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Vector-mean-field theory of the fractional quantum Hall effect
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A mean-field theory of the fractional quantum Hall effect is formulated based on the adiabatic
principle of Greiter and Wilczek. The theory is tested on known bulk properties (excitation gap,
fractional Charge, and statistics), and then applied to a confined region in a two-dimensional electron
gas (quantum dot). For a small number N of electrons in the dot, the exact ground-state energy has
cusps at the same angular momentum values äs the mean-field theory. For large N, Wen's algebraic
decay of the probability for resonant tunneling through the dot is reproduced, albeit with a different
exponent.

Although the fractional quantum Hall effect (FQHE)
in an unbounded, uniform two-dimensional (2D) electron
gas is described accurately by Laughlin's variational wave
functions,1 this theory is not easily applied to confined
or nonuniform Systems. The fact that it is now possible
experimentally to study the FQHE in a nanostructured
2D electron gas calls for a mean-field theory which can
explain the novel effects occuring in such "mesoscopic"
Systems. In a conventional mean-field treatment of the
Coulomb interactions, however (such äs the Hartree-Fock
appioximation), the subtle correlations responsible for
the incompressibility of the FQHE liquid are lost. In
a recent paper, Greiter and Wilczek2 have proposed an
"adiabatic principle" for the FQHE, which suggests a
simple mean-field approximation that might be able to
describe the FQHE in confined geometries. The adia-
batic principle of Ref. 2 (summarized below) is based
on the introduction of a fictitious long-range vector po-
tential interaction between the electrons. By treating
this interaction in mean-field theory one has a "vector-
mean-field theory" of the FQHE, a name borrowed3 from
anyon superconductivity,4'5 where the fractional statis-
tics is mediated by a similar gauge interaction.

In this paper we will show that the vector-mean-field
theory reproduces the known bulk properties of the cor-
related FQHE states, such äs fractional charge and statis-
tics of the quasiparticle excitations, and we will calculate
the excitation energies. These bulk properties are also
well described by the Chern-Simon field theories of Refs.
6-10, although, äs far äs we are aware, this is the first
time that a mean-field theory is used to actually calcu-
late the excitation gap. We will then focus on a simple
confined geometry, a quantum dot with parabolic con-
finement. For a few electrons in the dot we compare the
mean-field theory with the exact diagonalization of the
Hamiltonian. Finally, we will consider the problem of
tunneling through a quantum dot in the FQHE regime,
in connection with the "orthogonality catastrophe" pre-
dicted recently by Wen11 and Kinaret et al.12

The adiabatic principle of Greiter and Wilczek2 is for-
mulated in terms of the Hamiltonian

eA(rt) - e\ - r,)

(1)

where V x A = Bz is the external magnetic field (with
z the unit vector perpendicular to the 2D elöctron gas),
and V is the electrostatic potential from impurities or an
external confinement. In addition to the ordinary inter-
action u(r), the electrons interact via the vector potential
-Äa(r), where

h z χ r
V x a(r) = -<5(r)z. (2)

The Hamiltonian Ή\ is thus obtained from the ordi-
nary Hamiltonian Ή§ by binding a flux tube of strength
—Xh/e to each electron. Greiter and Wilczek now pro-
pose the following adiabatic mapping:13 Starting with
an eigenstate Φο of HO, which satisfies HO^Q = EQ^JQ,
one switches on the vector potential interaction adiabat-
ically by increasing λ from 0 to an even, positive inte-
ger 2k. After Φ ο has evolved adiabatically into *2fc,
with Ti.2k^2k — E2k^2k, one eliminates the vector po-
tential interaction in "H^k by the gauge transformation

X2fc =

\2k

i2fc (3)

Hence, Φο is mapped onto X2fc^2fc> a new, exact eigen-
state of the original Hamiltonian H0. Motivated by Jain's
theory of the FQHE,14 Greiter and Wilczek propose that
the incompressible FQHE states can be obtained by an
adiabatic mapping of the incompressible states of the in-
teger QHE (IQHE).

The mean-field approximation to the adiabatic map-
ping described above is suggested by. the vector-mean-
field theory of anyon superconductivity.3"5 In this ap-
proximation the flux tubes are smeared out, yielding a
fictitious magnetic field B^ proportional to the electron
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density. In addition, a fictitious electric field E? is gen-
erated by the motion of the flux tubes bound to the
electrons.15 The mean-field Hamiltonian is

*Γ = ̂ (Ρ + βΑ-βλΑ/) 2

 + 1 - U + V. (4)

The fictitious potentials A/ and Φ·*" are given by

(5)

(6)

A /(r)= /dr'a(r-r>(r'),

and the ordinary Hartree potential is given by

U (τ) = ίάτ'η(τ: - r')n(r'). (7)

The electron density n and current density j are to
be determined self-consistently from the eigenfunctions
ν>λ,ί (i = l,..., N) of Ή% F. After increasing λ from 0
to 2k, the mean-field state is given by *MF = X2k^k '.
where Φ^ρ is the Slater determinant of ι/>λ,ί· A further
simplification results if the potential U is also switched on
adiabatically by the Substitution U -» (\/2k)U. Then,
Ή$ν describes a System of noninteracting electrons, so
that the initial state *^F of the mapping can be deter-
mined exactly.

The mean-field equations can be solved analytically
if the initial state ΦΟ'Ρ consists of p completely filled
Landau levels. We can either consider the case ii(r) short
ranged with V(r) = 0, or the Coulomb potential u(r) =
e2/r with V(r) the potential of a neutralizing background
of positive charges with density p = n. In both cases
the electron density remains uniform äs we switch on the
interactions. The fictitious magnetic field is also uniform,
since B* z = V χ A-^ = (h/e)nz. Since the mapping is
adiabatic, no transitions occur between different Landau
levels. Therefore, we retain p fully filled Landau levels,
but now in the effective magnetic field Befi = B- XB{ -
B-\(h/e)n. Equating Befi — hn/ep, we find n = p(\p+
l}-l(eB/h). The eigenfunctions of H^F (for quantum
numbers n, m = 0, l, 2, . . .) are

(8)

where i\ = (Xp + l^fi/eB)1/2 is the effective mag-
netic length, L™~n is the Laguerre polynomial, and
ζ = 2~i/2z/£\. After letting λ -» 2k we recover

Jain's formula14 for the hierarchy of FQHE filling fac-
tors v = p(2kp + l)"1.

For a Coulomb potential with a neutralizing back-
ground, the interaction energy of the System after sub-
tracting the background contributions is

E
MF
int r-r'

(9)
N

t=l

From Eqs. (8) and (9) we find, for λ = 2k,

e2 7V

where i0 = (H/eB)1/2. In Table I we have listed the in-
teraction energy per electron for k = l, p = l, 2, together
with the exact results16 for v — | and |. The mean-field
values are too large by about 10%.

To determine whether the mean-field ground state
\I/MF can be characterized äs a mean-field FQHE state,
we have to study its excitations. The charged FQHE ex-
citations should have a gap, and fractional Charge and
statistics.1 We assume that the adiabatic mapping car-
ries the particle and hole excitations of the IQHE into
the quasiparticle and quasihole excitations of the FQHE.
The elementary charged excitations of the IQHE at fill-
ing factor p have an electron in the (p + l)th Landau
level or a hole in the pth Landau level. Here, unlike the
previous case, the self-consistent mean-field equations do
not allow an analytic solution and we had to solve them
numerically. Our numerical method will be discussed in
detail elsewhere. Here, we only give the results of the
calculation carried out for N ~ 40. The (gross) quasi-
particle (e_) and quasihole (e+) energies, äs well äs the
excitation gap energy eg = e_ + e+, are compared with
exact results16 in Table I. There is reasonable agreement
for the quasiparticle and quasihole energies of the ^ state
and the quasihole energy of the | state. The result for
the | quasiparticle is less satisfactory.

The quasiparticle (quasihole) charges can be calculated
from the mean-field density profiles. For example, for the
§ state we find Q- = -0.374e and Q+ = 0.295e. The de-
viation from the exact fraction ±e/3 is due to the finite

TABLE I. Comparison of the mean-field (MF) results with the exact calculations (ex) (Ref. 16).
The interaction energy per particle (.Eint/W), and the (gross) quasiparticle (e_), quasihole (e+), and
excitation-gap (e9) energies are compared for v = | (k = l, p = 1) and f = f (k = l, p = 2). The
energy unit is e2/^o·

z/
l

5

Jänt.

MF

-0.362
-0.385

/N
ex

-0.410
-0.434

e_
MF

-0.104
-0.063

ex

-0.130
-0.084

«4
MF

0.211
0.150

ex

0.232
0.145

«9

MF

0.107
0.087

ex

0.102
0.061



15568 B. REJAEI AND C. W. J. BEENAKKER 46

number of electrons in the calculation. We now argue
that in the limit 7V —> oo, the mean-field values become
identical to the exact fractions. Consider an IQHE ex-
citation of charge ±e at the origin. As one switches on
the interactions, the electrons far from the origin see an
excess flux φ± = XQ±(h/e2) at the origin, because of
the presence of an excitation of charge Q±. The excess
flux shifts the single-electron wave functions outwards or
inwards (depending on the sign), in such a way that an
excess charge OQ± = —p(f>±/(h/e2) is induced near the
origin. Thus, the net charge of the excitation becomes
Q± = ±e + 6Q±, which implies Q± - ±e(2kp + l)"1

(after λ —> 2k). For fc = l , p = l , 2 w e recover the well-
known results Q± = ±e/3, Q± = ±e/5 for the | and |
states, respectively.17 The fractional statistics follows di-
rectly from the fractional charge,18 the statistical phase
acquired upon exchanging two quasiparticles (quasiholes)
being ±n(2kp+l)-1.

Now that we have shown that the vector-mean-neld
theory describes the FQHE in unbounded homogeneous
Systems, we turn to confined inhomogeneous Systems.
We have solved the mean-field equations for a quantum
dot with a parabolic confining potential V (r) = |mw2r2,
starting from an initial incompressible IQHE state. We
have also calculated the exact ground-state energies for
N = 5 and 6, by diagonalizing the Hamiltonian HO in
the lowest Landau level (in the translational-invariant
subspace, following the method of Ref. 19). In Fig.
l we have plotted the mean-field and exact electron-
electron interaction energies Eee äs functions of the to-
tal angular momentum L of the System. The total in-
teraction energy (including the confinement energy) is
given by Eint = Eee + \U(L + N) [(ω2 + 4α;2)1/2 - Wc],
where wc = eB/τη. The exact diagonalization yields a
value of Eee for each integer L (open Symbols in Fig. l).
Squares represent the incompressible states, i.e., which
are a ground state for some strength ωό of the external
confinement.19 The states which are not stable under ex-
ternal confinement are represented by circles. The adia-
batic mapping, in contrast, yields only particular values
of L (triangles). One sees from Fig. l that the exact
ground-state energy shows a strong cusp at these val-
ues, and the System becomes incompressible except at
7V = 5, L — 22. We conclude that the angular momen-
tum values reached by the adiabatic mapping correspond
to cusps in the interaction energy, and therefore are good
candidates for incompressibility.

As a final application of the vector-mean-neld the-
ory, we consider the orthogonality catastrophe for res-
onant tunneling through a quantum dot in the FQHE
regime. It has been shown by Wen11 and by Kinaret
et a/.12 that the resonant conductance peaks of a quan-
tum dot in the ^ FQHE state (in the regime of ther-
mally broadened resonances) are suppressed in the limit
N —> oo. The tunneling probability20 is proportional to

\M\2 - |(ΦΛΓ+ι|οΔΖ/ *w)|2' where ΦΛΤ is the W-electron
ground state (with angular momentum L N), and the

operator CAL creates an electron in the lowest Landau
level with wave function VAL and angular momentum
ΔΙ/ = LN+I — LN· In the IQHE, the overlap M is unity.

3.5

2.5

N=6

öo f

N=5
Qo

20 25 30 35 40 45

FIG. 1. Electron-electron interaction energy of five and
six electrons äs a function of the angular momentum L. Tri-
angles follow from the adiabatic mapping in mean-field ap-
proximation. Squares and circles are exact results, squares
representing incompressible ground states. Exact results for
7V = 6, L > 39 could not be obtained because of com-
putational restrictions. The ränge L < 21 (N = 5) and
L < 29 (N = 6) cannot be reached by adiabatic mapping.

Wen and Kinaret et al. find that, in the ^ FQHE state,
\M\2 vanishes algebraically äs N~(-m~1^2 when N — >· oo,
äs a manifestation of the non-Fermi liquid nature of the
FQHE.

To see whether the mean-field theory can reproduce
this orthogonality catastrophe, we need the matrix ele-
ment .MMF = (Φ CAL|*$F), which we rewrite äs

MMF = 0
N+l N

Π C* X2fc,JV+lCL,X2fc,.W Π C]
1=1 3 = 1

ο (10)

Here, cj creates an electron in the eigenstate ^2k,j of

Ή·2^, and the operator x2k N carries out the gauge trans-
formation (3) on an ./V-electron wave function. After sub-

stituting cAt = /ds'i/)AL(s)V)^(s) (where ψ^ is the field
operator in second quantization), we eliminate %2fc N an<^

by usinS xkN+iX2fe,w+i = !. and the identity

(8). (11)
3=1 3=1

The operator cj(s) creates an electron with the wave

function S'(r;s)'02fe,j(r)) where

ζ = x-iy, ξ = sx - isv. (12)

Substitution into Eq. (10) leads to

M"* = l·

M(s) = ( 0
N+l N

1=1

0 =

(13)

(14)
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where M%3(s) is a (N + l) x (N + l) matrix with elements

(15)

Since we are dealing with a finite system, the wave func-
tions V2fe,i will differ from ψ^,η,ηι in Eq. (8). However,
when 7V is large, Vzfc.n.m will be a good approximation.
We can then calculate the determinant analytically. For
the ^ FQHE state the determinant is given by

(16)

Γ* (ι-ι)
7ο V xj

t\2 tN~l

(N -1)1

where η — 1 1//2£/^2fc· After substituting into Eq. (13)
and carrying out the Integration we find |.MMF|2 ~
0.38(W~2 for 7V » 1. We conclude that the mean-field
theory reproduces the algebraic decay of the tunneling
matrix element for large N, but with a different value of
the exponent (\M\2 oc 7V~2 instead of oc Λ''"1 in Refs. 11
and 12). In the present context, the orthogonality catas-
trophe originates from the correlations created by the
gauge transformation χ, required to remove the fictitious
vector potential from the Hamiltonian (1).

In summary, we have investigated the adiabatic map-
ping of Greiter and Wilc/ek,2 by means of a mean-field
approximation of the vector potential interaction. In con-

trast to previous theories, this mean-field theory can eas-
ily be applied to confined geometries, such äs a quantum
dot. Starting from an unbounded incompressible state of
noninteracting electrons, we have shown that the adia-
batic mapping leads to a correlated state with the char-
acteristics of the FQHE (excitation gap, fractional quasi-
particle Charge, and statistics). The non-Fermi-liquid na-
ture of the mean-field ground state is illustrated by the
algebraic suppression of the probability for resonant tun-
neling through the dot in the limit N —> oo (the orthog-
onality catastrophe of Wen11 and Kinaret et a/.12).

We conclude by identifying some directions for future
research. The shortcomings of the mean-field approach
originate from the fact that it does not give the correct
behavior of the wave furiction at short separations. This
is particularly serious for properties involving the kinetic
energy (such äs cyclotron resonance). A projection onto
the lowest Landau level (äs in Jain's approach14) might
improve the results, but would also make the theory less
tractable. At present we can only reach filling factors u <
| by adiabatic mapping. To study the interesting effects
occuring at higher filling factors (in particular v = |, see
Refs. 12 and 21) one would presumably have to invoke
some form of particle-hole symmetry. The theory in its
present form may well serve äs a starting point for a study
of interfacial effects, for example, the correlation energy
and density profile at the interface between the v = ·|
and ι/ = | FQHE states.
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