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PRIMES OF DEGREE ONE AND ALGEBRAIC CASES

Ot CEBOTAREV'S THEOREM

by H W LENSTRA, JR and P STEVENHAGEN

ABSTRACT Let A C B be an extension of Dedekmd domams for which

the corresponding extension of fields of fractions is finite and separable It

is shown that the class group of B κ then generated by classes of pnmes of

degree one with respect to A When the mam argument of the proof is apphed

to the Situation of the ray class groups occurrmg m class field theory, it leads

to purely algebraic proofs of special cases of Cebotarev's density theorem

l INTRODUCTION

Let A be a Dedekmd domam with field of fractions K, and suppose L is

a finite field extension of K Then the integral closure of A m L is a Dedekmd

domam B, and for each non-zero pnme ideal q of B we defme its degree over

A äs the degree of the residue class field extension at Q, i e

deg^q = [5/q A/(Anq)]

We wnte CIB for the ideal class group of B and denote the class of q m CIB
by [q] Usmg this notation, we prove the followmg theorem

THEOREM l If L/K is α separate field extension and S is a finite

set of pnmes of B, one has

n/)=<[q] deg^q=l and

In case B is not a prmcipal ideal domam, it follows that B has infimtely

many pnmes that are of degree one over A We will see m section 3 that the

hypothesis that L/K be separable cannot be omitled
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As a special case of theorem l, takmg A = Z, we obtam a well known

result the class group of the ring of mtegers of a number field is generated

by the classes of the pnmes of degree one Our approach is sufficiently general

to yield the corresponding result for the ray class groups of a number field

Thus, let f be a cycle of a number field F and C/f the ray class group

modulo f (cf [12]) We then have the followmg analogue of theorem l

THEOREM 2 Let f be a cycle of the number field F and S afimte

sei of pnmes of F contammg the fimte pnmes dividmg f Then the ray

class group C7t satisfies

C/f = <[p] degzp = l and p φ S)

The Statement of theorem 2 is not very striking m view of a much stronger

theorem of Cebotarev from 1926 [4], which imphes that the pnmes of Fthat

do not divide f are eqmdistnbuted over the classes of C/f More precisely, the

Dinchlet density of the set of pnmes lymg m a given class of C/f is the same

for all classes, and these densiües already come from the pnmes of degree one
because the set of pnmes of degree one has Dinchlet density l (cf [12,
Ch VIII §4]) A weak form of this theorem had already been proved by
Frobemus [8] in 1896 Like Frobemus' proof, the proof of the Cebotarev
density theoi em depends on the properües of L-functions and makes use of
complex analysis Our theorem l is purely algebraic in its Statement and proof
The idea goes back to Kummer [11, p 241-243], who proved already m 1847
by an algebraic argument that the class group of the cyclotomic field Q(t,p)
for a pnme number p is generated by the classes of the pnmes of degree one
Generahzations of Kummer's argument m the direcüon of theorem 2 are found
in Hilbert's Zahlbencht [10, Kap 14, sec 53] and in Deurmg's lecture notes
on class field theory [5]

The algebraic nature of theorem 2 makes it a legitimate tool in so called
algebraic proofs of special cases of Cebotarev's theorem For abehan exten-
sions of the rational number field, where the theorem reduces to Pmchlet's
theorem on primes in anthmetic progressions, many algebraic proofs of special
cases are known to exist Here the typical Statement of a special case is that
for an integer n > l and a subset S of the multiphcative group (Z/nZ)*, there
are mfimtely many pnmes p for which p mod n is m S

When S = {l} there is an easy argument usmg the rc-th cyclotomic
polynomial [14, p 13] In fact, the stronger Statement that every number field
has mfimtely many pnmes of degree one is not very deep and follows from
an algebraic argument, äs Bianchi already pomts out in [2] ("La proposizione
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si stabilisce m generale col sussidw dell'antmetica anahtica Qm vogliamo

dimonstrarla con mezzi puramente aritmetia ") The Statement follows

immediately from our theorem 2, smce any number field has non-tnvial ray

class groups for f sufficiently large Schur [13] gave elementary proofs for

special values of n and 5 consisting of an element of order 2 They were

generalized to other values of n by Wojcik [15], who finally showed [16] that

for arbitrary n one can take for S a non-empty difference H2\Hl of two

subgroups Hi C H2 of (Z/«Z)* The proof goes through for the ray class

groups of an arbitrary number field [17]

All of the results above are restncted to abehan cases of Cebotarev's

theorem These are descnbed by class field theory, and the mam theorems of

this theory can be obtamed by "algebraic means" In fact, rauch of the above

is already implicit in the so-called first mequality from class field theory, which

states that for a cychc extension of number fields E/F, the norm mdex

[Cr NE/FCE] of the idele classes is at least equal to the degree [E F]

(cf section 4) It imphes that m any extension E/F with E Φ F, there are

mfimtely many primes of F that do not split completely in E Even though

the requirements for a proof to be "algebraic" may depend on taste, they are

certamly met by the Herbrand quotient argument that one usually encounters

äs the proof of the first mequality [12, Ch IX §5] If one combmes only the
first mequality with theorem 2, one obtams a theorem that does not only apply
to abehan extensions

THEOREM 3 Lei E/F be a Galois extension of number fields with
group G, and let H} and H2 be subgi oups of G such that //, C H2
and HI Φ H2 Then there are mfimtely many primes q of E for which

the Frobemus symbol of q in G lies m //2\//i

The proof of theorem 3 will show that the restnction of q to F can even

be required to be of degree one By e-ilarging E, one sees that the theorem

is also true for HI the empty set Thi* case follows also from Bianchi's result

mentioned above

The attempt to construct algebraic proofs for certain corollanes of

Cebotarev's theorem can lead to amusmg situaüons We give an example m
which the theorem above gives the desired result only when one assumes the

classification of fmite simple groups
It seems that in order to improve upon theorem 3, one would have to

distinguish by algebraic means between primes whose Frobemus elements

generate the same subgroup
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2 THE SEPARABLE CASE

In this section we will prove the theorems l and 2 The proof will depend

on the fact that the extension of fields under consideration is separable In

section 3 we will construct examples of mseparable extensions for which the

conclusion of theorem l does not hold.

Suppose that we are in the Situation of theorem l As we assume L/K to

be separable, there is an element aeB such that L = X(a). Moreover, there

exists d Φ 0 m A such that the subnng A [a] of B satisfies dB C A [a] C B For

mstance, one can take for d the discnmmant of the irreducible polynomial of

α over K One has Bv = A$ [a] for the locali/ations at all pnmes y)(dA, and

for a pnme q m B that lies over such a p, the element α mod q generates the

residue class field B/q over A/^.

Both theorem l and 2 are easy consequences of the following lemma

LEMMA Choose i/ =£ 0 m A such that dB C A [α] , and let q be

a pnme of B that does not divide dB. If degA q = / > l , then there

exists a non-zero element xeB satisfymg

(a) χ = l mod dB

(b) Bx = q · Πί-ι*>» where bi,...,b( are pnmes of B of degree

< f that are copnme to dB.

If, m addition, a fmite number of embeddmgs φ of B mto the field of

real numbers are given, then the element xeB can be chosen such that

φ(χ) > 0 for each of these embeddmgs

Proof. Let p = q r\A, and set β = da. As <\\dB, one has jBp = Λρ[β]

and Kummer's theorem [12, Ch. I §8] imphes that there exist

u0,Ui,...,Uf \eA suchthat

(1) q = pJB

We may assume that

(2) x' = ßy+ «/-iß7-1 + .. + w,ß + M0eq - q2

This follows from (1) if p C q2, and can otherwise be achieved by addmg an
element of p - q2 to «0, if necessary. We shall obtain the required element
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by modifying the "coefficients" M/_, and u0 of x' . Our first condition

(4) ü0 = l mod rf/4

will guarantee that xeßB + υ0 C daß + dA + l C dB + \, äs required in (a).
The second condition

(5 υ0 = MO mod p2

υ/-! Ξ My

implies that zei} — p2, sox^O and we have

/

xB = q · Π ί><
;= J

for certain prime ideals 6, =£ g that do not divide ciß. Note also that we
cannot have b, | p5, since this would imply that 6, D p.0 + ΛΓΑ = q.

We will impose an extra condition on each of vü and iy_ , to ensure that

/ (/=!,...,/).

Let ge/4[Al be the irreducible polynomial of β over K, and M the Splitting
field of g over K. Denote by C the integral closure of A in M. Then g splits

completely äs a product II"=i(-^-ßj) in C[X\. Let the finite set WCC
consist of all sums of / distinct terms from β, , ß2, ..., ß„:

Our condition on y/_ i reads

(6) -Vf-rfW.

The ring /l is infinite, so we can find iy_ / satisfying (5) and (6). Given such
an element υ/·_ ι , we define a non-zero clement

J= f] (w + ̂ y-i) ,
weW

which lies in A äs it is a Symmetrie expression in the roots of g, and require that

(7) υ0 = 0 mod o for each prime a\yA of A that does not divide rfp .

There are only finitely manv prime divisors of yA, so there exists VQ satisfying

(4), (5) and (7) by the Chinese remainder theorem.

We will now show that our conditions on v0 and ny_i impjy deg^b, < /

for each prime 6, occurring in the decomposition of xB. Fix such a prime,
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and put a, = A n b, and β = β mod 6,. We have B/b, = (Λ/α,)[β] because

b,J(dB. Reduction of (3) modulo b, shows that β satisfies an /-th degree

equation

0 = ß/+ ϋ/.,β/-1 + ä/_2ß'-z + M/-3ß'-3 + - + Ö3ß3
(ö) _ _ _ _ _

+ M2ß2 + «iß + 0̂ ,

so we certainly have deg^b, < /. In Order to arrive at a contradiction,
suppose that equality occurs for our prime b,. Then the polynomial

h = XS+üf-iX'-1 + üf-iXf-'1· + üj„3X-f~3 + ... + üjX3 + Ü2X2

is the irreducible polynomial of β in (A/ü,)[X\. Since β is also a zero of
g = g mod a,[X\, h divides g in (A/a,)[X], hence also in (C/c,)[X\, where

c, is a prime in C lying over b,. In (C/c,)[X], the polynomial g splits

completely äs a product Π"=ι(̂ "~ ß/)> w'̂  ß/ - ßj m°d c,. It follows
that h = n,,e;W"~ ßj)> with- /C {1,2, ...,«} of cardinality /. Comparing
coefficients at A7-', we find that üf-\ = - X,eyßy. By definition of y, we
now have

.V = Π (w + i>/_i)ec, n/4 = α, .
wen-1

As ο,/Ι'ίή), we have y0 - 0 mod a, by (7). It follows that the irreducible

polynomial h e (A/a.,) [X\ is divisible by X. This contradicts the fact that

deg ή = />1.

We finally have to show that the element χ e B constructed above can be

made positive at a finite number of real embeddings 5>->R. This follows

immediately from the fact that (4), (5) and (7) remain valid when we replace

χ by χ + k2, where k is a suitable element in ydf>. This finishes the proof of

the lemma.

Proof of theorem 1. By the approximation theorem, the class group of

B is generated by the primes outside S. Thus, let q be an ideal of B of degree

degx q = / that is not in S. We are done if we can show that [q] is in the

subgroup C of CIB that is generated by the classes of primes of degree one

that are not in S.

Use induction on /. For / = l there is nothing to prove, so take / > l .

If we choose the element d in the lemma divisible by all primes in S it follows

that there exist primes b, outside 5 with deg^b, < f such that [q]
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= Π,'= i[&<]"'£<%. ßy our induction hypothesis, all [6,] are in C. lt

follows that fa] is in C. D

By applying the first half of the proof of the lemma to a prime q of degree
/ = l, one can obtain an element χ = β + υ0 eB whose ideal factorization
reads xB = q · Π'=ι&< for certain primes 6, of degree one outside S. lt

follows that the inverse class [q] ~] e Clß is a product of classes of primes of
degree one outside S. Thus the classes of the primes of degree one outside S
generate CIB already äs a monoid, i.e. without using their inverse classes.

lt is not true that every ideal class of B necessarily contains a prime of
degree one with respect to A. As a trivial counterexample, with A = B, one
can a take a Dedekind domain that is not principal and invert all prime ideals
in the principal class. There are no prime ideals in the principal class of the
resulting Dedekind domain. Less trivial examples are found in [6, Ch. III § 15].

Proof of theorem 2. We now take A = Z and B the ring of integers of
F. The possibility of choosing the element χ in the lemma in such a way that
it is positive under certain embeddings in the field of real numbers and con-

gruent to l modulo any given ideal of A shows that the lemma can also be

used to generate relations in C/f. The proof is further analogous to that of

theorem 1. D

Remark. Theorem 2 can be generalized to the case that F is a function

field over a finite field. In that case, there is neither a canonical choice for

a ring of integers A C. Fnor an absolute degree of the primes of A with respect

to a base ring Z. For each non-empty finite set of primes Toi F, one can take

A to be the intersection of valuation rings (~\MTAV C F. One defines a con-

ductor of A to be a pair consisting of an integral ideal f of A and an open

subgroup H of finite index in the product of the completions [J erF* of F.

The ray class group of A modulo such a conductor is defined äs the group
of fractional A -ideals that is generated by all primes p^f of A modulo the
subgroup of principal ideals A α for which α = l mod*f and α e //"under the
natural embedding. If k is the field of constants of F and χ is an element of

F\k, one can consider the degree of primes of A with respect to k(x) and show

that ray class groups of A are generated by the classes of primes that are of

degree one in this sense. The details are left to the reader.

3. THE INSEPARABLE CASE

In this section we will show that the separability assumption in theorem l

cannot be omitted. As we need examples of Dedekind domains having a non-
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trivial class group in order to create situations in which the conclusion of
theorem l fails, we will first recall an explicit construction of such examples.
There does not seem to be an adequate reference to the literature for this result,
so we formulate it äs a proposition and supply a proof.

Let geZ[t] be a non-constant polynormal with coefficients in a field Z,

and define the ring R C Z(t) by

R = \ — : a, b e Z[t]: b = gm for some m ̂  0, and dega ̂  degb \ .
(b J

For this ring the following holds.

PROPOSITION. The ring R is a Dedekind domain with class group
Cl(R) = Z/AZ, where h = gcd{deg /: / | g}.

Proof. We will give a quick geometric proof using a theorem on class
groups from [9] and a completely elementary ring theoretic proof.

For the first proof, let X be the projective line over Z. Each of the distinct
irreducible factors /i,/2,...,/r of g corresponds to a closed point P, of X
that is contained in the open affine subset SpecZf/] of X. The variety
X\{P\,Pi, ...,Pr} is affine with coordinate ring R. It is a normal variety of
dimension one, so J? is a Dedekind domain. By repeated application of pro-
position II.6.5(c) in [9], it follows that the natural map from Cl(X) to
Cl(R) = C/(SpecÄ) is a surjection, and that the kernel is generated by the
classes of the prime divisors {P,} in Cl(X). As Cl(X) = Z under the degree
map [9, proposition II.6.4], the proposition follows immediately.

For the second proof, we define for each k e Z the fractional #-ideal

(a }
tir = | - : a, b e Z [t]: b = gm for some m > 0 and deg« + k 5ξ degö v .

One easily checks that c*--c/ = c*H/ for k,leZ. In particular, one has
t/r = tk with c = Ci for k > 0, and since co = R the ideal c is invertible.
As R = c + Z, one has dimz(R/c) = 1. The invertibility of c implies that
dimz(o/b) = dimz(ca/c£>) for any pair α D 6 of fractional 7?-ideals of

finite relative Z-dimension, so dimz(/?/c*) = k for any k ̂  0.

For any non-zero element xeR, we set d(x) = dimz(/?//?x). We will

prove that d(x) is always finite, and that it is given by the formula

(9) d(x) = - Σ ord/(x)-deg/,
/| g 11 red

where ord/(jc) denotes the number of factors / in x.
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We first prove formula (9) in two special cases. If χ = /-' for some

irreducible divisor / of degree k of g, then χ generates c*, so

d(f~}) = k = deg / and (9) holds. Next, suppose x=a/beR with

a,beZ[t] of equal degree and gcd(e, g) = 1. The natural map

Z[t] -> Z[t]/aZ[t] maps g to a unit, so it has an extension to the localized ring

Z[t]g , which contains R. An element yeR is in the kernel if and only if it

is of the form y = ahg-k with A: > 0 and heZ[t] of degree at most

k deg g -deg a. Writing y = x(bh/gk) exR one sees that an isomorphism

R/xR -> Z[t]/aZ[t] is induced, so d(x) = deg α = degö and formula (9) holds
again. For the general case one writes an arbitrary non-zero element xeR in
the form χ = (ala2)/b with a,,a2,beZ[t] and gcd(c,,a2) = gcd(a,,g)

= gcd(flia2,ö) = l, and notes that all factors except xdc£« in the equation

dcgg

are products of factors of the special types dealt with above. It is immediate
from the definition of d that if χ and y are in R\{0}, we have

d(xy) = (f(jf) + ö'O) in the sense that if one of the sides is finite, then so is
the other and the equality holds. Repeated application of this fact now shows
that (9) is valid for our arbitrary element χ e R. As a consequence, we see that
d has a unique extension to a homomorphism d:Z(t)* -» Z. Also, since every

fractional ideal contains a principal ideal and is contained in a principal

fractional ideal, we can define the integer dimz(a/b) äs dimz(a/(o n 6))
- dimz(b/(a n b)) for any two fractional Ä-ideals α and 6.

We will finish the proof of the proposition by showing that for any frac-

tional Ä -ideal b D R, one has b ~ c-dim^6/Ä), where ~ denotes equality up to
multiplication by an element from Z*. First of all, this implies that all frac-
tional Ä-ideals are invertible, so R is a Dedekind ring. Moreover, the ideal class
[c] generates Cl(R). The order of [c] is at least h äs we have [xR] = [cd<*>] for
any xeZ* and d(x) e hZ by formula (9). We have already seen that
c'ieg/ - f-iR for each irreducible factor / of g, so c'1 is principal and we

obtain the desired result Cl(R) = Z/AZ.

We prove the relation b - c-dim^b/R> by induction on dimz(6/#). If

dim7(b/Ä) = 0 one has b = R and there is nothing to prove. Assume
dimz(i>AR) > 0, so that bc 2 c. We claim that there exists zebc\c such
that d(z) ̂ 0. Indeed, every element χ e Z (t) has a partial fraction expansion,
i.e. it can be written äs the sum of an element of Z [t] and a finite /c-linear
combinaüon of elements of the form t'/f", where f eZ[t] is an irreducible
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polynomial, «eZ>0 and 0</<deg/. Consequently, Z=S+c with
S = {xeZ(t)*:d(x) < 0} u {0} , and our claim follows. We have btz~[ 3 R
and over R its Z-dimension dim(bc2~'/^) = dim(k/c) - dim(#/c)
+ dim(R/Rz) = dim(b/#) - l + d(z) is strictly smaller than dim(b/Ä).
Our induction hypothesis gives bc ~ c*™®' R) + * ~ d(*> , so f, ~ c-d™(i>/»)-*>

~ c-dim»/") and we are done. D

If R is äs in the lemma, one sees that R = ^^S0~l Z[\./g]l'/g. It follows

that R is the integral closure of the ring Z [l /g] of polynomials in l/g in the
field Z(f).

Now suppose that k is a field of characteristic p > 0 and that there exist
a, ße/c such that [k(\̂ ä,}̂ ):k} = p2. In order to construct a counter-
example to theorem l for an inseparable extension L/K we choose A and L
äs below.

= L D £

= A" D Λ = k
t" -a

The integral closure B of A in L is the integral closure of k(\/$) [(f - a) " ']

in L, so the proposition applied to Z = Ar(]i/jj) and the irreducible poly-

nomial g = i" - α e Z [i] shows that ß has a class group of order p. We claim
that B has no primes of degree one over A, so that its class group cannot be
generated by the classes of such primes. For the degree valuation, the residue
class field extension is of degree [!($/$): k] = p. For all other valuations
of A, it is an extension of the form k(y) C k(]/̂ ß,y), where γ denotes the
residue class of t. If the degree of this extension is one, then /t (γ) = k(yp), so

k C k (γ) is a separable extension. This contradicts the fact that Y/$ek(y),

and our claim is proved.

More generally, the argument above shows that for any non-perfect field

k, one can construct examples of this type: if f>ek\kp with p = char/c

and i is transcendental over k, take L = k ($/$)({). As k(̂ /$) is not

algebraically closed, there exist irreducible polynomials g e /c(]Xß) [t] of
arbitrarily high degree, so the construction above gives us infinitely many
Dedekind domains B D k(]!//ß)[l/g] in L having non-trivial class group. As
in our example, the rings B have no primes of degree one with respect to the
subring A = B n k(f) of which they are the integral closure in L.
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4. ALOEBRAIC PROOFS

In this section, we will restrict our attendon lo number fields, i.e. finite

extensions of the field of rational numbers Q. The degree of a prime in a

number field will be the degree with respect to Z.

Let F be a number field, f a cycle of F and C/f the ray class group of

conductor f of F, and CF the idele class group of F. For each prime p of F,

we fix an element πρ e CF that is the residue class of a prime element at p.

There is a natural surjection (ĵ C/r-̂ C/f that maps πρ to the class of the

prime ideal p for each p not dividing f. A subgroup of CF is open if and only

if it contains kerc[>f for some conductor f of F. Our theorem 2 may now be

reformulated äs follows.

THEOREM 2'. Any open subgroup of CF that contains all but finitely
many of the elements πρ with p of degree one is equal to CF itself.

If E is a finite extension of F, then the norm subgroup NB,rCE is open

and of finite index in Cr. If E/Fis cyclic, thefirst inequality from class field

theory states that [CF:NE/FCh] ̂  [E:F\.

LEMMA. Let E/F be an extension of number fields, and suppose that

almost all primes of degree one of F split completely in E. Then E = F.

Proof. All primes of F that split completely in E split completely in the

normal closure £" of E over F, so the assumption also holds for E7F. If

£" * F, then there exists a subextension F C F' C E' for which E'/F' is cyclic

of degree [E':F']>\. By the first inequality, this implies that

NE'/r'CE' Φ Cr. On the other hand, ΝΕ·/Γ·€Ε> contains πρ for each prime p
of F' that splits completely in E'. This contradicts theorem 2'. D

As a corollary, we obtain a theorem of Bauer (1916). Bauer's original

proof [1] is based on the Frobenius density theorem [8].

COROLLARY l (Bauer [1]). Let F be a finite normal extension of Q,

and suppose that E is a number field such that all but finitely many of the

primes p that have an extension of degree one to E split completely in F.

Then F is contained in E.

Proof. All but finitely many primes of degree one of £' split completely

in FE/E, so FE = E by the lemma.
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Our lemma also shows that ray class fields are charactenzed by a weak
form of their original defmition äs abehan extensions of a number field
charactenzed by a certam set of pnmes Splitting completely in the extension

COROLLARY 2 (Deurmg [5]) Lei F be any number field, f a cycle
of F and E an extension of F m which almost all pnmes p of F
satisfymg p = l mod * f spht completely Then E is contamed m the ray

class field modulo f of F

Proof Let R be the ray class field modulo f of F Almost all pnmes of
degree one of R he over a pnme p of Fthat is l mod*f, so they spht completely

m RE/R It follows that RE = R D

Proof of theorem 3 Let £" and F' be the fields corresponding to //i and
HI Then [E' F'} > l, so by the lemma there are infimtely many pnme ideals
p of degree one m F' that have an extension p' to JE" for which degp' > l
Let q be an extension of such a pnme p' to E Then the Frobemus element
of q m G lies m H2 but not m HI Note that we obtain äs addiüonal
Information that the restncüon of q to T7 is of degree one D

As a consequence we have Wojcik's result [17] mentioned in the
mlroduction

COROLLARY Let Ht and HI be subgroups of the ray class group
C/f of a number field F suchthat H\ C H2 and Η}ΦΗ2 Then there

are infimtely many pnmes p of F fot which the ray class pmod^f lies

m H2\H\

Proof Take for E/F the ray class field extension of conductor f, then

Gal (E/F) = C/f and our claim follows from theorem 3 D

Usmg the generalization of theorem 2 discussed m the remark at the end

of section 2, one can in a similar way prove the analogue of theorem 3 for

the function field case However, the somewhat intuitive distmction between

algebraic and analyüc proofs we accepted for the number field case becomes
rather questionable here, äs one may very well argue that the zeta-functions
occurrmg m the "analyüc proofs" are formal power series and therefore of
an algebraic nature

We fmally describe the somewhat bizarre Situation that anses when one
tries to give an algebraic proof of the following well known theorem
[3, p 362]
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THEOREM. // feZiX] is an irreducible polynomial that has a zero

modulo almost all primes p, then f is linear.

In order to see what is needed for a proof, assume that deg / > l, and

let G be the Galois group of the Splitting field of /. Then G acts transitively

on the set Ω of roots of /, and the assumption that / has a root modulo p

for almost all p implies that almost all Frobenius elements in G fix a root of

/. If H C G is the stabili/er of some ω e Ω, the subset of G consisting of those

elements that fix at least one element of Ω equals \J geGgHg-1. As no finite

group is the Union of the conjugates of a proper subgroup, G contains elements

that fix no root of /, and which therefore occur äs the Frobenius of only
finitely many primes in the Splitting field of /. This obviously contradicts the
Cebotarev density theorem.

In order to replace Cebotarev's theorem in the argument above by a
weaker, algebraically provable form like our theorem 3, we need an element
σ of G that fixes no element of Ω and whose order is a power of a prime

number. Indeed, if σ has g-power order then each element of <σ> - <σ">

fixes no element of Ω, and we obtain a contradiction since theorem 3 implies

that there are infinitely many Frobenius Symbols among them. Thus, we are

reduced to proving the following.

LEMMA. Given a finite group G acting transitively on a finite set Ω

of cardinality #Ω>1, there exists oeG of prime power order that fixes

no element of Ω.

Suppose G is a counterexample of minimal order to this Statement, and let

H be the stabilizer of some element of Ω. The set of left cosets in G of a

maximal subgroup H' D H with natural O-action now also gives a counter-

example to the lemma, so we may assume that H is a maximal subgroup of

G. We have D = Π̂ ο̂ "̂' = i1)» since otherwise the action factors via

G/D and an element of prime power crder fixing no element of Ω in G/D can

be lifted to an element of the same sort in G. Now suppose G has a normal

subgroup N Φ {l}. Then H n N = {l}, so G = NH and N acts transitively

on the set of left cosets of H in G, hence on Ω. By the minimality of G, we

conclude that 7V = G, so G is simple. Now the lemma is known to hold for

simple G, but the only existing proof (which, äs M. Isaacs kindly pointed out
to us, can be found in [7]) proceeds by checking all cases given by the classifica-
tion of finite simple groups. Thus, it turns out that currently we can only
eliminate the use of Cebotarev's density theorem in our proof at the cost of
introducing the classification of finite simple groups.
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