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R.J. Kooman and R. Tijdeman

This paper provides a survey of the dissertation of the first named author [6]. The thesis

deals with recurrence sequences {u,}5 , of complex numbers satisfying

(1) arp(n)tupsr + ag—1(n)tpyr—1 + ... +ag(n)u, =0 forn=0,1,2,...,

where the sequences {ag(n)},...,{ao(n)} satisfy certain regularity conditions as n — oo.
This kind of sequences plays an important role in analysis (the theory of orthogonal poly-
nomials) and in combinatorics. Important applications in number theory can be found
in Apéry’s proof of the irrationality of ((3) = Y. _, n™* and in other derivations of ir-
rationality measures (cf. G.V. Chudnovsky [5] p. 344.) In most applications k& = 2 and
the coefficients as,aq,ap are polynomials. We shall deal with the asymptotic behaviour
of sequences {u,} as n — oo, in particular the existence of lim, .o tp41/uy. At the end
we shall give some applications, one of which concerns the solution of a problem posed by
Perron. It will appear that there are obvious similarities with the theory of linear differen-
tial equations, but also notable differences. The second author thanks several participants

of the conference for their helpful comments.

1. Linear recurrences with constant coefficients.

For a better understanding we first recall some results on linear recurrences with constant

coefficients. Let ag,ay,...,ar be complex numbers. Suppose that {u,}>2 , is a sequence
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of complex numbers such that
(2) ApUptk + Qp—1Uptp—1+ ... +aou, =0 forn=20,1,2,....

Without loss of generality we may assume agay # 0. Then the sequence is uniquely deter-
mined by any k& consecutive values u,, %, 41,...,U,4k—1, and an explicit expression for u,

is given by the following result.

THEOREM 1. Suppose {u, }52 , satisfies (2). Consider the factorization of its character-

istic polynomial
8
(3) apz* +ap_ 12 L b ag = ax H(Z_O‘j)ej
j=1

where a, ..., a are distinct complex numbers. Then
(4) up =Y Pi(n)a}  (n=0,1,2,...)
j=1

where P; is a polynomial of degree at most e; — 1 for j =1,...,s. The coefficients of the

P]’s are determined by ag, a1, ...,a; and any k subsequent values w,, Upy1, ..., Upgh—1-

On the other hand, every sequence of the form (4) satisfies the recurrence (2). Thus (2)

has k linearly independent solutions

(5) {np_loz;‘ 0 (p=1,...,¢5; 7=1,...,5)

and every solution of (2) is a linear combination of these solutions. We state some further

corollaries of Theorem 1. Here and in the sequel we neglect the trivial solution which is

constant zero.

(a) If for some solution {u,}32, of (2) the limit o = lim;, oo Un41/U, exists, then « is a
root of the characteristic polynomial (3). This is clear from (2) and (3).

(b) If s =k, hence e; = e3 = ... = e =1, and the «; have distinct absolute values, then

limy,— oo Upt1/uy exists for every solution {u,}32, of (2). This is clear from (4).
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(¢) For each root «; of the characteristic polynomial (3) there are e; linearly independent
solutions of (2) such that lim,, .o 441/, = a;. These are given by (5).

In the case of linear recurrences with non-constant coefficients it is, in general, not possible

to give an explicit formula for the solutions as in Theorem 1, but under suitable conditions

Properties (a) - (¢) can still be proved. There are also such recurrences for which (b) and

(c) are false. We call k the order, s the rank and «aq,...,as the eigenvalues of recurrence

(2). By (3) they depend on the coefficients of the characteristic polynomial only.

2. Linear recurrences with almost-constant coefficients
Using the notation of Section 1 we now allow a perturbation sequence {e,(n)} in the

coefficient a,. Let {u,}5%, satisfy
(6) (ar +er(n))untk + (k-1 +ck—1(n))untr—1 + ... + (a0 + o(n))u, = 0,

where e¢(n) — 0asn — oo for ¢ = 0,1,..., k. Since agay # 0, we can define N as an integer
such that (ax 4+ ex(n))(ag + eo(n)) # 0 for n > N. We restrict our attention to {u,}>2 5.
These sequences are well defined. We define characteristic polynomial, eigenvalue «, order
k and rank s as before. They depend only on the constants ag, ax—1,...,ap and not on the
perturbation sequences. The following generalizations of Properties (a) — (¢) are known.
(cf. [12] Ch. 10)
(al) If for some solution {u,}o>, of (6) the limit o = limy,_— oo Upt1/uy exists, then « is
an eigenvalue of the recurrence (6). Clear from (6) and (3).
(bl) If ey = e; = ... = e = 1 and the «; have distinct absolute values, then
limy— oo Upt1/uy exists for every solution {u,}t2 5 of (6). This was proved by
Poincaré [15] in 1885.
(cl) If e = e3 = ... = e, = 1 and the «; have distinct absolute values, then for each
eigenvalue «; there is a solution {ugj)};’o:N such that ugljll/u%j) — «j. This was

proved by Perron [13] in 1909.



In spite of several results in this direction due to Maté, Nevai and others, [4], [7], [8], [9],
[10], [11], a general result analogous to (c) in the case of equal absolute values was not
available up to now. The following theorem provides such a result if the absolute values

of the perturbations are sufficiently small.

THEOREM 2. (Kooman [6]). In the above notation put E = max;—1,  se€;.

If
(7) > n " Men)| < oo for (=0,1,....k,
n=N
then (6) has k linearly independent solutions {ugf’j)} such that
ulpd)

(8) lim

n—oo np_loz;‘

=1 forp=1,...,¢e557=1,...,s.

If the coefficients a;+¢;(n) of (6) are all real, then the solutions {ugf’j)};’o:N can be chosen

to be real for each j with a; € R. If ey = e2 = ... = ¢ =1, then F = 1 and Theorem

2 implies Property (c¢) also in the case of roots of equal absolute values provided that

Yoo vleen)] < oo for £ =0,.... k. A refinement of Theorem 2 which will be mentioned

in the next section implies the following generalization of Property (c).

(c2) For each eigenvalue of (6) there are e; linearly independent solutions of (6) such that
lim;,— oo Unt1/un = o provided that Y~ nfi=ley(n) < oo (L =0,...,k) where
Ej = maX|a,|=|a;| €h-

These e; solutions can be chosen in such a way that they behave asymptotically as in (8).

The following examples suggest that (7) is a natural condition for Theorem 2.

1) (cf. [6] Proposition 5.3) Consider the recurrence
1

Unp+2 — 2un—|—1 + (1 + _Z)Un = 0.
n

The characteristic equation is (z — 1)? and E = 2. Condition (7) is not fulfilled. The

recurrence has no real solution {u, }>° 5 such that u,41/u, — 1 asn — oo (or converges to
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some other limit). As we shall see in Section 4 the recurrence has two linearly independent

solutions {uﬁﬂ)};ozN and {uﬁf)};ozN with
(1) (2)

1 1
=1 Wherea,ﬂ:§:|:§i\/§

and of course every solution is a linear combination of these solutions.
2) (cf. [6] p.88) Consider the recurrence
(="

Upy2 — (1 + -

Ju, = 0.

The characteristic equation is z? — 1 and E = 1. We have
Unt2 = (1 +1/n)u, for n even, hence |uz,| — oo as n — oo, but
Unt2 = (1 — 1/n)u, for n odd, hence uzp41 — 0 as n — oo.

Thus {un41/un} does not converge. Again Y - nFey(n)| =307 L.

It can also occur that all {w,11/u,} converge to one eigenvalue and none to the other.

3) (cf. [6] p.88) Consider the recurrence
(="

(9) PnUnt2 + (pn—l—l —pn)un+1 — ppgity, =0 with p, =1+ 771 .
The characteristic polynomial is 22 — 1, hence oy = 1,2 = —1 and E = 1. It is easy to
check that every solution of (9) is of the form
n—1
un:/\Z(—l)"p,,—l—/,L (A, € C).
v=1
Since EZ;;(—l)”pV — 00 as n — 00 we obtain
Untl _q 4 n(_l)p — 1 for all A and g with |A| + |u| # 0.
Un A= (F1)y +

Again condition (7) is not satisfied since Y >\, = diverges.

After the examples 1) - 3) it will be obvious that if (7) is not satisfied, the signs (or in the
complex case the arguments) of the e,(n) will have to be taken into account. We return

to this question in Section 4.



3. On the proof of Theorem 2.
As we have seen Theorem 2 seems to give a rather natural condition and is anyway not far
from the best possible. The proof consists of two parts. First the roots of the characteristic

polynomial are separated according to their absolute values, using the following theorem.

THEOREM 3. Consider the recurrence relation

(10) (ap +ep(n))tpgr + ...+ (ag + co(n))u, =0

with ap # 0,(ar + ex(n))(ag + co(n)) # 0 for n > N and ¢¢(n) — 0 as n — oo for

¢=0,1,...,k. Suppose (10) has eigenvalues «; with multiplicities e;. Put for some j

m = g €;.

lai|=]a;]

Then there exist m linearly independent solutions {uﬁf)}nzN, ce {uﬁl’”)}nzN of (10) and

a linear recurrence of order m
(11) Untm + (bm—l + 6m—1(n))un—|—m—1 +...+ (bO + 60(”))un =0 (n Z N)

with by + éo(n) # 0 for n > N and 6¢(n) — 0 asn — oo for { = 0,...,m — 1 such
that {uﬁf)}nzN, ey {uglm)}nZN constitute a basis of solutions of (11) and that (11) has

characteristic polynomial
Q(Z):Zm+bm_1zm_1_|_"__|_boz H (Z—Ozi)ei,
lai|=|ay|

Moreover, if the coefficients of (10) are all real, then the coefficients of (11) can all be taken

real as well.

Note that the case m = 1 implies the Poincaré-Perron Theorem (bl) - (¢1) and even more.

Whereas the latter theorem requires that all zeros of the characteristic polynomial have
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distinet moduli, Theorem 3 ensures that for each zero «; with e; = 1 and |a;| # |a;] for

¢ # j there exists a solution {uy}n>n of (10) such that w,41/u, — a; as n — oo.

It follows from the proof of Theorem 3 that the order of growth of the 6, ’s in (11) is not

larger than that of the ¢, 's in (10).

In the second part of the proof of Theorem 2 an iteration method is used in order to
construct a solution of (6) that is very close to a solution of the corresponding unperturbed
recurrence (2).

Thus, let {uﬁf)}nZN with u) = n#~1a" be such that

(12) akuflo_i)_k—l—... —|—a0u510) =0 (n > N).
For : =1,2,3,... we construct sequences {ug)}nzN such that
(13) akufj_)i_k +...+ aoug) = —(5k(n)u51:,1) +...+ eo(n)ugli_l))

(2)

and such that the numbers |u£f)| are very small. Condition (7) ensures that u,’ can be
(0)

chosen in such a way that Y .-, |u£f)|/un — 0 as n — oo. Hence, if we define v, =

Yoo ugf)(n > N), then {vn}n>n is a solution of (6) and

Un

lim — = 1.

Using the estimation for the numbers ug) it is also possible to indicate the speed of con-

vergence of the solutions. Roughly speaking, the loss is at most n”. Using the separation

of eigenvalues as given in Theorem 3 we obtain the following refinement of Theorem 2.

THEOREM 4. Consider the recurrence relation (10) with agay # 0,

(ar +er(n))(ao +eo(n)) # 0 forn > N andey(n) — 0 asn — oo for { =0,1,... k. Let o

be a zero of the characteristic polynomial with multiplicity e;. Put E; = max|q;|=|a;| €i-
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Let hj > E; be such that

Zn “eoln)| < for  =0,1,..., k.

Then there exist e; linearly independent solutions {u(p’])}oo:N such that

uglﬂ,]) — nﬂ—la?(l + o(nEf_hf )) forp=0,1,...,¢e; — 1.

4. Second-order recurrences with rational functions as coefficients.
The asymptotic behaviour of arbitrary recurrence sequences {uy, } 52, satisfying (1) is quite
complicated. In Chapters 5 and 6 of his thesis Kooman [6] analyzed the case k = 2 which
often occurs in applications. Note that this is the first non-trivial case, since the solutions
of first order recurrences can be expressed as sums of products of the coefficients. On the
other hand, the second-order recurrences provide the essential difficulties in a nutshell. We
distinguish between
I the eigenvalues have distinct absolute values,

IT the eigenvalues are equal,

ITT the eigenvalues have the same absolute values, but are not equal.
The method of treatment in each case is to reduce the second-order recurrence in u,, to
a first-order recurrence in some expression of u,4; and uy,, for example (up41 — wp)/Uny.
In contrast to Kooman’s thesis we shall restrict our attention here to the case that the
coefficients are elements of R(X). We define the degree degr of a rational function r(X)
to be d if lim, . r(z)z~¢ has a finite, non-zero limit. Furthermore we put d = —oco if

r=20.

Let p(X),¢(X) be rational functions in X with real coefficients. Consider the recurrence

relation

(14) Untz — p(N)upgy1 —g(n)u, =0 (n=N,N+1,...).



If p(n) = 0 for all n, then it is easy to calculate the solutions {u,} by separating terms with
even and with odd index. Hence we may assume that p(n) and ¢(n) exist and p(n)g(n) # 0

for n > N. We shall transform (14) into a recurrence with only one free coefficient. Put

n—2

2

Then {v,}52 4, satisfies the recurrence

4q(n)
15 nt2 — 2Up41 — n=020 =N+1,N+2,...).
(15) Un+42 — 2Un+1 (0 )p(n — 1)0 (n + + )
Put
4
. ()
n—co  p(n)p(n —1)

If b = —oc0, then we are in case III with real eigenvalues of opposite signs,

if —oo < b < 1, then we are in case I with two real eigenvalues,
if b =1, then we are in case II,

if 1 < b < oo, then we are in case III with a pair of conjugate non-real eigenvalues.

We treat each case separately:

Case I. (—oo < b< 1) (cf. [6] Theorem 5.1)

Put 22 — 2z +b = (2 —a)(z — B). Then «, 8 € R with |a| # |3]. Without loss of generality
we may assume « > |3|. By the theorem of Poincaré-Perron (properties (bl) - (c1)), the

recurrence (15) has linearly independent solutions {%(11)} and {v,(f)} such that

) o)

(16) ﬁﬂ>ﬁ;:% ﬁﬂ;%ﬁzﬂ
Un Un
If
4q(n)
17 +b=0
o) poptn 1) H0 70



we even obtain from Theorem 2 that

(1) (2)

. Un . n
lim =1and lim
n—oo n— 00 ﬂ"

=1 provided that g # 0.

It can be shown that even if (17) is not satisfied, there exist real numbers v, § such that

(1) o2
=1land lim ——— =1 provided that 3 # 0.

n—oo 7" n—oo néﬂn

If =0, then {%(12)} can be chosen such that

(2)

Vpi1 1
=0(=).
1)7(12) (n)

It follows from (16) and |3| < « that for the corresponding solutions {uﬁf)} and {ug)} of

(14) we have
(@)
lim — =

0.
The sequence {ug)} is a solution of (14) with an exceptionally small rate of growth.

Such exceptional solutions play a role in some irrationality proofs, such as for ((3). (cf.

Application 5.2)

Case II. (b=1)

Put
4q(n)
p(n)p(n —1)

Then lim,, .., C,, = 0. We first consider the case that degC' < —2. Then we distinguish

C(n)=1+

between two cases Ila and IIb. Subsequently we distinguish between two cases IIc and I1d

when deg C' = —1.

Subcase Ia. Suppose b = 1,lim, oo n*C(n) =y > —1 with v € R (cf. [6] Thm. 5.4).

Let £ be the root of 22 — z — v with Re £ > % Using that

W, = n(vn+1 1) ¢
Un
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satisfies

(1+(1=¢&)/n)w, +(n+1)C(n)—~/n
wp/n+14+¢&/n

(18) Wpt1 =

it can be shown that w, — 0 as n — oo for some solution {w,} of (18). It follows that

(15) has real solutions {%(11)} and {v,(f)} such that

R
noo nE | nmeonl €

Hence for every non-trivial solution {u,} of (14)

(19) lim =1,

n—oo Uy,

with v € R (cf. [6] Thm. 5.8).

Subcase IIb. Suppose b = 1,lim, .o, n*C(n) = v < —i

Let £ and £ be the roots of X? — X — ~. By considering the recurrence

wn_dn

m where d,, = (n + 1)C(n) — v/n,

Wpt+1 =

it can be shown that there exist solutions {%(11)} and {v,(f)} of (15) with

(1) (2)

n : n : 1
hm 2% = hm 2 =1 if y < —— and
(1) (2)
n n . 1
lim lv = lim vl =1 ify=—=

Subcase Ilc. Suppose b = 1 and lim, ..o nC(n) > 0 (cf. [6] Thm. 5.10).
By proving that the recurrence
wa(1 = /Cln+1))+(1+/C(n))(1 - /C(n+1)/Cn))
(14 (1 4+ wn)/C(n))y/C(n+1)/C(n)
(0)

has some solution {w%o)} such that lim, ..o wn = 0, it can be shown that (15) has

Wpt+1 =

solutions {%(11)} and {v,(f)} such that

N o2
lim +/C(n)~Y(2H —1) =1, lim /C(n)"}(2EL —1)=—1.

noo N 2
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It follows that (19) holds for all non-trivial solutions of (14). Note that for the solutions

{uﬁf)}, {uﬁf)} corresponding to {%(11)}7 {v,(f)} we have

ul?

lim — =

0.

Subcase IId. Suppose b =1 and lim,_..nC(n) < 0 (cf. [6] Thm. 5.12).

By proving that the recurrence relation

Wy + €Ty /= C(n)—/-C(n+1) i —/—C(n)

Wpy1 = ———  where ry, = P

WnTn + €n V=Cn)++/=Cln+1) " i+/=C(n)

has some solution which tends to 0 as n — oo, it can be shown that (15) has solutions

{%(11)} and {%(12)} such that

(1) (2)
1 1
lim (vn—i_1 —1)=17 and lim (v”"i'1 —1)=—i.
2 0 o) e ) o

Case Il (b= —oo or 1 < b < o0).
By multiplying u,, by a suitable function of n we can transform (14) into a recurrence

relation with almost-constant coefficients and characteristic polynomial (z — a)(z — 3),

where

(20) a=1,8=-1 ifb=-00

and

(21) lal=18l=1, a=pfa#p ifl<b<co

The subcases IIIa and IIIb correspond to b = —oo and subcase Illc to 1 < b < oc.

Subcase IITa. degp < —2,deg(¢(X)—1) <0 (cf. [6] Cor. 6.1).
The transformed recurrence has real solutions {uﬁf)}nzN, {ug)}nzN such that

ey o2 e
lim 4 =1, lim 2 =1 and lim |—

=1,
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Subcase IIIb. degp = —1,deg(¢(X) — 1) < 0 (cf. [6] Thm. 6.4).

The transformed recurrence has real solutions {uﬁf)}nzN, {ug)}nzN such that

(1) (2) u'?

L R Uy .o Un
S oy S b ey = and i o =

0.

The chosen sign should be the sign of p(n) as n — occ.

Subcase IIlc. Suppose 1 < b < oo (cf. [6] Thm. 6.2). Let eigenvalues «, f be determined

by (21). The transformed recurrence has solutions {uﬁf)}nzN, {ug)}nzN such that

(1) (2)

lim ’"E'l")l = «., lim u"(;’)l =3, ugf) = uﬁf) for all n.

[

Y

For real solutions {u,}, lim,— % does not exist  (cf. (a) in §1).

n

From the above results we obtain the following extension of the Poincaré-Perron Theorem:

THEOREM 5. Let p,q € R(X), ¢ # 0. Suppose the recurrence relation

(14) Untz — P(n)tnt1 —g(n)uy, =0 (n=N,N+1,...)

has characteristic polynomial (z — «)(z — 3) with o, € C. Then there exist two linearly

independent solutions {uﬁﬂ)}nzN and {ug)}nzN of (14) such that

(1) (2)

. u . u
lim 2 =, lim 2l =3
n n
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5. Applications.

5A. Continued fractions.

Let p,g € R(X), p,q # 0. We consider the continued fraction

(Dl a2, ),

(22) 0 T @ T e)

A natural question is whether the limit exists. We say that the continued fraction converges

in the broad sense if the limit

oDl L« a)l

2 () T @) p(n)

exists or if

nlLI%op(l) + m + ...+ p(n)

Perron [14] pp. 271-273 investigated for which p, ¢ there is convergence in the broad sense.

Kooman [6] Ch.7 gave a complete answer.

THEOREM 6. Put r(n) =1+ 4q(n)/p(n)p(n — 1).

The continued fraction (22) converges in the broad sense if and only if

(i) degr < -2 andlim,—o 2?r(z) > —1/4,
(ii) degr=—1 andlim,_ocar(z) >0,

(iii) degr =0 andlim,—oor(z) >0,

(

iv) degr =1or 2 andlim, . r(z) = cc.

The underlying equation is ypyn4+1 + p(n)yn + ¢(n) = 0 which can be transformed to

Unta — p(n)upt1 — q(n)uy, =0 where up, = (=1)" Py, p1yn ... y1-

5B. Irrationality measures.
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In 1978 Apéry [1] proved the irrationality of ((3) = > °_, n™? (cf. Reyssat [16], Beukers [2],
van der Poorten [17].) Actually it follows that for all positive integers p, ¢ > 0 sufficiently
large relative to ¢ > 0 :

4log(1l++2) +3

= 13.417820....
4log(1+v2) -3

1C(3) — Z—?| > ¢+ where 6 =1+
q

See [17] p.199. A similar irrationality measure can be derived for ((2). Apéry’s proof is

based on the recurrence relation
(23) nu, — (34n® — 51n* +27n — 5)up—1 + (n — 1)*upy_e = 0.

Let {a,}5%, be the solution of (23) with ag = 0,a; = 6 and {b, }2, the solution of (23)

with by = 1,6y = 5. Then

Kooman [6] Ch.2 studied the set of numbers which can be obtained in this way, that is,
which are the limit of the quotient of the n-th terms of solutions of the same recurrence
relation with elements from Z[n] as coefficients and integer initial values. He showed that

this is a countable set which forms a field. This field contains all real algebraic numbers, but

also e*(k € Q),log k(k € Qsy),arctan k(k € Q, |k| < 1),{(k)(k € Z~,) and various other
(k)

sets of well known numbers. For example ((k) = limy,_—oc an /bﬁf) where {aﬁf)}, {bﬁf)}

satisfy the recurrence relation

(n+2) wprr — (0 +2)° + (0 4+ 1D Jupsr + (0 + 1) u, =0

(k)

and a;, ~ =0, agk) =1, b(()k) = bgk) = 1. However, this recurrence relation is of no use for an
irrationality proof, since such a proof requires a recurrence with an eigenvalue which is very
small in absolute value. There is a theory of transforming recurrences into recurrences with
accelerated convergence (see Brezinski [3]), but nobody has found a suitable recurrence to

prove the irrationality of ((5).
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(="
k! n=0"

5C. Convergence of the sequence {};_; (})

The functional analyst C.B. Huijsmans asked us whether the sequence {s,}72, defined by

= i(Z) (_kll)k

k=0

satisfies |s,| < 1 for all n. This would be very surprising, since the terms composing s,

can be quite large,

—1\k
(Z) ( k') ~ 2F a2V if k~+/n.

However, computations showed that |s,| < 1 for n < 100. It can be shown that {s,}>2,

satisfies the recurrence relation

2 1
(24) un_|_2—(2— %)u,ﬂ_l —|—(1— —)un =0 (TLZO,]_,Q,)

n

According to section IId of Section 4 (24) has solutions {uﬁf)} and {ug)} such that

u e
lim (= —1) =4 and lim n(—2F —1)= —i.

1 2

An analysis of the proof yielded that

Sn:nl—c/zlsin(Q\/ﬁ—l—cp)—l—o( ) (n— o0)

nl/4

for some real constants ¢ # 0 and ¢. This shows that s,, — 0 as n — oo and that there are
infinitely many sign changes where the distance between consecutive sign changes increases

almost linearly.
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