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A modification of the TUCKALS3 algorithm is proposed that handles three-way arrays of 
order I x J × K for any I. When I is much larger than JK, the modified algorithm needs less 
work space to store the data during the iterative part of the algorithm than does the original 
algorithm. Because of this and the additional feature that execution speed is higher, the mod- 
ified algorithm is highly suitable for use on personal computers. 
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Since Tucker (1966) fully described three-mode factor (and principal component) 
analysis, further research in the area has proceeded along two different lines. One, 
starting with Bloxom (1968), concentrated on further developing stochastic confirma- 
tory common factor analysis versions of Tucker's model, particularly for multitrait- 
multimethod type covariance matrices. Estimation procedures for such three-way mod- 
els have been described by Bentler, Lee, and co-workers (Bentler & Lee, 1978, 1979; 
Bentler, Pooh, & Lee, 1988; Lee & Fong, 1983). In addition, McDonald (1984), Browne 
and associates (e.g., Browne, 1984, for an overview), Verhees (1989), and Verhees and 
Wansbeek (1990) have done work in this area. The second line, starting with Kroonen- 
berg and de Leeuw (1980; Kroonenberg, 1983; Kroonenberg, ten Berge, Brouwer, & 
Kiers, 1989; Murakami, 1983; ten Berge, de Leeuw, & Kroonenberg, 1987), concen- 
trated on further developing nonstochastic, exploratory principal component aspects of 
Tucker's model. In terms of algorithms, the exploratory line is a further development 
of Tucker's Method I (based on product-moment matrices of the frontal, lateral, and 
horizontal slices of the observed three-way array), whereas the stochastic line elabo- 
rates on Tucker's Method III (based on multitrait-multimethod matrices). In the present 
paper an exploratory version of Tucker's Method III is presented as a modification of 
the TUCKALS3 algorithm of Kroonenberg and de Leeuw (1980). The approach used 
here is similar to earlier work by Murakami (1983) on the TUCKALS2 algorithm. 

The motivation for the present development of the Modified TUCKALS3 algo- 
rithm is similar to Tucker's motivation for developing his Methods II and III (Tucker, 
1966, pp. 298ff.), that is, how to handle three-way data sets with (very) large numbers 
of individuals within storage and execution time limitations. When Tucker's original 
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paper was published, these limitations occurred because computers were not that large 
and advanced; now, the same problems return in spite of the huge advances in com- 
puter technology, because of the general introduction of desktop micro-computers. In 
addition, the present approach enables the analysis of (published) multitrait-multime- 
thod type covariance matrices in an exploratory fashion without making distributional 
assumptions. 

Kroonenberg and de Leeuw (1980) have described an algorithm for least squares 
fitting of the Tucker3 model for three-mode principal component analysis (Tucker, 
1966). Let X k , k = 1 , . . . ,  K denote the k-th frontal slice of the three-way array, Xk 
having the order I x J. Their procedure minimizes the loss function 

f ( A , B ,  C, G I , . . . ,  G R ) =  ~ X k - A  
k = l  r = l  

(1) 

where A (I × P), B (J × Q), and C (K x R) are the component matrices for the first, 
second, and third mode, respectively, and Gl ,  . .  • ,  GR are the R frontal slices of the 
"core matrix" of order P × Q x R with the weights for the combinations of components 
of the three modes. Note that the formulation for the model part, ~k = A Z~=l 
ckrGrB', k = 1, . . .  , K, is equivalent to the more prevalent formulation X = 
AG(C' ® B'), where ~ = (3(1 I'" "I X r )  and G = (G 1 I'" "I GR), and ® is the Kronecker 
product. 

Kroonenberg and de Leeuw (1980) proposed to minimize this function by a pro- 
cedure that alternatingly minimizes f over A while B and C are held fixed, over B with 
A and C fixed, and over C with A and B fixed. Kroonenberg, ten Berge, Brouwer, and 
Kiers (1989) have accelerated this algorithm by replacing the so-called Bauer-Rut- 
ishauser (BR) procedure (in which one step of an iterative routine for computing a 
subset of eigenvectors of a matrix is performed) by a Gram-Schmidt (GS) procedure. 
However,  computation times dropped only slightly, probably because other computa- 
tions during each iteration step use far more floating point operations (flops) than the 
BR or GS procedures. This effect is especially marked for large matrices. Therefore, in 
the present paper, a further modification of the TUCKALS3 algorithm is proposed that 
attempts to reduce the number of flops considerably for data sets in which the size 
(number of entities) of one of the modes is far larger than the product of the sizes of the 
other two. Because I usually refers to the observation units, and typically, I = max (I, 
J, K), we focus on cases with I >> JK. 

To modify the Kroonenberg and de Leeuw (1980) algorithm, abbreviated as "the 
K & L algorithm", it is convenient to describe it in an unusual but strictly equivalent 
way. How this algorithm can be improved by a GS-step instead of a BR-step will be 
discussed next (see, Kroonenberg et al., 1989); finally, our further improvement of the 
K&L algorithm will be taken up. 

The Modified TUCKALS3 Algorithm 

Instead of describing the K&L algorithm with updating A, B, and C in turn in just 
three steps, the algorithm will be described in six steps: updating the core; updating A; 
updating the core; updating B; updating the core; updating C. Because these (unrav- 
eled) steps do not directly follow from Kroonenberg and de Leeuw 0980), they are 
rederived here as follows (also, see Weesie & Van Houwelingen, 1983). 

First, it is useful to note that A, B, and C can be constrained to be columnwise 
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orthonormal without loss of generality (Kroonenberg & de Leeuw, 1980), and hence, f 
can be expanded as 

K K R 

f (A ,B ,  C, G t , . . . ,  GR)=  ~ t r X ' k X k - 2  tr ~ ~] 
k = l  k = l  r = l  

Ckr A 'Xk BG'r 

R 

+ tr ~ GrG'~. 
r = l  

(2) 

The first, third, and fifth steps of the unraveled K&L algorithm involve minimizing f 
over G1, • . .  , GR with A, B, and C fixed. To find the G1, . . .  , GR for which f is 
minimal it is useful to rewrite (2) as 

f(A, B, C, GI,  . . .  , GR) = CG -- ~ Ckr A ' X k  B - G~ , 
r = l  k = l  

(3) 

where ca  is a constant independent of Gl ,  • • . ,  GR. From (3) it follows immediately 
that the minimum of f over G r is given by 

K 

Gr = E Ckr A ' X k B ,  ( 4 )  

k = l  

f o r t =  I , . . . ,  R. 
The minimum of f over A subject to A'A = It,,  with the other parameters fixed 

is attained by 

A = P(P 'P) - I /2 ,  (5a) 

with 

K R 

e-- Z E c,~XkBC~, (Sb) 
k = l  r = l  

as follows from Cliff (1966, p. 36), applied to the second term in (2). Similarly, the 
minimum of f over B subject to B ' B  = IQ is attained by 

B = Q(Q'Q)-1/2,  (6a) 

with 

K R 

Q Z Z c , = kr Xk  AGr .  (6b) 
k = l  r = l  

To find the C that minimizes f over C subject to C ' C  = IR,  the second term in (2) 
should be rewritten as tr X k X r Ckr A ' X k B G r  = Xk ~ ckr (tr A ' X k  BG'D = tr C R ' ,  
in which R is defined such--~at 

¢ t rkr = t r  A Xk BGr .  

The C that minimizes f subject to C ' C  = I R is given by 

(7a) 
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C = R(R 'R) - I /2 .  (7b) 

The unraveled K&L algorithm can now be described as the algorithm that mono- 
tonically decreases (or "not increases") f by alternatingly updating G according to (4), 
A according to (5), G according to (4), B according to (6), G according to (4), and C 
according to (7), and then repeating the whole cycle until the function value stabilizes. 
Kroonenberg et al.'s (1989) modification comes down to replacing the relatively ex- 
pensive computation of P(P'P)-~/~,  Q(Q 'Q) -  1/2, and R(R 'R) - I /2  (the BR steps) by 
GS procedures applied to P, Q, and R, respectively. The thus modified algorithm 
minimizes f just as the original K&L algorithm does, with intermediate function values 
precisely the same, but, in cases of large matrices may still be slow. 

When one of the modes, say I, is large, the K&L algorithm spends a large amount 
of time on computations involving X1 . . . . .  X K, and A, which are of orders I x J and 
I x P, respectively. Here, a modification of the K&L algorithm is proposed in which 
computations with matrices where one of the orders is I are circumvented. This mod- 
ification is based on the fact that, in all steps of the algorithm, X k and A always occur 
in matrix-products A'Xk, or X~ Xt (implicitly in P'P) ,  k, l = 1, . . .  , K, which are 
much smaller than Xk and A itself (when I is large). The crucial step in our modification 
of the K&L algorithm is that instead of expressing the updates for B, C, and 
G1, . .  • , GR, (6), (7), and (4), in A and Xk, these can be expressed directly in terms 
of Sk --= X~ A, k = 1, . . .  , K. Hence, for computing these updates we need not have 
X k and A in memory, as long as we have stored $1, • • • ,  S/¢. 

It remains to modify the updating procedure for A. Because A is not stored any 
longer and its role is taken over by Sk, k = 1, . . .  , K, we should update Sk (instead 
of A), thus updating A implicitly. The update for A is given by A := GS(P), where 
P is P = Zl Y-r ClrXlBG'r • Hence, the update for S k is given by 

Sk = X~ A = XIGS(P),  

which can be elaborated as follows. GS(P) can be written as P T  for some P x P 
transformation matrix T. Hence, 

Sk = X'~PT = ~.  ~ .  cl~X'kX1BG'~r. (8a) 
t r 

The update (8a) for Sk involves Xk only in the cross-product terms X~ Xt, k, l = 
1 . . . .  , K, and in the GS-transformation T as will be shown below. It can be verified 
that the GS-transformation can be found from the Cholesky decomposition of the inner 
product-moment of the matrix to which it is to be applied (see Lawson & Hanson, 1974, 
p. 125). Explicitly, let the Cholesky decomposition of 

P i P  = E E E E C krC l r ' a rn tX t kX lna t r ' ,  (8b) 
k l r r' 

be written as P ' P  = U' U, where U is an upper triangular matrix. Then, the transfor- 
mation matrix T used in the Gram-Schmidt orthonormalization of P can be taken as 
T = U -1 . The latter can be verified as follows. First, T ' P ' P T  = I,  showing that P T  
is columnwise orthonormal; second, the Gram-Schmidt transformation matrix is upper 
triangular, and if P has full column rank (which can always be assumed to hold), it is 
unique. Because T is upper triangular and PT is columnwise orthonormal, P T  is the 
Gram-Schmidt orthonormalized version of P. It can be concluded that computation of 
T via the Cholesky decomposition of P ' P ,  again involves Xk only in the cross-product 
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terms X'k XI .  As a consequence,  Sk can be updated without using the large matrices 
X k ,  k =  I , . . . ,  K. 

It has been shown that for updating G 1 . . . .  , G R, B, C, and S 1 . . . .  , S t ,  only 
X'kX  l and S k are needed (instead of  the large matrices Xk and A). Apart  from these 
updating steps one needs to evaluate the function during each iteration. It is readily 
verified that the evaluation of  f only involves X~ X k and S k , and does not require the 
explicit computation of  A either. Moreover ,  after updating G l ,  • • • ,  GR, using G r = 
Z k  Ckr A ' X k B ,  the function f can be simplified as 

K R 

f =  ~ t r X ~ X k -  ~ ] t r G r G ' .  
k = l  r = l  

(9) 

The Modified TUCKALS3  algorithm needs to store the matrices Sk (J x P), P ' P  
(P x P), and Vkl = X ' k X t  (J × J), k, l = 1 . . . .  , K (i.e., KJP + p2 + KEj2 reals), 
where the (most efficient version of  the) original algorithm needs to store Xk (I × J) and 
A (I × P) (i.e., KIJ  + IP reals), apart from the matrices B, C, and G 1 . . . .  , G R . The 
main merit of  the present modification of  the T U C K A L S 3  algorithm (denoted as the 
"Modified algori thm" in the sequel) is that both storage and computations involving 
matrices of  row- or column-order I are circumvented.  As a result, the Modified algo- 
rithm requires less RAM space than the (most efficient form of  the) original algorithm 
whenever  I > JK + P2( jK + P ) - J ,  and in particular when I >> JK. At the cost of  a 
slightly more involved implementation, a further gain of  just  under 50% for large ma- 
trices can be achieved by only storing Vkl for k = I . . . . .  K and l --< k. 

The above modifications of  the K & L  algorithm yield the following Modified algo- 
rithm. 

Step 1. Read cross-product matrices Vkl, k, l = 1 . . . . .  K, or read (raw) data 
matrices such that cross-product matrices are built while reading the orig- 
inal data. 

Step 2. Initialize Sk, k = 1, . . . ,  K, B,  C, compute G r as G r = ~.k Ckr S'kB, 
r = 1 . . . .  , R, and evaluate f according to (9). 

Step 3. Iteratively perform the following steps, until convergence:  
3a. Compute Q = •k Y r Ckr S k G r ,  and update B by B = GS(Q),  
3b. Update Gr,  r = 1, . . .  , R, by G r = ~.k Ckr S'k B ,  

t t 3c. Compute [R]kr = tr S k B G r ,  k = I . . . .  , K,  r = 1 . . . . .  R, and 
update C by C = GS(R),  

3d. Update Gr, r = 1 . . . .  , R, as in 3b, 
3e. Update S k, k = l ,  . . . ,  K, according to (8), 
3f. Update G r, r -- 1, . . .  , R, as in 3b, 
3g. Evaluate f according to (9). 
If  ford _ fnew < e, where e is some arbitrary small value, go to Step 4; 

else, repeat  Step 3. 
Step 4. I f  the original data are still available, compute  A according to A = GS(P)  

(optional). 

Step 2 (of initializing Sk) requires some extra attention. The algorithm is based on the 
assumption that S k should be of  a form that can be expressed as S k -- X~. A for some 
A for which A ' A  = Ip.  However ,  if this would not be the case at the start of  the 
algorithm, the procedure for updating Sk automatically will take care of  this condition, 
and from the first iteration onward, the condition is satisfied. Hence ,  one may initialize 
Sk at will. 
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Although S k ,  A ,  and B can be initialized arbitrarily, it is recommended to use 
rational starts for these parameter  sets. Kroonenberg and de Leeuw (1980, p. 76) 
propose to start their T U C K A L S 3  algorithm with the parameters  resulting from Tuck- 
er 's  Method I (Tucker,  •966, pp. 297-298). Thus, for A they use the first P eigenvectors 
of  Zk X k X ' k ,  for B the first Q eigenvectors of  Zk X ' k X k ,  and for C the first R 
eigenvectors of  the matrix Y with elements Ykt = tr X'k X t . If I is large compared to JK,  
the matrices Vkt = X~, Xt are used instead of  the original matrices Xk. Clearly, the 
starting values for B and C can still be found using the matrices Vkt. However ,  for  A 
we need the following alternative procedure,  based on Tucker ' s  (1966, pp. 29%301) 
Method III. 

Le t  X -= ( X I I - - - I X K ) ,  and let A contain the rational starting values obtained 
from the first P (unit normalized) eigenvectors o f  X X '  = X k  X k  X'k.  Then,  X X ' A  = A A  

for the diagonal matrix A with the first P eigenvalues of  X X ' ,  and hence,  X ' X ( X ' A )  = 

(X 'A)A with ( X ' A ) ' ( X ' A )  = A. As a result, W = X ' A  = (S'1 I " " " IS'k) ' contains the 
first p eigenvectors of  X ' X ,  normalized to sums of  squares equal to the associated 
eigenvalues. It follows that starting values for  S l,  • • • ,  SK (associated with the ratio- 
nal starting values for A) can be obtained by taking the first P eigenvectors of  X ' X  (the 
JK x JK matrix with blocks V,t),  normalizing these to sums of  squares equal to the 
associated eigenvalues, and partitioning the resulting matrix into $1,  . . .  , S/¢. 

The main modification of the original T U C K A L S 3  algorithm into the Modified 
T U C K A L S 3  algorithm is the use of matrices Sk. Apart f rom their auxiliary function, 
these matrices may also be useful interpretative tools. When the columns of  the slices 
X1, • • • , X/¢ are centered and normalized to unit length, the matrices Sk = X'k A, k = 
1 ,  . . .  , K, contain correlations between the mode A components  and the variables for 
each slice. 

Computation Times 

The gain in execut ion time with the Modified T U C K A L S 3  algorithm will be dem- 
onstrated with a small Monte Carlo study. Four  three-way arrays of  random numbers 
from a uniform distribution were generated, of  order  6 x 5 x 5, 25 x 5 x 5, 50 x 5 x 
5, and 100 x 5 x 5, respectively.  For  each data set, two different combinations of 
numbers of  components  for the three ways were used: 2 x 2 x 2 and 6 x 3 x 3. The 
most efficient version of  the original algorithm (which still deals with matrices of  row- 
or column-orders I) was compared with the Modified algorithm. The computat ion times 
per  iteration are reported in Table 1. All comparisons were carried out with Fortran77 
programs compiled with the MS-Fortran 4.1 compiler on a Commodore  PC40-III with 
a 80287 mathematical coprocessor .  

As the largest order  I is not involved in the main computat ions of  the Modified 
algorithm, the execution speed per iteration is unaffected by the increase of  I (small 
differences in computation time per iteration may occur  due to inaccuracies of  time 
measuring). The time to compute  the covariance matrix increases with increasing I, and 
does contribute to the overall computation time, but this is minor compared to the rest 
of  the computations.  The Modified algorithm becomes faster than the standard one at 
approximately I = 26 for the 2 x 2 x 2-solution, and approximately I = 80 for the 6 x 
3 x 3-solution. As execut ion times are machine dependent ,  explicit recommendat ions 
cannot  be made as to which algorithm to use when execut ion speed is the only con- 
sideration. It is clear, however,  that for I >> JK, the modified algorithm will always be 
faster. 
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TABLE 1 
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Comparison of Average Execution Speeds Per Iteration of the 

TUCKALS3 and Modified TUCKALS3 Algorithms (in seconds) 

Average Execution times per iteration 

Size Number of 

Data Set Components 

TUCKALS3 Modified TUCKALS3 

6 x 5 × 5  2×2×2 0.27 0.66 

25x5x5 2×2×2 0.65 0.67 

50x5x5 2 x 2 x 2  1.17 0.67 

100x5x5 2 x 2 x 2  2.19 0.67 

6×5×5  6×3×3 0.61 4.45 

25x5x5  6 x 3 x 3  1.59 4.47 

50x5x5  6 x 3 x 3  2.89 4.47 

I00×5x5 6 x 3 x 3  5.50 4.47 

Discussion 

The above modification of the TUCKALS3 algorithm shows that the computations 
of the solution for B, C, and G 1 . . . .  , GR do not involve the Xk matrices, but only the 
cross-product matrices Vjk, j ,  k = 1, • . .  , K. As a consequence, different data sets 
with the same cross-product matrices yield the same solutions for B, C, and 
Gj . . . . .  G R. This result parallels the situation of principal components analysis, 
where the loadings depend on the correlation matrix only. A similar result was found 
for the three-way method PARAFAC (Kiers & Krijnen, 1991). 

The information in three-way data sets is often reported only in terms of covari- 
ances or correlations between the variables. A prevalent case is that of multitrait- 
multimethod (MTMM) matrices. The original TUCKALS3 method cannot deal with 
such matrices because it requires the original three-way data array on which the 
MTMM matrix is based. The Modified algorithm developed in the present paper does 
not require the original three-way data as input for TUCKALS3, and thus provides us 
with an algorithm to apply TUCKALS3 to MTMM matrices. 

As has been mentioned above, Murakami (1983) has developed a similar procedure 
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for handling large data in TUCKALS2. Apart from the fact that he used TUCKALS2 
instead of TUCKALS3, another major difference is that Murakami's algorithm is still 
based on eigendecompositions in each iteration, whereas our procedure uses the much 
cheaper Gram-Schmidt procedures. It should be noted that a modification highly similar 
(but simpler) to that of  the TUCKALS3 algorithm can be constructed to speed up the 
TUCKALS2 algorithm. 
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