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Influence of Coulomb repulsion on the Aharonov-Bohm effect in a quantum dot
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We consider the Aharonov-Bohm (AB) effect in the quantum Hall regime due to resonant tunneling
into circulating edge states in a disk-shaped two-dimensional electron gas. We point out that the
AB effect requires the incremental charging of the disk by single electrons. The charging energy is
shown to reduce the frequency of the magnetoconductance oscillations. We predict the phenomenon
of the "Coulomb blockade of the Aharonov-Bohm effect": The AB effect is suppressed in a disk of
small capacitance, but can be recovered by making a large hole in the center of the disk.

The effect predicted by Aharonov and Bohm1 involves
the influence of the vector potential on electrons con-
fined to a multiply connected region, within which the
magnetic field is zero. The energy levels of the electrons
are periodic in the enclosed flux with period h/e, äs a
consequence of gauge invariance. Electron-electron in-
teractions do not affect this periodicity.

In the solid state, the Aharonov-Bohm (AB) effect
refers to the periodic oscillations of the conductance of a
ring äs a function of an applied perpendicular magnetic
field B. The periodicity of the oscillations is AB = h/e A
in a ring enclosing an area A (plus possibly harmonics,
e.g., at h/leA)? An essential difference with the original
AB effect is that now the field penetrates the ring itself,
äs well äs its interior. The periodicity in the enclosed
flux is therefore not exactly h/e. The nonzero magnetic
field in the conducting region of the ring (of area 5) can
vary the frequency of the magnetoconductance oscilla-
tions by an amount of (/i/eS)"1. These effects are well
understood in terms of the properties of a noninteracting
electron gas.2"5

A rernarkable consequence of the penetration of a
strong magnetic field into the conducting region is that
periodic magnetoconductance oscillations can occur also
in a singly connected geometry, such äs a point contact,6

or a disk-shaped region in a two-dimensional electron gas
(a "quantum dot").7'8 The AB effect in these Systems is a
result of transport via edge states, which in the quantum-
Hall-efiect regime are the current-carrying states at the
Fermi level. As shown by Sivan and Imry,9 edge states
circulating along the boundary of a quantum dot make
the geometry effectively doubly connected—in the sense
that circulating edge states enclose a well-defined amount
of flux.

There is, however, a difference which has not been no-
ticed previously. In each period AB the number of states
below a given energy increases by l in a quantum dot—
but stays constant in a ring (with S <C A). This is il-
lustrated in Figs. l (a) and l(b), which show the energy
levels äs a function of B for the two geometries.10 [The
intermediate case S ~ A is shown äs well, for comparison,
in Fig. l(c).10] As a result, the AB magnetoconductance

oscillations of a quantum dot are accompanied by an in-
crease of the charge of the dot by one elementary charge
per period. That is of no consequence if the Coulomb
repulsion of the electrons can be neglected, but becomes
important if the dot has a small capacitance C to its sur-
roundings, since then the electrostatic energy e2/C asso-
ciated with the incremental charging by single electrons
has to be taken into account. As we will show below, the
charging energy enhances AB by a factor l + e2/CAE,
with AE the Separation in energy of the edge states [see
Fig. l(a)]. If e2 /C> Huc (with wc ~ eB/m the cyclotron
frequency) the AB magnetoconductance oscillations are
effectively blocked by the Coulomb repulsion. We re-
fer to this phenomenon äs the Coulomb blockade of the
Aharonov-Bohm effect.

To analyze the effect of the Coulomb repulsion on the
periodicity of the AB oscillations we make use of the con-
cepts developed in the context of the Coulomb blockade
of tunneling.11 We consider the geometry of Fig. 2(a),
consisting of a two-dimensional electron gas (2D EG) in
which a disk-shaped region is defined electrostatically by
means of a gate. This "quantum dot" is separated from
the two adjacent 2D EG regions (the "reservoirs") by
tunnel barriers. A current I can be passed through the
dot by applying a voltage difference V between the two
reservoirs. The conductance G of the quantum dot is
defined äs G = I/V, in the limit V -+ 0.

The probability P(N) to find N electrons in the quan-
tum dot in equilibrium with the reservoirs is given by the
grand canonical distribution function

(1)P(N) = const χ exp ( —— [F(N) - NEF]κ J.

Here F(N) is the free energy of the dot, T the temper-
ature, and EF the Fermi energy of the reservoirs. In
general, P(N) at T = 0 is nonzero for a single value of
./V only [namely, the integer which minimizes the expo-
nent in Eq. (1)]. In that case, G —» 0 in the lirnit T —* 0.
As discussed by Glazman and Shekhter,12 a nonzero G
is possible only if P(N) and P (N + 1) are both nonzero
for some N. Then a small applied voltage is sufficient to
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induce a current through the dot, via intermediate states At T = 0 the free energy F(N) equals the ground-state
7V—>· 7V + l — > 7 V — > TV + l — » · · · · . To have P(N) and energy £(7V) of the dot. We conclude that a peak in the
P(N + 1) both nonzero at T = 0 requires that both N low-ternperature conductance occurs whenever
and N +1 minimize the exponent, so that

F(N + i)-(N + l)EF - F(N) - NEF.
- EF, (3)

W for some integer N. Equation (3) equates the equilibrium

CM
JC

C\J
X

LU

4 -

0 -
8 10 12 14 16 18

(a) BeA/h
8 10 12 14 16 18

(b) BeA/h

CM
JC.

CM
X
LU

8 10 12 14 16 18

(c) BeA/h
FIG. 1. Energy levels äs a function of B for three geometries (Ref. 10): (a) Circular disk defined by a hard-wall confining

Potential. Notice the asymptote corresponding to the lowest Landau level. The second Landau level is visible in the upper left-
hand corner. The states between the Landau levels are the edge states. (b) Narrow circular ring of width W <C 'm = (Ä/eß)1'2,
with the energy relative to the one-dimensional subband bottom (which is a 5-independent constant for W «C Im)· (c)
Approximate energy levels in a relatively wide ring, defined by the potential V (r) = |mwo(r — ro)2, with A — TCT\ and
u>omA/h = 10. The inset shows the region (of area S) which is accessible classically by electrons in the energy ränge shown in
the figure.
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electrochemical Potentials of dot and reservoir. Since the
location of the peaks in the linear-response conductance
of the quantum dot is determined by its equilibrium prop-
erties, the tunneling rates between dot and reservoirs do
not enter in Eq. (3) (but they do determine the amplitude
of the peaks, see below).

To estimate £(N) we adopt the simple approximation
usually made in studies of the Coulomb blockade,11'12 of
taking the Coulomb interaction only into account via the
macroscopic electrostatic energy f(f>(Q)dQ. Here Q —
—Ne is the charge on the dot, and <f>(Q) = Q/C + <j>ext is
the potential difference between dot and reservoir, includ-
ing an external contribution <^ext from the gate and from
ionized donors in the heterostructure. We thus write for
the ground-state energy

N

(Ne)2/2C - Ne<j>ext, (4)

where Ep (p = 1,2,. . .) are the single-electron energy
levels in ascending order, measured relative to the bottom

(a) EF+eV O B

of the potential well in the quantum dot. The energy
levels Ep depend on gate voltage and magnetic field, but
are assumed to be independent of 7V. This assumption is
supported by self-consistent Solutions of the Schrödinger
and Poisson equation in a quantum dot.13

Substitution of Eq. (4) into Eq. (3) gives

1)— = EF
O

εφ,'ext (5)

äs the condition for a conductance peak. The left-hand
side of Eq. (5) defines a renormalized energy level E^,.
The renormalized level spacing A.E* = AE + e2/C is
enhanced above the bare level spacing by the charging
energy. In the quantum limit e2/CA.E —>· 0, Eq. (5) is
the usual condition for resonant tunneling. In the classi-
cal limit e2/CA.E —>· oo, and for 5 = 0, Eq. (5) describes
the periodicity of the Coulomb oscillations in the conduc-
tance versus electron density (or gate voltage), studied
theoretically in several papers.11"15

Equation (5) is sufficient to determine the periodicity
of the conductance oscillations, but gives no Information
on their amplitude and width. That requires the solu-
tion of a kinetic equation, with input of the tunneling
rates Γ* of level p through the two barriers. Such a cal-

culation h äs been performed by Averin and co-workers16

for the nonlinear I-V characteristic of a quantum dot,
in the regime /ιΓ <C kT so that the finite width of the
transmission resonance can be neglected. (In this regime
one has G <C e2/h, which is the condition under which
a description of resonant tunneling in terms of a kinetic
equation is valid.11) A similar calculation by one of us for
the linear-response conductance, described elsewhere,17

gives the result

Γ+rr
N)

(b)

FIG. 2. (a) Quantum dot geometry. A gate (shaded) iso-
lates a disk-shaped region in a two-dimensional electron gas
from two reservoirs. Conduction through the dot occurs by
tunneling (dashed lines). Edge states are indicated, with ar-
rows pointing into the direction of motion. (b) Geometry
which can be transformed from a disk into a ring. The inner
perimeter of the ring Supports a second set of edge states,
which travel around the ring in the opposite direction. Res-
onant tunneling occurs predominantly via the edge states at
the outer perimeter, since those at the inner perimeter have
a much smaller tunneling rate.

(6)

where /FD(#) Ξ [l + exp(s/^T)]~1 is the Fermi-Dirac
distribution function, and f(Ep N) is the conditional
probability that level p is occupied given that the quan-
tum dot contains 7V electrons. It is worth emphasizing
that this probability, äs it follows from the Gibbs dis-
tribution, is different from the Fermi-Dirac distribution
when kT ~ ΔΕ. Equation (6) agrees with the results
of Ref. 12 in the classical limit kT > Δ.Ε where the
discreteness of the levels is unimportant. In the quan-
tum limit kT <C Δ7? of present interest only the term
p = N — 7Vmjn remains in Eq. (6), where 7Vmin minimizes
the absolute value of

Δ(/Υ) = C- - EF.

One then has f(EN \ N) = l, P(7Vmin) = /FD(A(/Vm i n)),
so that Eq. (6) reduces to

\r - l /v ·•min •'•min

. +Γ« .
(7)
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Here we have used the identity /FD(! ~ /FD) = —
The conductance peaks are centered at A(Nm-ln) = 0,
which is just the condition (5) obtained above by an ele-
mentary argument.

We now apply Eq. (5) to the periodicity of the AB
oscillations in a quantum dot. As discussed for a nonin-
teracting electron gas in Refs. 7 and 8, AB oscillations
result from resonant tunneling through the quantum dot
via edge states circulating along the dot perimeter [see
Fig. 2(a)]. We consider here only the edge states from the
lowest (spin-split) Landau level, so that the AB oscilla-
tions have a single periodicity. This corresponds to the
strong-magnetic-field limit. The function EP(B) can be
approximated by a sequence of equidistant parallel lines,

AE
const ——— (B — p AB),

AB (8)

over a limited field ränge. Equation (8) holds only for a
few periods AB in the field ränge shown in Fig. l(a); a
much larger field ränge of nearly equidistant edge states
is possible at higher B, äs is shown for example in Fig.
2 of Ref. 8. Sivan and Imry estimate9 AB κ h/eA and
AE fä hwclm/2R, where lm = (H/eB)1^ is the magnetic
length and R ^> lm is the radius of the (circular) quantum
dot. These are order-of-rnagnitude estimates for a hard-
wall confining potential.18 On Substitution of Eq. (8) into
Eq. (5), one finds that the magnetic-field value BN of the
Nth conduction peak is determined by

(9)

The B dependence of the reservoir Fermi energy can be
neglected in Eq. (9) in the case of a hard-wall confining
potential (since dEF/dB κ huc/B < AE/AB). The
period AB* of the AB magnetoconductance oscillations
is then given by

Aß* Ξ BN+l -BN = AB1
CAE

(10)

This result implies that the charging energy enhances
the spacing of two subsequent peaks in G versus B by a
factor l + e'2/CAE. The periodicity of the magnetocon-
ductance oscillations is lost if AB* becomes so large that
the approximation (8) for Ep(B) (with a .B-independent
spacing AB) breaks down. Since Eq. (8) holds at most
over an energy ränge of the Landau-level Separation ftwc,
this Coulomb blockade of the AB effect (i.e., the dis-
appearance due to the charging energy of magnetocon-
ductance oscillations with a constant periodicity) occurs
when (AE/AB)AB* > Hwc, i.e., when e2/C>hwc.

The AB oscillations with bare periodicity AB = h/eA
are recovered if one makes a large hole in the disk. In
contrast to a disk, a ring Supports both clockwise and
counterclockwise propagation. The two sets of states
which circulate in opposite directions along the inner and
outer perimeter are distinguished by the opposite sign of
dEp/dB, i.e., of the magnetic moment. A disk has only
an outer perimeter, and supports edge states circulating
in one direction only. These states consequently all have
the same sign of dEp/dB.

Consider first the case of a very narrow ring, of width
W <C lm- The energy levels for this case are shown in
Fig. l(b).10 The states EP(B) all lie on the set of trans-
lated parabolas Eq(B) = (h2/8nmA)(q - B/AB), with
AB — h/eA and q a positive or negative integer. The
set of levels {EP(B)} is obtained by ordering the set
{Eg(B)} in ascending order. Since the two sets {Ey(B)}
and {Eq(B + AB)} are identical, it follows that

EP(B) = EP(B + AB) (11)

which guarantees, in combination with Eq. (5), that the
AB periodicity equals AB regardless of the charging en-
ergy. In a disk, in contrast, one h äs according to Eq.
(8),

Ep(B) = EP+1(B + AB) , (12)

which in combination with Eq. (5) yields a periodicity
AB* enhanced above AB by the charging energy.

To illustrate the difference, we compare in Fig. 3 for
disk and narrow ring the renormalized energy levels E*
[defined in Eq. (5)]. The effect of the charging energy in

disk ring
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FIG. 3. Renormalized energy levels, defined by Eq. (5),
corresponding to the bare energy levels in Figs. l (a) and
l(b), for a particular (arbitrary) value of the charging energy
e2/C. Left panel, disk geometry; right panel, narrow ring
geometry (the cusps will be rounded by a small amount of
disorder).
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a ring (right panel) is to open an eneigy gap of magni
tude e^/C in E* This gap will affect the periodicity of
the conductance oscillations äs a function of EF , but not
äs a function of B In a disk (left panel), the character-
istic "sawtooth" of the ring is not present in the strong-
magnetic-field hmit of asingle Landau level 19 The charg-
ing energy mcieases the energy Separation AE* äs well
äs the magnetic-field Separation AB*, and thus afFects
the conductance oscillations in a disk both äs a function
of EF and B

To complete our discussion of the two hmitmg cases of
disk and narrow ring, we now consider the mtermediate
case of a wide ring, with W 3> lm In a wide ring, Eq (11)
holds only up to teims of order S/A (where S is the area
of the conducting region, and A is the enclosed area) If
S <C A, then Eq (11) is a good approximation because a
field mciement AB = h/eA does not change the Landau-
level degeneracy BeS/h (smce ABeS/h = S/A < 1) If
S ~ A, Eq (11) holds for a relatively small number of
periods only, äs is shown m Fig l(c) In this mtermedi-
ate case one would observe series of AB oscillations with
spacing Δ5 separated by the larger spacmg AB*

It is of mterest to see exphcitly how Eq (11) follows
from the condition S <C A m a ring which is much
wider than the magnetic length We use the fact that
the edge state spectrum {Ep} for W ^> lm is com-
posed fiom the levels E^ of edge states at the inner
(+) and outer (—) perimeter of the ring These two sets
of levels can, analogously to Eq (8), be described by
E* = const ± (ΔΕ±/ΑΒί)(Β ± qAB±) Edge states
at the two perimeters have opposite sign of dB/dB We
now use AB+ = AB~ + O (S/A) In the hmit S/A ->· 0,
the füll spectrum {Ep} (obtamed by combming {E+}

and {E~} m ascendmg order) satisfies Eq (11), with
AB — AB± Note that this holds regardless of the rela-
tive magmtudes of AE+ and AE~

A controlled expenmental demonstration of the influ-
ence of Coulomb repulsion on the AB effect may be ob-
tamed m a System which can be transformed from a disk
mto a ring What we have in mmd is a geometry such äs
shown m Fig 2(b), which has an additional disk-shaped
gate withm the gate of Fig 2(a) By applymg a negative
voltage to this additional gate one depletes the central
region of the quantum dot, thereby transformmg it mto
a ring In order to estimate the mutual capacitance C be-
tween the undepleted quantum dot and the adjacent 2D
EG reservoirs, we note that only a circular strip of width
/,„ and radms R along the circumference of the dot con-
tributes to C The central region of the dot is mcompress-
ible in the quantum-Hall-effect regime, and thus behaves
äs a dielectric äs far äs the electrostatics is concerned 20

The capacitance C contams contributions from the self-
capacitance of this stiip äs well äs fiom its capacitance
to the gate (We assume that the gate is electrically con-
nected to the 2D EG leseivons ) Both contubutions are
of oidei cR, with a numeiical piefactor of oider unity
which depends only logaiithmically on the width of the
strip and the Separation to the gate21 (e is the dielectric
constant) A dot radms of l μτη yields a chargmg energy
e1 JC ~ l meV for e ~ lOeo This exceeds the level Sepa-
ration AE ~ Tiwclm/2R ~ IfT2 meV(T/5) at a field of a
few T A significant inciease of the fiequency of the AB
oscillations should thus be obseivable on depletion of the
central region of the dot, even foi a relatively large ra-
dius of l μιη 22 An ultimate test of the theory presented
in this paper would be to observe the Coulomb blockade
of the Aharonov-Bohm effect in a submicrometer disk
with e 2/C7> huc, and the recovery of the AB effect on
transformation to a ring
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