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Abstract Disordered quantum wires have been defined by means of a split-
gate lateral depletion technique in the two-dimensional electron gas in GaAs-
AlGaAs heterostructures, the disorder being due to the incorporation of a layer
of beryllium acceptors in the 2DEG. In contrast to the usual aperiodic conduc-
tance fluctuations due to quantum interference, periodic conductance oscilla-
tions are observed experimentally äs a function of gate voltage (or density). No
oscillations are seen in the magnetoconductance, although a strong magnetic
field dramatically enhances the amplitude of the oscillations periodic in the gate
voltage. The fundamentally different roles of gate voltage and magnetic field
are elucidated by a theoretical study of a quantum dot separated by tunneling
barriers from the leads. A formula for the periodicity of the conductance os-
cillations is derived which describes the regulation by the Coulomb interaction
of resonant tunneling through zero-dimensional states, and which explains the
suppression of the magnetoconductance oscillations observed experimentally.

1. Introduction

Aperiodic conductance fluctuations due to quantum interference are commonly
observed in disordered conductors small compared to the phase coherence
length [1]. One characteristic aspect of these universal conductance fluctua-
tions is the fundamental similarity between a conductance trace äs a function
of gate voltage (or density), and that äs a function of magnetic field. Both
traces represent a "fingerprint" of the sample-specific impurity potential. The
origin of the duality between density and magnetic field is that both variables
affect the phase of the conduction eleclrons, which for a particular closed tra-
jectory depends on the Fermi wavelength (determined by the density, and thus
by the gate voltage) and on the enclosed flux. This density-magnetic-field
duality is quite general. For example, it also applies to the conductance quan-
tization of a quantum point contact [2] and to the quantum Hall effect [3]. The
experimental and theoretical results presented in this paper pertain to a new
transport regime where gate voltage and magnetic field play an entirely differ-
ent role, due to the effects of the charging energy associated with the addition
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of a single electron to a conduclance-limiting segment of a disordered quantum
wire.

Experimentally, we investigate a phenomenon first observed by Scott-Thomas
et al. [4] in ultra-narrow channels defined in the electron Inversion layer in sil-
icon. They reported remarkable conductance oscillations periodic in the gate
voltage (or the electron gas density), in the absence of a magnetic field. It was
concluded that the periodicity of the oscillations corresponded to the addition
of a single electron to a conductance-limiting segment of the narrow channel,
with a length determined by the distance between two strong scattering cen-
ters. The effcct was tentatively attributed to the formation of a charge density
wave. A similar effect was secii subsequently in narrow channels in inverted
GaAs-AlGaAs heterostructures [5], and was given the same Interpretation. As
an alternative explanation, it was proposed by two of us [6] that the charac-
teristic features of the experiment might be due to the Coulomb blockade of
tunneling [7] — a single electron effect studied extensively in metals where
quantum interference effects are negligible. More recently, Wingreen and Lee
[8] studied the interplay of the Coulomb blockade and resonant tunneling by
a self-consistent solution of the Schrödinger and Poisson equation in a narrow
channel geometry.

In the present paper we explore the relative importance of single-electron
charging effects and of resonant tunneling by focusing on the different roles
of gate voltage and magnetic field. As a novel expcrimental System for these
investigations we use a conventional GaAs-AlGaAs heterostructure in which a
layer of compensating impurities is incorporated in the 2DEG during growth.
Such impurities were chosen because they are likely to form strongly repulsive
scattering centers, which might act äs tunnel barriers. We note that a certain
degree of compensation was also present in the Inversion layers of Ref. [4] and
in the channels defined by lateral p-n junctions of Ref. [5]. In our system a
narrow channel is defined electrostatically in the two-dimensional electron gas
by means of a split gate on top of the heterostructure.

Theoretically, we extend previous work [9,10,11] by considering the com-
bined effects of Coulomb interactions, gate voltage variations, and of a mag-
netic field on resonant tunneling through a quantum dot. This is relevant to
our experiments (and to related experiments [4,5,12,13]) to the extent that one
channel segment, delimited by two strong scattering centers, effectively limits
the channel conductance. In addition, it is a model for experiments on the
Aharonov-Bohm effect in individual quantum dots [14,15,16].

2. Experiments

The quasi one-dimensional electron gas used for the experiments described in
this work is obtained by electrostatic confmement of the two-dimensional elec-
tron gas (2DEG) in a GaAs-AlGaAs heterostructure using a split-gate tech-
nique [17]. On top of the heterostructure, which is mesa-etched in the form of
a Hall bar, a pattern of gold gates is defined using electron-beam lithography.
The insets of Figs. l and 3 show a top view of the two geometries studied. At
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Figure 1: Two-terminal conductance versus gute voltage at 1.5 K of a 3 μτα. lang
split-gate quantum wire (inset, the shaded parts represent the gates while the
contacts are labeled l and 2). The curves for different magnetic fields are offset
vertically for clarity (zero conductance is reached at —1.02 V gate voltage).

the depletion Ihreshold of the 2DEG (-0.3 V), the quantum wires thus defined
are nominally 0.5 μπι wide, while their lengths vary from l μηι to 16 /im; the
side probes (if present) have a nominal width of 0.5 μπι. Both the width and
electron concentration of the wire decrease with gate voltage VK. Pinch-off (äs
evidenced by the conductance) is typically reached at V5 « — l V. One wire
of l μτα nominal width was also studied, having a pinch-off gate voltage on
the order of — 2 V. The results obtained with this wire were similar to those
obtained with the 0.5 μτη wires.

The heterostructure is of a convcntional type and consists of the following
layers, which are subsequently grown on top of a semi-insulating Substrate by
molecular beam epitaxy: A l μ.ιη thick GaAs buffer layer, a 20 nm undoped
AlGaAs spacer layer, a 40 nm AlGaAs layer doped to 1.33 Χ 1018 cm~3 with
Si, and an undoped 20 nm GaAs capping layer. The AI fraction in the Al-
GaAs layers is 33%. Disorder was introduccd deliberately into the 2DEG by
incorporating in the GaAs a planar dopiug layer of beryllium at 25 Ä from
the heterointerface, with a sheet concentration of 2 χ ΙΟ10 cm~2. The electron
sheet concentration ns of the wide 2DEG is 2.7 χ ΙΟ11 cm"2, with a mobility
of about 8 X 104 cm2/Vs (at 4.2 K). Contact to the 2DEG is made by alloyed
AuGeNi ohmic coiitacts, locatcd along the edges of the l mm χ 0.3 mm Hall
bar.

The measurements were performed with the samples in the mixing chamber
of a dilution refrigerator at temperatures between 50 mK and 1.5 K. A conven-
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tional double ac lock-in technique, witli an excitation voltage kept below kT/e
in order to avoid electron heating, was uscd to determine the conductance of
the quantum wires äs a function of gate voltage and magnetic field. The field
was oriented perpendicular to the 2DEG and had a maximum strength of 7.5 T.
The gate voltage was swept at a rate of 10~4 V/s or less.

We now give an overview of the main results of our experiments, concen-
trating on the phenomenology, and defer a discussion of a mechanism which
can account for these results to the next section. Fig. l shows the two-terminal
conductance of a 6 μια long quantum wire at a temperature of 1.5 K for three
different magnetic fields. Periodic oscillations äs a function of the gate volt-
age can be seen in these traces. Calculations of Laux et al. [18] for a similar
geometry indicate that the 1D electron density (per unit length) depends ap-
proximately linearly on the gate voltage. We thus conclude that the oscillations
are periodic in the 1D electron density. The fact that it is still possible to ob-
serve the oscillations at the relatively high temperature of 1.5 K, in combination
with their number (there are about 30 oscillations with a period of 2.2 mV re-
solved), will prove to be an important clue to their origin, äs will be detailed
in the next section. The period is insensitive to a magnetic field. Neverthe-
less, a magnetic field is seen to have a variety of effects. The amplitude of
the oscillations in streng fields is enhanced above the zero-field case, äs is the
average conductance. The pinch-off gate voltage is shifted towards zero. The
conductance peaks, in this particular sample, have a tendency to regroup in a
doublet-like structure consisting of a stronger and a weaker peak.

On lowering the temperature to 50 mK the oscillations are better resolved,
äs is shown in Fig. 2. The insets show the Fourier transforms of the correspond-
ing conductance traces, and clearly demonstrate that the dominant oscillation
has a .ß-independent frequency of 450 V~: (the trace at 7.47 T has a slightly
increased frequency of 500 V"1). Additionally, a second peak in the Fourier
transform emerges at about half the dominant frequency äs the field is in-
creased. This second peak corresponds to the amplitude modulation of the
peaks, which is most clearly seen in the trace at 5.62 T where high and low
peaks alternate in a doublet-like structure.

Fig. 3 displays the dependence of the conductance oscillations on the mag-
netic field for the middle section of a device of the geometry shown in the inset.
This particular sample does not exhibit periodic oscillations in the absence of a
magnetic field, but only for B > l T. Remarkably, very pronounced oscillations
are seen at 5 T, in sharp contrast to the weak random conductance fluctua-
tions in zero field. Between 2 T and 3 T short-period (0.5 mV) oscillations are
observed in this sample, in addition to the slower dominant oscillations with a
period of 2.2 mV which persist over the entire magnetic field ränge from l T
up to 7.5 T. At high magnetic fields, traces of these short-period oscillations
return.

The period of the oscillations does not correlate with the length of the
quantum wire. We conclude this from measurements on a number of wires
with lengths varying from l μιη up to 16 μιη. Somctimes the oscillations were
not quite periodic, even in a magnetic field. An example of this behavior is
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Figure 2: Conductance versus gate voltage at 50 mK of the same device äs in
Fig. 1. Insets: Fourier transforms of the dato,, with the vertical axes of the 0 T
and Ί.4Ί T curves rnagnified by 2.5x, relative to the 2.62 T and 5.62 T traces.
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Figure 3: Development of the conductance oscillations with magnetic field at
50 mK, for a device of the type shown in the inset. The current was passed
through contacts l and 4> while the voltage was measured bctween contacts 2
and 3. The curves are offset vertically for clarity.
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Figure 4: Conductance at 4-69 T of the three sections of the device shown in
Fig. 3 with lengths of 2 μιη (left), 6 μηι (middle) and 4 A"n (right). The current
and voltage contacts used were, respectively, (1,2) and (1,6) (left), (2,3) and
(6,5) (middle), and (3,4) and (5,4) (right).

Figure 5: Magnetoconductance of the device shown in Fig. 3, again using con-
tacts l and 4 äs current source and drain, and 2 and 3 äs voltage probes.

shown in Fig. 4 (right). It is also clear from this Figure that the middle section
of this device determines the total two-terminal conductance (Gu).

Whereas the conductance äs a function of gate voltage at a fixed magnetic
field shows periodic oscillations, no such behavior is observed in the opposite
case where the magnetic field is varied and the gate voltage is fixed. As is
shown in Fig. 5 the magnetoconductance shows cssentially random fluctuations,
in contrast to the periodic oscillations seen in Figs. 1-4. Note the extreme
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sensitivity of tliese magnetoconductance fluctuations to a small shift in the
gate voltage.

3. Theory and Discussion

A theory able to account quantitatively for all of the experimental observa-
tions is likely to require a füll treatment of the electron-electron interactions.
The charge density wave phenomenon [4,5,12] may play a role in such a theory,
which however does not yet exist. Our present goal, in the spirit of Ref. [6],
is to investigate to what extent the remarkable periodicity of the oscillations
äs a function of gate voltage, and the absence of regulär oscillations in the
magnetoconductance, may be explained in terms of single-electron tunneling.

Since quantum effects are known to be important in semiconductor nanos-
tructures [19], it is natural to first consider whether resonant tunneling through
zero-dimensional states in a "quantum dot", defined by a conductance-limiting
segment of the channel (see Fig. 6), might by itself be able to account for the
gate-voltage periodic oscillations. Field et al. [12] argued against such a mech-
anism, because of the absence of the expected spin-splitting of the peaks in a
strong magnetic field, and also because the peaks would most likely not be pe-
riodic in VK. We arrive at the same conclusion, and put forward an additional
compelling argument. At a temperature äs high äs 1.5 K we still find clear
oscillations (see Fig. 1), although some thermal smearing is evident in the data
(compare with Fig. 2). The width of the thermal smearing function at this
temperature is 4&T κ 0.5 meV, so that the energy level Separation in the case
of resonant tunneling would have to be somewhat larger, say around 2 meV.
Since each conductance peak would correspond to the depopulation of a single
discrete level, the Fermi energy E-p = 10 meV at channel defmition would then
imply a maximum number of about 5 peaks in the füll gate-voltage ränge from
defmition to complete pinch-off. Clearly, a much larger number of peaks is
observed in our experiments, thereby demonstrating that resonant tunneling
can not by itself account for the conductance oscillations.

We now discuss, following Ref. [20], how the charging energy associated
with the transfer of single electrons modifies the mechanism of sequential res-

//////////////////////////////////////////////// gate

Figure 6: Schematic diagram of a quantum conductance-limiting segment of
quantum wire, of width W and length L, separated from the remainder of the
wire by tunneling barriers (dotted lines). The short segment can be regarded äs
a quantum dot, with discrete energy levels.
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onant tunneling through zero-dimensional states. As shown schematically in
Fig. 6, we model the couductance limiting Segment by a "quantum dot", sep-
arated by tunneling barriers from the leads. The single-electron levels in this
dot are denoted by Ep (p — l, 2,...), measured relative to the local conduction
band bottom. These levels, which can each contain only one electron of given
spin, depend on V& and B, but are assumed to be independent of the number
of electrons N in the dot [21]. The ground state energy of the dot contains a
contribution from the occupied single-electron levels, and from the electrostatic

energy JQ

 e </>(<3)d<3. Here φ — Q/G + 0Cxt is the potential difference between
the dot and the leads due to a charge Q on the dot and due to an external
potential ^ext from the gate electrode and from the ionized donors in the het-
erostructure. The capacitance G of the dot to the leads is in our geometry
dominated by the dot-gate capacitance. The ground state energy becomes:

N

p=l

Tunneling through the dot requires the transfer of a single electron with Fermi
energy ET? from one of the leads into the dot. In the absence of electron-
electron interactions, the resulting change in energy of the dot is simply the
energy of the lowest unoccupicd energy level, EN+I- On resonance .Sjv+i = EF,
and tunneling can proceed without increasing the ground state energy of the
System (leads plus dot). This picture changes, however, because of the effects
of the charging energy. The condition for resonant tunneling now becomes [20]

U(N+l)-U(N)=EF, (2)

which is the general condition for equality of the electro-chemical potential
Δ{7/ΔΤν in dot and leads. Combining Eqs. (1) and (2), we find (replacing N
byN-1)

Ε*=ΕΝ + ̂ (Ν-^) = Εν + βφαχί. (3)

The left hand side of Eq. (3) defines a renormalized energy level E$·. The renor-
malized level spacing relevant for transport ΔΕ* = Δ.Ε + e2/C is enhanced
above the bare level spacing by the charging energy e2/C. A comparison be-
tween the bare energy levels and the renormalized energy levels is shown in
Fig. 7, from which it is clear that the latter are much more regularly spaced
than the former.

Experimentally, the conductance pcaks are spaced by 6VS « 2 mV. This is
interpreted äs the gate voltage change needed to induce a charge of one elec-
tron in the dot. The dot-gate capacitance is thus e/6Vs « 10~16 F, which we
assume to be approximately the same äs the dot-lead capacitance C. Con-
sequently, the renormalized level spacing Δ.Ε* > e2 /G « 2 meV, an energy
which is consistent with the temperature dependence of the conductance, dis-
cussed in the previous section. The length L of the quantum dot may be
estimated from the gate-voltage ränge between channel definition and pinch-
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Figure 7: Diagram of the bare energy levels (a) and the renormalized energy
levels (b) for the case e2/G ~ 2(AE). The renormalized level spacing is much
more regulär than the bare level spacing. Note that the spin degeneracy of the
bare levels is lifted by the charging energy.

off: AVS = ensWoL/C κ l V, where WQ and ns are the width and electron
concentration in the cliannel at definition. From the above estimate for C we
find L « 500 nm. The width of the dot is estiruated to be about W « 40 nm in
the gate voltage ränge of interest. The bare level spacing for a dot of this area
is AE « (mLW/ττη2)"1, with m - 0.065mc. Consequently, AE » 0.2 meV,
a füll order of magnitude smaller than the clementary charging energy e2/C,
and two Orders smaller than Ep [22]. This diiference between the bare and
renormalized level spacing explains how a large number of peaks in a trace of
conductance äs a function of gate voltage can be reconciled with the weak tem-
pcrature dependence noted in the previous section. In addition, it accounts for
the regularity of the conductance oscillations: since e2/C ^> AE, the renor-
malized level spacing AE* is constant. Gate-voltage periodic peaks result
from Eq. (3), provided that the 1D electron density varies linearly with Vs.
The absence of peak Splitting in a strong magnetic field is explairied similarly:
AEspin = <7/iB-S <C e2/C, so that the spin degeneracy is removed a.i\B = 0 by
the charging energy, see Fig. 7.

One would expect to observe Aharonov-Bohm magnetoconductance oscil-
lations for a singly-connected quantum dot in a strong magnetic field. The
reason is that such a dot is effectively doubly connected if the magnetic length
lm is much smaller than the dot radius R, due to the presence of circulating
edge states. The Aharonov-Bohm (AB) effect in such a dot may be inter-
preted äs resonant tunneling through zero-dimensional states [14,23]. In the
absence of Coulomb interaction, the period AB of the AB oscillations for a
hard-wall dot of area LW is AB — h/eLW (it may be larger for a soft-wall
confining potential [14]). Such oscillations have indeed been observed in large
quantum dots [14,15,16], but in our experiment, at high magnetic fields, no
clear oscillations with the estimated AB » 0.2 T are found. While random
quantum-interference effects in the remainder of the wire and the effect of the
magnetic field on the tunneling rates may be of importance, we here want to
discuss the role of the electrostatic charging energy, which is dominant in small
quantum dots. As pointed out in Ref. [20], each AB oscillation corresponds to
an increase of the number of electrons in the dot by one. One can show from
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Eq. (3) that the period of the magnetoconductance oscillations is enhanced due
to charging effects, according to [20]

where Δ.Ε represents the energy level spacing of the circulating edge states.
Sivan and Imry [23] estimate ΔΕ » najJm/2R for a hard-wall dot. Under the
conditions of our experiment, taking 2R — VLW and B = 3 T, we estimate
Δ.Ε κ 0.5 meV, so that Δ5* « 5Δ5 «IT. This will be further enhanced by
the softness of the confining potential. The rapid AB oscillations in the magne-
toresistance are therefore suppressed, notwithstanding the fact that oscillations
can still be observed easily in a conductance trace äs a function of gate voltage.
The inseiisitivity of the period of the latter oscillations to a strong magnetic
field is explained by the fact that the renormalized level spacing AE* « e2/C
is approximately 5-independent.

4. Conclusions

One major conclusion of our study is that Coulomb effects regulate resonant
tunneling through a siiigle conductance-limiting segment in a disordered quan-
tum wire. The occurrence of periodic conductance oscillations äs a function of
gate voltage is thus explained. In particular, it is clarified how a large number
of oscillations can be reconciled with a weak temperature dependence. The ab-
sence of regulär magnetoconductance oscillations is interpreted äs a signature
of a more general phenomenon: the violation of the duality between density
and magnetic field due to Coulomb interaction. It remains to clarify the rieh
variety of effects of the magnetic field on the amplitude of the oscillations,
which the present study has revealed, äs well äs the curious doublet structure
induced in one of the samples by a magnetic field. We surmise that these may
be related to the influence of the magnetic field on the tunneling rates through
the barriers forming the conductance-limiting segment. Also, it is necessary to
consider the role of spin in this context in more detail.
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