveniently translates into additivity of the model for log probabilities. Secondly, contrasts such as
the differences of two log probabilities are 'log odds' ( = logits), which are easy to interpret, and
thirdly the log transformation has several mathematical conveniences as well.

Note that for each p the sum £, -nc<pl must be one. If the right-hand side of (2) contains a
parameter ß ,̂ this can take care of the scaling. To this end the model must contain the main effect
condition', a categorical variable with a different level for each condition. Moreover, we have a
set of say q predictors, the values of which only depend on the condition p and the categories i of
C. Let us denote these values by Xc^ (k = l..q), then our model is

log irCip, = ßp + Ek jfc^ß,» (for all pj). (3)

For condition p we define

- the observed frequency of C = i after condition p,
= the observed frequency of condition p (4)

Thus the expected frequency u, Ctpl = EfCipj equals npTTCtpl> and log |i c_, = log irc-, + log n^ As
log /ip can be absorbed into the term up in (3), we see that this model is equivalent to a similar
linear model for log expected frequencies rather than log expected probabilities.

In our case we are only interested in modelling the marginal distributions (C | p) and (T \ p), i.e.
we assume that child and therapist behaviour are independent conditionally upon p. This implies
that we assume there are no instantaneous effects, and that we have included all relevant predictors.
This situation differs from 'univariate multinomial response models' in the same way as MANOVA
differs from ANOVA, as we have now a 'multivariate multinomial response model'.

3.2. The distributional model
For the parallel streams of behaviour produced by our (fictitious) single child-therapist pair, the

k-th order Markov chain assumption states that the successive realisations of the behaviours C and
T conditioned upon C.„ T.„ ..., C.k+f, and TV, are independently and identically distributed. The
frequency distribution obtained from independently and identically distributed observations with a
finite sample space has a multinomial distribution. Information about the ircp/ comes from
contingency tables like

C x C, x 7., x C., x T.2 , (5)

where C should be considered as the response variable and the others as predictors. A similar table
can be defined for TtTpj. The frequencies defined in (4) are the frequencies of this table. Thus for
any fixed p the two times four frequencies (fc,pi) and {fT,pj), ij — 1-4 are multinomially distributed,
and for different p they are independent. Hence, the two sets have within and between themselves
product-multinomial distributions. It should be mentioned that we do not need to have complete
( = completely cross-classified) tables of predictors. In section 7 we will model the off-diagonal
elements of the transition matrix C x C., without considering the diagonal elements.

The above development has shown that the Markov chain model naturally leads to a
multinomial response model. Software for multinomial response models is SAS CATMOD (SAS
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Institute Inc., 1985), MULTIQUAL (Bock & Yates, 1973), FREQ (Haberman, 1979), and SPSS
LOGLINEAR (SPSS Inc., 1988).

4. Estimation and implementation
As estimators BMDP4F (Dixon et al., 1988) and SPSS offer the maximum likelihood estimator,

SAS offers a choice between the maximum likelihood estimator and the weighted least squares
estimator (WLS). The WLS option also allows the simultaneous analysis of several multinomial
response variables.

There are two well-known algorithms for maximum likehood estimation, i.e. Newton-Raphson
and Iterative Proportional Fitting (is equal to the Stephan-Deming algorithm). Therefore the
particular algorithm used in a package need not concern the user. (BMDP4F, SPSS
HILOGLINEAR use IPF; SPSS LOGLINEAR and SAS CATMOD use Newton-Raphson.) The
WLS estimator is roughly equivalent to a one-step Newton-Raphson estimator (Grizzle, Starmer,
Koch, 1969). One of the problems with this approach is that cells with random zeroes have to be
replaced with a small positive number in order to be included in the analysis.

The SPSS programs and SAS CATMOD unfortunately do not produce all the parameter
estimates, but only the 'independent ones'. For example the last category is not computed, and the
manuals indicate that one can calculate them as 'minus the sum of the other estimates', which is
correct, but one wonders why the computer programs do not do the calculations for us. Moreover,
the computation of estimated standard errors for such omitted estimates is quite involved. The
clumsy solution is to run the programs each time with different 'dependent' categories. This is
computationally laborious, and quite expensive, especially for higher order interactions. BMDP does
produce all estimates, but only handles log-linear and binomial logit models.

5. Model selection for child behaviour as response
For the substantive research both the child and therapist response functions were modelled

separately. However, in this paper we will only do so for child behaviour. Model selection was
performed with the IBM mainframe version of the program LOGLINEAR in SPSSX, version 3.0
(SPSS Inc., 1988), and as a check parallel analyses were run with the mainframe SAS Version 5.0
program CATMOD (SAS Institute Inc., 1985). This yielded identical results. The simultaneous
analyses with both therapist and child as multinomial response variables (see section 6) were carried
out with SAS CATMOD.

5.1. Deviance-df plots
For model selection we use scatter plots (Deviance-df plots) in which each model is entered as

a single point. The ordinale of the plot is the deviance (= -2 log likelihood) of the model (G8),
the abcissa is the degrees of freedom (df) of the model. The difficult part of model selection is the
comparison of non-nested models. We use the following heuristic to simplify the situation. If model
A has less df and more deviance than model B, we ignore model A. In the deviance-df plots this
means that any model dominates all models North-West of it. Thus we only have to choose between
models on the South-East boundary. Along this boundary we have a range of models from poorly
fitting parsimonious models up to well-fitting complicated models. In general a proper balance
between goodness-of-fit and simplicity should not be based on merely statistical grounds, but at least
partially on substantive insights. In most cases along the boundary the ratios (deviance/df) and
(change in deviance)/ (change in df) increase as a function of df. These can help us to choose a
model, for example, by use of Bonnett and Bentler's (1983) index

6 = 1- {(deviance1/df1)/(deviance0/df0}l (6)

where the 0 indicates the null or comparison model, and the 1 the model to be compared. For a
qualitative discussion of the stochastic properties of these plots, see Verbeek (1984).

5.2. Model search
The basis for the first analysis is a 45-table (C by C.1( C.2, T.,, T.2). A preliminary screening

was carried out to establish an appropriate set of models. All models considered are displayed in
the deviance-df plot (Figure 1). The most South-East ( = dominating) models are connected with a
Une (the convex hull). In the present data, the set of dominating models form a hierarchical set, i.e.
the models on the lower part of the curve contain all terms of the models on the higher part of
the curve. To find an acceptable model within such a hierarchical set one may use Bonnett and
Bentler's (1983) index for normed fit 5.

Table 1 gives an overview of a selection of the models which include one or more interaction
terms with the response variable. The models in Table 1 are those with only the response variable
C, which will be used as the null or comparison model (Model 1); Child behaviour at the previous
measurement: C., (Model 2); Child behaviour at two measurements earlier added: C., + C.2 (Model
3); Addition of therapist behaviour at /., : C., + C.2 + T., (Model 4); Therapist behaviour at t.2
included as well: C., +C2+7*.1 +T.2 (Model 5). After all the one-way effects are included, the most
important two-way interaction is that of the child at t0 with the child and therapist at f., :
C.,xr., +C.2 + r.2. By now the increase in 5 becomes so small that including further terms does
not substantially improve the descriptive adequacy as measured by 5. To choose an adequate
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Table 1. Models for Child Behavior at t0

Model« G2 df 6 Remarks

1. lb

2. C.,
3. C., +
4. C, +
5. C, +
6. C.̂ T.,
7. C.,xT.,
8. c.,xr.,

c.2
c.2 + r..
C.2 + T., +
+ c*
+ C2 + T,
+ C^xC.j 4

71651
11094
4835
3217

7.J, 2723
2218

z 1802
r.2 1259

765
756
747
738
729
711
702
675

0.00
0.84
0.93
0.95
0.96
0.97
0.97
0.98

Null model
Child lag 1 only
AU diild effects
** Preferred model **
AU main effects

Note:1 Total number of units = 71276. b 1 indicates the model with only a
constant, which is different for each logjt of C.

model there exist few guidelines beyond settling for a S somewhere in the .90's, and requiring the
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Figure l Dev-Df Plot - Child as Response Variable

last step to give some 'interesting* increase in the value of 6. Substantive arguments can play an
important role. Considering the large number of observations, and the research interest in the
behaviour of both the chfld and the therapist, one could settle for reporting the C., + C.2 + 7.,
model. The differences between the estimates for the parameters common to Model 4 and the next
one (Model 5) were negligible for C., and C.a. For 7., the values were generally somewhat lower
than for Model 4 but their pattern was essentially the same. The main reason for this seemed to
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be the similarity of the patterns of 7"., and T.2, with T., having rather higher values than 7.2.
The 45-table (C,C.1,C.2,C.3,7

r.1) allows us to investigate the even longer range effect of the child
behaviour. Even though 71,276 observations for 1024 cells seem ample, the present table has two
zero entries in one of the four-dimensional margins, and many very small ones. The primary reason
for this phenomenon is the general continuity of behaviour, which means that certain sequences of
behaviour, especially four consecutive changes of category, are quite rare. Such zero cells may
influence the stability of the parameter estimates, and they make the estimation of standard errors
imprecise. Thus, some caution is in order when interpreting effects in models based on this table.
During model selection, the first acceptable model was C., + C.2 + C_a with characteristics (G2,df,6)
equal to (4209, 732, .94), taking precedence over the model of the previous section, C. + C.2 + T.^,
with (4903, 732, .93), but the difference in 6 is hardly interesting. The next acceptable model is
C., +C.2+C.3+r.1 with (2938, 723, .95). This emphasizes the strong continuity in the behaviour of
the child as the lag-3 behaviour has a slight edge over the lag-1 therapist behaviour. It also shows
that to model child behaviour, one needs at least a third-order Markov chain.

6. Child and therapist behaviour as response
To evaluate the relative sizes of the autodependencies of, and crossdependencies between C and

T, the most obvious 4s-table, CxrxC.,xr.,xC.2, already contains 107 sampling zeroes, therefore we
decided to analyze the CxTxC., x7"., -table using the WLS option of SAS CATMOD, with both C
and T as response variables and C., T.,, and C.,xT., as predictor variables. Separate analyses for
each of the dependent variables with SPSS* LOGLINEAR would have resulted in the same values
for the effects, but due to the lack of estimates for the covariances between the predictors no tests
would have been available.
Table 2. Multivariate Logts for C and T as Response Variables and T., and C., as Predictor Variables

- Model: T.jcC.,

Child Behavior at t0 Therapist Behavior at t0

NonPlay
vs

Effect ImagPlay

Constant
•i
NonPlay
PrepPlay
FuncPlay
ImagPlay

NonPlay
PrepPlay
FuncPlay
ImagPlay

.2

1.6
.4
.6

-2.6

2
.5
.6

-12

PrepPlay
vs

ImagPlay

.9

.6
1.7
.6

-2.8

.1
S
A

-1.4

FuncPlay
vs

ImagPlay

.1

3
.4

23
-3.0

-.1
.2

13
-1.4

NonPlay
vs

ImagPlay

.7

£
A
2

-12

A
A
2

-1.4

PrepPlay
vs

ImagPlay

-3

.7
3
2

•13

.1
1.7
3

-2.1

FuncPlay
vs

ImagPlay

-1.0

.4

.2
13
13

-.2
3

2.0
-2.1

C.,xT, [not displayed]

Notes: Bold values indicate the overall patterns of generally high values. Italics indicate non-
significant main effects. All autodependencies and crossdependencies are pairwise significantly
different, except those for PrepPlay at f., for both C. and 7.,. The boxed numbers are the
crossdependencies and the other numbers the autodependencies.

In Table 2 we present the response functions for the log-odds with respect to ImagPlay,
however the interactions between the predictors have been omitted from the table as we are not
discussing their substantive interpretation anyway. Furthermore, to economize in space, the other
three possible response functions not involving Imagery Play are not included either. The central
question is whether the influence of the therapist on the child is larger than the reverse. In the
present case this means testing the equality of twelve pairwise contrasts in the crossdependence
blocks. Each pairwise contrast is significantly different, except those involving PrepPlay as the
predictor. The table shows that when a significant difference occurs, the influence of the child on
the therapist is mostly larger than vice versa. The minor exceptions occur for FuncPlay with the
NonPlay/ImagPlay and PrepPlay/ImagPlay response functions, but the values are not overly large.
Similar tests have been carried out for the autodependence effects. If effects differ significantly, they
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are always larger for the child than for the therapist. Indicating that child behaviour is more
determined by own behaviour than therapist behaviour is. Child behaviour is more autonomous, and
less influenced by the therapist, than vice versa.

7. New behaviour
In several aspects the analyses are only partly satisfactory from a substantive point of view. One

primary question is the question of initiative. With the dominating continuity of behaviour
(approximately 70%) it is difficult to see who initiates new behaviour, the child or the therapist. To
look at this problem in more detail, one would have to look at only new behaviour at t0. We will
primarily focus on new behaviour of the child.

7.1. Analysing new behaviour with incomplete tables
Bishop, Fienberg, and Holland (1975; chap. 7) propose to analyse new behaviour by first

transforming the time series by eliminating all repeated events. Thus AADABBBDDCCC would
become ADABDC. As a consequence the diagonal of the first-order transition matrix will not be
modelled. In second-order chains all sequences with two consecutive, identical codes become
impossible e.g. ABB and BBD. The sequence ABBBD, originally yielding the triplets ABB, BBB,
and BBD, becomes ABD and A four lags before D is supposed to be remembered by the child,
and is modeled as second-order influence.

We propose to use (3) only for the non-diagonal cells of the child two-way transition matrix,
but for second order chains, we will exclude triplets ending on the same codes, e.g. ABB and BBB.
From the contingency table (5) we remove the diagonal plane of all cells (c, c.,, ƒ.,, c.2) t.2) for
which c = c.,. Our actors have very short memories, the actors of Bishop et al. have long and
variable length memories. Obviously either model could be right, depending upon the application. In
this case, we prefer our model on theoretical grounds.

7.2. Computing response model estimates for incomplete tables
In SAS CATMOD WLS cannot handle the multicategory logit approach to multinomial response

models for incomplete tables, and refers to ML. However, ML yields non-sensical estimates and
standard errors in this case, and the df are incorrect. SPSS LOGLINEAR with logit contrasts also
produces strange output and the same incorrect degrees of freedom. Apparently the combination of
multicategory logits and incomplete tables has not been given appropriate attention in the design of
these programs. In general users are ill-advised to try to use multivariate logits for incomplete
tables. As some probabilities are missing, it is not immediately clear which pairs of categories of
the dependent variable are used in such an analysis. If one specifies a multinomial response model
for incomplete tables, the specification is unambiguous (see Verbeek and Kroonenberg, in
preparation). In BDP4F there seems to be another kind of error, when one specifies an incomplete
table. The df are in order, but we think there is an error in the rank of the model matrix.

A further complication is that due to the elimination of all cells with equal values for C and
C, from the model, the corresponding parameters for the CxC., interaction should have been
eliminated as well. However, neither SPSS LOGLINEAR nor SAS CATMOD seem to recognize
this, and eliminate parameters in incorrect places. There are at least two ways to deal with this
problem. The first is to construct the proper model matrix (or design matrix), but only SAS
CATMOD has faculties for doing this. In our case this meant constructing a 192x90 model matrix,
which we did with APL (see Verbeek & Kroonenberg, in preparation, for details). A second
approach would be to eliminate the diagonal cells by adding additional predictors which cause the
diagonal cells to be fitted perfectly. To this end one would have to add a predictor that has a
different level for each combination of the condition p and the cells with equal c and c., . This
solution could be used in both programs, but requires in our case a predictor with 64 levels or 63

MaaetafmAlie$ Child Behavior at t0

(with Non-Modelled Cells)

Model G2 df Remarks

i. ;•
2. C,
3. C, + T.,
4. C, + C.2
5. C., + 71, + C.2
6. C.,xr.,

5872
5774
2904
1855
396

2769

125
120
111
111
102
96

0.00
0.65
0.46
0.92
0.30

Null model
Also therapist lag 1
Child lag 1 and 2
** Preferred model **
Lag 1 interaction

Note: * 1 indicates a model with only a constant, which is different for each logit of C.
Total number of observations is 20768.
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7.3. Analysing the child's new behaviour
As before our analysis proceeds by first initiating a model search and subsequently estimating

the parameters for the preferred model. Considering the arguments above, we performed a model
search with SPSSX LOGLINEAR, and out of methodological interest the parallel analyses were run
with BMDP4F and SAS CATMOD. In Table 3 the results of this model search are presented. The
maximum likelihood results with SAS were identical, but those using generalized least squares
deviated substantially at several places. As mentioned above BMDP produced the same G* as the
other programs, but failed to find satisfactory parameter estimates.

Unlike in the situation for complete tables, Model 1 in Table 3 cannot function as a null model
of a hierarchy, because the effect of the not modelled cells on the number of estimates are not yet
evident in this model, whereas this is the case in Model 2. Note, furthermore, that Models 2, 3,
and 5 form a hierarchy, so do Models 2, 4, and 5, and Models 2, 3, and 6. In the last hierarchy it
is evident that adding the C.,xT., interaction is a bad proposition, because 5 decreases rather than
increases. The preferred model is clearly Model 5, as 5 has a reasonable value.

The way the log-linear analysis is specified in SAS the constant term always is estimated
separately, so that one the CxC., interaction contains 1 6 - 1 (constant) - 4 (not-modelled cells) =
11 independent parameters, as can be seen in Table 4. As the parameter estimates include the row
and column effects they do not add up to zero, and their values are not directly comparable to
those of the other interactions.
Table 4 Multivariate Loglinear Parameters for C as Response Variable and C.t C.s and T., as

Predictor Variables

Child Behavior at t0

Effect NonPlay PrepPlay FuncPlay ImagPlay

NonPlay
PrepPlay
FuncPlay
ImagPlay

C-2
NonPlay
PrepPlay
FuncPlay
ImagPlay

T.,
NonPlay
PrepPlay
FuncPlay
ImagPlay

XJC

1.6
.7
3

£
-.0
-.1
-3

.0

.1
-.1
-.0

1.2
XJC
1.1
.7

-.1
.7
3

-.9

.2

.4
-.2
-.3

.7
1.2
XJC
XJC

-.2
-3
1.0
-.5

-.1
-.0
.7

-.6

-.1
.5

-.4
XJC

-.2
-.4
1.2
1.7

-.1
-.5
-.4
1.0

Note: The C., parameters are not directly comparable to the other parameters as they also contain
the one-way margins.

The following conclusions may be drawn from the CxC., interaction. New NonPlay behavior can
be twice as well predicted from PrepPlay, compared to FuncPlay and twice again as well as from
ImagPlay. New PrepPlay can about equally well predicted from NonPlay as from FuncPlay, but
worse from ImagPlay. New FuncPlay is twice as weÜ predicted from PrepPlay as from NonPlay, and
not from ImagPlay. Finally, New ImagPlay is only somewhat predictable from PrepPlay but NonPlay
and especially FuncPlay are a counter indication for it to occur.

From the CxC.2 interaction, we see that the old pattern reestablishes itself again, each behavior
is best predicted from the same behavior two time points ago. This probably indicates that longer
chains of the same behavior are occasionally broken by single scores in other categories. The
situation is similar for the CxT/1., interaction (see also Table 2). Several interesting details arise here,
but they form part of the substantive discussion presented elsewhere.

8. Discussion
In this paper we have shown how multinomial response models may be fruitfully used to

analyse parallel streams of behaviour, both when all behaviour needs to be modelled and when only
new behaviour is of interest. Even though for this purpose standard statistical package can be used,
employing them is certainly not a routine matter. As indicated several improvements could be made
to facilitate analysing data such as ours, in particular presenting all parameters and their standard
errors, and facilities to specify parameters to be deleted from the model matrix Furthermore several
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errors in some of the programs need to be corrected.
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