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Activated transport through a quantum dot with extended edge channels
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We study the Coulomb-blockade oscillations in the conductance of a quantum dot in the quantum
Hall effect regime. Our model calculation generalizes the self-consistent Thomas-Fermi approach of
McEuen et al. for isolated dots, to include extended äs well äs localized edge states. We find that a
Coulomb blockade can exist for the transfer of an electron from an extended to a localized edge state,
in accordance with recent experiments by Alphenaar et al. We demonstrate the crucial role played
by the incompressibility of the extended edge states, and predict that the conductance oscillations
will be suppressed at lower temperatures when an odd rather than an even number of extended edge
channels is present.

Conduction through a small confined region in a two-
dimensional electron gas (a "quantum dot") is activated,
due to the Coulomb interactions which impose an en-
ergy barrier for changing the number of electrons in the
dot. This is the Coulomb blockade of single-electron
tunneling.1 At particular values of the Fermi energy E p
of the adjacent electron reservoirs the activation energy
vanishes, and resonant tunneling through the quantum
dot results in a peak in the conductance. The peri-
odic modulation of the activation energy äs a function
of Ep is observed äs a periodic oscillation of the con-
ductance (Coulomb-blockade oscillations).2 At the con-
ductance minima, the activation energy jEact takes on its
largest value, given by the charging energy Ec = e2/2C,
with C the classical capacitance between the confined
region and the reservoirs. A key assumption of this "or-
thodox model" * of the Coulomb blockade is that the con-
ductance G B of the barrier between the dot and the reser-
voirs is smaller than the conductance quantum e2 /h, so
that the number of electrons in the quantum dot is a
sharply defined classical variable that can take on only
integer values. For GB > e2/h no Coulomb blockade is
expected classically.

The Situation is different in a strong magnetic field, in
the regime of the quantum Hall effect. In that regime
conductance occurs via edge states circulating along the
circumference of the quantum dot. Edge states with the
same Landau-level quantum number form an edge chan-
nel. If GB < e2/h all edge states are localized in the
quantum dot, which is completely isolated from the elec-
tron reservoirs [see Fig. l (a)]. In that case the main modi-
fication of the orthodox model is that the charging energy
is no longer well described by the classical capacitance,
because of the large screening length in the quantum Hall
effect regime. McEuen et al.3 have introduced an im-
proved model which takes into account charging effects
self-consistently, within the Thomas-Fermi approxima-
tion. This model was used successfully to explain experi-
ments on Coulomb-blockade oscillations in isolated quan-
tum dots.3 If G B > e2/h some edge states in the quan-
tum dot extend into the reservoirs [Fig. l(b)], so that the
number of electrons in the dot is not restricted to have in-

teger values and one would expect no Coulomb blockade
to occur. Recently, however, Alphenaar et al* observed
Coulomb regulated conductance oscillations even in the
presence of extended edge channels (GB > e2/h). They
attributed these conductance oscillations to a Coulomb
blockade for tunneling from an extended to a localized
edge channel. For some values of Ep the Coulomb block-
ade is removed, so that electrons can tunnel resonantly
between the extended edge states at the upper and lower
edge via an intermediate localized edge state. This is a
mechanism for resonant backscattering,5 which leads to a
conductance minimum. In this way the conductance os-
cillations would originate from an oscillatory activation
energy for adding a single electron to a localized edge
channel.

In this paper, motivated by the experimental work of
Alphenaar et al.,4 we study theoretically the problem of
the Coulomb blockade in the regime of extended edge
channels. By extending the self-consistent model pro-
posed by McEuen et al.,3 we calculate the activation en-
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FIG. 1. Schematic view of a quantum dot with (a) no
extended edge channels and (b) with one extended and one
localized edge channel.
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ergy for tunneling from one extended to one localized
edge channel. We find an oscillatory activation energy
äs a function of E p , the periodicity of which equals the
periodicity of the conductance oscillations äs a function
of Fermi energy, whereas the amplitude can be measured
from the temperature dependence of the oscillations.6 For
comparison we also calculate the activation energy for the
case that both edge channels are localized (i.e., for the
usual case of an isolated quantum dot). An interesting
picture of an interacting dot with extended edge states
is revealed with a crucial role played by the incompress-
ibility of the extended states, which makes the charging
energy insufncient to determine alone the activation en-
ergy of the quantum dot.

Our model generalizes that of McEuen et al.,3 to in-
clude extended äs well äs localized edge channels. The
starting point is the energy functional

+ i) + 9μΒΒ3}Νη3 + f d*rVext (r) p (r)
Jn,s

(1)

The Index n = 0,1,2,... labels the Landau levels, the
index s = ±| labels the spin polarization. The sum over
n and s gives the kinetic and Zeeman energy of the Nns

electrons in each Landau level [LJC = eB/m is the cy-
clotron frequency and gμBB the Zeeman Splitting, in a
magnetic field B perpendicular to the two-dimensional
electron gas (2DEG)]. The Integrals over the areal elec-
tron density p(r) give the confinement and interaction
energy in the approximation of a slowly varying elec-
tron density. We take a parabolic confining potential
Vext(r) = |mw0r2. Near the tunnel barriers, where the
extended edge channels join with the electron reservoirs,
the external potential should have a saddle point, which
we have not included. Although the saddle point is cru-
cial for calculating the transmission probabilities, it will
have little effect on the ground-state energy if the lateral
extension of the tunnel barriers is much smaller than that
of the quantum dot. As in Ref. 3, the electron-electron
interaction potential is modeled by

Vee(r) = ^-((r* - (r2

to include the effects of the finite thickness δ of the 2DEG
layer and the image Charge on a gate electrode at a dis-
tance d above the 2DEG. In our numerical work we took
fujjQ = 0.8 meV, δ = 50 Ä, d = 100 A, and dielectric con-
stant e = 13.6 appropriate for GaAs-based devices. Our
general conclusions are not sensitive to the specific form
of the interaction and confining potentials.

To determine the ground state of the quantum dot in
equilibrium with electron reservoirs at Fermi energy Ep,
we minimize the thermodynamic potential Ω = U—NEp,
where N = / d2r p(r) is the number of electrons in the
dot. The number of electrons with quantum numbers n,
s is given by Nns = Jd2rpns(r), with N = Σηβ

Νη8·
The number Nn3 is constrained to be an integer for a
localized edge channel, whereas it is an unconstrained
positive real number for an extended edge channel. The

Landau-level degeneracy constrains the particle density
pns(r) of electrons with quantum numbers n, s to the in-
terval 0 < pn,a(r) < ̂ . The minimization of Ω subject
to the above constraints is carried out numerically, and
yields a ground-state thermodynamic potential Ω<,, with
the corresponding density distributions per Landau level.
To obtain the activation energy Eact we repeat the mini-
mization twice, subject to the additional constraint that
the total number of electrons in the localized edge chan-
nels is either one more or one less than the number NO
in the ground-state configuration. This yields two addi-
tional thermodynamic potentials, Ω+ and Ω_. The acti-
vation energy is defined by E&ct = ηιϊη(Ω+—Ω5, Ω_ — Ω9),
and is non-negative by construction. If Eact = 0, either
the process NO —> NO + l —> NO —> · · · or the process
NQ -* NO — I —* NO —* · · · costs zero energy. Accord-
ing to the resonant backscattering mechanism discussed
above, this corresponds to a conductance minimum. If
-Eact > 0, backscattering is suppressed at low tempera-
tures (when kBT < JSact).

In Fig. 2 we plot E&ci äs a function of Ep for a quantum
dot with one extended and one localized edge channel at
B — 2 T. Both edge channels have the same Landau in-
dex (n = 0), but opposite spin polarization (s = ±|).
We define the incompressibility energy Eincomp äs the
minimum energy required to excite an electron from an
extended to a localized edge channel without changing
the electron density distribution p(r). In the case of Fig.
2, or, more generally, if the number next of extended edge
channels is odd, we have .Emcomp equal to the Zeeman
Splitting gßßB. If next is even, on the other hand, the
incompressibility energy is determined by the cyclotron
energy Hwc, or more precisely Eincomp = ftwc - g με B.
By definition, .Eincomp > -Eact· As we now demonstrate,
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FIG. 2. Activation energy äs a function of Fermi energy
for a quantum dot with two edge channels occupied, one
extended and one localized. The incompressibility energy
.Eincomp equals the Zeeman Splitting g με B at B = 2 T. In
the top panel g = 0.44. In the bottom panel g is multiplied
by a factor of 4 to demonstrate the effect of E-mcomp on ERCt ·
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the incompressibility energy plays a crucial role in this
problem (which it did not in the case of an isolated sys-
tem considered previously). The two panels in Fig. 2
both show a periodic modulation of Eact, with the same
periodicity but different amplitude. In the top panel
the g factor was set at the value <?o = 0-44 appropri-
ate for GaAs, while in the bottom panel we set g = 4go
to artificially increase the incompressibility energy. The
value <?o = 0.44 is the bare g factor. Whether or not ex-
change effects enhance the g factor in a confined geome-
try is a matter of some debate, which we do not consider
here. In the top panel the activation energy is short-
circuited exactly at the level of the incompressibility en-
ergy. The energy scale for activated transport is thus set
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PIG. 3. Density distribution p(r) at EF = 8.24 meV, cor-
responding to a plateau region in the top panel of Fig. 2. The
dashed curve is the density profile of the lowest (extended)
edge channel, the dotted one of the highest (localized) edge
channel, and the solid curve is the total electron density. The
curves in (a) refer to the ground state and those in (b) to the
excited state, which involves the transfer of an electron from
the lower to the higher Landau level.

by the Zeeman energy and not by the charging energy
Ec, hence there is no Coulomb blockade. The existence
of a Coulomb blockade for transport from an extended to
a localized edge channel requires Sincomp > Ec, äs in the
bottom panel of Fig. 2. In general, this will be the case if
i'incomp is determined by the cyclotron energy, i.e., if next

is even. To summarize, we predict a smaller activation
energy (and hence a stronger temperature dependence of
the conductance oscillations) if an odd, rather than an
even, number of extended edge channels is present in the
quantum dot.

This is our main conclusion. We now discuss Fig. 2 in
more detail. Consider first the top panel. The oscilla-
tions in .Eact have a triangulär shape, which is truncated
at jEincomp = 0.051 meV. At these maximum values of
the activation energy, equal to the Zeeman Splitting, the
activated process consists of the transfer of one electron
from the lower (extended) to the higher (localized) edge
channel. The Charge transfer takes place in the same
region in space, without charge Separation, so that the
change in electrostatic energy is zero. This can be seen
more clearly in Fig. 3, where we plot the density profile
in the dot before and after the electron transfer to the
higher Landau level. The electron transfer breaks down
the incompressibility of the lowest Landau level, but does
not change the net density profile. The plateaus at the
maxima of Eact occur because, over a ränge of Fermi en-
ergies, it is more advantageous energetically to excite an
electron from the lowest to the higher Landau level in the
same region in space [process A in the inset of Fig. 3(a)],
rather than to transport the electron from one Landau
level to the other across an incompressible region (pro-
cess B). The second process is more advantageous in the
bottom panel of Fig. 2, where J5act is not truncated by
-Eincomp =0.20 meV, but reaches a maximum determined
by the electrostatic (charging) energy.

For comparison we have also calculated the activation
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FIG. 4. Activation energy äs a function of Fermi energy
for an isolated quantum dot with two localized edge channels.
Same parameter values äs in Fig. 2.
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energy when both edge channels are localized. This is
the case of an isolated dot studied by McEuen et al.3

(who did not, however, present results for the activation
energy). In this case Eact is the activation energy for
tunneling from one reservoir to the other via the quantum
dot. A minimum of £act now corresponds to a maximum
in the conductance. Results are shown in Fig. 4. As
in Fig. 2, the top panel is for g = g0 and the bottom
panel for g = 4<?o- In contrast to Fig. 2, the change in
•ßincomp has no effect on the average peak height, but it
does influence the detailed structure of the oscillations.

To obtain a qualitative understanding of the rieh struc-
ture in Fig. 4, we proceed äs follows. We first note that,
since dE^/dSp — ±1, there is a simple linear relation-
ship between the heights of the peaks and their spac-
ing. It is therefore sufficient to consider the spacing of
the peaks, or equivalently of the points of zero activa-
tion energy. To this end we examine the dependence on
the reservoir Fermi energy Ep of the ground-state oc-
cupation numbers Ni(Ep) and N^Ep) of the two edge
channels. Zero activation energy occurs when either N\
or TVa changes by one. Numerically, we found that over
a large ränge of Fermi energies an increment in N\ al-
ternates with one in N^· This "cyclic depopulation" of

the Landau levels is in agreement with recent experimen-
tal observations.7 We can thus represent the two func-
tions NI(EF) and N2(Ep) by two staircases of unit step
height and approximately equal step width ΔΕρ, but
phase shifted by some arbitrary amount SEp between
0 and ΔΕρ. This leads directly to a doublet structure
of the peaks in the activation energy, with alternating
small and large spacings (and peak heights) in a ratio
of δEp : (ΔΕρ — δEp). Such a doublet structure is a
striking feature of our numerical calculations in Fig. 4.
The slow modulation ("beating") superimposed on the
doublet structure can be interpreted äs arising from a
small difference in step width for Ni(Ep) and Ni(Ep).
This also implies that occasionally the cyclic depopula-
tion skips a Landau level, which is indeed what we find
in the calculation. Our conclusion here is that the strong
Variation in peak height in Fig. 4 occurs not because the
capacitive energies of the two edge channels are very dif-
ferent, but because they are very similar.
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