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Abstract. Among all pubhc-key cryptosystems that depend on the knapsack
problem, the System proposed by Chor and Rivest (IEEE Trans Inform Theory
34 (1988), 901-909) is one of the few that have not been bi oken The mam difficulty
m implementing their System is the computation of discrete loganthms m large
fimte fields. In this note we descnbe the "powerhne System," which is a modification
of the Chor-Rivest System that does not have this shortcommg The powerhne
System, which is not a knapsack System, is at least äs secure äs the original
Chor-Rivest System
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1. Introduction

Among all public-key cryptosystems that depend on the knapsack problem, the
System proposed by Chor and Rivest [2], [3] is one of the few that have not been
broken [1]. The Chor-Rivest System is based on arithmetic in finite fields. It has
the curious feature that its security does not depend on the apparent hardness of
any well-known computational problem, such äs the discrete logarithm problem.
Paradoxically, if the discrete logarithm problem in large finite fields would become
tractable, then this would improve the System: it would make it easier to generate,
but apparently not easier to break.

In this note we descnbe the powerline system, which is a modification of the
Chor-Rivest system. The powerline system is not a knapsack system. It works
directly in the multiplicative group of a finite field, without passing to discrete
logarithms. The system depends on a collection of elements that all lie on the same
line, and that are all raised to the same power. The powerline system achieves the
same improvement in system generation that a solution of the discrete logarithm
problem would bring about for the Chor-Rivest system.

The powerline system is at least äs secure äs the Chor-Rivest system, and if the
discrete logarithm problem would become tractable then the two Systems would be

1 Date received. May 14, 1990 Date revised January 7, 1991 The author was supported by NSF
under Grant Nos DMS 87-06176 and DMS 90-02939, and by NSA/MSP under Grant No MDA90-
H-4043
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equally secure. In fact, the fastest method for breaking the powerline system that
we know is first applying a discrete logarithm algorithm to reduce it to the Chor-
Rivest system, and next breaking the latter system by means of the attack of Brickell
[3, Section VII].

Thus we see that the powerline system has a less paradoxical relation to the
discrete logarithm problem than the Chor-Rivest system: the discrete logarithm
problem does not enter into the System generation, but it does enter into algorithms
for breaking the system.

The main advantage of the powerline system over the Chor-Rivest system is the
greater freedom it allows in choosing the system parameters, since there is no need
to restrict to finite fields for which the discrete logarithm problem is feasible. Using
finite fields for which the discrete logarithm problem is not feasible might in fact
add to the security of the powerline system. There is also a disadvantage: encryption
in the powerline system is somewhat slower than in the Chor-Rivest system.

The reader is encouraged to examine the powerline system for possible weak-
nesses, and to find a feasible method for breaking it.

In Section 2 we describe the powerline system. In Section 3 the Chor-Rivest
system, with a few inessential changes, is described. In Section 4 we prove that the
powerline system is at least äs secure äs the Chor-Rivest system. We also compare
the Performance of the two versions. Section 5 contains the little we know about
attacks on the powerline system.

2. Description of the Powerline System

(2.1) System Generation, (a) Choose a prime number p. Write Fp for the prime field
of p elements. The elements of Fp can be represented by the integers 0, l , . . . , p — l,
the arithmetic operations being defmed modulo p.

(b) Choose a positive integer n, and generate an irreducible polynomial/ e FP[X]
of degree n. This can be done äs in [4]. Write q for p" and F„ for the field
F p pf] / /F p pf] . The elements of F? can be represented äs vectors (x,)"=o o v e r FP>
with (X)"=o standing for the element (]Γ"Γ^ xtX

l mod /) of F r The arithmetic
operations in ¥q are performed modulo /.

(c) Choose a positive integer h, and generate an irreducible polynomial g e F e [F]
of degree h, äs in [4]. Write F?Ä for the field F^Yl/gF^Y]. The elements of F,„ can
be represented äs vectors (y,)^=o o v e r F?J

 w i t r i (3Ί)?=ο standing for the element
(Σ?=ο 3Ί ̂ ' m ° d β) oiFqh. The arithmetic operations in Fqh are performed modulo g.

(d) Choose a random element t E Fqh satisfying F?», = F9(i). This can be done by
selecting random elements t e Fg(, until one is found for which ¥q* = Fe(i). Noüce
that F4h = F,(i) if and only if the system l, t,..., i11"1 is linearly independent over
Fq, and if and only if tqhlp ·£ t for each prime number p' dividing h.

(e) Choose a random element u e Fqh with u φ 0.
(f) Choose a random integer k satisfying l < k < qh — l, gcd(fe, qh — 1) = 1.
(g) Choose a positive integer s < q. Write S — (l, 2,..., s}.
(h) Choose a random injective map π: S -» F„.
(i) For each i e S1, calculate the element vl = (ut — u·n(i))k of F ? h.
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(2.2) Public Key. The following Information is to be made public: p, n, f, h, and g,
so that the used models for F9 and Fqh are publicly available; the integer s, and the
s elements y l5 v2, . . . , vs of Fq,,.

(2.3) Private Key. The following are kept secret: t, u, k, and π.

(2.4) Message. A message is by definition a sequence m = (ml5 m2, ..., mj of
nonnegative integers satisfying £* = 1 m, = h. To transform conventional messages
to this form we can apply an algorithm similar to that in Section IV.B of [3].

(2.5) Encryption. To encrypt a message m = (ml5 m2, ..., ms), calculate the ele-
ment e(w) = Y\s

l=1 v™> of F?„. This element is to be sent over the insecure channel.

(2.6) Decryption. Given e(m), we calculate m äs follows, using the secret Informa-
tion. Steps (j), (k), and (1) can be done once and for all at System generation.

(j) Express the elements (Y mod g) and th of Fqh in the basis l, t, . . . , th~l of Vqh

over Fq. This can be done by solving two linear Systems over Fq. Once it is done,
we can use Horner's scheme to express any element (£?=<} yl Y

l mod g) of F„h in the
basis l, i, . . . , i*""1 by performing h - l additions and h — l multiplications modulo
the irreducible polynomial of t over ¥q:

The irreducible polynomial ofiisobtamedfrom the expression off*1 in l,f, . . . , t*"1,
(k) Calculate the element u~h of F,h.
(1) Calculate a positive integer / satisfying kl = l mod (qh — 1), using the extended

Euclidean algorithm.
(m) Calculate e(m)1 · u~h — th, and express it in the basis l, i, . . . , i*"1 of F„h over

F?, using the method described in (j):

Λ - 1

e(m)l-u~h- th = Σ wtt', wteFq.
1=0

(n) For each i e S, the number m, can now be computed äs the multiplicity of π(ί )
äs a zero of the polynomia! Zh + £?Γ^ w,Z' e F,[Z]. To prove this, it suffices to
show that the elements w,' e F ? defined by

Π (2 - τφ·)Γ' - ζ" + £ w;z«
ieS

satisfy H·,' = w,. Indeed, we have

A-l

Σ
1 = 0

e(m)l-u~h - th = -th + u-''· l} v^1 = - i ' 1 + u-*1· f ] («t - M·n(i))klm<
ieS ieS

= - t 1 1 + u~h· f ] (Μί-«·π(0)Μ·= - ί " + Π (t - π(ΟΓ = Σ w.'i'.
ieS ieS ι = 0

and w,' = w, now follows from the linear independence of l, t,.. ., i*1"1 over F,.
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3. The Chor-Rivest System

For comparison, we present here the Chor-Rivest System.

(3.1) System Generation, (a) Perform Steps (a), (b), (c) (with h > 1), and (d) of
Section 2. This provides us with explicit models for the fields F, and Fgh, and with
an element t e Fqh for which Fqh = F?(i).

(b) Perform Steps (g) and (h) of Section 2. This provides us with a positive integer
s < q and an injective map π: S = {l, 2, . . . , s} -» F,. (In [3] only the case s = q was
considered. See Section 5.)

(c) Determine a generator r of the multiplicative group of Fqh, and for each i e S
calculate the integer b, mod (qh — 1) for which rb> = t — π(ϊ). This amounts to the
solution of s discrete logarithm problems, which is computationally feasible only
for special choices of q and h, see the discussion in [3].

(d) Choose an integer d mod (qh — 1) at rsndom, and calculate, for each i e S, the
integer c, defined by c, Ξ ί>, + d mod (qh - 1), 0 < c, < qh — 1.

(3.2) Public Key. The following Information is to be made public: q, h, s, c1,
C2> · · ·> c s-

(3.3) Private Key. The following are kept secret: t, π, r, and d.

(3.4) Message. As in (2.4). (Following [1], we drop the requirement m, e {0, 1} of
[3].)

(3.5) Encryption. To encrypt a message m = (m1; m2, . . . , ms), compute the integer
e'(m) defined by e'(m) = X.esm.c, mod (qh — 1), 0 < e'(m) < qh - l. This number
is to be sent over the insecure channel.

(3.6) Decryption. Given e'(m), we calculate m äs follows, using the secret in-
formation.

(e) Perform step (j) of Section 2. This step can be done once, at System generation.
It enables us to express elements of Fe„ in the basis l, t, . . . , t11'1 of Fqh over F4.

(f) Compute the element r
e'(m)~hd - t" of Fqh, and express it in the basis l,

ί, . . . , ί " ' 1 ofFq„ overF^:
h-l

re'(m)~hd - t " = Σ W,t', W, 6 F , .

i=0

For each i e S, the number m, can now be computed äs the multiplicity of π(ι) äs a
zero of the polynomial Zh + ^^w,Zl ε F,[Z]. This follows from

ieS ieS

as in (2.6) (n).
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4. Comparison

(4.1) Security. The powerline system is at least äs secure äs the Chor-Rivest
System. In other words, any algorithm that given the public Information (2.2) and
the encrypted message e(m) of the powerline System finds m, can be transformed
into an almost equally efficient algorithm that performs the same function for the
Chor-Rivest System.

To prove this Statement, suppose that the public key q, h, s, c1? c2, ·.., cs from
(3.2) and the encrypted form e'(m) of a message m äs in (3.5) are given, and that an
algorithm for breaking the powerline system is available. Then m can be recovered
äs follows.

(a) Construct fields Fq <= F,„ äs in (2.1) (b) and (c).
(b) Determine a generator z of the multiplicative group of Feh; since q, h are the

Parameters of an instance of the Chor-Rivest scheme, this is supposed to be feasible
(see (3.1)(c)).

(c) Let v, = zc> for l < i < s, and compute ze'(m}. It is proved below that the models
of F, and F4>, constructed in (a), together with the number s from (3.1) (b) and vlt

v 2, · · ·, vs, constitute the public key for an instance of the powerline system (see (2.2)),
with e(m) = ze'(m\ Hence the algorithm for breaking that system that is supposed
to be available can now be used to recover m.

To prove the assertion just made we may, by the uniqueness of finite fields, choose
an identification of the finite fields F9 c ¥qh used in (3.1) and the finite fields ¥q c Fqh

constructed in (4.1) (a). Modulo this identification, let t in (2.1) (d) be the same äs
the element i used in (3.1). Let u in (2.1) (e) be defined by u = rd, with r, d äs in
(3.1) (c) and (d). Let k in (2.1) (f) be such that z = rk, and let π in (2.1) (h) be the same
äs in (3.1) (b). Then the elements calculated in (2.1) (i) are found to be

(ut-u·n(i))k = uk-(t- n(i))k = rdkrb·" = r"·* = zc;

and the encrypted form of the message in (2.5) is

e(m) = f ] (zc')m· = ze'(m).
ieS

This finishes the proof.

(4.2) System Performance. System generation. Once q, h, and s have been chosen,
the finite fields that both Systems need can be constructed by means of a random
algorithm of which the expected running time is polynomial in log q and h. For the
rest, the running time is dominated by step (2.1) (i) for the powerline system, and
step (3.1)(c) for the Chor-Rivest system. Step (2.1) (i) can be done by performing
0(sh log q) arithmetic operations in ¥qh. Wilh the Standard algorithms this takes
time 0(s(h log q)3), and with fast multiplication techniques O(s(h log q)2+s) for any
s > 0. The time reqmred by step (3.1)(c) will, even in favorable cases, be much more
than this. How much more depends on how efficiently we can compute discrete
logarithms in Fqh. The algorithm used in [3] runs in time s(h log q)0<1) times the
square root of the largest prime factor of qh — 1. We conclude that generally the
powerline system is easier to generate than the Chor-Rivest system.
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Key size. The public key consists of about sh(\og q)/\og 2 bits for both Systems.
The same is true for the private key. This grows by only a constant factor if the
precomputed Information from Steps (2.6) (j), (k), and (1) and (3.6) (e) is also taken
into account.

Encryption. In the Chor-Rivest System, encryption amounts to adding h in-
tegers modulo qh — l, which can be done in time O (h2 log q). In the powerline
System, encryption amounts to multiplying h elements of Fgh. With the Standard
algorithms this can be done in time O(h3(log q)2). With fast multiplication tech-
niques this can be reduced to 0(h2+£(log q)i+l>) for any ε > 0. Hence the Chor-Rivest
System is somewhat faster. Note that the model for F ? h that we use is not secret.
Therefore it may be chosen so äs to optimize the speed of arithmetic operations.

Decryption. It is not difficult to see that essentially the same operations have to
be performed in both Systems. The main difference is that the powerline System must
calculate e(m)1 where the Chor-Rivest system calculates re'<m). The latter computa-
tion can be made slightly faster if suitable powers of r have been precomputed.

Information rate. This is the same for both Systems, namely

(4.3) Choice of Parameters. Chor and Rivest recommend taking s — q χ 200 and
h Ä; 25 in their system [3]. Larger prameters make their System difficult to imple-
ment (see (4.2)), and smaller parameters affect the security. In the powerline system
we do have the freedom to choose larger parameters, or perhaps even smaller ones,
provided the discrete logarithm problem is infeasible. At the end of Section 5 we
indicate why, for both Systems, it may be wise to choose s somewhat smaller than q.

5. Breaking the System

We saw in the previous section that the powerline system is at least äs secure äs the
Chor-Rivest system. From the proof of this assertion it is not difficult to see that
the two versions of the system are actually equally secure if q, h are such that the
discrete logarithm problem is tractable for F?h. In fact, the fastest method for
breaking the powerline system that we know is first applying a discrete logarithm
algorithm to reduce it to the Chor-Rivest System, and next breaking the Chor-
Rivest system by means of the attack of Brickell [3, Section VII].

The problem of breaking the powerline system can be formulated äs follows. We
are given s elements νί,υ2, ...,ν., of an explicitly given finite field Fq„, and in addition
we are supplied with the Information that there exists a positive integer /, coprime
to qh — l, such that the /th powers of these elements lie on a straight F^-line, i.e., a
set of the form u¥q + ut, with u, t e Vqh, u =£ 0. The problem is to determine such an
integer /. (The additional restriction that Fqh = Fq(t) is equivalent to F4h = F^/u,·)
for all i ¥= j , which can be verified directly.)

Note that any solution / gives another solution when multiplied by p (mod qh — 1),
so that there exist at least nh Solutions (mod qh — 1); here q = p".
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If we choose s = q in (2.1) (g), then {v\: l < i < q} is equal to a straight Ime, which
is equivalent to

Π (Z - i?,') = Z« - aZ ~ b
i = l

in the polynomial ring F?„[Z], for certam a, b e F? l l. It is conceivable that this
information represents a weakness, so that it would be advisable to choose s
somewhat smaller than q.
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