
Epidemiologie evidence: to believe or not to believe

F.R. Rosendaal, MD PhD

Department of Clinical Epidemiology

Bldg l, CO-P

University Hospital Leiden

P.O. Box 9600

2300 RC Leiden

/ ' ι
S

/ ' //
t

<\ (} } Γ "̂  *- ΟΛ LtA \ IV ' C? c f
/ /

\ t Λ < Λ

7



Abstract

There seems to be a controversy in the credibility given to the results of epidemiologic

studies. On the one hand, some feel that more credibility should be given to the

results from the 'basic' (laboratory) sciences than to those of epidemiologic studies.

On the other hand, others have claimed that epidemiology offers the ultimate proof of

a proposed mechanism or therapy.

In our view, there is only one body of empirical science; therefore, a hierarchy

of fields of sciences is not only unjustified, but also counterproductive, since it may

lead to wrong conclusions, based on only part of the available empirical evidence.

The Information gathered in empirical studies may be false, because of bias,

measurement error or chance. Therefore, the results from several studies may be

contradictory. This forces us to weigh the results of different studies.

Generally, there are two approaches in judging whether an association, äs

found in a study, represents a true causal relation. One might apply criteria, for

instance of plausibility and coherence, that might be helpful in considering whether an

association is causal.

Nevertheless, the judgement will always remain subjective to some extent.

One might apply an approach, that incorporates this subjectivity. In this Bayesian

view, scientific studies are seen äs procedures that modify our prior belief in certain

associations into a posterior belief. With this view plausibility and coherence, äs well

äs the unavoidable subjectivity are incorporated in the prior belief, whereas the

posterior belief still allows for uncertainty.



Introduction

Empirical science is the gathering of Information that may serve äs evidence

in our understanding of nature. In medical science, this will be understanding of

normal biology, disease etiology, diagnostic tools and therapy. The information which

is the result of a study may be false, because of bias, measurement error or chance.

Therefore, the information obtained in one or several studies - that may often be

contradictory -cannot be considered absolute and will have to be weighted.

There is a tendency to downweigh evidence from epidemiological studies, i.e.

to consider evidence from epidemiological studies äs intrinsically less convincing than

evidence from other types of studies, for instance biochemical studies. A common

phrase is that epidemiological studies will only yield 'statistical associations' which,

apparently, are thought to differ from true associations.

To see what this view is based on, and whether it is justified, we will first

examine how one may judge a association to be causal. A cause or a causal factor is a

factor that brings about an event. This relationship between cause and effect is not

necessarily one-to-one; on the contrary, it is rare that the effect will invariably occur in

the presence of the cause and never in the absence of that cause. Usually, many

causes are acting together and only when a group of minimally required factors are

present the event will inevitably follow. Most of these conditions are still unknown and

there may well be different groups of causal factors that produce the same disease.

What will be observed is that each condition or cause will increase the probability of

the event occurring.

Scientific studies: bias

Understanding nature, in science is the establishment of cause-effect relations

by the conduct of scientific studies. When an association is observed in a study, this

may be because there exists a true relationship, or this may be because the study was

at fault, biased.

There are many different classifications of the possible types of bias, which



vary from a simple dichotomy of selection bias and Information bias [1] to extensive

lists of different forms of biases, sometimes with not very obvious names [2,3]. Since

these classifications do not essentially differ and we feel that in evaluating bias

common sense is the best guideline, we propose the simple and easy-to-remember

classification that is listed in table 1. Here we have classified bias according to the

time frame of a scientific study.

Bias in the data is present when there was some form of distorting selection

present. An example may be when a cluster of diseases is observed and beforehand

associated with some exposure by these observers [4]. For instance, several child

cancer cases occur in a small geographical area, in children who have all played near

a chemical factory. A subsequent study, äs often urged by the worried inhabitants will

invariably show an association between the disease cases and the exposure to the

chemical factory, which was known beforehand. Or even simpler: the inhabitants of

one street are worried because of a cluster of cancer cases, and ask for a study to

determine whether the incidence in their street is higher than the national average,

which of course, in retrospect, it will be. As this example shows, one may also view

chance occurrence äs bias in the data, äs well äs confounding, i.e. spurious

associations caused by distorting third variables.

Bias in the research is bias that occurs because something in the process of

research, the collecting of data, has gone astray. This includes for instance

measurement error and misclassification. An interesting example are the studies of a

possibly increased cancer incidence around nuclear power plants in the United

Kingdom. Whereas several studies seemed to show an increased frequency of cancers,

another study found an higher than average number of cancer cases around sites

where power plants had been intended, but never been built [5,6]. Although other

explanations are possible and have been brought forward, a likely explanation for this

intriguing result is that the research itself introduced a bias.

Bias in the authors is probably always present, since authors can choose which

subgroup analyses to perform, which tables to present etcetera. Although often the

purpose and endpoints of a study will be decided in advance, very few study protocols

give exact guidelines how the data should be presented. It is obvious that authors will

not present tables and graphs that show their results in the most unfavourable way.



An example of how the authors can affect the conclusions of a study is formed by two

papers, by the same authors and based on the same data, on the relation between

AIDS in homosexual men and the use of stimulant drugs known äs 'poppers' (amyl

nitrite). Before the human immunodeficiency virus (HIV) was known äs the causative

agent of AIDS, a relation between AIDS and the use of poppers was reported in an

epidemiological study. Several years later, when more was known about the viral

etiology of AIDS, the authors reanalysed the data, controlled for more confounding

variables, and the relation with poppers became less prominent [7,8]. In a way this is

the normal process of science: one cannot but admire the authors who first came up

with a bold hypothesis, and later tried to incorporate new knowledge in their analyses.

Nevertheless, one has to realise that both results came from essentially the same data,

which indicates the importance of an author's opinion or biases in analysing study

results.

The problem of author's bias is not limited to retrospective or observational

studies, since it may also occur in randomised controlled trials. A recent review by

Altman and Dore [9] of 80 randomized controlled drug trials published in the leading

medical Journals showed that the total group of subjects receiving the active

compound was consistently smaller than the group receiving placebo. Since

randomisation of large numbers of patients would be expected to lead to, on average,

even distributions over the groups, one might suspect that some patients in the

experimental groups were not reported on in the original publications.

A completely different and extreme form of author's bias is scientific fraud, in

which author's willfully and deliberately report on invented data. Although fraud

perhaps belongs more in a discussion on criminology than epidemiology, one may

wonder whether fraud is äs prevalent in epidemiologic studies äs in other studies. It

seems, äs noted by Vandenbroucke [10], that the famous examples of scientific fraud

that are reported on in medical Journals, are almost never epidemiologic. His

explanation is that there is little need for epidemiologist to invent data, since they can

'chum out a paper, or at least some publishable unit, from almost any data set'. This

implies that author's bias is even more important in epidemiologic than in other

studies. (Another explanation for the scarcity of epidemiologic fraud may be that it is

easier to detect fraud in laboratory studies since these experiments are more readily



repeated by other researchers.)

Bias in the Journals is also known äs publication bias [11,12]. It occurs when

medical Journals, that have to compete with one another for subscriptions and

therefore have a clear commercial interest, preferentially publish reports of appealing

results. It is understandable that medical Journals will not publish a paper claiming

that aspirin does not eure cancer, whereas they will not be able to resist Publishing a

paper claiming the opposite. This policy causes us only to see the top of the iceberg,

or, in the theoretical extreme, only the five percent of studies that are statistically

expected to show a significant effect in absence of any true effect, just by chance

alone.

Non-causal relationships

When a study, or several studies convincingly show an association, the

question remains whether the association is causal. A non-causal relationship may be

the result of bias, of unknown confounding, or residual confounding after correction

for confounding, or chance occurrence. These different scenarios are depicted in

figure 1.

A spurious association is the product of some form of bias, which we have

dealt with above. A confounded association results from the effect of a third variable,

the confounder, that is associated with the putative risk factor äs well äs with the

outcome variable. Chance may be viewed either äs causing a spurious relation, or äs

equivalent to unknown confounding, depending on one's viewpoint being stochastically

or deterministically inclined. A true causal factor is usually part of a causal pathway,

in which intermediate factors act both äs outcome variables and äs effector variables.

When analysing or evaluating a scientific study, it is not possible to discern

between these different possibilities with certainty. It is generally not possible to

measure bias nor can one know whether a result was caused by chance or unknown

confounder variables. Statistical and epidemiological methods may be helpful in

elucidating the role of chance or in controlling confounding variables: when a study is

well conducted, well controlled and confounding variables are adjusted for, bias may

seem unlikely; when the appropriate Statistical tests have been performed and a small

p-value obtained, chance occurrence may seem unlikely, or, when a small confidence



interval is obtained, the estimate may seem precise. Nevertheless, the possibility of

bias, unknown confounding or chance cannot be ruled out. So, how then does one

decide whether a association is indeed causal? It is clear that this 'decision', since no

measurement is possible, is to some extent subjective.

Criteria for causality

In 1965, A.B. Hill proposed a list of nine items that might be helpful in

considering whether an association is causal, although he cautioned that the list was

neither exhaustive nor a sine-qua-non for causality [13]. The items are listed in

table 2.

Strength of association: strong associations, i.e. those with high relative risks

or risk differences, are more likely to be causal than weak associations. Although one

cannot rule out strong unknown confounders, or even chance occurrence, this appears

a reasonable Suggestion, the idea being that the strong bias or the strong confounding

needed to produce a spurious strong association, would usually be obvious. On the

other hand, bias and especially measurement error may weaken the effect estimators

in a study, which has the result that a factor which is in reality strongly associated with

disease, appears only weakly correlated in a study. Finally, there may also be true

causal associations that are weak.

Consistency: when an association is observed repeatedly, in several studies,

with different designs in different populations, this lends credibility to the causality of

the association. It is evident that a relation between for instance diet and disease that

is only found in Dutch clergymen, and not in Dutchmen of other professions or

foreign clergymen, does not deserve much credibility. If an association is found in

many different settings, however, the same confounder may well be present in all

these different populations and research designs, and the association may still be

spurious. On the other hand, there may be true effects that are only present in certain

subpopulations, for instance only in Asian males of a particular age.

Specificity: a factor is highly specific for a certain effect when it is associated

with only that effect, äs opposed to factors that are related to a wide variety of

effects. If a particular drug when taken by pregnant women causes a well-defined

syndrome, which is not seen in children from women who did not take this drug, äs



was the case with thalidomide, a causal relation is almost certain. High specificity may,

however, be the result of a highly specific relation between the putative causal factor

and a confounding factor. On the other hand, it is not impossible that some factors do

cause a variety of diseases, for instance in case of birth defects, high parental age

increases the risk of many congenital disorders.

Temporality: a cause should precede the effect. The evidence should be

examined to see whether or not the putative causal factor might have been brought

about by the outcome. This can be ruled out in prospective studies, or in factors äs

blood group, HLA-type, but in many studies this possibility of the supposed causal

factor in fact being the result of the outcome should be considered.

Biologie gradient: the presence of a dose-related response, when a greater

effect (or risk of effect) is observed with a higher amount of exposure, makes a causal

relation more plausible. There may be causes, however, that do not produce a dose-

response relation, for instance those with a threshold effect. When a confounding

variable has a biologic gradient, i.e. when the association between the putative causal

factor and the confounder is dose related, a spurious dose-related response will be the

result. One of the finest examples of a spurious dose-response relationship was given

by Skrabanek, who commented on a list risk factors for scurvy, made several centuries

ago, that included exposure to 'sea air' [14]; he pointed out that this association

between exposure to sea air and scurvy must have shown a strong dose-response

relation.

Plausibility: a cause-effect relation should be biologically plausible. On the

one hand this criterium is quite vague, on the other hand it is probably the one we

tend to give most weight to in our judgement on causality. It is clearly one of the

more subjective items on this list.

Coherence: this requirement reflects the idea that new findings should fit in

the general body of science. When accepting a relation äs one of cause and effect is in

conflict with what is already known, one has to weigh the new evidence against the

evidence for the present knowledge that will now have to be rejected. For instance, if

we accept that extreme dilutions still carry some activity, äs in homoeopathy, we have

to reject the most fundamental ideas of physics and chemistry.

Experimental evidence: in experiments it is possible to manipulate the
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putative causal factor, which possibility is absent in observational studies. In

experiments one approaches the scientific ideal of 'ceteris paribus', all other things

being equal except the factor that is being manipulated. This does not exclude the

possibility that, by chance, like is not compared with like in a controlled experiment or

trial, which introduces confounding. Spurious results may be produced in experimental

äs well äs all other studies by incomplete correction for confounding or by unknown

(and therefore uncorrected) confounding. Of course, bias may be also present äs

author's bias and publication bias. In addition, in research in humans, experiments are

often impossible out of ethical reasons, for instance in all issues regarding potential

risk factors for disease, or even logically impossible, for instance when genetic factors

are studied.

Analogy: A certain factor is more likely to cause an effect, when we are

aware of similar factors that cause similar effects. The classical example is that if one

drug is capable of causing birth defects, other drugs also may have this effect.

Although these items should not be used äs a checklist to establish causality,

especially since there are, äs given above, arguments against each of them, they offer

a useful way to evaluate a possible causal relation.

Epidemiologie studies versus studies from other fields

What might be the reason to consider evidence from epidemiological studies

äs generally less convincing than evidence from other studies, e.g. laboratory studies?

A likely explanation is that in those studies usually an experimental design is used, i.e.

the factor under study can be manipulated, which is only rarely possible in etiologic

epidemiological studies. As we have seen, however, the availability of evidence from

experimental studies is only one of the many criteria one may use to consider

causality. As epidemiological studies, all other type of studies may be at fault because

of chance occurrence and different forms of bias (measurement errors or

misclassification, author's bias, publication bias). It is unjustified to speak of 'statistical

associations', since the phrase is meaningless. All associations äs observed in a study,

of whatever type, are essentially the same, and may subsequently prove to be true or

false.



The Bayesian view

The judgement whether a factor is causal is to a large extent subjective, since

the items mentioned above are not exhaustive nor absolute, and may not carry equal

weight. It seems that the most vague items, are also the most important ones, and the

ones one tends to give the most weight to: plausibility and coherence. How does this

fit in with the idea that when in a study a significant result is found, the null-

hypothesis should be rejected?

Plausibility and coherence are reflections of our prior belief in a hypothesis,

i.e. the credibility we are prepared to give to a hypothesis before a study is performed.

This prior belief is based on our knowledge of the biological mechanisms involved in

the topic of our research, our knowledge of previous studies either on the same

research question, or to questions closely related to it. The scientific study is

performed to test this prior belief [15]. In this respect, a study can be seen äs

analogous to a diagnostic procedure. The posterior probability of disease in a

diagnostic tests depends on tests characteristics - sensitivity and specificity - and the

prior probability of disease of the patient.

Example: suppose the sensitivity of a tests is 80 percent (% positive tests among

diseased individuals) and the specificity 95 percent (% negative tests in normal

individuals). Suppose the prior probability of disease is 50 percent: the patient may äs

well be healthy äs diseased (or, the prevalence of disease in the population this patient

onginated from is 50 percent). If we tested 1000 individuals, of whom 50 percent were

normal and 50 percent diseased (the prior probability), we would find 0.80 χ 500 = 400

true-positive tests among the patients with the disease, and (l - 0.95) χ 500 = 25 false-

positive tests among the patients without the disease. Therefore the postenor probability of

disease, given a positive test, becomes 400 l 425 = 94 percent. In this population, this

proves a useful tests, since it raises our suspicion from disease from an uncertain even

odds to an almost certainty.

Now suppose the prior probability of disease is very low, for instance l in 1000. If

we apply the same test to 1000 individuals, one of whom diseased and 999 healthy, we

will find 0.80 χ l = 0.80 true-positive test results, and 0.05 χ 999 = 50 false positive
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results; the postenor probability becomes 0.80 / 50 = 1.6 percent. In this instance, the fest

is not very useful: we did not suspect disease before we performed the test, and we still do

not think it at all likely that the patient has the disease after the test turned out positive.

When we view a scientific study äs a diagnostic test, the sensitivity is now

called the power (the probability of finding a positive result when there is an effect)

and the specificity is (one minus) the p-value (the probability of finding a positive

result when there is no effect). Let the p-value be 0.05 (specificity 95%), and the

power 0.80 (sensitivity 80%), then we will find positive (significant) results in 80

percent of the cases when the alternative hypothesis is indeed true, and in 5 percent

of the cases when the null-hypothesis is true, i.e. when no effect exists. The reasoning

to incorporate prior probabilities is exactly similar to that of diagnostic tools. If we

have a prior belief of 50 percent in a hypothesis, say that a new drug is superior to an

old one, and a study with a 80 percent power shows a positive result, our posterior

belief in the superiority of the new drug will increase to 94 percent. If subsequent

studies are performed, this posterior belief will become the prior probability, and this

will in its turn be affected by the study result, be it positive or negative [16].

When our prior belief is extremely low, say l in 1000, a significant test result

will have very little effect on our belief: since most positive studies would be false

positives, our posterior belief would still be near to only one percent (i.e. 0.80 / 50) =

1.6%). This indicates that implausible, contradictory study results may well occur, and

that incorporation of these studies in our probability System need not at all lead to

contradictions, but only to, sometimes only slight, modifications of our belief in a

hypothesis. In addition, this view makes it clear that studies into the very improbable

are useless, and should not be conducted, since they will not have much influence on

posterior probabilities.

Conclusion

In the evaluation of scientific evidence, it seems unjustified to give more or

less weight to the evidence depending on the branch of science it originated from. It is

far more important to consider the quality of the individual studies, regardless of the
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field they were conducted in, and to view the results in the light of what is plausible,

and in the light of what is known from previous studies and from other fields.
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Table 1. Types of bias

type example

bias in data selection

bias in research measurement error, misclassification

bias in authors selective subgroup analysis

bias in Journals publication bias
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Table 2. Hill's criteria for evaluating causality

strength of association

consistency

specificity

temporality

biologic gradient

plausibility

coherence

experimental evidence

analogy

association has a high relative risk

association is found in different designs/populations

association exists between only one factor and one effect

the cause should precede the effect

association has a dose-response relation

association is biologically plausible

association fits in what is known already

association can be demonstrated experimentally

association resembles similar associations
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Figure 1. Factors (F), Confounders (C) and Effects (E).
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