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ABSTRACT

I review the differences and similarities between the marginal stability approach to front propa-
gation into unstable states and the "pinch point" analysis for the space-time evolution of pertur-
bations developed in plasma physics. I then briefly discuss the following developments and
surprises: (i) the resolution of a discrepancy between the theory and experiments on Taylor vor-
tex fronts; (ii) some new results for the regime where front propagation is dominated by non-
linear effects (nonlinear marginal stability regime); (Hi) ongoing work on fronts and pulses in
the complex Ginzburg-Landau equation.

INTRODUCTION

In the research communities represented here at this workshop on "Nonlinear Evolution
of Spatio-Temporal structures in Dissipative Continuous Systems" we have in recent years seen
a growing interest in front propagation into unstable states (see e.g. Refs. 1,2 and references
therein). At the same time, especially due to the shift in attention from the Rayleigh-Bénard
instability in a one component fluid to the Rayleigh-Bénard instability in binary mixtures, the
awareness of the importance of the distinction between a convectivc instability and an absolute
instability has become appreciated.3 In a convcctively unstable state, a perturbation grows but
at the same time is convccted away; the effect of the convection is strong enough that the per-
turbations are found to decay when viewed at a fixed position. At an absolute instability, on
the other hand, the instability is strong enough that perturbations do grow when viewed at a
fixed position. When a system of finite size exhibits a convective instability, the long term
dynamics depend on whether perturbations have a chance to grow sufficiently during the time
over which they are convected away from one side of the system to the other, and on the boun-
dary conditions. As a result, the final state often depends on the size of the system. A nice
example of these effects within the context of the Rayleigh-Bc'nard instability is given by the
linear behavior as well as the nonlinear "sloshing" states in binary fluid mixtures.3

The term front propagation is often used to refer to describe situations in which the
dynamical evolution of a spatially extended system that starts out in an unstable state, is
governed mainly by the propagation of well defined spatially separated fronts or interfaces con-
necting the unstable region with a region in which the system is in some nonlinear (stable)
state. Clearly, the dynamical properties of such fronts - e.g. their speed of propagation - deter-
mine to a large extent the qualitative behavior of a convcctively unstable finite system like
those found in binary fluid mixtures.4
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Convective instabilities abound in plasma physics6 and in fluid dynamics7 (essentially
in all cases where a fluid flow past a fixed body becomes unstable). So it should come as no
surprise that the linear spatio-temporal behavior at convective instabilities has been studied for
over thirty years in these fields, and that the essential results are summarized in a standard
book like the "Physical Kinetics" volume in the Landau-Lifshitz Course on Theoretical Phy-
sics.8 Nevertheless, the relation between this work and that on front propagation has often been
overlooked. Presumably, this is due to the fact that the theoretical work in plasmas and fluid
dynamics is normally limited from the start to the linear behavior of perturbations, whereas ori-
ginally most of the work on moving fronts concentrated on the development of fully nonlinear
front solutions right away. That nevertheless some of the essential results of these rigorous
approaches could be reformulated in terms of concepts related to the linear stability properties
of the equations was recognized, to my knowledge, for the first time by Dee and Langer9 and
by Ben-Jacob et al.10 However, the the similarity of some of their ideas with the tools already
developed to determine the convective or absolute nature of an instability from an analysis of
the linear evolution of perturbations, were not immediately recognized.

Most recently, I have obtained a number of new results for the rate of approach to the
asymptotic front speed and for the mechanism of velocity selection in the regime dominated by
the nonlincarities. As explained above, in many theoretical discussions the effects of non-
linearities on the convective versus absolute nature of instabilities arc not considered, even
though our analysis indicates that they can be extremely important. Since these results have
just appeared in a detailed paper, I will confine myself here to bringing some of the differences
and similarities of the two approaches to the reader's attention. Moreover, I will highlight the
recent resolution11 of the longstanding discrepancy between theory and experiment on front
propagation in Taylor-Couettc vortex flow.12 Finally, I will briefly draw attention to some of
the implications of and surprises from my recent work as well as ongoing work in collabora-
tion with P. C. Hohenberg.13

BRIEF SKETCH OF HISTORICAL DEVELOPMENTS

The first investigations of how a class of initial conditions develops into a well-defined
front solution propagating into an unstable state goes back to the work of Kolmogorov et al.14

and Fisher.15 These authors studied partial differential equation of the type

with F(0) = 0. F'(0) = 1 . (1)
x

The simplest example of such an equation is

. a>

In the latter equation, the homogeneous state <t> = 0 is unstable, whereas the homogeneous states
4 > = ± 1 are the absolutely stable states. The above authors were able to show that for a large
class of functions like the one corresponding to (2), initial conditions <t>(*. f = 0) for which <t>
decays sufficiently rapidly for x-*<*> develop under the dynamics (1) into a moving front solu-
tion Q(x - vt) with a particular value of the velocity. Subsequent investigations concentrated on
equations of type (1), and culminated in the seminal work by Aronson and Weinberger.' The
results of their rigorous mathematical analysis of (1) were popularized and reinterpreted for tl
physics community by Dee and Langer9 and Ben-Jacob et al.10 They noted that for a large
class of functions F($) like the one in (2), the mathematical analysis showed that the asymp-
totic front velocity u,„ was in fact independent of the details of the nonlinear form of r (f) and
equal in value to a particular velocity v' that is singled out by the linear dispersion relation
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corresponding to Eqs. (1) and (2). That is, if one linearizes these equations and substitutes a
Fourier mode of the form ea°'~"a' to determine the dispersion relation <u(k), one observes that
the rigorous results for a large class of functions F(<j>) amount to the statement that vas = v',
with v' given by the solution to', k' of

• _ Imco _ 9lmo) 3lm(o _ _ .,.
~ '

Stability considerations showed9'10 that for equations of the type (1), v* defined by (3) can
interpreted as the velocity of the front at which front profiles are marginally stable. Since v' is
completely determined by the linear dynamics of small perturbations around the unstable state
<t>=0, 1 refer to v' , to* and k' as the linear marginal stability values.

From the work of Aronson and Weinberger,16 it is known that only for a certain class
of functions F(<j>) the front speed approaches v' asymptotically. It is also possible to have
vas = v*>v' in (1). In such cases. Langer and coworkcrs9'10 also showed that the point where
v = v* is the point where the stability of the uniformly moving profiles $(x-vt) changes, in
that front profiles with velocity i»i/ are stable while those with v<v* arc unstable. However,
since in this case the stability can not be inferred from the linearized dynamical equation, but
depends strongly on the whole nonlinear behavior of the profiles <t>(*-i>0, we refer to this case
as nonlinear marginal stability.

Numerical studies demonstrated that the asymptotic speed of nonlinear fronts in several
more complicated equations that do not admit uniformly translating front solutions, is in fact
correctly predicted by the linear marginal stability value (3). This led me to reformulate some
of the marginal stability ideas.1-2 This reformulation, based on an analysis of the dynamics in
the "leading edge" where perturbation are small enough that their dynamics is essentially
governed by the linearized equations, not only leads to a better understanding of the physical
mechanism that drives the front velocity either to the linear marginal stability value v' or to
the nonlinear marginal stability value i> f, but also leads to explicit predictions for the rate of
approach of the front velocity to u' . We will give examples of this in the next sections.

As the above sketch indicates, the above line of research started with a fully nonlinear
analysis of a particular class of relatively simple partial differential equations. From the very
first investigations on, it was clear that the propagation of fronts into unstable states can
depend critically on the nonlinearities in the dynamical equation. However, the recent realiza-
tion that the linear marginal stability prediction for v' in terms of the linear dispersion relation
<u(k) appears to be correct for a large class of equations, has focussed attention on the fact that
to a large extent the dynamical selection takes place in the "leading edge" governed by the
linearized equations.

The line of research that developed independently since the late fifties in plasma phy-
sics6'8 and fluid dynamics started almost at the other end: here the attention was confined right
away to the linear dynamical evolution of perturbations, with the advantage that the arguments
were general enough that no specific assumption concerning the specific form of the equations
needed to be made. On the other hand, even to date the effect of nonlinearities is hardly ever
discussed explicitly in these approaches, even though some of the most interesting applications
are to cases in which the perturbations grow sufficiently large that nonlinear dynamical pat-
terns, e.g. vortices,17 are generated. Moreover, the argument is commonly formulated in such a
way that it only applies in the limit t->», x fixed. When perturbations around an absolutely
unstable state are investigated, this is not the proper limit: to make contact with the work on
front propagation, we should then analyze the equation in a frame moving with speed v'. This
speed should be chosen sclf-consistently so that it agrees with the front speed predicted by the
analysis, since only then we stay within the front region with an analysis based on keeping the
co-moving coordinate x'=x-vt fixed. In other words, if the analysis predicts the selection of a
mode e-"***** jn thc lab frame, we need to choose
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/ tA\v' = — - . (4)
\mk

Consider now a system whose reference state is spatially homogeneous in the ^-direction. If we
linearize the dynamical equation about this state then we get upon Fourier transformation in
space-time an expression for the Green's function G(x', t) in the comoving frame x'=x-v't of
the form6

,
[«f (5)

Here the contour C^ in the o>' plane is dictated by causality considerations, while the k'
integration is along the real k' axis. The /.crocs of D(iu',k') determine the dispersion relation
<a'(k') which is related to the dispersion relation cX/t') in the fixed frame according to

to'(k') = <u(k') - v'k' . (6)

To extract the long-time behavior of the Green's function (5), we use the fact that the integra-
tion contours in (5) can be deformed continuously in an suitable manner. For an arbitrary fixed
complex value of co', D((a',k') will have a number of zeroes in the complex k' plane. This
situation is sketched in the rightmost column of Fig. 1. When the contour C w is deformed, the
poles in the k' plane move, but we can deform the contour Ck continuously around the poles
without changing the value of the integral until two poles "pinch off" the k' contour - sec
Fig. 1. As a result, the asymptotic r-*<x> behavior of (5) is determined by points in the com-
plex k' plane where two poles arrive from opposite sides of the real axis and pinch off the C*
contour.

The location of the pinch point where two roots coincide is given by6'8

- 0 - (7)

Upon using (6) and the consistency requirement (4), this can be written as

') _ , _ lmm(*')~ ~ ~

From the real and imaginary pan of this equation one recovers the linear marginal stability
equations (3). Hence, provided one analy/.cs the evolution of perturbations in a comoving
frame, the pinch point coincides with the linear marginal stability point, and v' = v' .

An advantage of the pinch point analysis is that it can also be used to study perturba-
tions in the lab frame or in any other frame moving with a non/.cro velocity. Such an analysis
is, of course, only useful as long as perturbations arc still so small that a nonlinear front has
not developed yet. Here, we focus on the aspects most relevant for a comparison with front
propagation.

Fig. 1 illustrates the various differences between the marginal stability analysis1'2 and
the pinch point analysis.6"8 (i) The former is conveniently formulated in terms of an analysis
of the local wavenumber q a -i d(ln$)/dx. The dynamical equation for q supports not only the
intuitive interpretation of the dynamical velocity selection, but can also be used to derive the
rate of approach to the asymptotic velocity v* . The pinch point analysis, on the other hand, is
a straightforward asymptotic analysis of the Green's function with the aid of contour intcgra-
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Figure 1. Illustration of the difference between the marginal stability approach and the pinch
point analysis.
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= 0. (11)
t-*'

The above equation can be used lo write e.g. Rck as a function of Im*, and according to our
arguments, the solution relevant for the nonlinear marginal stability regime is the one
corresponding to the root with the second smallest value of Im*. Together with the usual rela-
tion i/ = lmu) / Im/k ' , our arguments then imply that t/ and \mk should obey a particular rela-
tion in the nonlinear marginal stability regime.

We stress that while my explicit calculations of </ for pattern forming equations that
are not of the form (1) all rely on pcrturbativc amplitude expansions, Eq. (11) is a non-
pcrturbativc result that can be tested even far into the nonlinear marginal stability regime. I
have done so for the following extension of the Swift-Hohcnbcrg equation,"1

(12)

Fig. 4 presents some of our data for the velocity of fronts propagating into the unstable state
<t> = () for e= 1/4. The full line in the figure denotes the branch of solutions of (11) correspond-
ing to the smallest root \mk, and the dashed branch the next smallest one. The minimum of the
curve corresponds to the point v', \mk'. The open circles arc the data points from our simula-
tions for various values of b as indicated, and the inset shows the measured value of the velo-
city as a function of b. Clearly, to within our numerical accuracy, the data lie on the dashed
branch, and our simulations therefore support the validity of our picture of nonlinear marginal
stability for Eq. (12).

We remark that although this was not noted in R;f. 2, I expect my analysis of the non-
linear marginal stability regime to apply only to pattern forming equations that admit a two-
parameter family of moving front solutions. Indeed, if this is the case, there is a one-parameter
family of front solutions for every fixed value of the velocity v, and therefore one expects there
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Figure 4. The measured front velocity v versus k' = Im* for Eq. (12) with e = 1/4. Open cir-
cles arc data points for b > 1.5 with the value of b as indicated. The inset shows the velocity
as a function of b. For b < 1.5, we have linear marginal stability, and for b > 1.5 nonlinear
marginal stability.
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to be a particular moving front solution that satisfies the condition (11) at v = v*. For the
Swift-Hohcnbcrg equation, it is indeed known19 that there is a two-parameter family of moving
front solutions, and our picture appears to be consistent. I do not know, however, whether the
nonlinear marginal stability analysis can be extended to equations that admit only a one-
parameter family of solutions. Further study of this question appears necessary.

COMPLEX GINZBURG-LANDAU EQUATION NEAR A SUBCRITICAL BIFURCATION

Recently, Hohcnbcrg and I13 have obtained a number of exciting new results for the
existence and stability of fronts and pulses in the complex Gin/burg-Landau equation near a
critical bifurcation,

\A\4A . (13)

In this investigation, both front propagation into an unstable state e>0 and front propagation
into a mctastablc state for e<0 was analyzed. An extremely surprising finding of our work is
that an exact analytic front solution of this equation can be found that allows one to compute
vf both for e>0 and for e<0 analytically. With the aid of this exact solution, a number of new
and interesting additional results arc obtained: (i) For fixed c\, c 3 and 05, there usually is a
range of values of e<0 where stable periodic nonlinear pulse solutions with stationary
envelope arc found. The upper edge of this range is determined by the condition t/(e) = 0. (ii)
In a co-dimension one subspace of parameter space, we have obtained exact analytic nonlinear
pulse solutions. The analytic form we find has subsequently been used by Nicmela et al.20 to
successfully fit pulse shapes found in convection experiments. (Hi) In large regions of the
c i, C3, Cj parameter space, nonzero initial conditions never dynamically develop into a front
solution that propagates into the A =0 state for any e<0. In this case, stable pulses continue lo
exist all the way up to e = 0. (iv) In this parameter range where pulses exist for all e — >(T, all
fronts propagating into the unstable state A =0 for e>0 propagate with the linear marginal sta-
bility velocity v' . This contradicts my earlier speculation that for arbitrarily small but positive
e, one would always expect fronts to propagate with t/ rather than v' near a subcritical bifur-
cation.2

CONCLUSION

The results summarized in the last three section illustrate that important progress is
being made concerning front propagation into unstable states. Moreover, as our recent work on
the complex Gin/.burg-Landau equation indicates, the distinction between front propagation into
unstable states and mctastablc states may be less large than we originally believed. I expect
these type of problems to remain a f ru i t fu l area for research in the next few years.
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