
CONVERGENCE PROPERTIES OF LINEAR RECURRENCE SEQUENCESbyR.J. Kooman and R. TijdemanThis paper provides a survey of the dissertation of the �rst named author [6]. The thesisdeals with recurrence sequences fung1n=0 of complex numbers satisfying(1) ak(n)un+k + ak�1(n)un+k�1 + : : :+ a0(n)un = 0 for n = 0; 1; 2; : : : ;where the sequences fak(n)g; : : : ; fa0(n)g satisfy certain regularity conditions as n ! 1:This kind of sequences plays an important role in analysis (the theory of orthogonal poly-nomials) and in combinatorics. Important applications in number theory can be foundin Ap�ery's proof of the irrationality of �(3) = P1n=1 n�3 and in other derivations of ir-rationality measures (cf. G.V. Chudnovsky [5] p. 344.) In most applications k = 2 andthe coe�cients a2; a1; a0 are polynomials. We shall deal with the asymptotic behaviourof sequences fung as n !1; in particular the existence of limn!1 un+1=un: At the endwe shall give some applications, one of which concerns the solution of a problem posed byPerron. It will appear that there are obvious similarities with the theory of linear di�eren-tial equations, but also notable di�erences. The second author thanks several participantsof the conference for their helpful comments.1. Linear recurrences with constant coe�cients.For a better understanding we �rst recall some results on linear recurrences with constantcoe�cients. Let a0; a1; : : : ; ak be complex numbers. Suppose that fung1n=0 is a sequence1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications

https://core.ac.uk/display/388704602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of complex numbers such that(2) akun+k + ak�1un+k�1 + : : :+ a0un = 0 for n = 0; 1; 2; : : : :Without loss of generality we may assume a0ak 6= 0: Then the sequence is uniquely deter-mined by any k consecutive values ur; ur+1; : : : ; ur+k�1; and an explicit expression for unis given by the following result.THEOREM 1. Suppose fung1n=0 satis�es (2). Consider the factorization of its character-istic polynomial(3) akzk + ak�1zk�1 + : : :+ a0 = ak sYj=1(z � �j)ejwhere �1; : : : ; �s are distinct complex numbers. Then(4) un = sXj=1 Pj(n)�nj (n = 0; 1; 2; : : :)where Pj is a polynomial of degree at most ej � 1 for j = 1; : : : ; s: The coe�cients of theP 0js are determined by a0; a1; : : : ; ak and any k subsequent values ur; ur+1; : : : ; ur+k�1:On the other hand, every sequence of the form (4) satis�es the recurrence (2). Thus (2)has k linearly independent solutions(5) fn��1�nj g1n=0 (� = 1; : : : ; ej ; j = 1; : : : ; s)and every solution of (2) is a linear combination of these solutions. We state some furthercorollaries of Theorem 1. Here and in the sequel we neglect the trivial solution which isconstant zero.(a) If for some solution fung1n=0 of (2) the limit � = limn!1 un+1=un exists, then � is aroot of the characteristic polynomial (3). This is clear from (2) and (3).(b) If s = k; hence e1 = e2 = : : : = ek = 1; and the �j have distinct absolute values, thenlimn!1 un+1=un exists for every solution fung1n=0 of (2). This is clear from (4).2



(c) For each root �j of the characteristic polynomial (3) there are ej linearly independentsolutions of (2) such that limn!1 un+1=un = �j : These are given by (5).In the case of linear recurrences with non-constant coe�cients it is, in general, not possibleto give an explicit formula for the solutions as in Theorem 1, but under suitable conditionsProperties (a) - (c) can still be proved. There are also such recurrences for which (b) and(c) are false. We call k the order, s the rank and �1; : : : ; �s the eigenvalues of recurrence(2). By (3) they depend on the coe�cients of the characteristic polynomial only.2. Linear recurrences with almost-constant coe�cientsUsing the notation of Section 1 we now allow a perturbation sequence f"`(n)g in thecoe�cient a`: Let fung1n=0 satisfy(6) (ak + "k(n))un+k + (ak�1 + "k�1(n))un+k�1 + : : :+ (a0 + "0(n))un = 0;where "`(n)! 0 as n!1 for ` = 0; 1; : : : ; k: Since a0ak 6= 0; we can de�neN as an integersuch that (ak + "k(n))(a0 + "0(n)) 6= 0 for n � N: We restrict our attention to fung1n=N :These sequences are well de�ned. We de�ne characteristic polynomial, eigenvalue �j ; orderk and rank s as before. They depend only on the constants ak; ak�1; : : : ; a0 and not on theperturbation sequences. The following generalizations of Properties (a) � (c) are known.(cf. [12] Ch. 10)(a1) If for some solution fung1n=0 of (6) the limit � = limn!1 un+1=un exists, then � isan eigenvalue of the recurrence (6). Clear from (6) and (3).(b1) If e1 = e2 = : : : = ek = 1 and the �j have distinct absolute values, thenlimn!1 un+1=un exists for every solution fung1n=N of (6). This was proved byPoincar�e [15] in 1885.(c1) If e1 = e2 = : : : = ek = 1 and the �j have distinct absolute values, then for eacheigenvalue �j there is a solution fu(j)n g1n=N such that u(j)n+1=u(j)n ! �j : This wasproved by Perron [13] in 1909. 3



In spite of several results in this direction due to Mat�e, Nevai and others, [4], [7], [8], [9],[10], [11], a general result analogous to (c) in the case of equal absolute values was notavailable up to now. The following theorem provides such a result if the absolute valuesof the perturbations are su�ciently small.THEOREM 2. (Kooman [6]). In the above notation put E = maxj=1;:::;s ej :If(7) 1Xn=N nE�1j"`(n)j <1 for ` = 0; 1; : : : ; k;then (6) has k linearly independent solutions fu(�;j)n g such that(8) limn!1 u(�;j)nn��1�nj = 1 for � = 1; : : : ; ej ; j = 1; : : : ; s:If the coe�cients aj+"j(n) of (6) are all real, then the solutions fu(�;j)n g1n=N can be chosento be real for each j with �j 2 R: If e1 = e2 = : : : = ek = 1; then E = 1 and Theorem2 implies Property (c) also in the case of roots of equal absolute values provided thatP1n=N j"`(n)j < 1 for ` = 0; : : : ; k: A re�nement of Theorem 2 which will be mentionedin the next section implies the following generalization of Property (c).(c2) For each eigenvalue of (6) there are ej linearly independent solutions of (6) such thatlimn!1 un+1=un = �j provided that P1n=N nEj�1j"`(n)j <1 (` = 0; : : : ; k) whereEj = maxj�hj=j�jj eh:These ej solutions can be chosen in such a way that they behave asymptotically as in (8).The following examples suggest that (7) is a natural condition for Theorem 2.1) (cf. [6] Proposition 5.3) Consider the recurrenceun+2 � 2un+1 + (1 + 1n2 )un = 0:The characteristic equation is (z � 1)2 and E = 2: Condition (7) is not ful�lled. Therecurrence has no real solution fung1n=N such that un+1=un ! 1 as n!1 (or converges to4



some other limit). As we shall see in Section 4 the recurrence has two linearly independentsolutions fu(1)n g1n=N and fu(2)n g1n=N withlimn!1 u(1)nn� = 1; limn!1 u(2)nn� = 1 where �; � = 12 � 12 ip3and of course every solution is a linear combination of these solutions.2) (cf. [6] p.88) Consider the recurrenceun+2 � (1 + (�1)nn )un = 0:The characteristic equation is z2 � 1 and E = 1: We haveun+2 = (1 + 1=n)un for n even, hence ju2nj ! 1 as n!1; butun+2 = (1 � 1=n)un for n odd, hence u2n+1 ! 0 as n!1:Thus fun+1=ung does not converge. Again P1n=N nE�1j"2(n)j =P1n=N 1n :It can also occur that all fun+1=ung converge to one eigenvalue and none to the other.3) (cf. [6] p.88) Consider the recurrence(9) pnun+2 + (pn+1 � pn)un+1 � pn+1un = 0 with pn = 1 + (�1)nn :The characteristic polynomial is z2 � 1; hence �1 = 1; �2 = �1 and E = 1: It is easy tocheck that every solution of (9) is of the formun = � n�1X�=1(�1)�p� + � (�; � 2 C):Since Pn�1�=0(�1)�p� !1 as n!1 we obtainun+1un = 1 + (�1)npn��Pn�1�=1 (�1)�p� + � ! 1 for all � and � with j�j+ j�j 6= 0:Again condition (7) is not satis�ed since P1n=N 1n diverges.After the examples 1) - 3) it will be obvious that if (7) is not satis�ed, the signs (or in thecomplex case the arguments) of the "`(n) will have to be taken into account. We returnto this question in Section 4. 5



3. On the proof of Theorem 2.As we have seen Theorem 2 seems to give a rather natural condition and is anyway not farfrom the best possible. The proof consists of two parts. First the roots of the characteristicpolynomial are separated according to their absolute values, using the following theorem.THEOREM 3. Consider the recurrence relation(10) (ak + "k(n))un+k + : : :+ (a0 + "0(n))un = 0with ak 6= 0; (ak + "k(n))(a0 + "0(n)) 6= 0 for n � N and "`(n) ! 0 as n ! 1 for` = 0; 1; : : : ; k: Suppose (10) has eigenvalues �i with multiplicities ei: Put for some jm = Xj�ij=j�jj ei:Then there exist m linearly independent solutions fu(1)n gn�N ; : : : ; fu(m)n gn�N of (10) anda linear recurrence of order m(11) un+m + (bm�1 + �m�1(n))un+m�1 + : : :+ (b0 + �0(n))un = 0 (n � N)with b0 + �0(n) 6= 0 for n � N and �`(n) ! 0 as n ! 1 for ` = 0; : : : ;m � 1 suchthat fu(1)n gn�N ; : : : ; fu(m)n gn�N constitute a basis of solutions of (11) and that (11) hascharacteristic polynomialQ(z) = zm + bm�1zm�1 + : : :+ b0 = Yj�ij=j�jj(z � �i)ei :Moreover, if the coe�cients of (10) are all real, then the coe�cients of (11) can all be takenreal as well.Note that the case m = 1 implies the Poincar�e-Perron Theorem (b1) - (c1) and even more.Whereas the latter theorem requires that all zeros of the characteristic polynomial have6



distinct moduli, Theorem 3 ensures that for each zero �j with ej = 1 and j�ij 6= j�j j fori 6= j there exists a solution fungn�N of (10) such that un+1=un ! �j as n!1:It follows from the proof of Theorem 3 that the order of growth of the �` 's in (11) is notlarger than that of the "` 's in (10).In the second part of the proof of Theorem 2 an iteration method is used in order toconstruct a solution of (6) that is very close to a solution of the corresponding unperturbedrecurrence (2).Thus, let fu(0)n gn�N with u(0)n = n��1�n be such that(12) aku(0)n+k + : : : + a0u(0)n = 0 (n � N):For i = 1; 2; 3; : : : we construct sequences fu(i)n gn�N such that(13) aku(i)n+k + : : :+ a0u(i)n = �("k(n)u(i�1)n+k + : : :+ "0(n)u(i�1)n )and such that the numbers ju(i)n j are very small. Condition (7) ensures that u(i)n can bechosen in such a way that P1i=1 ju(i)n j=u(0)n ! 0 as n ! 1: Hence, if we de�ne vn =P1i=0 u(i)n (n � N); then fvngn�N is a solution of (6) andlimn!1 vnu(0)n = 1:Using the estimation for the numbers u(i)n it is also possible to indicate the speed of con-vergence of the solutions. Roughly speaking, the loss is at most nE : Using the separationof eigenvalues as given in Theorem 3 we obtain the following re�nement of Theorem 2.THEOREM 4. Consider the recurrence relation (10) with a0ak 6= 0;(ak + "k(n))(a0 + "0(n)) 6= 0 for n � N and "`(n)! 0 as n!1 for ` = 0; 1; : : : ; k: Let �jbe a zero of the characteristic polynomial with multiplicity ej : Put Ej = maxj�ij=j�jj ei:7



Let hj � Ej be such that1Xn=N nhj�1j"`(n)j <1 for ` = 0; 1; : : : ; k:Then there exist ej linearly independent solutions fu(�;j)n g1n=N such thatu(�;j)n = n��1�nj (1 + o(nEj�hj )) for � = 0; 1; : : : ; ej � 1:4. Second-order recurrences with rational functions as coe�cients.The asymptotic behaviour of arbitrary recurrence sequences fung1n=0 satisfying (1) is quitecomplicated. In Chapters 5 and 6 of his thesis Kooman [6] analyzed the case k = 2 whichoften occurs in applications. Note that this is the �rst non-trivial case, since the solutionsof �rst order recurrences can be expressed as sums of products of the coe�cients. On theother hand, the second-order recurrences provide the essential di�culties in a nutshell. Wedistinguish betweenI the eigenvalues have distinct absolute values,II the eigenvalues are equal,III the eigenvalues have the same absolute values, but are not equal.The method of treatment in each case is to reduce the second-order recurrence in un toa �rst-order recurrence in some expression of un+1 and un; for example (un+1 � un)=un:In contrast to Kooman's thesis we shall restrict our attention here to the case that thecoe�cients are elements of R(X): We de�ne the degree deg r of a rational function r(X)to be d if limx!1 r(x)x�d has a �nite, non-zero limit. Furthermore we put d = �1 ifr = 0:Let p(X); q(X) be rational functions in X with real coe�cients. Consider the recurrencerelation(14) un+2 � p(n)un+1 � q(n)un = 0 (n = N;N + 1; : : :):8



If p(n) = 0 for all n; then it is easy to calculate the solutions fung by separating terms witheven and with odd index. Hence we may assume that p(n) and q(n) exist and p(n)q(n) 6= 0for n � N: We shall transform (14) into a recurrence with only one free coe�cient. Putvn = un n�2Yk=N 2p(k) (n = N + 1;N + 2; : : :):Then fvng1n=N+2 satis�es the recurrence(15) vn+2 � 2vn+1 � 4q(n)p(n)p(n � 1)vn = 0 (n = N + 1;N + 2; : : :):Put b = limn!1� 4q(n)p(n)p(n � 1) :If b = �1; then we are in case III with real eigenvalues of opposite signs,if �1 < b < 1; then we are in case I with two real eigenvalues,if b = 1; then we are in case II,if 1 < b � 1; then we are in case III with a pair of conjugate non-real eigenvalues.We treat each case separately:Case I. (�1 < b < 1) (cf. [6] Theorem 5.1)Put z2 � 2z+ b = (z ��)(z � �): Then �; � 2 R with j�j 6= j�j: Without loss of generalitywe may assume � > j�j: By the theorem of Poincar�e-Perron (properties (b1) - (c1)), therecurrence (15) has linearly independent solutions fv(1)n g and fv(2)n g such that(16) limn!1 v(1)n+1v(1)n = �; limn!1 v(2)n+1v(2)n = �:If(17) 4q(n)p(n)p(n � 1) + b = 0( 1n2 )9



we even obtain from Theorem 2 thatlimn!1 v(1)n�n = 1 and limn!1 v(2)n�n = 1 provided that � 6= 0:It can be shown that even if (17) is not satis�ed, there exist real numbers 
; � such thatlimn!1 v(1)nn
�n = 1 and limn!1 v(2)nn��n = 1 provided that � 6= 0:If � = 0; then fv(2)n g can be chosen such thatv(2)n+1v(2)n = 0( 1n ):It follows from (16) and j�j < � that for the corresponding solutions fu(1)n g and fu(2)n g of(14) we have limn!1 u(2)nu(1)n = 0:The sequence fu(2)n g is a solution of (14) with an exceptionally small rate of growth.Such exceptional solutions play a role in some irrationality proofs, such as for �(3): (cf.Application 5.2)Case II. (b = 1)Put C(n) = 1 + 4q(n)p(n)p(n � 1) :Then limn!1Cn = 0: We �rst consider the case that degC � �2: Then we distinguishbetween two cases IIa and IIb. Subsequently we distinguish between two cases IIc and IIdwhen degC = �1:Subcase IIa. Suppose b = 1; limn!1 n2C(n) = 
 > � 14 with 
 2 R (cf. [6] Thm. 5.4).Let � be the root of x2 � x� 
 with Re � > 12 : Using thatwn = n(vn+1vn � 1)� �10



satis�es(18) wn+1 = (1 + (1� �)=n)wn + (n + 1)C(n)� 
=nwn=n+ 1 + �=nit can be shown that wn ! 0 as n ! 1 for some solution fwng of (18). It follows that(15) has real solutions fv(1)n g and fv(2)n g such thatlimn!1 v(1)nn� = limn!1 v(2)nn1�� = 1:Hence for every non-trivial solution fung of (14)(19) limn!1 un+1un = 1:Subcase IIb. Suppose b = 1; limn!1 n2C(n) = 
 � � 14 with 
 2 R (cf. [6] Thm. 5.8).Let � and � be the roots of X2 �X � 
: By considering the recurrencewn+1 = wn � dn1 + wn=n where dn = (n+ 1)C(n)� 
=n;it can be shown that there exist solutions fv(1)n g and fv(2)n g of (15) withlimn!1 v(1)nn� = limn!1 v(2)nn� = 1 if 
 < �14 andlimn!1 v(1)nn 12 logn = limn!1 v(2)nn 12 = 1 if 
 = �14 :Subcase IIc. Suppose b = 1 and limn!1 nC(n) > 0 (cf. [6] Thm. 5.10).By proving that the recurrencewn+1 = wn(1 �pC(n+ 1)) + (1 +pC(n))(1 �pC(n+ 1)=C(n))(1 + (1 +wn)pC(n))pC(n+ 1)=C(n)has some solution fw(0)n g such that limn!1w(0)n = 0; it can be shown that (15) hassolutions fv(1)n g and fv(2)n g such thatlimn!1pC(n)�1(v(1)n+1v(1)n � 1) = 1; limn!1pC(n)�1(v(2)n+1v(2)n � 1) = �1:11



It follows that (19) holds for all non-trivial solutions of (14). Note that for the solutionsfu(1)n g; fu(2)n g corresponding to fv(1)n g; fv(2)n g we havelimn!1 u(2)nu(1)n = 0:Subcase IId. Suppose b = 1 and limn!1 nC(n) < 0 (cf. [6] Thm. 5.12).By proving that the recurrence relationwn+1 = wn + enrnwnrn + en where rn = p�C(n)�p�C(n+ 1)p�C(n) +p�C(n+ 1) ; en = i �p�C(n)i +p�C(n)has some solution which tends to 0 as n ! 1; it can be shown that (15) has solutionsfv(1)n g and fv(2)n g such thatlimn!1 1p�C(n)(v(1)n+1v(1)n � 1) = i and limn!1 1p�C(n) (v(2)n+1v(2)n � 1) = �i:Case III (b = �1 or 1 < b � 1):By multiplying un by a suitable function of n we can transform (14) into a recurrencerelation with almost-constant coe�cients and characteristic polynomial (z � �)(z � �);where(20) � = 1; � = �1 if b = �1and(21) j�j = j�j = 1; � = �; � 6= � if 1 < b � 1:The subcases IIIa and IIIb correspond to b = �1 and subcase IIIc to 1 < b � 1:Subcase IIIa. deg p � �2;deg(q(X) � 1) < 0 (cf. [6] Cor. 6.1).The transformed recurrence has real solutions fu(1)n gn�N ; fu(2)n gn�N such thatlimn!1 u(1)n+1u(1)n = 1; limn!1 u(2)n+1u(2)n = �1 and limn!1 ju(2)nu(1)n j = 1:12



Subcase IIIb. deg p = �1;deg(q(X) � 1) < 0 (cf. [6] Thm. 6.4).The transformed recurrence has real solutions fu(1)n gn�N ; fu(2)n gn�N such that� limn!1 u(1)n+1u(1)n = 1; � limn!1 u(2)n+1u(2)n = �1 and limn!1 u(2)nu(1)n = 0:The chosen sign should be the sign of p(n) as n!1:Subcase IIIc. Suppose 1 < b � 1 (cf. [6] Thm. 6.2). Let eigenvalues �; � be determinedby (21). The transformed recurrence has solutions fu(1)n gn�N ; fu(2)n gn�N such thatlimn!1 u(1)n+1u(1)n = �; limn!1 u(2)n+1u(2)n = �; u(2)n = u(1)n for all n:For real solutions fung; limn!1 un+1un does not exist (cf. (a) in x1).From the above results we obtain the following extension of the Poincar�e-Perron Theorem:THEOREM 5. Let p; q 2 R(X); q 6= 0: Suppose the recurrence relation(14) un+2 � p(n)un+1 � q(n)un = 0 (n = N;N + 1; : : :)has characteristic polynomial (z � �)(z � �) with �; � 2 C: Then there exist two linearlyindependent solutions fu(1)n gn�N and fu(2)n gn�N of (14) such thatlimn!1 u(1)n+1u(1)n = �; limn!1 u(2)n+1u(2)n = �:
13



5. Applications.5A. Continued fractions.Let p; q 2 R(X); p; q 6= 0: We consider the continued fraction(22) q(1)jjp(1) + q(2)jjp(2) + q(3)jjp(3) + : : : :A natural question is whether the limit exists. We say that the continued fraction convergesin the broad sense if the limitlimn!1 q(1)jjp(1) + q(2)jjp(2) + : : :+ q(n)jjp(n)exists or if limn!1p(1) + q(2)jjp(2) + : : :+ q(n)jjp(n) = 0:Perron [14] pp. 271-273 investigated for which p; q there is convergence in the broad sense.Kooman [6] Ch.7 gave a complete answer.THEOREM 6. Put r(n) = 1 + 4q(n)=p(n)p(n � 1):The continued fraction (22) converges in the broad sense if and only if(i) deg r � �2 and limx!1 x2r(x) � �1=4;(ii) deg r = �1 and limx!1 xr(x) > 0;(iii) deg r = 0 and limx!1 r(x) > 0;(iv) deg r = 1 or 2 and limx!1 r(x) =1:The underlying equation is ynyn+1 + p(n)yn + q(n) = 0 which can be transformed toun+2 � p(n)un+1 � q(n)un = 0 where un = (�1)n+1yn+1yn : : : y1:5B. Irrationality measures. 14



In 1978 Ap�ery [1] proved the irrationality of �(3) =P1n=1 n�3 (cf. Reyssat [16], Beukers [2],van der Poorten [17].) Actually it follows that for all positive integers p; q > 0 su�cientlylarge relative to " > 0 :j�(3)� pq j > q�(�+�) where � = 1 + 4 log(1 +p2) + 34 log(1 +p2) � 3 = 13:417820 : : : :See [17] p.199. A similar irrationality measure can be derived for �(2): Ap�ery's proof isbased on the recurrence relation(23) n3un � (34n3 � 51n2 + 27n� 5)un�1 + (n� 1)3un�2 = 0:Let fang1n=0 be the solution of (23) with a0 = 0; a1 = 6 and fbng1n=0 the solution of (23)with b0 = 1; b1 = 5: Then limn!1 anbn = �(3):Kooman [6] Ch.2 studied the set of numbers which can be obtained in this way, that is,which are the limit of the quotient of the n-th terms of solutions of the same recurrencerelation with elements from Z[n] as coe�cients and integer initial values. He showed thatthis is a countable set which forms a �eld. This �eld contains all real algebraic numbers, butalso ek(k 2 Q); log k(k 2 Q>1); arctan k(k 2 Q; jkj � 1); �(k)(k 2 Z>1) and various othersets of well known numbers. For example �(k) = limn!1 a(k)n =b(k)n where fa(k)n g; fb(k)n gsatisfy the recurrence relation(n+ 2)kun+2 � ((n+ 2)k + (n+ 1)k)un+1 + (n + 1)kun = 0and a(k)0 = 0; a(k)1 = 1; b(k)0 = b(k)1 = 1: However, this recurrence relation is of no use for anirrationality proof, since such a proof requires a recurrence with an eigenvalue which is verysmall in absolute value. There is a theory of transforming recurrences into recurrences withaccelerated convergence (see Brezinski [3]), but nobody has found a suitable recurrence toprove the irrationality of �(5): 15



5C. Convergence of the sequence fPnk=0 �nk� (�1)kk! g1n=0:The functional analyst C.B. Huijsmans asked us whether the sequence fsng1n=0 de�ned bysn = nXk=0�nk� (�1)kk!satis�es jsnj < 1 for all n: This would be very surprising, since the terms composing sncan be quite large, �nk�(�1)kk! � e2k � e2pn if k � pn:However, computations showed that jsnj < 1 for n < 100: It can be shown that fsng1n=0satis�es the recurrence relation(24) un+2 � (2 � 2n )un+1 + (1� 1n )un = 0 (n = 0; 1; 2; : : :):According to section IId of Section 4 (24) has solutions fu(1)n g and fu(2)n g such thatlimn!1pn(u(1)n+1u(1)n � 1) = i and limn!1pn(u(2)n+1u(2)n � 1) = �i:An analysis of the proof yielded thatsn = cn1=4 sin(2pn+ ') + o( 1n1=4 ) (n!1)for some real constants c 6= 0 and ': This shows that sn ! 0 as n!1 and that there arein�nitely many sign changes where the distance between consecutive sign changes increasesalmost linearly.
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